201
|
Phetsang S, Jakmunee J, Mungkornasawakul P, Laocharoensuk R, Ounnunkad K. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode. Bioelectrochemistry 2019; 127:125-135. [PMID: 30818262 DOI: 10.1016/j.bioelechem.2019.01.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
Abstract
A facile one-step electrochemical synthesis of a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) (Pt/rGO/P3ABA) nanocomposite film on a screen-printed carbon electrode (SPCE) and its application in the development of sensitive amperometric biosensors was successfully demonstrated herein. The electropolymerization of P3ABA together with co-electrodeposition of rGO and Pt was conducted by cyclic voltammetry, as was the GO reduction to rGO. A Pt/rGO/P3ABA-modified SPCE exhibited excellent electrocatalytic oxidation towards hydrogen peroxide (H2O2) and can be employed as an electrochemical platform for the immobilization of glucose oxidase (GOx) and cholesterol oxidase (ChOx) to fabricate glucose and cholesterol biosensors, respectively. Under the optimized conditions at a working potential of +0.50 V, the proposed biosensors revealed excellent linear responses to glucose and cholesterol in the concentration ranges of 0.25-6.00 mM and 0.25-4.00 mM, respectively, with high sensitivities of 22.01 and 15.94 μA mM-1 cm-2 and low detection limits (LODs) of 44.3 and 40.5 μM. Additionally, the Michaelis-Menten constant (Km) of GOx was 3.54 mM, while the Km of ChOx was 3.82 mM. Both biosensors displayed a good anti-interference ability and clearly exhibited acceptable recoveries for the detection of glucose and cholesterol in a human serum sample (98.2-104.1%).
Collapse
Affiliation(s)
- Sopit Phetsang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; The Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaroon Jakmunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chang Mai 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pitchaya Mungkornasawakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chang Mai 50200, Thailand; Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Rawiwan Laocharoensuk
- Nanostructures and Functional Assembly Laboratory (NFA), National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Kontad Ounnunkad
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chang Mai 50200, Thailand; Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
202
|
Synthesis of water-soluble conjugated polymer, poly(N-3-sulfopropylaniline) and the study of its glucose sensing property. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-018-1691-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
203
|
Li X, Rafie A, Smolin YY, Simotwo S, Kalra V, Lau KK. Engineering conformal nanoporous polyaniline via oxidative chemical vapor deposition and its potential application in supercapacitors. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.06.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
204
|
Stasyuk N, Gayda G, Zakalskiy A, Zakalska O, Serkiz R, Gonchar M. Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chem 2019; 285:213-220. [PMID: 30797337 DOI: 10.1016/j.foodchem.2019.01.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/03/2019] [Accepted: 01/22/2019] [Indexed: 12/23/2022]
Abstract
Catalytically active nanomaterials have several advantages over their natural analogues when used as artificial enzymes (nanozymes), namely, higher stability and lower cost. Nanozymes with metallic nanocomposites are promising catalysts for biosensing applications. The aim of the current research is to construct oxidase-based bioelectrodes for food analysis using nanozymes as peroxidase mimetics. Bimetallic PtRu nanoparticles (nPtRu) coupled with alcohol oxidase (AO) and methylamine oxidase (AMO) were chosen to construct amperometric biosensors (ABSs) for primary alcohols and methylamine (MA). Both ABSs show high sensitivities (336 A·M-1·m-2 for the AO-ABS and 284 A·M-1·m-2 for the AMO-ABS), broad linear ranges (25-200 µM ethanol and 20-600 µM MA) and satisfactory storage stabilities. Practical feasibility of the constructed ABSs was demonstrated on food samples. High correlation between contents of MA and ethanol in foods determined by the ABSs and reference methods was observed.
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine.
| | - Andriy Zakalskiy
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Oksana Zakalska
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| | - Roman Serkiz
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine; Ivan Franko National University of Lviv, Department of Solid State Physics, Drahomanov Street 50, 79005 Lviv, Ukraine
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Drahomanov Street 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
205
|
Chakraborty P, Guterman T, Adadi N, Yadid M, Brosh T, Adler-Abramovich L, Dvir T, Gazit E. A Self-Healing, All-Organic, Conducting, Composite Peptide Hydrogel as Pressure Sensor and Electrogenic Cell Soft Substrate. ACS NANO 2019; 13:163-175. [PMID: 30588802 PMCID: PMC6420063 DOI: 10.1021/acsnano.8b05067] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Conducting polymer hydrogels (CPHs) emerge as excellent functional materials, as they harness the advantages of conducting polymers with the mechanical properties and continuous 3D nanostructures of hydrogels. This bicomponent organization results in soft, all-organic, conducting micro-/nanostructures with multifarious material applications. However, the application of CPHs as functional materials for biomedical applications is currently limited due to the necessity to combine the features of biocompatibility, self-healing, and fine-tuning of the mechanical properties. To overcome this issue, we choose to combine a protected dipeptide as the supramolecular gelator, owing to its intrinsic biocompatibility and excellent gelation ability, with the conductive polymer polyaniline (PAni), which was polymerized in situ. Thus, a two-component, all-organic, conducting hydrogel was formed. Spectroscopic evidence reveals the formation of the emeraldine salt form of PAni by intrinsic doping. The composite hydrogel is mechanically rigid with a very high storage modulus ( G') value of ∼2 MPa, and the rigidity was tuned by changing the peptide concentration. The hydrogel exhibits ohmic conductivity, pressure sensitivity, and, importantly, self-healing features. By virtue of its self-healing property, the polymeric nonmetallic hydrogel can reinstate its intrinsic conductivity when two of its macroscopically separated blocks are rejoined. High cell viability of cardiomyocytes grown on the composite hydrogel demonstrates its noncytotoxicity. These combined attributes of the hydrogel allowed its utilization for dynamic range pressure sensing and as a conductive interface for electrogenic cardiac cells. The composite hydrogel supports cardiomyocyte organization into a spontaneously contracting system. The composite hydrogel thus has considerable potential for various applications.
Collapse
Affiliation(s)
- Priyadarshi Chakraborty
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tom Guterman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nofar Adadi
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moran Yadid
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tamar Brosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Dvir
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
206
|
Wang M, Zhong L, Cui M, Liu W, Liu X. Nanomolar Level Acetaminophen Sensor Based on Novel Polypyrrole Hydrogel Derived N‐doped Porous Carbon. ELECTROANAL 2019. [DOI: 10.1002/elan.201800721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Meiling Wang
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of Technology Taiyuan 030024, Shanxi China
| | - Laijin Zhong
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical EngineeringNanjing University Nanjing 21008, Jiangsu China
| | - Mingzhu Cui
- Institute of Crystalline MaterialsShanxi University Taiyuan 030006, Shanxi China
| | - Weifeng Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of Technology Taiyuan 030024, Shanxi China
| | - Xuguang Liu
- Key Laboratory of Interface Science and Engineering in Advanced MaterialsMinistry of EducationTaiyuan University of Technology Taiyuan 030024, Shanxi China
- College of Materials Sciences and EngineeringTaiyuan University of Technology Taiyuan 030024, Shanxi China
| |
Collapse
|
207
|
Ali M, Khalid MAU, Shah I, Kim SW, Kim YS, Lim JH, Choi KH. Paper-based selective and quantitative detection of uric acid using citrate-capped Pt nanoparticles (PtNPs) as a colorimetric sensing probe through a simple and remote-based device. NEW J CHEM 2019. [DOI: 10.1039/c9nj01257e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A colorimetric portable setup was developed for remote UA measurements using a smartphone-based application to demonstrate its use in point-of-care testing.
Collapse
Affiliation(s)
- Muhsin Ali
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | | | - Imran Shah
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | - Soo Wan Kim
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | - Young Su Kim
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | - Jong Hwan Lim
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| | - Kyung Hyung Choi
- Department of Mechatronics Engineering
- Jeju National University
- Jeju
- Korea
| |
Collapse
|
208
|
|
209
|
Mao W, He H, Ye Z, Huang J. Three-dimensional graphene foam integrated with Ni(OH)2 nanosheets as a hierarchical structure for non-enzymatic glucose sensing. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
210
|
Wang M, Cui M, Liu W, Liu X. Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
211
|
Yin MJ, Zhao Q, Wu J, Seefeldt K, Yuan J. Precise Micropatterning of a Porous Poly(ionic liquid) via Maskless Photolithography for High-Performance Nonenzymatic H 2O 2 Sensing. ACS NANO 2018; 12:12551-12557. [PMID: 30512935 DOI: 10.1021/acsnano.8b07069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Porous poly(ionic liquid)s (PILs) recently have been serving as a multifunctional, interdisciplinary materials platform in quite a few research areas, including separation, catalysis, actuator, sensor, and energy storage, just to name a few. In this context, the capability of photopatterning PIL microstructures in a porous state on a substrate is still missing but is a crucial step for their real industrial usage. Here, we developed a method for in situ rapid patterning of porous PIL microstructures via a maskless photolithography approach coupled with a simple electrostatic complexation treatment. This breakthrough enables design of miniaturized sensors. As exemplified in this work, upon loading Pt nanoparticles into porous PIL microstructures, the hybrid sensor showed outstanding performance, bearing both a high sensitivity and a wide detection range.
Collapse
Affiliation(s)
- Ming-Jie Yin
- Photonics Research Center, Department of Electrical Engineering , The Hong Kong Polytechnic University , Hong Kong , SAR , China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
- Max Planck Institute of Colloids and Interfaces , Department of Colloid Chemistry , D-14424 Potsdam , Germany
| | - Jushuai Wu
- Photonics Research Center, Department of Electrical Engineering , The Hong Kong Polytechnic University , Hong Kong , SAR , China
| | - Karoline Seefeldt
- Max Planck Institute of Colloids and Interfaces , Department of Colloid Chemistry , D-14424 Potsdam , Germany
| | - Jiayin Yuan
- Max Planck Institute of Colloids and Interfaces , Department of Colloid Chemistry , D-14424 Potsdam , Germany
- Department of Materials and Environmental Chemistry (MMK) , Stockholm University , Svante Arrhenius väg 16 C , 10691 Stockholm , Sweden
| |
Collapse
|
212
|
Cai X, Luo Y, Song Y, Liu D, Yan H, Li H, Du D, Zhu C, Lin Y. Integrating in situ formation of nanozymes with three-dimensional dendritic mesoporous silica nanospheres for hypoxia-overcoming photodynamic therapy. NANOSCALE 2018; 10:22937-22945. [PMID: 30500027 DOI: 10.1039/c8nr07679k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite great progress in photodynamic therapy (PDT), the therapeutic effect is still limited by some points, such as tumor hypoxia, the short lifetime and the limited action region of 1O2. Herein, a special kind of three-dimensional dendritic mesoporous silica nanosphere (3D-dendritic MSN) was synthesized and used as a robust nanocarrier to deliver abundant hydrophobic photosensitizer chlorin e6 (Ce6) to the A549 lung cancer cells. To address the tumor hypoxia issue, the nanozyme Pt nanoparticles (Pt NPs) were immobilized onto the channels of 3D-dendritic MSNs to catalyze the conversion of intracellular H2O2 to oxygen. Moreover, due to the in situ reduction process, the uniform Pt NPs distributed well on the surface of 3D-dendritic MSNs with high homogeneous dispersity. Additionally, a mitochondria-targeting ligand, triphenylphosphine (TPP), was conjugated to the Pt-decorated 3D-dendritic MSN composites to form a mitochondria targeted system for the PDT. In a combination of the peroxidase-like Pt NPs with mitochondria-targeting ability of TPP, a reactive oxygen species (ROS) burst in the mitochondria was achieved and resulted in the cell apoptosis. This well-designed system shows an enhanced PDT effect of killing A549 cells, and promotes a new H2O2-activatable strategy to overcome hypoxia for tumor PDT.
Collapse
Affiliation(s)
- Xiaoli Cai
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Xu B, Liu Y, Yuan J, Wang P, Wang Q. Synthesis, Characterization, and Antifogging Application of Polymer/Al₂O₃ Nanocomposite Hydrogels with High Strength and Self-Healing Capacity. Polymers (Basel) 2018; 10:E1362. [PMID: 30961287 PMCID: PMC6401749 DOI: 10.3390/polym10121362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
Hydrogels with outstanding mechanical performance, self-healing capacity, and special functionality are highly desirable for their practical applications. However, it remains a great challenge to achieve such hydrogels by a facile approach. Here, we report a new type of nanocomposite hydrogels by in situ copolymerization of acrylic acid (AA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) using alumina nanoparticles (Al₂O₃ NPs) as the cross-linkers. The obtained hydrogels are highly stretchable and compressible, which could sustain large-scale extension (>1700%) or compression (90%) without failure, and exhibit tensile and compressive strength up to 660 kPa and 8.3 MPa, respectively. Furthermore, this kind of hydrogel also display considerable self-healing capacity due to their noncovalent cross-linking mechanism, as well as the hydrogen-bonding interactions between polymer chains. More interestingly, it was found that the resultant gels possess a long-lasting antifogging property that could prevent the formation of fog on the glass plate above hot water for at least 90 min. It is expected that this novel type of hydrogel would show great promise for various applications, including soft robots, artificial muscles, and optical devices.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Yuwei Liu
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Jiugang Yuan
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Ping Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Qiang Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
214
|
A novel enzyme-free glucose and H2O2 sensor based on 3D graphene aerogels decorated with Ni3N nanoparticles. Anal Chim Acta 2018; 1038:11-20. [DOI: 10.1016/j.aca.2018.06.086] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/21/2018] [Accepted: 06/30/2018] [Indexed: 01/07/2023]
|
215
|
Mapping Nanoparticles in Hydrogels: A Comparison of Preparation Methods for Electron Microscopy. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The distribution of noble metal nanoparticles (NMNPs) in hydrogels influences their nanoplasmonic response and signals used for biosensor purposes. By controlling the particle distribution in NMNP-nanocomposite hydrogels, it is possible to obtain new nanoplasmonic features with new sensing modalities. Particle positions can be characterized by using volume-imaging methods such as the focused ion beam-scanning electron microscope (FIB-SEM) or the serial block-face scanning electron microscope (SBFSEM) techniques. The pore structures in hydrogels are contained by the water absorbed in the polymer network and may pose challenges for volume-imaging methods based on electron microscope techniques since the sample must be in a vacuum chamber. The structure of the hydrogels can be conserved by choosing appropriate preparation methods, which also depends on the composition of the hydrogel used. In this paper, we have prepared low-weight-percentage hydrogels, with and without gold nanorods (GNRs), for conventional scanning electron microscope (SEM) imaging by using critical point drying (CPD) and hexamethyldisilazane (HMDS) drying. The pore structures and the GNR positions in the hydrogel were characterized. The evaluation of the sample preparation techniques elucidate new aspects concerning the drying of hydrogels for SEM imaging. The results of identifying GNRs positioned in a hydrogel polymer network contribute to the development of mapping metal particle positions with volume imaging methods such as FIB-SEM or SBFSEM for studying nanoplasmonic properties of NMNP-nanocomposite hydrogels.
Collapse
|
216
|
Electrically nanowired-enzymes for probe modification and sensor fabrication. Biosens Bioelectron 2018; 121:223-235. [DOI: 10.1016/j.bios.2018.09.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/23/2022]
|
217
|
Non-isothermal decomposition of platinum acetylacetonate as a cost-efficient and Size-Controlled Synthesis of Pt/C nanoparticles. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
218
|
Paul A, Srivastava DN. Amperometric Glucose Sensing at Nanomolar Level Using MOF-Encapsulated TiO 2 Platform. ACS OMEGA 2018; 3:14634-14640. [PMID: 30555983 PMCID: PMC6289493 DOI: 10.1021/acsomega.8b01968] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/24/2018] [Indexed: 05/16/2023]
Abstract
A new synthetic approach is established where both TiO2 nanoparticles and glucose oxidase (GO x ) are together encapsulated into the cavity of ZIF-8 metal-organic framework (MOF) to fabricate a mediator-free glucose sensor in aqueous media. ZIF-8 possesses high stability both physically and chemically. Moreover, its large surface area and tunable cavity size are supportive to encapsulate both nanoparticles (TiO2) and enzymes (GO x ). The as-synthesized nanocomposite is methodically characterized by various advanced analytical techniques, which suggests that TiO2 is uniformly distributed within the cavity of ZIF-8 MOF. High surface area and double-layer capacitance of nanostructured TiO2 jointly enhance the catalytic biosensor activity. The as-synthesized nanocomposite exhibits commendable stability and is able to detect low-level concentration (80 nM) of glucose in aqueous media by utilizing very low concentration of GO x (62 μg in 1 mL).
Collapse
Affiliation(s)
- Anirban Paul
- Analytical
and Environmental Division and Centralized Instrument
Facility and Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Divesh N. Srivastava
- Analytical
and Environmental Division and Centralized Instrument
Facility and Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar 364002, Gujarat, India
- E-mail:
| |
Collapse
|
219
|
Wu J, Zheng Z, Chong Y, Li X, Pu L, Tang Q, Yang L, Wang X, Wang F, Liang G. Immune Responsive Release of Tacrolimus to Overcome Organ Transplant Rejection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805018. [PMID: 30255648 DOI: 10.1002/adma.201805018] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/01/2018] [Indexed: 06/08/2023]
Abstract
Transplant rejection is the key problem in organ transplantation and, in clinic, immunosuppressive agents such as tacrolimus are directly administered to the recipients after surgery for T-cell inhibition. However, direct administration of tacrolimus may bring severe side effects to the recipients. Herein, by rational design of two hydrogelators NapPhePheGluTyrOH (1) and Nap d-Phe dPheGluTyrOH (2), a facile method of immune responsive release of tacrolimus is developed from their hydrogels to overcome organ transplantation rejection. Upon incubation with protein tyrosine kinase, which is activated in T cells after organ transplantation, the tacrolimus-encapsulating Gel 1 or Gel 2 is disassembled to release tacrolimus. Cell experiments show that both Gel 1 and Gel 2 have better inhibition effect on the activated T cells than free drug tacrolimus. Liver transplantation experiments indicate that, after 7 days of treatment of same dose tacrolimus, the recipient rats in the Gel 2 group show significantly extended median survival time of 22 days while the recipients treated with conventional tacrolimus medication have a median survival time of 13 days. It is expected herein that this "smart" facile method of immune responsive release of tacrolimus can be applied to overcome organ transplantation rejection in clinic in the near future.
Collapse
Affiliation(s)
- Jindao Wu
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Zhen Zheng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yuanyuan Chong
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Xiangcheng Li
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Liyong Pu
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Qiyun Tang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Liu Yang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xuehao Wang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Fuqiang Wang
- Key Laboratory of Living Donor Liver Transplantation of Ministry of Public Health, Department of Liver Transplantation Center of The First Affiliated Hospital of Nanjing Medical University, Analysis Center, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
220
|
Liang W, Rhodes S, Zheng J, Wang X, Fang J. Soft-Templated Synthesis of Lightweight, Elastic, and Conductive Nanotube Aerogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37426-37433. [PMID: 30289683 DOI: 10.1021/acsami.8b14071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Conductive polymer (CP) nanotubes are fascinating nanostructures with high electrical conductivity, fast charge/discharge capability, and high mechanical strength. Despite these attractive physical properties, progress in the synthesis of CP nanotube hydrogels is still limited. Here, we report a facile and effective approach for the synthesis of polypyrrole (PPy) nanotube hydrogels by using the weakly interconnected network of self-assembled nanotubes of lithocholic acid as a soft template. The PPy nanotube hydrogels are then converted to aerogels by freeze drying, in which PPy nanotubes form elastic and conductive networks with a density of 38 mg/cm3 and an electrical conductivity of 1.13 S/m. The PPy nanotube aerogels are able to sustain a compressive strain as high as 70% and show an excellent cyclic compressibility due to their robust nanotube networks and hierarchically porous structures, which allow the compressive stress to be easily dissipated. Furthermore, PPy nanotube aerogels show negative strain-dependent electrical resistance changes under compressive strains. The lightweight, elastic, and conductive PPy nanotube aerogels may find potential applications in strain sensors, supercapacitors, and tissue scaffolds.
Collapse
Affiliation(s)
- Wenlang Liang
- College of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering , University of Central Florida , Orlando , Florida 32816 , United States
| | - Samuel Rhodes
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering , University of Central Florida , Orlando , Florida 32816 , United States
| | - Jianlu Zheng
- College of Materials Science and Engineering , Shenzhen University , Shenzhen 518060 , Sichuan , China
| | - Xiaochen Wang
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering , University of Central Florida , Orlando , Florida 32816 , United States
| | - Jiyu Fang
- Advanced Materials Processing and Analysis Center, Department of Materials Science and Engineering , University of Central Florida , Orlando , Florida 32816 , United States
| |
Collapse
|
221
|
Mugo SM, Berg D, Bharath G. Integrated Microcentrifuge Carbon Entrapped Glucose Oxidase Poly (N-Isopropylacrylamide) (pNIPAm) Microgels for Glucose Amperometric Detection. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1499027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Darren Berg
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - G. Bharath
- Department of Chemical Engineering, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
222
|
Wang XH, Song F, Xue J, Qian D, Wang XL, Wang YZ. Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
223
|
Farzin L, Shamsipur M, Samandari L, Sheibani S. Recent advances in designing nanomaterial based biointerfaces for electrochemical biosensing cardiovascular biomarkers. J Pharm Biomed Anal 2018; 161:344-376. [PMID: 30205301 DOI: 10.1016/j.jpba.2018.08.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
Early diagnosis of cardiovascular disease (CVD) is critically important for successful treatment and recovery of patients. At present, detection of CVD at early stages of its progression becomes a major issue for world health. The nanoscale electrochemical biosensors exhibit diverse outstanding properties, rendering them extremely suitable for the determination of CVD biomarkers at very low concentrations in biological fluids. The unique advantages offered by electrochemical biosensors in terms of sensitivity and stability imparted by nanostructuring the electrode surface together with high affinity and selectivity of bioreceptors have led to the development of new electrochemical biosensing strategies that have introduced as interesting alternatives to conventional methodologies for clinical diagnostics of CVD. This review provides an updated overview of selected examples during the period 2005-2018 involving electrochemical biosensing approaches and signal amplification strategies based on nanomaterials, which have been applied for determination of CVD biomarkers. The studied CVD biomarkers include AXL receptor tyrosine kinase, apolipoproteins, cholesterol, C-reactive protein (CRP), D-dimer, fibrinogen (Fib), glucose, insulin, interleukins, lipoproteins, myoglobin, N-terminal pro-B-type natriuretic peptide (BNP), tumor necrosis factor alpha (TNF-α) and troponins (Tns) on electrochemical transduction format. Identification of new specific CVD biomarkers, multiplex bioassay for the simultaneous determination of biomarkers, emergence of microfluidic biosensors, real-time analysis of biomarkers and point of care validation with high sensitivity and selectivity are the major challenges for future research.
Collapse
Affiliation(s)
- Leila Farzin
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran.
| | - Mojtaba Shamsipur
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran.
| | - Leila Samandari
- Department of Chemistry, Razi University, 67149-67346, Kermanshah, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, 11365-3486, Tehran, Iran
| |
Collapse
|
224
|
Polyaniline@CuNi nanocomposite: A highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.165] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
225
|
Hou C, Zhao D, Wang Y, Zhang S, Li S. Preparation of magnetic Fe3O4/PPy@ZIF-8 nanocomposite for glucose oxidase immobilization and used as glucose electrochemical biosensor. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
226
|
Flexible and conductive titanium carbide–carbon nanofibers for high-performance glucose biosensing. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
227
|
Yao R, Yao Z, Zhou J. Novel interpenetrating 3D network polyaniline/phenolic aerogel with combined thermal and electrical performances. J Appl Polym Sci 2018. [DOI: 10.1002/app.45953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rui Yao
- College of Materials Science and Technology; Nanjing University of Aeronautics and Astronautics; Nanjing 211100 China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology; Jiangsu China
| | - Zhengjun Yao
- College of Materials Science and Technology; Nanjing University of Aeronautics and Astronautics; Nanjing 211100 China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology; Jiangsu China
| | - Jintang Zhou
- College of Materials Science and Technology; Nanjing University of Aeronautics and Astronautics; Nanjing 211100 China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology; Jiangsu China
| |
Collapse
|
228
|
Ma Z, Chen P, Cheng W, Yan K, Pan L, Shi Y, Yu G. Highly Sensitive, Printable Nanostructured Conductive Polymer Wireless Sensor for Food Spoilage Detection. NANO LETTERS 2018; 18:4570-4575. [PMID: 29947228 DOI: 10.1021/acs.nanolett.8b01825] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Near-field communication (NFC) labeling technology has been recently used to endow smartphones with nonline-of-sight sensing functions to improve the environment, human health, and quality of life. For applications in detecting food spoilage, the development of a sensor with high enough sensitivity to act as a switch for an NFC tag remains a challenge. In this Letter, we developed a nanostructured conductive polymer-based gas sensor with high sensitivity of Δ R/ R0 = 225% toward 5 ppm ammonia NH3 and unprecedented sensitivities of 46% and 17% toward 5 ppm putrescine and cadaverine, respectively. The gas sensor plays a critical role as a sensitive switch in the circuit of the NFC tag and enables a smartphone to readout meat spoilage when the concentration of biogenic amines is over a preset threshold. We envision the broad potential use of such intelligent sensing for food status monitoring applications in daily life, storage and supply chains.
Collapse
Affiliation(s)
- Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering , Nanjing University , 210093 Nanjing , China
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Ping Chen
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering , Nanjing University , 210093 Nanjing , China
| | - Wen Cheng
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering , Nanjing University , 210093 Nanjing , China
| | - Kun Yan
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering , Nanjing University , 210093 Nanjing , China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering , Nanjing University , 210093 Nanjing , China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering , Nanjing University , 210093 Nanjing , China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
229
|
Banerjee H, Suhail M, Ren H. Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges. Biomimetics (Basel) 2018; 3:E15. [PMID: 31105237 PMCID: PMC6352708 DOI: 10.3390/biomimetics3030015] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
There are numerous developments taking place in the field of biorobotics, and one such recent breakthrough is the implementation of soft robots-a pathway to mimic nature's organic parts for research purposes and in minimally invasive surgeries as a result of their shape-morphing and adaptable features. Hydrogels (biocompatible, biodegradable materials that are used in designing soft robots and sensor integration), have come into demand because of their beneficial properties, such as high water content, flexibility, and multi-faceted advantages particularly in targeted drug delivery, surgery and biorobotics. We illustrate in this review article the different types of biomedical sensors and actuators for which a hydrogel acts as an active primary material, and we elucidate their limitations and the future scope of this material in the nexus of similar biomedical avenues.
Collapse
Affiliation(s)
- Hritwick Banerjee
- Department of Biomedical Engineering, Faculty of Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583, Singapore.
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore.
| | - Mohamed Suhail
- Department of Biomedical Engineering, Faculty of Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583, Singapore.
- Department of Mechancial Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Hongliang Ren
- Department of Biomedical Engineering, Faculty of Engineering, 4 Engineering Drive 3, National University of Singapore, Singapore 117583, Singapore.
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, 28 Medical Drive, #05-COR, Singapore 117456, Singapore.
- National University of Singapore (Suzhou) Research Institute (NUSRI), 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
230
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
231
|
Buber E, Soylemez S, Udum YA, Toppare L. Fabrication of a promising immobilization platform based on electrochemical synthesis of a conjugated polymer. Colloids Surf B Biointerfaces 2018; 167:392-396. [PMID: 29702470 DOI: 10.1016/j.colsurfb.2018.04.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/28/2022]
Abstract
Since conjugated polymers are an important class of materials with remarkable properties in biosensor applications, in this study, a novel glucose biosensor based on a conjugated polymer was fabricated via the electropolymerization of the monomer 10,13-bis(4-hexylthiophen-2-yl)dipyridol[3,2-a:2',3'-c]phenazine onto a graphite electrode surface. Glucose oxidase (GOx) was used as the model biological recognition element. As a result of the enzymatic reaction between GOx and glucose, the glucose amount was determined by monitoring the change in the oxygen level associated with substrate concentration via the amperometric detection technique. The proposed system possessed superior properties with KMapp value of 0.262 mM, 2.88 × 10-3 mM limit of detection and 105.12 μA mM-1 cm-2 sensitivity. These results show that conjugated polymer film provides an effective and stable immobilization matrix for the enzyme. Finally, the biosensor was applied successfully to several commercially available beverage samples for glucose determination proving an inexpensive and highly sensitive system applicable for real time analyses.
Collapse
Affiliation(s)
- Ece Buber
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Saniye Soylemez
- Department of Chemistry, Ordu University, Ordu 52200, Turkey.
| | - Yasemin A Udum
- Technical Sciences Vocational School, Gazi University, Ankara 06374, Turkey
| | - Levent Toppare
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey; Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey; The Center for Solar Energy Research and Application (GUNAM), Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
232
|
Zhou K, He Y, Xu Q, Zhang Q, Zhou A, Lu Z, Yang LK, Jiang Y, Ge D, Liu XY, Bai H. A Hydrogel of Ultrathin Pure Polyaniline Nanofibers: Oxidant-Templating Preparation and Supercapacitor Application. ACS NANO 2018; 12:5888-5894. [PMID: 29750500 DOI: 10.1021/acsnano.8b02055] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Although challenging, fabrication of porous conducting polymeric materials with excellent electronic properties is crucial for many applications. We developed a fast in situ polymerization approach to pure polyaniline (PANI) hydrogels, with vanadium pentoxide hydrate nanowires as both the oxidant and sacrifice template. A network comprised of ultrathin PANI nanofibers was generated during the in situ polymerization, and the large aspect ratio of these PANI nanofibers allowed the formation of hydrogels at a low solid content of 1.03 wt %. Owing to the ultrathin fibril structure, PANI hydrogels functioning as a supercapacitor electrode display a high specific capacitance of 636 F g-1, a rate capability, and good cycling stability (∼83% capacitance retention after 10,000 cycles). This method was also extended to the preparation of polypyrrole and poly(3,4-ethylenedioxythiophene) hydrogels. This template polymerization method represents a rational strategy for design of conducing polymer networks, which can be readily integrated in high-performance devices or a further platform for functional composites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiang Yang Liu
- Department of Physics , National University of Singapore , Singapore 117542
| | | |
Collapse
|
233
|
Zhao J, Liu P, Liu Y. Adjustable Tribological Behavior of Glucose-Sensitive Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7479-7487. [PMID: 29860837 DOI: 10.1021/acs.langmuir.8b01388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Stimuli-responsive hydrogels have been considered to have various applications in numerous fields. In the present work, a double-network (DN) hydrogel has been synthesized. The copolymers of 2-acrylamide-2-methylpropane sulfonic acid (AMPS) and acrylamide (AM) [P(AMPS- co-AM)] are prepared as the 1st network and poly(acrylic acid) as the 2nd network. This DN hydrogel is sensitive to glucose by introducing the glucose-sensitive group phenylboronic acid to the network. The tribological properties of this glucose-sensitive DN hydrogel have been investigated using a universal mechanical tester (UMT-5). The tribological results show that the friction coefficient varied with the glucose solution. The friction coefficient increased to a maximum of 0.06, and finally decreased to 0.025 with the increase in the glucose concentration. An adjustable friction coefficient of the hydrogel, between 0.025 and 0.056, was achieved along with the change of lubricant. According to the tribological experimental results and the analysis of the DN structure, it can be deduced that a hydrated layer exists in the interface of the hydrogel. The hydrated layers consisting of water molecules are bounded with the hydrophilic group of the hydrogel network by hydrogen bonds. The change in the number of water molecules leads to the difference in the water content of the hydrogel, which further resulted in the various tribological properties. In addition, the hydrogel's mesh size also has an impact on the change in friction coefficient. In general, the adjustable friction of the hydrogel in a glucose environment is achieved.
Collapse
Affiliation(s)
- Jin Zhao
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Pengxiao Liu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Yuhong Liu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
234
|
Shahbazi MA, Bauleth-Ramos T, Santos HA. DNA Hydrogel Assemblies: Bridging Synthesis Principles to Biomedical Applications. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800042] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads DK-2800 Kgs Lyngby Denmark
- Department of Pharmaceutical Nanotechnology; School of Pharmacy; Zanjan University of Medical Sciences; 56184-45139 Zanjan Iran
| | - Tomás Bauleth-Ramos
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Instituto de Investigação e Inovação em Saúde; University of Porto; Rua Alfredo Allen 208 4200-135 Porto Portugal
- Instituto de Engenharia Biomédica; University of Porto; Rua Alfredo Allen 208 4200-135 Porto Portugal
- Instituto Ciências Biomédicas Abel Salazar; University of Porto; Rua Jorge Viterbo 228 4150-180 Porto Portugal
| | - Hélder A. Santos
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; FI-00014 University of Helsinki; Helsinki Finland
- Helsinki Institute of Life Science; FI-00014 University of Helsinki; Helsinki Finland
| |
Collapse
|
235
|
Li L, Pan L, Ma Z, Yan K, Cheng W, Shi Y, Yu G. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. NANO LETTERS 2018; 18:3322-3327. [PMID: 29419302 DOI: 10.1021/acs.nanolett.8b00003] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.
Collapse
Affiliation(s)
- Lanlan Li
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Lijia Pan
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Zhong Ma
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Ke Yan
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Wen Cheng
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Yi Shi
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
236
|
Pourhoseini S, Naghizadeh N, Hoseinzadeh H. Effect of silver-water nanofluid on heat transfer performance of a plate heat exchanger: An experimental and theoretical study. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.03.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
237
|
Recent progress in nanocomposites based on conducting polymer: application as electrochemical sensors. INTERNATIONAL NANO LETTERS 2018. [DOI: 10.1007/s40089-018-0238-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
238
|
Tan WS, Lee TY, Hsu YF, Huang SJ, Yang JS. Iptycene substitution enhances the electrochemical activity and stability of polyanilines. Chem Commun (Camb) 2018; 54:5470-5473. [PMID: 29749413 DOI: 10.1039/c8cc02387e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical stability of polyaniline (PANI) films is a key issue for their application as electrode materials. This work demonstrates that a low fraction (<5%) of pentiptycene incorporation of the PANI conjugated backbone could significantly enhance the capacitive performance and charge-discharge cycling stability of PANI films, attributable to the clipping effect of pentiptycene cavities that restricts motional freedom of polymer chains and promotes interchain conductivity.
Collapse
Affiliation(s)
- Wei Shyang Tan
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
239
|
Yin S, Ma Z. Electrochemical immunoassay for tumor markers based on hydrogels. Expert Rev Mol Diagn 2018; 18:457-465. [DOI: 10.1080/14737159.2018.1472579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuang Yin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing, China
| |
Collapse
|
240
|
Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G. Stretchable All-Gel-State Fiber-Shaped Supercapacitors Enabled by Macromolecularly Interconnected 3D Graphene/Nanostructured Conductive Polymer Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800124. [PMID: 29582483 DOI: 10.1002/adma.201800124] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 02/04/2018] [Indexed: 05/20/2023]
Abstract
Nanostructured conductive polymer hydrogels (CPHs) have been extensively applied in energy storage owing to their advantageous features, such as excellent electrochemical activity and relatively high electrical conductivity, yet the fabrication of self-standing and flexible electrode-based CPHs is still hampered by their limited mechanical properties. Herein, macromolecularly interconnected 3D graphene/nanostructured CPH is synthesized via self-assembly of CPHs and graphene oxide macrostructures. The 3D hybrid hydrogel shows uniform interconnectivity and enhanced mechanical properties due to the strong macromolecular interaction between the CPHs and graphene, thus greatly reducing aggregation in the fiber-shaping process. A proof-of-concept all-gel-state fibrous supercapacitor based on the 3D polyaniline/graphene hydrogel is fabricated to demonstrate the outstanding flexibility and mouldability, as well as superior electrochemical properties enabled by this 3D hybrid hydrogel design. The proposed device can achieve a large strain (up to ≈40%), and deliver a remarkable volumetric energy density of 8.80 mWh cm-3 (at power density of 30.77 mW cm-3 ), outperforming many fiber-shaped supercapacitors reported previously. The all-hydrogel design opens up opportunities in the fabrication of next-generation wearable and portable electronics.
Collapse
Affiliation(s)
- Panpan Li
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Architecture and Environment, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Department of Chemistry, Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P. R. China
| | - Lele Peng
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Fei Zhao
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dan Xiao
- Department of Architecture and Environment, Sichuan University, Chengdu, 610065, P. R. China
- Department of Chemistry, Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan University, Chengdu, 610064, P. R. China
| | - Yong Jin
- Department of Materials Science and Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
241
|
High-performance hybrid electrode decorated by well-aligned nanograss arrays for glucose sensing. Biosens Bioelectron 2018; 102:288-295. [DOI: 10.1016/j.bios.2017.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 01/14/2023]
|
242
|
Recent development in hybrid conducting polymers: Synthesis, applications and future prospects. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.09.038] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
243
|
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP. Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 2018; 46:4951-4975. [PMID: 28696452 DOI: 10.1039/c7cs00152e] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxidative stress-dependent inflammatory diseases represent a major concern for the population's health worldwide. Biocompatible nanomaterials with enzymatic properties could play a crucial role in the treatment of such pathologies. In this respect, platinum nanoparticles (PtNPs) are promising candidates, showing remarkable catalytic activity, able to reduce the intracellular reactive oxygen species (ROS) levels and impair the downstream pathways leading to inflammation. This review reports a critical overview of the growing evidence revealing the anti-inflammatory ability of PtNPs and their potential applications in nanomedicine. It provides a detailed description of the wide variety of synthetic methods recently developed, with particular attention to the aspects influencing biocompatibility. Special attention has been paid to the studies describing the toxicological profile of PtNPs with an attempt to draw critical conclusions. The emerging picture suggests that the material per se is not causing cytotoxicity, while other physicochemical features related to the synthesis and surface functionalization may play a crucial role in determining the observed impairment of cellular functions. The enzymatic activity of PtNPs is also summarized, analyzing their action against ROS produced by pathological conditions within the cells. In particular, we extensively discuss the potential of these properties in nanomedicine to down-regulate inflammatory pathways or to be employed as diagnostic tools with colorimetric readout. A brief overview of other biomedical applications of nanoplatinum is also presented.
Collapse
Affiliation(s)
- Deborah Pedone
- Istituto Italiano di Tecnologia, Nanobiointeractions & Nanodiagnostics, Via Morego 30, 16163 Genova, Italy.
| | | | | | | | | |
Collapse
|
244
|
Xu R, Ma S, Lin P, Yu B, Zhou F, Liu W. High Strength Astringent Hydrogels Using Protein as the Building Block for Physically Cross-linked Multi-Network. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7593-7601. [PMID: 28891633 DOI: 10.1021/acsami.7b04290] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Integrating proteins into a hydrogel network enables its good bioactivity as an ECM environment in biorelative applications. Although extensive studies on preparing protein hydrogels have been carried out, the reported systems commonly present very low mechanical strength and weak water-rentention capacity. Learning from the astringent mouthfeel, we report here a protein engineered multinetwork physical hydrogel as TA-PVA/BSA. In a typical case, the BSA protein-integrated poly(vinyl alcohol) (PVA) solution is treated by the freeze-thaw method and forms the first hydrogel network, and tannic acid (TA) then cross-links with BSA proteins and PVA chains to form the secondary hydrogel network based on the noncovalent interaction (hydrogen bond and hydrophobic interaction). The as-prepared TA-PVA/BSA composite hydrogel is a pure physically cross-linking network and possesses ultrahigh tensile strength up to ∼9.5 MPa but is adjustable, relying on the concentration of TA and BSA. Moreover, its mechanical strength is further improved by prestretching induced anisotropy of mechanical performance. Because of its controllable and layered structure as skin, the composite hydrogel presents good water-retention capacity compared to traditional high strength hydrogels. This work demonstrates a novel method to design high mechanical strength but layered physical cross-linking hydrogels and enables us to realize their biorelative applications.
Collapse
Affiliation(s)
- Rongnian Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
- College of Materilas Science and Opto-Electonic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Peng Lin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China
| |
Collapse
|
245
|
Jiang Y, Liu H, Qi X, Sun J, Li M, Wang J. Conductive Ag-Based Modification of Hydroxyapatite Microtubule Array and Its Application to Enzyme-Free Glucose Sensing. ChemistrySelect 2018. [DOI: 10.1002/slct.201702803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yingying Jiang
- Department of Chemistry; Northeastern University; No. 11, Lane 3 Wenhua Road, Heping District Shenyang 110819, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics; Chinese Academy of Sciences; Shanghai 200050, P. R. China
| | - Haiyan Liu
- Department of Chemistry; Northeastern University; No. 11, Lane 3 Wenhua Road, Heping District Shenyang 110819, P. R. China
| | - Xuan Qi
- Department of Chemistry; Northeastern University; No. 11, Lane 3 Wenhua Road, Heping District Shenyang 110819, P. R. China
| | - Jun Sun
- Department of Chemistry; Northeastern University; No. 11, Lane 3 Wenhua Road, Heping District Shenyang 110819, P. R. China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Jun Wang
- Department of Chemistry; Northeastern University; No. 11, Lane 3 Wenhua Road, Heping District Shenyang 110819, P. R. China
| |
Collapse
|
246
|
Jiang Y, Liu Z, Zeng G, Liu Y, Shao B, Li Z, Liu Y, Zhang W, He Q. Polyaniline-based adsorbents for removal of hexavalent chromium from aqueous solution: a mini review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6158-6174. [PMID: 29307070 DOI: 10.1007/s11356-017-1188-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a common hazardous contaminant in the environment and carcinogenic or mutagenic to aquatic animals and human beings. Therefore, the removal and detoxification of Cr(VI) have been attracting increasing attention of researchers. Among various conducting polymers, polyaniline (PANI)-based adsorbents have shown an excellent performance on the removal of Cr(VI) because of their redox properties, eased synthesis, and favorable biocompatibility. In this review, the characteristics of various PANI-based adsorbents were described, including PANI-modified nanofiber mats and membranes, PANI/bio-adsorbents, PANI/magnetic adsorbents, PANI/carbon adsorbents, PANI-modified clay composites, and PANI-inorganic hybrid composites. The mechanisms for the detoxification and adsorption of Cr(VI) were also discussed. The results indicated the potential applications of PANI-based adsorbents for the removal of Cr(VI). Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Yilin Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Yujie Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Binbin Shao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhigang Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Qingyun He
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
247
|
Xu J, Liu X, Ren X, Gao G. The role of chemical and physical crosslinking in different deformation stages of hybrid hydrogels. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
248
|
Zhang A, Guo W, Ke H, Zhang X, Zhang H, Huang C, Yang D, Jia N, Cui D. Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens Bioelectron 2018; 101:219-226. [DOI: 10.1016/j.bios.2017.10.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/10/2017] [Accepted: 10/16/2017] [Indexed: 02/03/2023]
|
249
|
Liu Q, Liu Y, Wu F, Cao X, Li Z, Alharbi M, Abbas AN, Amer MR, Zhou C. Highly Sensitive and Wearable In 2O 3 Nanoribbon Transistor Biosensors with Integrated On-Chip Gate for Glucose Monitoring in Body Fluids. ACS NANO 2018; 12:1170-1178. [PMID: 29338249 DOI: 10.1021/acsnano.7b06823] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanoribbon- and nanowire-based field-effect transistor (FET) biosensors have stimulated a lot of interest. However, most FET biosensors were achieved by using bulky Ag/AgCl electrodes or metal wire gates, which have prevented the biosensors from becoming truly wearable. Here, we demonstrate highly sensitive and conformal In2O3 nanoribbon FET biosensors with a fully integrated on-chip gold side gate, which have been laminated onto various surfaces, such as artificial arms and watches, and have enabled glucose detection in various body fluids, such as sweat and saliva. The shadow-mask-fabricated devices show good electrical performance with gate voltage applied using a gold side gate electrode and through an aqueous electrolyte. The resulting transistors show mobilities of ∼22 cm2 V-1 s-1 in 0.1× phosphate-buffered saline, a high on-off ratio (105), and good mechanical robustness. With the electrodes functionalized with glucose oxidase, chitosan, and single-walled carbon nanotubes, the glucose sensors show a very wide detection range spanning at least 5 orders of magnitude and a detection limit down to 10 nM. Therefore, our high-performance In2O3 nanoribbon sensing platform has great potential to work as indispensable components for wearable healthcare electronics.
Collapse
Affiliation(s)
| | | | | | | | | | - Mervat Alharbi
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology , P.O Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad N Abbas
- Department of Electrical and Computer Engineering, University of Jeddah , 285 Dhahban 23881, Saudi Arabia
- Department of Electrical and Computer Engineering, King Abdulaziz University , Abdullah Sulayman Street, Jeddah 22254, Saudi Arabia
| | - Moh R Amer
- Center of Excellence for Green Nanotechnologies, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology , P.O Box 6086, Riyadh 11442, Saudi Arabia
- Department of Electrical Engineering, University of California, Los Angeles , 420 Westwood Plaza, 5412 Boelter Hall, Los Angeles, California 90095, United States
| | | |
Collapse
|
250
|
Naseri M, Fotouhi L, Ehsani A. Recent Progress in the Development of Conducting Polymer-Based Nanocomposites for Electrochemical Biosensors Applications: A Mini-Review. CHEM REC 2018; 18:599-618. [PMID: 29460399 DOI: 10.1002/tcr.201700101] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/05/2018] [Indexed: 01/09/2023]
Abstract
Among various immobilizing materials, conductive polymer-based nanocomposites have been widely applied to fabricate the biosensors, because of their outstanding properties such as excellent electrocatalytic activity, high conductivity, and strong adsorptive ability compared to conventional conductive polymers. Electrochemical biosensors have played a significant role in delivering the diagnostic information and therapy monitoring in a rapid, simple, and low cost portable device. This paper reviews the recent developments in conductive polymer-based nanocomposites and their applications in electrochemical biosensors. The article starts with a general and concise comparison between the properties of conducting polymers and conducting polymer nanocomposites. Next, the current applications of conductive polymer-based nanocomposites of some important conducting polymers such as PANI, PPy, and PEDOT in enzymatic and nonenzymatic electrochemical biosensors are overviewed. This review article covers an 8-year period beginning in 2010.
Collapse
Affiliation(s)
- Maryam Naseri
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Lida Fotouhi
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|