201
|
Cheng T, Wang L, Sun C, Xie C. Optimizing the downstream MVA pathway using a combination optimization strategy to increase lycopene yield in Escherichia coli. Microb Cell Fact 2022; 21:121. [PMID: 35718767 PMCID: PMC9208136 DOI: 10.1186/s12934-022-01843-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Lycopene is increasing in demand due to its widespread use in the pharmaceutical and food industries. Metabolic engineering and synthetic biology technologies have been widely used to overexpress the heterologous mevalonate pathway and lycopene pathway in Escherichia coli to produce lycopene. However, due to the tedious metabolic pathways and complicated metabolic background, optimizing the lycopene synthetic pathway using reasonable design approaches becomes difficult. Results In this study, the heterologous lycopene metabolic pathway was introduced into E. coli and divided into three modules, with mevalonate and DMAPP serving as connecting nodes. The module containing the genes (MVK, PMK, MVD, IDI) of downstream MVA pathway was adjusted by altering the expression strength of the four genes using the ribosome binding sites (RBSs) library with specified strength to improve the inter-module balance. Three RBS libraries containing variably regulated MVK, PMK, MVD, and IDI were constructed based on different plasmid backbones with the variable promoter and replication origin. The RBS library was then transformed into engineered E. coli BL21(DE3) containing pCLES and pTrc-lyc to obtain a lycopene producer library and employed high-throughput screening based on lycopene color to obtain the required metabolic pathway. The shake flask culture of the selected high-yield strain resulted in a lycopene yield of 219.7 mg/g DCW, which was 4.6 times that of the reference strain. Conclusion A strain capable of producing 219.7 mg/g DCW with high lycopene metabolic flux was obtained by fine-tuning the expression of the four MVA pathway enzymes and visual selection. These results show that the strategy of optimizing the downstream MVA pathway through RBS library design can be effective, which can improve the metabolic flux and provide a reference for the synthesis of other terpenoids. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01843-z.
Collapse
Affiliation(s)
- Tao Cheng
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China. .,CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, China.
| | - Lili Wang
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Chao Sun
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China.,CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, China
| | - Congxia Xie
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, No. 53 Zhengzhou Road, Qingdao, 266042, China.
| |
Collapse
|
202
|
Unraveling the Biology of Epithelioid Hemangioendothelioma, a TAZ-CAMTA1 Fusion Driven Sarcoma. Cancers (Basel) 2022; 14:cancers14122980. [PMID: 35740643 PMCID: PMC9221450 DOI: 10.3390/cancers14122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Epithelioid hemangioendothelioma (EHE) is a rare vascular cancer that involves a gain-of-function gene fusion involving TAZ, a transcriptional coactivator, and one of two end effectors of the Hippo pathway. Although the activity of TAZ and/or YAP, a paralog of TAZ, is consistently altered in many cancers, genetic alterations involving YAP/TAZ are rare, and the precise mechanisms by which YAP/TAZ are activated are not well understood in most cancers. Because WWTR1(TAZ)–CAMTA1 is the only genetic alteration in approximately half of EHE, EHE is a genetically clean and homogenous system for understanding how the dysregulation of TAZ promotes tumorigenesis. Therefore, by using EHE as a model system, we hope to elucidate the essential biological pathways mediated by TAZ and identify mechanisms to target them. The findings of EHE research can be applied to other cancers that are addicted to high YAP/TAZ activity. Abstract The activities of YAP and TAZ, the end effectors of the Hippo pathway, are consistently altered in cancer, and this dysregulation drives aggressive tumor phenotypes. While the actions of these two proteins aid in tumorigenesis in the majority of cancers, the dysregulation of these proteins is rarely sufficient for initial tumor development. Herein, we present a unique TAZ-driven cancer, epithelioid hemangioendothelioma (EHE), which harbors a WWTR1(TAZ)–CAMTA1 gene fusion in at least 90% of cases. Recent investigations have elucidated the mechanisms by which YAP/TAP-fusion oncoproteins function and drive tumorigenesis. This review presents a critical evaluation of this recent work, with a particular focus on how the oncoproteins alter the normal activity of TAZ and YAP, and, concurrently, we generate a framework for how we can target the gene fusions in patients. Since EHE represents a paradigm of YAP/TAZ dysregulation in cancer, targeted therapies for EHE may also be effective against other YAP/TAZ-dependent cancers.
Collapse
|
203
|
Lo Presti E, D’Orsi L, De Gaetano A. A Mathematical Model of In Vitro Cellular Uptake of Zoledronic Acid and Isopentenyl Pyrophosphate Accumulation. Pharmaceutics 2022; 14:pharmaceutics14061262. [PMID: 35745834 PMCID: PMC9227399 DOI: 10.3390/pharmaceutics14061262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
The mevalonate pathway is an attractive target for many areas of research, such as autoimmune disorders, atherosclerosis, Alzheimer’s disease and cancer. Indeed, manipulating this pathway results in the alteration of malignant cell growth with promising therapeutic potential. There are several pharmacological options to block the mevalonate pathway in cancer cells, one of which is zoledronic acid (ZA) (an N-bisphosphonate (N-BP)), which inhibits the farnesyl pyrophosphate (FPP) synthase enzyme, inducing cell cycle arrest, apoptosis, inhibition of protein prenylation, and cholesterol reduction, as well as leading to the accumulation of isopentenyl pyrophosphate (IPP). We extrapolated the data based on two independently published papers that provide numerical data on the uptake of zoledronic acid (ZA) and the accumulation of IPP (Ag) and its isomer over time by using in vitro human cell line models. Two different mathematical models for IPP kinetics are proposed. The first model (Model 1) is a simpler ordinary differential equation (ODE) compartmental system composed of 3 equations with 10 parameters; the second model (Model 2) is a differential algebraic equation (DAE) system with 4 differential equations, 1 algebraic equation and 13 parameters incorporating the formation of the ZA+enzyme+Ag complex. Each of the two models aims to describe two different experimental situations (continuous and pulse experiments) with the same ZA kinetics. Both models fit the collected data very well. With Model 1, we obtained a prevision accumulation of IPP after 24 h of 169.6 pmol/mgprot/h with an IPP decreasing rate per (pmol/mgprot) of ZA (kXGZ) equal to 13.24/h. With Model 2, we have comprehensive kinetics of IPP upon ZA treatment. We calculate that the IPP concentration was equal to 141.6 pmol/mgprot/h with a decreasing rate/percentage of 0.051 (kXGU). The present study is the first to quantify the influence of ZA on the pharmacodynamics of IPP. While still incorporating a small number of parameters, Model 2 better represents the complexity of the biological behaviour for calculating the IPP produced in different situations, such as studies on γδ T cell-based immunotherapy. In the future, additional clinical studies are warranted to further evaluate and fine-tune dosing approaches.
Collapse
Affiliation(s)
- Elena Lo Presti
- CNR-IRIB (Institute for Biomedical Research and Innovation), National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
- Correspondence: (E.L.P.); (A.D.G.)
| | - Laura D’Orsi
- CNR-IASI BioMatLab (Institute of Analysis, Systems and Computer Science), National Research Council, Via dei Taurini 19, 00185 Rome, Italy;
| | - Andrea De Gaetano
- CNR-IRIB (Institute for Biomedical Research and Innovation), National Research Council, Via Ugo La Malfa 153, 90146 Palermo, Italy
- CNR-IASI BioMatLab (Institute of Analysis, Systems and Computer Science), National Research Council, Via dei Taurini 19, 00185 Rome, Italy;
- Correspondence: (E.L.P.); (A.D.G.)
| |
Collapse
|
204
|
Currivan E, Finlay D, Moreira D. Dendritic cells metabolism: a strategic path to improve antitumoral DC vaccination. Clin Exp Immunol 2022; 208:193-201. [PMID: 35537194 PMCID: PMC9188343 DOI: 10.1093/cei/uxac048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
The critical role developed by dendritic cell (DC) in the orchestration of immune response explains its exploitation in different therapeutic approaches as potential vaccine tools. Various clinical trials dissect its role in different types of solid cancers. However, there is a lack of comprehension regarding the potential impact of DC metabolic pathways on the effectiveness of DC vaccine. In this review, we intend to dissect how metabolism could be a critical component of DC vaccine formulation, exploring opportunities to improve: (i) processing and cross-presentation of tumour antigens; (ii) DC migration, and (iii) DC immunogenic profile. Overall, we aim to open the discussion to explore new avenues/paths where DC metabolism might be considered a core component of antitumour DC vaccine with this review.
Collapse
Affiliation(s)
- Emma Currivan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - David Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Diana Moreira
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
205
|
Nsaibia MJ, Devendran A, Goubaa E, Bouitbir J, Capoulade R, Bouchareb R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J Clin Med 2022; 11:jcm11123331. [PMID: 35743402 PMCID: PMC9225514 DOI: 10.3390/jcm11123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation. Inflammation and growth factors actively promote the synthesis of the extracellular matrix (ECM) and trigger an osteogenic program. The accumulation of ECM proteins promotes lipid adhesion to valve tissue, which could initiate the osteogenic program in interstitial valve cells. Statin treatment has been shown to have the ability to diminish the death rate in subjects with atherosclerotic impediments by decreasing the serum LDL cholesterol levels. However, the use of HMG-CoA inhibitors (statins) as cholesterol-lowering therapy did not significantly reduce the progression or the severity of aortic valve calcification. However, new clinical trials targeting Lp(a) or PCSK9 are showing promising results in reducing the severity of aortic stenosis. In this review, we discuss the implication of lipids in aortic valve calcification and the current findings on the effect of lipid-lowering therapy in aortic stenosis.
Collapse
Affiliation(s)
- Mohamed J. Nsaibia
- Department of Cell Biology and Molecular Medicine, Rutgers University, Newark, NJ 07103, USA;
| | - Anichavezhi Devendran
- Department of Medicine, Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Eshak Goubaa
- Thomas Jefferson University East Falls, Philadelphia, PA 19144, USA;
| | - Jamal Bouitbir
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, 4056 Basel, Switzerland;
| | - Romain Capoulade
- L’institut Du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France;
| | - Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(212)-241-8471
| |
Collapse
|
206
|
Kobayashi E, Kondo S, Dochi H, Moriyama-Kita M, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Yoshizaki T. Protein Farnesylation on Nasopharyngeal Carcinoma, Molecular Background and Its Potential as a Therapeutic Target. Cancers (Basel) 2022; 14:cancers14122826. [PMID: 35740492 PMCID: PMC9220992 DOI: 10.3390/cancers14122826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is distinguished from other head and neck carcinomas by the association of its carcinogenesis with the Epstein–Barr virus. It is highly metastatic, and a novel therapeutic modality for metastatic nasopharyngeal carcinoma is keenly awaited. Protein farnesylation is a C-terminal lipid modification of proteins and was initially investigated as a key process in activating the RAS oncoprotein through its association with the cellular membrane structure. Since then, more and more evidence has accumulated to indicate that proteins other than RAS are also farnesylated and have significant roles in carcinogenesis. This review delineates molecular pathogenesis through protein farnesylation in the context of nasopharyngeal carcinoma and discusses the potential of farnesylation as a therapeutic target. Abstract Nasopharyngeal carcinoma (NPC) is one of the Epstein–Barr virus (EBV)-associated malignancies. NPC is highly metastatic compared to other head and neck carcinomas, and evidence has shown that the metastatic features of NPC are involved in EBV infection. The prognosis of advanced cases, especially those with distant metastasis, is still poor despite advancements in molecular research and its application to clinical settings. Thus, further advancement in basic and clinical research that may lead to novel therapeutic modalities is needed. Farnesylation is a lipid modification in the C-terminus of proteins. It enables proteins to attach to the lipid bilayer structure of cellular membranes. Farnesylation was initially identified as a key process of membrane association and activation of the RAS oncoprotein. Farnesylation is thus expected to be an ideal therapeutic target in anti-RAS therapy. Additionally, more and more molecular evidence has been reported, showing that proteins other than RAS are also farnesylated and have significant roles in cancer progression. However, although several clinical trials have been conducted in cancers with high rates of ras gene mutation, such as pancreatic carcinomas, the results were less favorable than anticipated. In contrast, favorable outcomes were reported in the results of a phase II trial on head and neck carcinoma. In this review, we provide an overview of the molecular pathogenesis of NPC in terms of the process of farnesylation and discuss the potential of anti-farnesylation therapy in the treatment of NPC.
Collapse
|
207
|
Zhao R, Ning X, Wang M, Wang H, Xing G, Wang L, Lu C, Yu A, Wang Y. A ROS-Responsive Simvastatin Nano-Prodrug and its Fibronectin-Targeted Co-Delivery System for Atherosclerosis Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25080-25092. [PMID: 35618653 DOI: 10.1021/acsami.2c02354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoprodrugs with responsive release properties integrate the advantages of stimuli-responsive prodrugs and nanotechnology. They would provide ultimate opportunity in fighting atherosclerosis. In this study, we synthesized a redox-responsive nanoprodrug of simvastatin (TPTS) by conjugating α-tocopherol polyethylene glycol derivative to the pharmacophore of simvastatin with a thioketal linker. TPTS formed nanoparticles and released parent simvastatin in the presence of hydrogen peroxide. Moreover, by taking advantage of the self-assembly behavior of TPTS, we developed a fibronectin-targeted delivery system (TPTS/C/T) to codelivery simvastatin prodrug and ticagrelor. In vitro and in vivo experiments indicated that TPTS and TPTS/C/T had good stability, which could reduce off-target leakage of drugs. They greatly inhibited the M1-type polarization of macrophages; reduced intracellular reactive oxygen species level and inflammatory cytokine; and TNF-α, MCP-1, and IL-1β were secreted by macrophage cells, thus providing enhanced anti-inflammatory and antioxidant effects compared with free simvastatin. TPTS/C/T realized targeted drug release to plaques and synergistic therapeutic effects of simvastatin and ticagrelor on atherosclerosis treatment in an ApoE-/- mouse model, resulting in excellent atherosclerosis therapeutic efficacy and a promising biosafety profile. Therefore, this study provides a new method for manufacturing statin nanodrugs and a new design idea for related responsive drug release nanosystems for atherosclerosis.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoyue Ning
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengqi Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huanhuan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Xing
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Wang
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin 300192, China
| | - Ao Yu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjian Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
208
|
Shin J, South EJ, Dunlop MJ. Transcriptional Tuning of Mevalonate Pathway Enzymes to Identify the Impact on Limonene Production in Escherichia coli. ACS OMEGA 2022; 7:18331-18338. [PMID: 35694509 PMCID: PMC9178717 DOI: 10.1021/acsomega.2c00483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heterologous production of limonene in microorganisms through the mevalonate (MVA) pathway has traditionally imposed metabolic burden and reduced cell fitness, where imbalanced stoichiometries among sequential enzymes result in the accumulation of toxic intermediates. Although prior studies have shown that changes to mRNA stability, RBS strength, and protein homology can be effective strategies for balancing enzyme levels in the MVA pathway, testing different variations of these parameters often requires distinct genetic constructs, which can exponentially increase assembly costs as pathways increase in size. Here, we developed a multi-input transcriptional circuit to regulate the MVA pathway, where four chemical inducers, l-arabinose (Ara), choline chloride (Cho), cuminic acid (Cuma), and isopropyl β-d-1-thiogalactopyranoside (IPTG), each regulate one of four orthogonal promoters. We tested modular transcriptional regulation of the MVA pathway by placing this circuit in an engineered Escherichia coli "marionette" strain, which enabled systematic and independent tuning of the first three enzymes (AtoB, HMGS, and HMGR) in the MVA pathway. By systematically testing combinations of chemical inducers as inputs, we investigated relationships between the expressions of different MVA pathway submodules, finding that limonene yields are sensitive to the coordinated transcriptional regulation of HMGS and HMGR.
Collapse
Affiliation(s)
- Jonghyeon Shin
- Biomedical
Engineering Department, Boston University, Boston, Massachusetts 02215, United States
| | - Eric J. South
- Molecular
Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts 02215, United States
| | - Mary J. Dunlop
- Biomedical
Engineering Department, Boston University, Boston, Massachusetts 02215, United States
- Molecular
Biology, Cell Biology & Biochemistry Program, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
209
|
Wang WL, Kasamatsu J, Joshita S, Gilfillan S, Di Luccia B, Panda SK, Kim DH, Desai P, Bando JK, Huang SCC, Yomogida K, Hoshino H, Fukushima M, Jacobsen EA, Van Dyken SJ, Ruedl C, Cella M, Colonna M. The aryl hydrocarbon receptor instructs the immunomodulatory profile of a subset of Clec4a4 + eosinophils unique to the small intestine. Proc Natl Acad Sci U S A 2022; 119:e2204557119. [PMID: 35653568 PMCID: PMC9191779 DOI: 10.1073/pnas.2204557119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 11/18/2022] Open
Abstract
C-type lectin domain family 4, member a4 (Clec4a4) is a C-type lectin inhibitory receptor specific for glycans thought to be exclusively expressed on murine CD8α− conventional dendritic cells. Using newly generated Clec4a4-mCherry knock-in mice, we identify a subset of Clec4a4-expressing eosinophils uniquely localized in the small intestine lamina propria. Clec4a4+ eosinophils evinced an immunomodulatory signature, whereas Clec4a4− eosinophils manifested a proinflammatory profile. Clec4a4+ eosinophils expressed high levels of aryl hydrocarbon receptor (Ahr), which drove the expression of Clec4a4 as well as other immunomodulatory features, such as PD-L1. The abundance of Clec4a4+ eosinophils was dependent on dietary AHR ligands, increased with aging, and declined in inflammatory conditions. Mice lacking AHR in eosinophils expanded innate lymphoid cells of type 2 and cleared Nippostrongylus brasiliensis infection more effectively than did wild-type mice. These results highlight the heterogeneity of eosinophils in response to tissue cues and identify a unique AHR-dependent subset of eosinophils in the small intestine with an immunomodulatory profile.
Collapse
Affiliation(s)
- Wei-Le Wang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Jun Kasamatsu
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, 980-8575 Sendai, Japan
| | - Satoru Joshita
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 390-8621 Matsumoto, Japan
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Blanda Di Luccia
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Santosh K. Panda
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Jennifer K. Bando
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Kentaro Yomogida
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Hitomi Hoshino
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 910-1193 Eiheiji, Japan
| | - Mana Fukushima
- Department of Tumor Pathology, Faculty of Medical Sciences, University of Fukui, 910-1193 Eiheiji, Japan
| | - Elizabeth A. Jacobsen
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| | - Steven J. Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO 63110
| |
Collapse
|
210
|
Umekubo N, Hayashi Y. Catalytic Asymmetric Michael Reaction of Methyl Alkynyl Ketone Catalyzed by Diphenylprolinol Silyl Ether. ACS ORGANIC & INORGANIC AU 2022; 2:245-251. [PMID: 36855469 PMCID: PMC9954212 DOI: 10.1021/acsorginorgau.1c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The asymmetric Michael reaction of methyl alkynyl ketone and α,β-unsaturated aldehyde catalyzed by diphenylprolinol silyl ether was developed. Although methyl alkynyl ketone is a good Michael acceptor, it also acts as a Michael donor to afford the synthetically important δ-oxo aldehydes with excellent enantioselectivity. The products possessing several functional groups, such as alkyne, ketone, and aldehyde moieties, are useful chiral building blocks for further synthesis. Using this reaction as a key step, a side chain of atorvastatin (Lipitor), an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, was synthesized in a two-pot sequence with excellent diastereo- and enantioselectivities.
Collapse
|
211
|
Shailes H, Tse WY, Freitas MO, Silver A, Martin SA. Statin Treatment as a Targeted Therapy for APC-Mutated Colorectal Cancer. Front Oncol 2022; 12:880552. [PMID: 35712511 PMCID: PMC9197185 DOI: 10.3389/fonc.2022.880552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mutations in the tumor suppressor gene Adenomatous Polyposis Coli (APC) are found in 80% of sporadic colorectal cancer (CRC) tumors and are also responsible for the inherited form of CRC, Familial adenomatous polyposis (FAP). Methods To identify novel therapeutic strategies for the treatment of APC mutated CRC, we generated a drug screening platform that incorporates a human cellular model of APC mutant CRC using CRISPR-cas9 gene editing and performed an FDA-approved drug screen targeting over 1000 compounds. Results We have identified the group of HMG-CoA Reductase (HMGCR) inhibitors known as statins, which cause a significantly greater loss in cell viability in the APC mutated cell lines and in in vivo APC mutated patient derived xenograft (PDX) models, compared to wild-type APC cells. Mechanistically, our data reveals this new synthetic lethal relationship is a consequence of decreased Wnt signalling and, ultimately, a reduction in the level of expression of the anti-apoptotic protein Survivin, upon statin treatment in the APC-mutant cells only. This mechanism acts via a Rac1 mediated control of beta-catenin. Conclusion Significantly, we have identified a novel synthetic lethal dependence between APC mutations and statin treatment, which could potentially be exploited for the treatment of APC mutated cancers.
Collapse
Affiliation(s)
- Hannah Shailes
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Wai Yiu Tse
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marta O. Freitas
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sarah A. Martin
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- *Correspondence: Sarah A. Martin,
| |
Collapse
|
212
|
Herrscher V, Witjaksono C, Buchotte M, Ferret C, Massicot F, Vasse J, Borel F, Behr J, Seemann M. Irreversible Inhibition of IspG, a Target for the Development of New Antimicrobials, by a 2‐Vinyl Analogue of its MEcPP Substrate. Chemistry 2022; 28:e202200241. [DOI: 10.1002/chem.202200241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Vivien Herrscher
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Clea Witjaksono
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| | - Marie Buchotte
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Claire Ferret
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| | - Fabien Massicot
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Jean‐Luc Vasse
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Franck Borel
- Univ. Grenoble Alpes, CEA, CNRS, IBS 38000 Grenoble France
| | - Jean‐Bernard Behr
- Univ. Reims Champagne-Ardenne ICMR, CNRS UMR 7312 51687 Reims Cedex 2 France
| | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques Institut de Chimie de Strasbourg UMR 7177 Université de Strasbourg/CNRS 4, rue Blaise Pascal 67070 Strasbourg France
| |
Collapse
|
213
|
Role of Lipoproteins in the Pathophysiology of Breast Cancer. MEMBRANES 2022; 12:membranes12050532. [PMID: 35629858 PMCID: PMC9145187 DOI: 10.3390/membranes12050532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 01/16/2023]
Abstract
Breast cancer is one of the most common malignancies in women and the leading cause of cancer mortality. Hypercholesterolemia and obesity are potential risk factors for the incidence of breast cancer, and their detection can enhance cancer prevention. In this paper, we discuss the current state of investigations on the importance of lipoproteins, such as low denisity lipoproteins (LDL) and high density lipoproteins (HDL), and cholesterol transporters in the progression of breast cancer, and the therapeutic strategies to reduce breast cancer mortality. Although some research has been unsuccessful at uncovering links between the roles of lipoproteins and breast cancer risk, major scientific trials have found a straight link between LDL levels and incidence of breast cancer, and an inverse link was found between HDL and breast cancer development. Cholesterol and its transporters were shown to have significant importance in the development of breast cancer in studies on breast cancer cell lines and experimental mice models. Instead of cholesterol, 27-hydroxycholesterol, which is a cholesterol metabolite, is thought to promote propagation and metastasis of estrogen receptor-positive breast cancer cell lines. Alteration of lipoproteins via oxidation and HDL glycation are thought to activate many pathways associated with inflammation, thereby promoting cellular proliferation and migration, leading to metastasis while suppressing apoptosis. Medications that lower cholesterol levels and apolipoprotein A-I mimics have appeared to be possible therapeutic agents for preventing excessive cholesterol’s role in promoting the development of breast cancer.
Collapse
|
214
|
Xiong M, Xue Y, Zhu W, Deng A, Tan Z, Zhou G, Xiang N. Comparative efficacy and safety of statins for osteoporosis: a study protocol for a systematic review and network meta-analysis. BMJ Open 2022; 12:e054158. [PMID: 35580965 PMCID: PMC9115030 DOI: 10.1136/bmjopen-2021-054158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Osteoporosis (OP) is a prevalent skeletal disease with high mortality and morbidity, followed by acute and chronic back pain, severe spinal deformity and dysfunction. First-line drugs for OP work through antiresorptive or anabolic mechanisms. Although with good efficacy, these drugs still have certain limitations in clinical application due to delivery routes, medication cycles and cost issues. Nowadays, statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) appear to be potentially promising drugs for OP. Despite the controversy, previous studies have shown the efficacy of statins in treating OP. Other studies have further indicated that the therapeutic effect of OP in statin-treated patients is dose dependent. However, scientists have not yet reached a consensus on the use of statins for the treatment or which statin to choose first. This study aims to review the literature, ascertaining the relative efficacy and safety of statins for patients with OP using a Bayesian network meta-analysis. METHODS AND ANALYSIS We will systematically search the following databases: MEDLINE, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Wanfang Database, China Science and Technology Journal Database, Chinese BioMedical Literature Database and preprint servers to include randomised controlled trials that compare different statins for treating OP. Primary outcomes are the incidence of overall fractures and bone mineral density changes. Secondary outcomes contain adverse effects and bone turnover markers. All items of this review will comply with the Cochrane Handbook, and the quality of evidence will be evaluated by Grading of Recommendations Assessment, Development and Evaluation. A traditional pairwise meta-analysis and the Bayesian network meta-analysis will be performed to compare the efficacy of different statins. ETHICS AND DISSEMINATION Ethical approval is not required since this is a protocol study for meta-analyses. Results will be submitted to a peer-reviewed journal. PROSPERO REGISTRATION NUMBER CRD42021242619. SEARCH DATES From database inception to February 2022.
Collapse
Affiliation(s)
- Mengxin Xiong
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yaojun Xue
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Wei Zhu
- College of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Ali Deng
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhangkui Tan
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Guangwen Zhou
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Nan Xiang
- First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
215
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
216
|
Takada K, Shimokawa M, Takamori S, Shimamatsu S, Hirai F, Tagawa T, Okamoto T, Hamatake M, Tsuchiya-Kawano Y, Otsubo K, Inoue K, Yoneshima Y, Tanaka K, Okamoto I, Nakanishi Y, Mori M. A propensity score-matched analysis of the impact of statin therapy on the outcomes of patients with non-small-cell lung cancer receiving anti-PD-1 monotherapy: a multicenter retrospective study. BMC Cancer 2022; 22:503. [PMID: 35524214 PMCID: PMC9074359 DOI: 10.1186/s12885-022-09385-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/08/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Many studies have recently reported the association of concomitant medications with the response and survival in patients with non-small-cell lung cancer (NSCLC) treated with cancer immunotherapy. However, the clinical impact of statin therapy on the outcome of cancer immunotherapy in patients with NSCLC is poorly understood. METHODS In our database, we retrospectively identified and enrolled 390 patients with advanced or recurrent NSCLC who were treated with anti-programmed cell death-1 (PD-1) monotherapy in clinical practice between January 2016 and December 2019 at 3 medical centers in Japan to examine the clinical impact of statin therapy on the survival of patients with NSCLC receiving anti-PD-1 monotherapy. A propensity score-matched analysis was conducted to minimize the bias arising from the patients' backgrounds. RESULTS The Kaplan-Meier curves of the propensity score-matched cohort showed that the overall survival (OS), but not the progression-free survival (PFS), was significantly longer in patients receiving statin therapy. However, a Cox regression analysis in the propensity score-matched cohort revealed that statin therapy was not an independent favorable prognostic factor, although it tended to be correlated with a favorable outcome. CONCLUSIONS Statin therapy may be a combination tool for cancer immunotherapy in patients with NSCLC. These findings should be validated in further prospective studies with larger sample sizes.
Collapse
Affiliation(s)
- Kazuki Takada
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan.
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.,Clinical Research Institute, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan
| | - Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan.
| | - Shinichiro Shimamatsu
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Fumihiko Hirai
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka, 811-1395, Japan
| | - Motoharu Hamatake
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Yuko Tsuchiya-Kawano
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Kohei Otsubo
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Koji Inoue
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoichi Nakanishi
- Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, 802-8561, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
217
|
Guo C, Wan R, He Y, Lin SH, Cao J, Qiu Y, Zhang T, Zhao Q, Niu Y, Jin Y, Huang HY, Wang X, Tan L, Thomas RK, Zhang H, Chen L, Wong KK, Hu L, Ji H. Therapeutic targeting of the mevalonate-geranylgeranyl diphosphate pathway with statins overcomes chemotherapy resistance in small cell lung cancer. NATURE CANCER 2022; 3:614-628. [PMID: 35449308 DOI: 10.1038/s43018-022-00358-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Small cell lung cancer (SCLC) lacks effective treatments to overcome chemoresistance. Here we established multiple human chemoresistant xenograft models through long-term intermittent chemotherapy, mimicking clinically relevant therapeutic settings. We show that chemoresistant SCLC undergoes metabolic reprogramming relying on the mevalonate (MVA)-geranylgeranyl diphosphate (GGPP) pathway, which can be targeted using clinically approved statins. Mechanistically, statins induce oxidative stress accumulation and apoptosis through the GGPP synthase 1 (GGPS1)-RAB7A-autophagy axis. Statin treatment overcomes both intrinsic and acquired SCLC chemoresistance in vivo across different SCLC PDX models bearing high GGPS1 levels. Moreover, we show that GGPS1 expression is negatively associated with survival in patients with SCLC. Finally, we demonstrate that combined statin and chemotherapy treatment resulted in durable responses in three patients with SCLC who relapsed from first-line chemotherapy. Collectively, these data uncover the MVA-GGPP pathway as a metabolic vulnerability in SCLC and identify statins as a potentially effective treatment to overcome chemoresistance.
Collapse
Affiliation(s)
- Chenchen Guo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruijie Wan
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shu-Hai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiayu Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Qiu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tengfei Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yujia Niu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xue Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Roman K Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Pathology, Medical Faculty, University Hospital Cologne, Cologne, Germany
- DKFZ, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
| | - Hua Zhang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
218
|
Intracellular lipid surveillance by small G protein geranylgeranylation. Nature 2022; 605:736-740. [PMID: 35585236 PMCID: PMC9885440 DOI: 10.1038/s41586-022-04729-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Imbalances in lipid homeostasis can have deleterious effects on health1,2. Yet how cells sense metabolic demand due to lipid depletion and respond by increasing nutrient absorption remains unclear. Here we describe a mechanism for intracellular lipid surveillance in Caenorhabditis elegans that involves transcriptional inactivation of the nuclear hormone receptor NHR-49 through its cytosolic sequestration to endocytic vesicles via geranylgeranyl conjugation to the small G protein RAB-11.1. Defective de novo isoprenoid synthesis caused by lipid depletion limits RAB-11.1 geranylgeranylation, which promotes nuclear translocation of NHR-49 and activation of rab-11.2 transcription to enhance transporter residency at the plasma membrane. Thus, we identify a critical lipid sensed by the cell, its conjugated G protein, and the nuclear receptor whose dynamic interactions enable cells to sense metabolic demand due to lipid depletion and respond by increasing nutrient absorption and lipid metabolism.
Collapse
|
219
|
Luna-Flores CH, Wang A, von Hellens J, Speight RE. Towards commercial levels of astaxanthin production in Phaffia rhodozyma. J Biotechnol 2022; 350:42-54. [DOI: 10.1016/j.jbiotec.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023]
|
220
|
The mevalonate pathway in breast cancer biology. Cancer Lett 2022; 542:215761. [DOI: 10.1016/j.canlet.2022.215761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/07/2023]
|
221
|
Li J, Bollati C, Bartolomei M, Mazzolari A, Arnoldi A, Vistoli G, Lammi C. Hempseed ( Cannabis sativa) Peptide H3 (IGFLIIWV) Exerts Cholesterol-Lowering Effects in Human Hepatic Cell Line. Nutrients 2022; 14:1804. [PMID: 35565772 PMCID: PMC9101684 DOI: 10.3390/nu14091804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Hempseed (Cannabis sativa) protein is an important source of bioactive peptides. H3 (IGFLIIWV), a transepithelial transported intestinal peptide obtained from the hydrolysis of hempseed protein with pepsin, carries out antioxidant and anti-inflammatory activities in HepG2 cells. In this study, the main aim was to assess its hypocholesterolemic effects at a cellular level and the mechanisms behind this health-promoting activity. The results showed that peptide H3 inhibited the 3-hydroxy-3-methylglutaryl co-enzyme A reductase (HMGCoAR) activity in vitro in a dose-dependent manner with an IC50 value of 59 μM. Furthermore, the activation of the sterol regulatory element binding proteins (SREBP)-2 transcription factor, followed by the increase of low-density lipoprotein (LDL) receptor (LDLR) protein levels, was observed in human hepatic HepG2 cells treated with peptide H3 at 25 µM. Meanwhile, peptide H3 regulated the intracellular HMGCoAR activity through the increase of its phosphorylation by the activation of AMP-activated protein kinase (AMPK)-pathways. Consequently, the augmentation of the LDLR localized on the cellular membranes led to the improved ability of HepG2 cells to uptake extracellular LDL with a positive effect on cholesterol levels. Unlike the complete hempseed hydrolysate (HP), peptide H3 can reduce the proprotein convertase subtilisin/kexin 9 (PCSK9) protein levels and its secretion in the extracellular environment via the decrease of hepatic nuclear factor 1-α (HNF1-α). Considering all these evidences, H3 may represent a new bioactive peptide to be used for the development of dietary supplements and/or peptidomimetics for cardiovascular disease (CVD) prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (J.L.); (C.B.); (M.B.); (A.M.); (A.A.); (G.V.)
| |
Collapse
|
222
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
223
|
Papadopoulos PD, Tsigalou C, Valsamaki PN, Konstantinidis TG, Voidarou C, Bezirtzoglou E. The Emerging Role of the Gut Microbiome in Cardiovascular Disease: Current Knowledge and Perspectives. Biomedicines 2022; 10:biomedicines10050948. [PMID: 35625685 PMCID: PMC9139035 DOI: 10.3390/biomedicines10050948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The collection of normally non-pathogenic microorganisms that mainly inhabit our gut lumen shapes our health in many ways. Structural and functional perturbations in the gut microbial pool, known as “dysbiosis”, have been proven to play a vital role in the pathophysiology of several diseases, including cardiovascular disease (CVD). Although therapeutic regimes are available to treat this group of diseases, they have long been the main cause of mortality and morbidity worldwide. While age, sex, genetics, diet, tobacco use, and alcohol consumption are major contributors (World Health Organization, 2018), they cannot explain all of the consequences of CVD. In addition to the abovementioned traditional risk factors, the constant search for novel preventative and curative tools has shed light on the involvement of gut bacteria and their metabolites in the pathogenesis of CVD. In this narrative review, we will discuss the established interconnections between the gut microbiota and CVD, as well as the plausible therapeutic perspectives.
Collapse
Affiliation(s)
- Panagiotis D. Papadopoulos
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
| | - Christina Tsigalou
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| | - Pipitsa N. Valsamaki
- Nuclear Medicine Department, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | | | | | - Eugenia Bezirtzoglou
- Master Programme Food, Nutrition and Microbiome, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (P.D.P.); (E.B.)
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
224
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
225
|
Hua Y, Dai X, Xu Y, Xing G, Liu H, Lu T, Chen Y, Zhang Y. Drug repositioning: Progress and challenges in drug discovery for various diseases. Eur J Med Chem 2022; 234:114239. [PMID: 35290843 PMCID: PMC8883737 DOI: 10.1016/j.ejmech.2022.114239] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
Abstract
Compared with traditional de novo drug discovery, drug repurposing has become an attractive drug discovery strategy due to its low-cost and high efficiency. Through a comprehensive analysis of the candidates that have been identified with drug repositioning potentials, it is found that although some drugs do not show obvious advantages in the original indications, they may exert more obvious effects in other diseases. In addition, some drugs have a synergistic effect to exert better clinical efficacy if used in combination. Particularly, it has been confirmed that drug repositioning has benefits and values on the current public health emergency such as the COVID-19 pandemic, which proved the great potential of drug repositioning. In this review, we systematically reviewed a series of representative drugs that have been repositioned for different diseases and illustrated successful cases in each disease. Especially, the mechanism of action for the representative drugs in new indications were explicitly explored for each disease, we hope this review can provide important insights for follow-up research.
Collapse
Affiliation(s)
- Yi Hua
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xiaowen Dai
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yuan Xu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Guomeng Xing
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| |
Collapse
|
226
|
Characterization and Roles of Membrane Lipids in Fatty Liver Disease. MEMBRANES 2022; 12:membranes12040410. [PMID: 35448380 PMCID: PMC9025760 DOI: 10.3390/membranes12040410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Obesity has reached global epidemic proportions and it affects the development of insulin resistance, type 2 diabetes, fatty liver disease and other metabolic diseases. Membrane lipids are important structural and signaling components of the cell membrane. Recent studies highlight their importance in lipid homeostasis and are implicated in the pathogenesis of fatty liver disease. Here, we discuss the numerous membrane lipid species and their metabolites including, phospholipids, sphingolipids and cholesterol, and how dysregulation of their composition and physiology contribute to the development of fatty liver disease. The development of new genetic and pharmacological mouse models has shed light on the role of lipid species on various mechanisms/pathways; these lipids impact many aspects of the pathophysiology of fatty liver disease and could potentially be targeted for the treatment of fatty liver disease.
Collapse
|
227
|
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol 2022; 19:228-249. [PMID: 34759324 PMCID: PMC8580169 DOI: 10.1038/s41569-021-00629-x] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology could improve our understanding of the pathophysiology of atherosclerosis and contribute to the development of novel diagnostic and therapeutic strategies to further reduce the risk of cardiovascular disease. Macrophages have key roles in atherosclerosis progression and, therefore, macrophage-associated pathological processes are important targets for both diagnostic imaging and novel therapies for atherosclerosis. In this Review, we highlight efforts in the past two decades to develop imaging techniques and to therapeutically manipulate macrophages in atherosclerotic plaques with the use of rationally designed nanoparticles. We review the latest progress in nanoparticle-based imaging modalities that can specifically target macrophages. Using novel molecular imaging technology, these modalities enable the identification of advanced atherosclerotic plaques and the assessment of the therapeutic efficacy of medical interventions. Additionally, we provide novel perspectives on how macrophage-targeting nanoparticles can deliver a broad range of therapeutic payloads to atherosclerotic lesions. These nanoparticles can suppress pro-atherogenic macrophage processes, leading to improved resolution of inflammation and stabilization of plaques. Finally, we propose future opportunities for novel diagnostic and therapeutic strategies and provide solutions to challenges in this area for the purpose of accelerating the clinical translation of nanomedicine for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
228
|
Yuan Y, Xiong R, Wu Y, Ha J, Wang W, Han X, He M. Associations of statin use with the onset and progression of open-angle glaucoma: A systematic review and meta-analysis. EClinicalMedicine 2022; 46:101364. [PMID: 35399812 PMCID: PMC8987630 DOI: 10.1016/j.eclinm.2022.101364] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Background Statins, the first-line therapy for hyperlipidemia, have received considerable attention as candidates for glaucoma treatments given its neuroprotective effects. In this systematic review and meta-analysis, we intended to assess the association of statin use with the onset and progression of open-angle glaucoma (OAG). Methods Databases including PubMed, Embase and Web of Science Core Collection were searched for longitudinal studies reporting the association between statin use and OAG onset or progression on Feb 3, 2021. A meta-analysis was performed for the association between statin use and OAG onset. Relative risks (RRs) with 95% confidential intervals (CIs) were retrieved from included studies and pooled using random-effects models. Potential risks of bias were evaluated by the Newcastle-Ottawa Quality Assessment Scale for all eligible studies. This study had been registered on PROSPERO (CRD 42021232172). Findings 515,788 participants (mean age 68.7 years, 62.3% female) from ten studies were included in the systematic review of the association between statin use and OAG onset, and 26,347 OAG patients (mean age 67.3 years, 52.2% female) from seven studies were included for the association between statin use and OAG progression. Potential risks of bias were detected in 12 studies, which were mainly attributed to selection and confounding bias. In addition, 515,600 participants from eight studies were included in the meta-analysis which collectively showed that statin use was associated with a reduced risk of OAG onset (Pooled RR: 0.95; 95%CI: 0.93-0.98; I2=0.199;). No significant heterogeneity or publication bias was found for studies included in the meta-analysis. There were inconsistent evidences for the association between statin use and OAG progression. Interpretation Statin use is associated with a slightly lower risk of OAG onset based on existing evidences from longitudinal observational studies, the association between statin use and OAG progression remains inconclusive. The included evidences were typically weak due to poor study design and under-powered studies. Current findings should be interpreted cautiously and still need to be validated in further research. Funding The National Key R&D Program of China (2018YFC0116500), Science and Technology Planning Project of Guangdong Province (2013B20400003), the China Postdoctoral Science Foundation (2019TQ0365), the National Natural Science Foundation of China (82000901 and 82101171).
Collapse
Key Words
- 3‑hydroxy‑3-methyl glutaryl coenzyme a (hmg-coa) reductase inhibitors
- CIS, confidential intervals
- HMG-COA, 3‑hydroxy‑3-methyl glutaryl coenzyme a
- HRS, hazard ratios
- ICD, international classification of diseases
- IOP, intraocular pressure
- NSLCM, non-statin lipid-controlling medications
- OAG, open-angle glaucoma
- ORS, odds ratios
- Open-angle glaucoma
- PRS, relative risks
- RGC, retinal ganglion cell
- VF, visual field
- WOS, web of science core collection
- meta-analysis
Collapse
Affiliation(s)
- Yixiong Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jason Ha
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaotong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
229
|
Statins and prostate cancer-hype or hope? The biological perspective. Prostate Cancer Prostatic Dis 2022; 25:650-656. [PMID: 35768578 DOI: 10.1038/s41391-022-00557-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/14/2022] [Accepted: 05/27/2022] [Indexed: 01/14/2023]
Abstract
Growing evidence suggests that men prescribed a statin for cholesterol control have a lower risk of advanced prostate cancer (PCa) and improved treatment outcomes; however, the mechanism by which statins elicit their anti-neoplastic effects is not well understood and is likely multifaceted. Statins are potent and specific inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), the rate-limiting enzyme of the mevalonate (MVA) metabolic pathway. This two-part series is a review of the observational and experimental data on statins as anti-cancer agents in PCa. In this article, we describe the functional role that deregulated MVA metabolism plays in PCa progression and summarize the biological evidence and rationale for targeting the MVA pathway, with statins and other agents, for the treatment of PCa.
Collapse
|
230
|
Targeting Protein Translation in Melanoma by Inhibiting EEF-2 Kinase Regulates Cholesterol Metabolism though SREBP2 to Inhibit Tumour Development. Int J Mol Sci 2022; 23:ijms23073481. [PMID: 35408842 PMCID: PMC8998919 DOI: 10.3390/ijms23073481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 01/13/2023] Open
Abstract
Decreasing the levels of certain proteins has been shown to be important for controlling cancer but it is currently unknown whether proteins could potentially be targeted by the inhibiting of protein synthesis. Under this circumstance, targeting protein translation could preferentially affect certain pathways, which could then be of therapeutic advantage when treating cancer. In this report, eukaryotic elongation factor-2 kinase (EEF2K), which is involved in protein translation, was shown to regulate cholesterol metabolism. Targeting EEF2K inhibited key parts of the cholesterol pathway in cancer cells, which could be rescued by the addition of exogenous cholesterol, suggesting that it is a potentially important pathway modulated by targeting this process. Specifically, targeting EEF2K significantly suppressed tumour cell growth by blocking mRNA translation of the cholesterol biosynthesis transcription factor, sterol regulatory element-binding protein (SREBP) 2, and the proteins it regulates. The process could be rescued by the addition of LDL cholesterol taken into the cells via non-receptor-mediated-uptake, which negated the need for SREBP2 protein. Thus, the levels of SREBP2 needed for cholesterol metabolism in cancer cells are therapeutically vulnerable by targeting protein translation. This is the first report to suggest that targeting EEF2K can be used to modulate cholesterol metabolism to treat cancer.
Collapse
|
231
|
Minichsdorfer C, Fuereder T, Leutner M, Singer CF, Kacerovsky-Strobl S, Egle D, Greil R, Balic M, Fitzal F, Pfeiler G, Frantal S, Bartsch R, Gnant M. Effect of concomitant statin treatment in postmenopausal patients with hormone receptor-positive early-stage breast cancer receiving adjuvant denosumab or placebo: a post hoc analysis of ABCSG-18. ESMO Open 2022; 7:100426. [PMID: 35334418 PMCID: PMC9058905 DOI: 10.1016/j.esmoop.2022.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Statins are cholesterol-lowering drugs prescribed for the prevention and treatment of cardiovascular disease. Moreover, statins may possess anticancer properties and interact with receptor activator of nuclear factor κB ligand expression. We aimed at evaluating a hypothetical synergistic effect of statins with denosumab in early-stage breast cancer (BC) patients from the Austrian Breast and Colorectal Cancer Study Group (ABCSG) trial 18. Patients and methods ABCSG-18 (NCT00556374) is a prospective, randomized, double-blind, phase III study; postmenopausal patients with hormone receptor-positive BC receiving a nonsteroidal aromatase inhibitor were randomly assigned to denosumab or placebo. In this post hoc analysis, we investigated the effects of concomitant statin therapy on recurrence risk (RR) of BC, fracture risk and bone mineral density (BMD). Results In the study population (n = 3420), statin therapy (n = 824) was associated with worse disease-free survival (DFS) [hazard ratio (HR) 1.35, 95% confidence interval (CI) 1.04-1.75; P = 0.023]. While no significant effect of lipophilic statins (n = 710) on RR was observed (HR 1.30, 95% CI 0.99-1.72; P = 0.062), patients on hydrophilic statins (n = 87) had worse DFS compared with patients not receiving any statins (HR 2.00, 95% CI 1.09-3.66; P = 0.026). This finding was mainly driven by the effect of hydrophilic statins on DFS in the denosumab arm (HR 2.63, 95% CI 1.21-5.68; P = 0.014). However, this effect subsided after correction for confounders in the sensitivity analysis. No association between statin use and fracture risk or osteoporosis was observed. Conclusion According to this analysis, hydrophilic statins showed a detrimental effect on DFS in the main model, which was attenuated after correction for confounders. Our data need to be interpreted with caution due to their retrospective nature and the low number of patients receiving hydrophilic statins. Statin co-medication was initially associated with a worse DFS in hormone receptor-positive early-stage BC patients. This effect was mainly driven by patients on hydrophilic statins. However, this effect subsided after correction for confounders in the sensitivity analysis. No association between statin use and fracture risk or osteoporosis was observed.
Collapse
Affiliation(s)
- C Minichsdorfer
- Departments of Medicine 1, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - T Fuereder
- Departments of Medicine 1, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - M Leutner
- Departments of Medicine 3, Clinical Division of Endocrinology, Medical University of Vienna, Vienna, Austria
| | - C F Singer
- Departments of Gynaecology, Medical University of Vienna, Vienna, Austria
| | | | - D Egle
- Department of Gynaecology, Medical University of Innsbruck, Innsbruck, Austria
| | - R Greil
- Department of Medicine 3, Paracelsus University Salzburg, Salzburg Cancer Research Institute-CCCIT, Cancer Cluster Salzburg, Salzburg, Austria
| | - M Balic
- Department of Medicine, Clinical Division of Oncology, Medical University of Graz, Graz, Austria
| | - F Fitzal
- General Surgery, Medical University of Vienna, Vienna, Austria
| | - G Pfeiler
- Departments of Gynaecology, Medical University of Vienna, Vienna, Austria
| | - S Frantal
- Austrian Breast & Colorectal Cancer Study Group, Vienna, Austria
| | - R Bartsch
- Departments of Medicine 1, Clinical Division of Oncology, Medical University of Vienna, Vienna, Austria.
| | - M Gnant
- Austrian Breast & Colorectal Cancer Study Group, Vienna, Austria; Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
232
|
Zhu S, Gu H, Peng C, Xia F, Cao H, Cui H. Regulation of Glucose, Fatty Acid and Amino Acid Metabolism by Ubiquitination and SUMOylation for Cancer Progression. Front Cell Dev Biol 2022; 10:849625. [PMID: 35392171 PMCID: PMC8981989 DOI: 10.3389/fcell.2022.849625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination and SUMOylation, which are posttranslational modifications, play prominent roles in regulating both protein expression and function in cells, as well as various cellular signal transduction pathways. Metabolic reprogramming often occurs in various diseases, especially cancer, which has become a new entry point for understanding cancer mechanisms and developing treatment methods. Ubiquitination or SUMOylation of protein substrates determines the fate of modified proteins. Through accurate and timely degradation and stabilization of the substrate, ubiquitination and SUMOylation widely control various crucial pathways and different proteins involved in cancer metabolic reprogramming. An understanding of the regulatory mechanisms of ubiquitination and SUMOylation of cell proteins may help us elucidate the molecular mechanism underlying cancer development and provide an important theory for new treatments. In this review, we summarize the processes of ubiquitination and SUMOylation and discuss how ubiquitination and SUMOylation affect cancer metabolism by regulating the key enzymes in the metabolic pathway, including glucose, lipid and amino acid metabolism, to finally reshape cancer metabolism.
Collapse
Affiliation(s)
- Shunqin Zhu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Hongyu Gu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Cheng Peng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Fanwei Xia
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Huan Cao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, China
- Cancer Center, Reproductive Medicine Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Hongjuan Cui,
| |
Collapse
|
233
|
Computational Design and Biological Evaluation of Analogs of Lupin Peptide P5 Endowed with Dual PCSK9/HMG-CoAR Inhibiting Activity. Pharmaceutics 2022; 14:pharmaceutics14030665. [PMID: 35336039 PMCID: PMC8951016 DOI: 10.3390/pharmaceutics14030665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Proprotein convertase subtilisin/kexin 9 (PCSK9) is responsible for the degradation of the hepatic low-density lipoprotein receptor (LDLR), which regulates the circulating cholesterol level. In this field, we discovered natural peptides derived from lupin that showed PCSK9 inhibitory activity. Among these, the most active peptide, known as P5 (LILPHKSDAD), reduced the protein-protein interaction between PCSK9 and LDLR with an IC50 equals to 1.6 µM and showed a dual hypocholesterolemic activity, since it shows complementary inhibition of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR). (2) Methods: In this study, by a computational approach, the P5 primary structure was optimized to obtain new analogs with improved affinity to PCSK9. Then, biological assays were carried out for fully characterizing the dual cholesterol-lowering activity of the P5 analogs by using both biochemical and cellular techniques. (3) Results: A new peptide, P5-Best (LYLPKHSDRD) displayed improved PCSK9 (IC50 0.7 µM) and HMG-CoAR (IC50 88.9 µM) inhibitory activities. Moreover, in vitro biological assays on cells demonstrated that, not only P5-Best, but all tested peptides maintained the dual PCSK9/HMG-CoAR inhibitory activity and remarkably P5-Best exerted the strongest hypocholesterolemic effect. In fact, in the presence of this peptide, the ability of HepG2 cells to absorb extracellular LDL was improved by up to 254%. (4) Conclusions: the atomistic details of the P5-Best/PCSK9 and P5-Best/HMG-CoAR interactions represent a reliable starting point for the design of new promising molecular entities endowed with hypocholesterolemic activity.
Collapse
|
234
|
Williams MJ, Alsehli AM, Gartner SN, Clemensson LE, Liao S, Eriksson A, Isgrove K, Thelander L, Khan Z, Itskov PM, Moulin TC, Ambrosi V, Al-Sabri MH, Lagunas-Rangel FA, Olszewski PK, Schiöth HB. The Statin Target Hmgcr Regulates Energy Metabolism and Food Intake through Central Mechanisms. Cells 2022; 11:cells11060970. [PMID: 35326421 PMCID: PMC8946516 DOI: 10.3390/cells11060970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
The statin drug target, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), is strongly linked to body mass index (BMI), yet how HMGCR influences BMI is not understood. In mammals, studies of peripheral HMGCR have not clearly identified a role in BMI maintenance and, despite considerable central nervous system expression, a function for central HMGCR has not been determined. Similar to mammals, Hmgcr is highly expressed in the Drosophila melanogaster brain. Therefore, genetic and pharmacological studies were performed to identify how central Hmgcr regulates Drosophila energy metabolism and feeding behavior. We found that inhibiting Hmgcr, in insulin-producing cells of the Drosophila pars intercerebralis (PI), the fly hypothalamic equivalent, significantly reduces the expression of insulin-like peptides, severely decreasing insulin signaling. In fact, reducing Hmgcr expression throughout development causes decreased body size, increased lipid storage, hyperglycemia, and hyperphagia. Furthermore, the Hmgcr induced hyperphagia phenotype requires a conserved insulin-regulated α-glucosidase, target of brain insulin (tobi). In rats and mice, acute inhibition of hypothalamic Hmgcr activity stimulates food intake. This study presents evidence of how central Hmgcr regulation of metabolism and food intake could influence BMI.
Collapse
Affiliation(s)
- Michael J. Williams
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Ahmed M. Alsehli
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
- Faculty of Medicine, King Abdulaziz University and Hospital, Al Ehtifalat St., Jeddah 21589, Saudi Arabia
| | - Sarah N. Gartner
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (S.N.G.); (K.I.); (P.K.O.)
| | - Laura E. Clemensson
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Sifang Liao
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Anders Eriksson
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Kiriana Isgrove
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (S.N.G.); (K.I.); (P.K.O.)
| | - Lina Thelander
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Zaid Khan
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences (SLU), Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Pavel M. Itskov
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Thiago C. Moulin
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Valerie Ambrosi
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Mohamed H. Al-Sabri
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Francisco Alejandro Lagunas-Rangel
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
| | - Pawel K. Olszewski
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand; (S.N.G.); (K.I.); (P.K.O.)
| | - Helgi B. Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, 751 24 Uppsala, Sweden; (M.J.W.); (A.M.A.); (L.E.C.); (S.L.); (A.E.); (L.T.); (Z.K.); (P.M.I.); (T.C.M.); (V.A.); (M.H.A.-S.); (F.A.L.-R.)
- Correspondence:
| |
Collapse
|
235
|
Luo W, Zhang J, Xu L, Zhou Y, Xu D, Lv Q, Xiao Y, Yang Q. Use of zoledronic acid in antiosteoporosis treatment is associated with a decreased blood lipid level in postmenopausal women with osteoporosis: A cohort study in China. Postgrad Med 2022; 134:406-412. [PMID: 35264059 DOI: 10.1080/00325481.2022.2051983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE : This cohort study aimed to evaluate the protective effects of zoledronic acid (ZA) in lipidemia in postmenopausal women with osteoporosis. METHODS A total of 668 postmenopausal women with osteoporosis were regularly followed up for 12 months between January 2018 and August 2021 in the department of endocrinology and the health examination center of the hospital. They were included in this cohort study. They were divided into group I and group II depending on lipid metabolism disorder; Group II received atorvastatin 20 mg/d orally. Groups I and II, divided into experimental group (ZA exposure) and control group (ZA nonexposure), depending on treatment with or without ZA. All the data were collected from the hospital's medical record system and passed ethical review. RESULTS In group I, which was the ZA exposure group(n = 164), the level of low-density lipoprotein cholesterol (LDL-C) was significantly lower than that before ZA treatment(P = 0.017); in the ZA nonexposure group(n = 158), the levels of LDL-C, total cholesterol (TC) and triglycerides (TG) significantly increased after 12 months of follow-up, (P = 0.005, P < 0.001 and P = 0.001). At the baseline, no significant difference was found in blood lipid indicators between the ZA exposure and nonexposure groups (P > 0.05), but the levels of LDL-C and TC in the exposed group significantly decreased after 12 months of follow-up, (P = 0.008 and P = 0.027). Also, the ZA exposure group had 47 new cases of lipid metabolism disorder, while the nonexposure group had 43 new cases of lipid metabolism disorder after 12 months of follow-up. In group II, which was the ZA exposure group(n=155), the levels of LDL-C and TC were significantly lower than those before ZA treatment(P < 0.001 and P < 0.001). At the baseline, the ZA exposure and nonexposure groups(n = 191), had no significant difference in blood lipid indicators (P > 0.05), but the levels of LDL-C and TC significantly decreased in the exposed group after 12 months of follow-up, (P < 0.001 and P = 0.003). CONCLUSION This cohort study found that ZA might exert a protective effect on lipid metabolism in postmenopausal women with osteoporosis. In postmenopausal women with lipid disorders suffering from osteoporosis, the treatment with ZA combined with atorvastatin or ZA alone significantly reduced the level of blood lipid (especially LDL-C and TC) compared with atorvastatin alone.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China.,Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Jin Zhang
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| | - Ling Xu
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yao Zhou
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China.,Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Dan Xu
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| | - Qiuju Lv
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| | - Yi Xiao
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| | - Qin Yang
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| |
Collapse
|
236
|
Chen HY, Lei JY, Li SL, Guo LQ, Lin JF, Wu GH, Lu J, Ye ZW. Progress in biological activities and biosynthesis of edible fungi terpenoids. Crit Rev Food Sci Nutr 2022; 63:7288-7310. [PMID: 35238261 DOI: 10.1080/10408398.2022.2045559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The edible fungi have both edible and medicinal functions, in which terpenoids are one of the most important active ingredients. Terpenoids possess a wide range of biological activities and show great potential in the pharmaceutical and healthcare industries. In this review, the diverse biological activities of edible fungi terpenoids were summarized with emphasis on the mechanism of anti-cancer and anti-inflammation. Subsequently, this review focuses on advances in knowledge and understanding of the biosynthesis of terpenoids in edible fungi, especially in the generation of sesquiterpenes, diterpenes, and triterpenes. This paper is aim to provide an overview of biological functions and biosynthesis developed for utilizing the terpenoids in edible fungi.
Collapse
Affiliation(s)
- Hai-Ying Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jin-Yu Lei
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shu-Li Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li-Qiong Guo
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jun-Fang Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Guang-Hong Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jun Lu
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Zhi-Wei Ye
- College of Food Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
237
|
Agur T, Wedel J, Bose S, Sahankumari AGP, Goodman D, Kong SW, Ghosh CC, Briscoe DM. Inhibition of mevalonate metabolism by statins augments the immunoregulatory phenotype of vascular endothelial cells and inhibits the costimulation of CD4 + T cells. Am J Transplant 2022; 22:947-954. [PMID: 34687147 DOI: 10.1111/ajt.16872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 01/25/2023]
Abstract
The statin family of therapeutics is widely used clinically as cholesterol lowering agents, and their effects to target intracellular mevalonate production is a key mechanism of action. In this study, we performed full transcriptomic RNA sequencing and qPCR to evaluate the effects of mevalonate on the immunoregulatory phenotype of endothelial cells (EC). We find that mevalonate-dependent gene regulation includes a reduction in the expression of multiple pro-inflammatory genes including TNFSF4 (OX40-L) and TNFSF18 (GITR-L) and a co-incident induction of immunoregulatory genes including LGALS3 (Galectin-3) and LGALS9 (Galectin-9). In functional assays, pretreatment of EC with simvastatin to inhibit mevalonate metabolism resulted in a dose-dependent reduction in the costimulation of CD45RO+ CD4+ T cell proliferation as well as IL-2, IFNγ and IL-6 production versus vehicle-treated EC. In contrast, pre-treatment of EC with L-mevalonate in combination with simvastatin reversed phenotypic and functional responses. Collectively, these results indicate that relative mevalonate metabolism by EC is critical to sustain EC-dependent mechanisms of immunity. Our findings have broad relevance for the repurposing of statins as therapeutics to augment immunoregulation and/or to inhibit local tissue pro-inflammatory cytokine production following transplantation.
Collapse
Affiliation(s)
- Timna Agur
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Johannes Wedel
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Sayantan Bose
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - A G Pramoda Sahankumari
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Daniel Goodman
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Chandra C Ghosh
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - David M Briscoe
- The Transplant Research Program and the Division of Nephrology, Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
238
|
Coleman PS, Parlo RA. Cancer’s Camouflage — Microvesicle Shedding from Cholesterol-Rich Tumor Plasma Membranes Might Blindfold First-Responder Immunosurveillance Strategies. Eur J Cell Biol 2022; 101:151219. [DOI: 10.1016/j.ejcb.2022.151219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022] Open
|
239
|
Liu Y, Wang Z, Cui Z, Qi Q, Hou J. Progress and perspectives for microbial production of farnesene. BIORESOURCE TECHNOLOGY 2022; 347:126682. [PMID: 35007732 DOI: 10.1016/j.biortech.2022.126682] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Farnesene is increasingly used in industry, agriculture, and other fields due to its unique and excellent properties, necessitating its efficient synthesis. Microbial synthesis is an ideal farnesene production method. Recently, researchers have used several strategies to optimize the production performance of microorganisms. This review summarized these strategies, including regulation of farnesene synthesis pathways, and proposed some emerging tools and methods in stain engineering. Meanwhile, new farnesene biosynthetic pathways and effective farnesene production from cheap or waste substrates were emphatically introduced. Finally, future farnesene biosynthesis challenges were discussed.
Collapse
Affiliation(s)
- Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhaoxuan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
240
|
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev 2022; 41:17-31. [PMID: 34741716 PMCID: PMC10045462 DOI: 10.1007/s10555-021-09996-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Omid Yazdanpanah
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Larry H Matherly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA. .,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
241
|
Saied A, Attia A, El-Kholy M, Reda F, EL Nagar A. Effect of cinnamon oil supplementation into broiler chicken diets on growth, carcass traits, haemato-biochemical parameters, immune function, antioxidant status and caecal microbial count. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/146921/2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
242
|
Protein Lipidation Types: Current Strategies for Enrichment and Characterization. Int J Mol Sci 2022; 23:ijms23042365. [PMID: 35216483 PMCID: PMC8880637 DOI: 10.3390/ijms23042365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/04/2022] Open
Abstract
Post-translational modifications regulate diverse activities of a colossal number of proteins. For example, various types of lipids can be covalently linked to proteins enzymatically or non-enzymatically. Protein lipidation is perhaps not as extensively studied as protein phosphorylation, ubiquitination, or glycosylation although it is no less significant than these modifications. Evidence suggests that proteins can be attached by at least seven types of lipids, including fatty acids, lipoic acids, isoprenoids, sterols, phospholipids, glycosylphosphatidylinositol anchors, and lipid-derived electrophiles. In this review, we summarize types of protein lipidation and methods used for their detection, with an emphasis on the conjugation of proteins with polyunsaturated fatty acids (PUFAs). We discuss possible reasons for the scarcity of reports on PUFA-modified proteins, limitations in current methodology, and potential approaches in detecting PUFA modifications.
Collapse
|
243
|
Lesovaya EA, Chudakova D, Baida G, Zhidkova EM, Kirsanov KI, Yakubovskaya MG, Budunova IV. The long winding road to the safer glucocorticoid receptor (GR) targeting therapies. Oncotarget 2022; 13:408-424. [PMID: 35198100 PMCID: PMC8858080 DOI: 10.18632/oncotarget.28191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Glucocorticoids (Gcs) are widely used to treat inflammatory diseases and hematological malignancies, and despite the introduction of novel anti-inflammatory and anti-cancer biologics, the use of inexpensive and effective Gcs is expected to grow. Unfortunately, chronic treatment with Gcs results in multiple atrophic and metabolic side effects. Thus, the search for safer glucocorticoid receptor (GR)-targeted therapies that preserve therapeutic potential of Gcs but result in fewer adverse effects remains highly relevant. Development of selective GR agonists/modulators (SEGRAM) with reduced side effects, based on the concept of dissociation of GR transactivation and transrepression functions, resulted in limited success, and currently focus has shifted towards partial GR agonists. Additional approach is the identification and inhibition of genes associated with Gcs specific side effects. Others and we recently identified GR target genes REDD1 and FKBP51 as key mediators of Gcs-induced atrophy, and selected and validated candidate molecules for REDD1 blockage including PI3K/Akt/mTOR inhibitors. In this review, we summarized classic and contemporary approaches to safer GR-mediated therapies including unique concept of Gcs combination with REDD1 inhibitors. We discussed protective effects of REDD1 inhibitors against Gcs–induced atrophy in skin and bone and underlined the translational potential of this combination for further development of safer and effective Gcs-based therapies.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Department of Oncology, I.P. Pavlov Ryazan State Medical University, Ryazan, Russia
| | - Daria Chudakova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| | - Ekaterina M. Zhidkova
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Kirill I. Kirsanov
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
- Deparment of General Medical Practice, RUDN University, Moscow, Russia
| | - Marianna G. Yakubovskaya
- Deparment of Chemical Carcinogenesis, Institute of Carcinogenesis, N.N. Blokhin NMRCO, Moscow, Russia
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
244
|
Verhasselt H, Stelmach P, Domin M, Jung D, Hagemann A, Manthey I, Bachmann HS. Characterization of the promoter of the human farnesyltransferase beta subunit and the impact of the transcription factor OCT-1 on its expression. Genomics 2022; 114:110314. [DOI: 10.1016/j.ygeno.2022.110314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/14/2021] [Accepted: 02/09/2022] [Indexed: 11/24/2022]
|
245
|
Abd El-Hack ME, El-Saadony MT, Saad AM, Salem HM, Ashry NM, Abo Ghanima MM, Shukry M, Swelum AA, Taha AE, El-Tahan AM, AbuQamar SF, El-Tarabily KA. Essential oils and their nanoemulsions as green alternatives to antibiotics in poultry nutrition: a comprehensive review. Poult Sci 2022; 101:101584. [PMID: 34942519 PMCID: PMC8695362 DOI: 10.1016/j.psj.2021.101584] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Increasing market pressure to reduce the use of antibiotics and the Veterinary Feed Directive of 2019 have led to expanded research on alternate antibiotic solutions. This review aimed to assess the benefits of using essential oils (EOs) and their nanoemulsions (NEs) as feed supplements for poultry and their potential use as antibiotic alternatives in organic poultry production. Antibiotics are commonly used to enhance the growth and prevent diseases in poultry animals due to their antimicrobial activities. EOs are a complex mixture of volatile compounds derived from plants and manufactured via various fermentation, extraction, and steam distillation methods. EOs are categorized into 2 groups of compounds: terpenes and phenylpropenes. Differences among various EOs depend on the source plant type, physical and chemical soil conditions, harvest time, plant maturity, drying technology used, storage conditions, and extraction time. EOs can be used for therapeutic purposes in various situations in broiler production as they possess antibacterial, antifungal, antiparasitic, and antiviral activities. Several studies have been conducted using various combinations of EOs or crude extracts of their bioactive compounds to investigate their complexity and applications in organic poultry production. NEs are carrier systems that can be used to overcome the volatile nature of EOs, which is a major factor limiting their application. NEs are being progressively used to improve the bioavailability of the volatile lipophilic components of EOs. This review discusses the use of these nonantibiotic alternatives as antibiotics for poultry feed in organic poultry production.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza,12211, Egypt
| | - Noha M Ashry
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Toukh, 13736, Egypt
| | - Mahmoud M Abo Ghanima
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Ayman A Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|
246
|
Wall CTJ, Lefebvre G, Metairon S, Descombes P, Wiederkehr A, Santo-Domingo J. Mitochondrial respiratory chain dysfunction alters ER sterol sensing and mevalonate pathway activity. J Biol Chem 2022; 298:101652. [PMID: 35101444 PMCID: PMC8892029 DOI: 10.1016/j.jbc.2022.101652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction induces a strong adaptive retrograde signaling response; however, many of the downstream effectors of this response remain to be discovered. Here, we studied the shared transcriptional responses to three different mitochondrial respiratory chain inhibitors in human primary skin fibroblasts using QuantSeq 3′-RNA-sequencing. We found that genes involved in the mevalonate pathway were concurrently downregulated, irrespective of the respiratory chain complex affected. Targeted metabolomics demonstrated that impaired mitochondrial respiration at any of the three affected complexes also had functional consequences on the mevalonate pathway, reducing levels of cholesterol precursor metabolites. A deeper study of complex I inhibition showed a reduced activity of endoplasmic reticulum–bound sterol-sensing enzymes through impaired processing of the transcription factor Sterol Regulatory Element-Binding Protein 2 and accelerated degradation of the endoplasmic reticulum cholesterol-sensors squalene epoxidase and HMG-CoA reductase. These adaptations of mevalonate pathway activity affected neither total intracellular cholesterol levels nor the cellular free (nonesterified) cholesterol pool. Finally, measurement of intracellular cholesterol using the fluorescent cholesterol binding dye filipin revealed that complex I inhibition elevated cholesterol on intracellular compartments. Taken together, our study shows that mitochondrial respiratory chain dysfunction elevates intracellular free cholesterol levels and therefore attenuates the expression of mevalonate pathway enzymes, which lowers endogenous cholesterol biosynthesis, disrupting the metabolic output of the mevalonate pathway. We conclude that intracellular disturbances in cholesterol homeostasis may alter systemic cholesterol management in diseases associated with declining mitochondrial function.
Collapse
Affiliation(s)
- Christopher Tadhg James Wall
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Institute of Bioengineering, Life Science Faculty, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gregory Lefebvre
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sylviane Metairon
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Food Safety and Analytical Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Andreas Wiederkehr
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Institute of Bioengineering, Life Science Faculty, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Jaime Santo-Domingo
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland; Department of Biochemistry and Molecular Biology, Faculty of Medicine, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), University of Valladolid and CSIC, Valladolid, Spain.
| |
Collapse
|
247
|
Agnello F, Capodanno D. Anti-inflammatory strategies for atherosclerotic artery disease. Expert Opin Drug Saf 2022; 21:661-672. [DOI: 10.1080/14740338.2022.2036717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Federica Agnello
- Division of Cardiology, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| | - Davide Capodanno
- Division of Cardiology, A.O.U. Policlinico “G. Rodolico-San Marco”, University of Catania, Catania, Italy
| |
Collapse
|
248
|
Pharmacological inhibition of Rac1 attenuates myocardial abnormalities in tail-suspended mice. J Cardiovasc Transl Res 2022; 15:805-815. [DOI: 10.1007/s12265-021-10197-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
|
249
|
Heredia D, Green I, Klaasen J, Rahiman F. Importance and Relevance of Phytochemicals Present in Galenia africana. SCIENTIFICA 2022; 2022:5793436. [PMID: 35186343 PMCID: PMC8850083 DOI: 10.1155/2022/5793436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Many people in developing countries rely primarily on medicinal plants as their main source of healthcare, particularly for the treatment of skin infections. Despite the widespread use of medicinal plants, there is a lack of literature describing the relevance and risks of exposure of the phytochemicals present. Galenia africana has been used traditionally in the form of pastes, decoctions, and lotions to treat wounds and other skin-related ailments. This is a report on the phytochemical composition of G. africana and a review on the pharmacological importance and relevance of these phytochemicals. The major groups of phytochemicals identified in G. africana extracts were aliphatics, aliphatic triterpenoids, fatty acids, flavonoids, and phenolic and tocopherol compounds. These have been found to exhibit medicinal properties, thus highlighting the need to assess the safety of G. africana for topical application. The information related to the safety of the various compounds could indicate the potential risks related to accidental intake of the extract upon topical product applications. This report concludes that the quantities of the phytochemicals present in G. africana should not cause undue risk to human health, which provides comfort to pursue future work on using and developing G. africana as a therapeutic agent.
Collapse
Affiliation(s)
- Dario Heredia
- Department of Medical Bioscience, University of the Western Cape, Cape Town 7535, South Africa
| | - Ivan Green
- Department of Chemistry, University of the Western Cape, Bellville 7535, Cape Town, South Africa
| | - Jeremy Klaasen
- Department of Medical Bioscience, University of the Western Cape, Cape Town 7535, South Africa
| | - Farzana Rahiman
- Department of Medical Bioscience, University of the Western Cape, Cape Town 7535, South Africa
- Skin Research Lab, Department of Medical Biosciences, University of the Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
250
|
Cho SH, Tóth K, Kim D, Vo PH, Lin CH, Handakumbura PP, Ubach AR, Evans S, Paša-Tolić L, Stacey G. Activation of the plant mevalonate pathway by extracellular ATP. Nat Commun 2022; 13:450. [PMID: 35064110 PMCID: PMC8783019 DOI: 10.1038/s41467-022-28150-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
The mevalonate pathway plays a critical role in multiple cellular processes in both animals and plants. In plants, the products of this pathway impact growth and development, as well as the response to environmental stress. A forward genetic screen of Arabidopsis thaliana using Ca2+-imaging identified mevalonate kinase (MVK) as a critical component of plant purinergic signaling. MVK interacts directly with the plant extracellular ATP (eATP) receptor P2K1 and is phosphorylated by P2K1 in response to eATP. Mutation of P2K1-mediated phosphorylation sites in MVK eliminates the ATP-induced cytoplasmic calcium response, MVK enzymatic activity, and suppresses pathogen defense. The data demonstrate that the plasma membrane associated P2K1 directly impacts plant cellular metabolism by phosphorylation of MVK, a key enzyme in the mevalonate pathway. The results underline the importance of purinergic signaling in plants and the ability of eATP to influence the activity of a key metabolite pathway with global effects on plant metabolism. Products of the mevalonate pathway support plant development. Here the authors show that the extracellular ATP receptor P2K1 phosphorylates mevalonate kinase and this affects the mevalonate pathway.
Collapse
|