201
|
Fernyhough P, Schmidt RE. Neurofilaments in diabetic neuropathy. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:115-44. [PMID: 12198808 DOI: 10.1016/s0074-7742(02)50075-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review discusses the role of abnormal neurofilament (NF) expression, processing, and structure as an etiological factor in diabetic neuropathy. Diabetic sensory and autonomic neuropathy in humans is associated with a spectrum of structural changes in peripheral nerve that includes axonal degeneration, paranodal demyelination, and loss of myelinated fibers-- the latter is probably the result of a dying-back of distal axons. NF filaments are composed of three subunit proteins, NFL, NFM, and NFH, and are major constituents of the axonal cylinder. It is clear that any abnormality in synthesis, delivery, or processing of these critical proteins could lead to severe impairments in axon structure and function. This article describes mechanisms of synthesis, phosphorylation, and delivery of NF and discusses how these processes may be abnormal in diabetics. The pathological alterations in the ganglion and preipheral nerve that occur in sensory and autonomic neuropath will be outlined and related to possible abnormal processing of NF. A major focus is the role or aberrant NF phosphorylation and its possible involvement in the imparied delivery of NF to the distal axon. Identification of stress-activated protein kinases (SAPKs) as NF kinases is discussed in detail and it is proposed that hyperglycemia-induced activation of SAPKs may be a primary etiological event in diabetic neuropathy.
Collapse
Affiliation(s)
- Paul Fernyhough
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | |
Collapse
|
202
|
Abstract
The classic view of slow axonal transport maintains that microtubules, neurofilaments, and actin filaments move down the axon relatively coherently at rates significantly slower than those characteristic of known motor proteins. Recent studies indicate that the movement of these cytoskeletal polymers is actually rapid, asynchronous, intermittent, and most probably fueled by familiar motors such as kinesins, myosins, and cytoplasmic dynein. This new view, which is supported by both live-cell imaging and mechanistic analyses, suggests that slow axonal transport is both rapid and plastic, and hence could underlie transformations in neuronal morphology.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA.
| | | |
Collapse
|
203
|
Abstract
Cytoskeletal polymers and other cytosolic protein complexes are transported along axons in the slow components of axonal transport. Studies on the movement of neurofilaments and microtubules in the axons of cultured neurons indicate that these polymers actually move at fast rates and that the movements are also infrequent and highly asynchronous. These observations indicate that the slow rate of slow axonal transport is due to rapid movements interrupted by prolonged pauses which presents special challenges for studies on the mechanism of movement. This chapter describes the procedures that the author's laboratory has used to observe and analyze the movement of neurofilaments and microtubules in axons of cultured neurons from the superior cervical ganglia of neonatal rats. In particular, the author describes how to culture these neurons, how to transfect them by nuclear injection, and how to detect the rapid and infrequent movement of cytoskeletal polymers using time-lapse fluorescence imaging.
Collapse
Affiliation(s)
- Anthony Brown
- Neurobiotechnology Center, Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
204
|
Rao MV, Engle LJ, Mohan PS, Yuan A, Qiu D, Cataldo A, Hassinger L, Jacobsen S, Lee VMY, Andreadis A, Julien JP, Bridgman PC, Nixon RA. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 2002; 159:279-90. [PMID: 12403814 PMCID: PMC2173037 DOI: 10.1083/jcb.200205062] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The identification of molecular motors that modulate the neuronal cytoskeleton has been elusive. Here, we show that a molecular motor protein, myosin Va, is present in high proportions in the cytoskeleton of mouse CNS and peripheral nerves. Immunoelectron microscopy, coimmunoprecipitation, and blot overlay analyses demonstrate that myosin Va in axons associates with neurofilaments, and that the NF-L subunit is its major ligand. A physiological association is indicated by observations that the level of myosin Va is reduced in axons of NF-L-null mice lacking neurofilaments and increased in mice overexpressing NF-L, but unchanged in NF-H-null mice. In vivo pulse-labeled myosin Va advances along axons at slow transport rates overlapping with those of neurofilament proteins and actin, both of which coimmunoprecipitate with myosin Va. Eliminating neurofilaments from mice selectively accelerates myosin Va translocation and redistributes myosin Va to the actin-rich subaxolemma and membranous organelles. Finally, peripheral axons of dilute-lethal mice, lacking functional myosin Va, display selectively increased neurofilament number and levels of neurofilament proteins without altering axon caliber. These results identify myosin Va as a neurofilament-associated protein, and show that this association is essential to establish the normal distribution, axonal transport, and content of myosin Va, and the proper numbers of neurofilaments in axons.
Collapse
Affiliation(s)
- Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, NYU School of Medicine, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Mugnaini E. Inside the neuron: cytoskeleton, dendrites, and synapses (an overview). PROGRESS IN BRAIN RESEARCH 2002; 136:83-6. [PMID: 12143406 DOI: 10.1016/s0079-6123(02)36009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Enrico Mugnaini
- Northwestern University, Institute for Neuroscience, Searle Bldg. 5-471, 320 E. Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
206
|
Abstract
Cytoskeletal and cytosolic proteins are transported along axons in the slow components of axonal transport at average rates of about 0.002-0.1 microm/s. This movement is essential for axonal growth and survival, yet the mechanism is poorly understood. Many studies on slow axonal transport have focused on tubulin, the subunit protein of microtubules, but attempts to observe the movement of this protein in cultured nerve cells have been largely unsuccessful. Here, we report direct observations of the movement of microtubules in cultured nerve cells using a modified fluorescence photobleaching strategy combined with difference imaging. The movements are rapid, with average rates of 1 microm/s, but they are also infrequent and highly asynchronous. These observations indicate that microtubules are propelled along axons by fast motors. We propose that the overall rate of movement is slow because the microtubules spend only a small proportion of their time moving. The rapid, infrequent, and highly asynchronous nature of the movement may explain why the axonal transport of tubulin has eluded detection in so many other studies.
Collapse
Affiliation(s)
- Lei Wang
- Graduate Program in Biological Sciences, Ohio University, Athens 45701, USA
| | | |
Collapse
|
207
|
Rao MV, Garcia ML, Miyazaki Y, Gotow T, Yuan A, Mattina S, Ward CM, Calcutt NA, Uchiyama Y, Nixon RA, Cleveland DW. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport. J Cell Biol 2002; 158:681-93. [PMID: 12186852 PMCID: PMC2174004 DOI: 10.1083/jcb.200202037] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2002] [Revised: 06/24/2002] [Accepted: 06/25/2002] [Indexed: 11/22/2022] Open
Abstract
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.
Collapse
Affiliation(s)
- Mala V Rao
- Nathan Kline Institute, New York University School of Medicine, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Abstract
Axonal retraction is induced by different types of physiological cues and is responsible for the elimination of mistargeted axons. There is broad agreement that alterations in the cytoskeleton underlie axonal retraction. The prevailing view is that axonal retraction involves a wholesale depolymerization of microtubules and microfilaments. However, axons retracting physiologically display a very different morphology than axons induced to retract by experimental depolymerization of microtubules. Experimental depolymerization of microfilaments actually prevents retraction rather than causing it. We have proposed an alternative hypothesis, namely that axonal retraction involves a backward retreat of cytoskeletal elements rather than their wholesale depolymerization. In the present study, we sought to test this hypothesis with regard to microtubules. When a donor of nitric oxide was applied to cultured chick sensory neurons, the majority of axons retracted dramatically within 30-60 min. Retracting axons were characterized by an enlarged distal region, a thin trailing remnant, and sinusoidal bends along the shaft. Quantitative immunofluorescence analyses showed no detectable loss of microtubule mass during retraction, even with regard to the most labile microtubules. Instead, microtubules were reconfigured into coiling and sinusoidal bundles to accommodate the shortening of the axon. Stabilization of microtubules by taxol did not prevent the retraction, even at concentrations of the drug that actually caused microtubule levels to increase. The retractions induced by nitric oxide were remarkably similar to those observed when motor proteins are manipulated, suggesting that these retractions may result from alterations in the activities of the motors that configure microtubules.
Collapse
|
209
|
Abstract
There has been a great deal of interest in how the microtubule array of the axon is established and maintained. In an early model, it was proposed that microtubules are actively transported from the cell body of the neuron down the length of the axon. This model has been contested over the years in favor of very different models based on stationary microtubules. It appears that a corner has finally been turned in this long-standing controversy. It is now clear that cells contain molecular motor proteins capable of transporting microtubules and that microtubule transport is an essential component in the formation of microtubule arrays across many cells types. A wide variety of cell biological approaches have provided strong indirect evidence that microtubules are indeed transported within axons, and new live-cell imaging approaches are beginning to permit the direct visualization of this transport. The molecules and mechanisms that transport microtubules within axons are also under intense study.
Collapse
Affiliation(s)
- Peter W Baas
- Department of Neurobiology and Anatomy, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
210
|
Kumar S, Yin X, Trapp BD, Paulaitis ME, Hoh JH. Role of long-range repulsive forces in organizing axonal neurofilament distributions: evidence from mice deficient in myelin-associated glycoprotein. J Neurosci Res 2002; 68:681-90. [PMID: 12111829 DOI: 10.1002/jnr.10249] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When the axon of a motor neuron is sectioned and visualized by electron microscopy, a two-dimensional distribution of neurofilaments (NFs) with nonrandom spacing is revealed; this ordered arrangement implies the presence of physical interactions between the NFs. To gain insight into the molecular basis of this organization, we characterized NF distributions from mouse sciatic nerve cross sections using two statistical mechanical measures: radial distribution functions and occupancy probability distributions. Our analysis shows that NF organization may be described in terms of effective pairwise interactions. In addition, we show that these statistical mechanical measures can detect differences in NF architecture between wild-type and myelin-associated glycoprotein null mutant mice. These differences are age dependent, with marked contrast between the NF distributions by 9 months of age. Finally, using Monte Carlo simulations, we compare the experimental results with predictions for models in which adjacent NFs interact through rigid cross bridges, deformable cross bridges, and long-range repulsive forces. Among the models tested, a model in which the filaments interact through a long-range repulsive force is most consistent with the results of our analysis.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
211
|
LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascaño J, Tokito M, Van Winkle T, Howland DS, Holzbaur ELF. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 2002; 34:715-27. [PMID: 12062019 DOI: 10.1016/s0896-6273(02)00696-7] [Citation(s) in RCA: 394] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting in an inhibition of retrograde axonal transport. Mice overexpressing dynamitin demonstrate a late-onset progressive motor neuron degenerative disease characterized by decreased strength and endurance, motor neuron degeneration and loss, and denervation of muscle. Previous transgenic mouse models of ALS have shown abnormalities in microtubule-based axonal transport. In this report, we describe a mouse model that confirms the critical role of disrupted axonal transport in the pathogenesis of motor neuron degenerative disease.
Collapse
Affiliation(s)
- Bernadette H LaMonte
- Department of Physiology, School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Helfand BT, Mikami A, Vallee RB, Goldman RD. A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 2002; 157:795-806. [PMID: 12034772 PMCID: PMC2173407 DOI: 10.1083/jcb.200202027] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Revised: 04/05/2002] [Accepted: 04/24/2002] [Indexed: 12/15/2022] Open
Abstract
We present evidence that vimentin intermediate filament (IF) motility in vivo is associated with cytoplasmic dynein. Immunofluorescence reveals that subunits of dynein and dynactin are associated with all structural forms of vimentin in baby hamster kidney-21 cells. This relationship is also supported by the presence of numerous components of dynein and dynactin in IF-enriched cytoskeletal preparations. Overexpression of dynamitin biases IF motility toward the cell surface, leading to a perinuclear clearance of IFs and their redistribution to the cell surface. IF-enriched cytoskeletal preparations from dynamitin-overexpressing cells contain decreased amounts of dynein, actin-related protein-1, and p150Glued relative to controls. In contrast, the amount of dynamitin is unaltered in these preparations, indicating that it is involved in linking vimentin cargo to dynactin. The results demonstrate that dynein and dynactin are required for the normal organization of vimentin IF networks in vivo. These results together with those of previous studies also suggest that a balance among the microtubule (MT) minus and plus end-directed motors, cytoplasmic dynein, and kinesin are required for the assembly and maintenance of type III IF networks in interphase cells. Furthermore, these motors are to a large extent responsible for the long recognized relationships between vimentin IFs and MTs.
Collapse
Affiliation(s)
- Brian T Helfand
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
213
|
Bourke GJ, El Alami W, Wilson SJ, Yuan A, Roobol A, Carden MJ. Slow axonal transport of the cytosolic chaperonin CCT with Hsc73 and actin in motor neurons. J Neurosci Res 2002; 68:29-35. [PMID: 11933046 DOI: 10.1002/jnr.10186] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Molecular chaperones are well known for their role in facilitating the folding of nascent and newly synthesized proteins, but have other roles, including the assembly, translocation and renaturation of intracellular proteins. Axons are convenient tissues for the study of some of these other roles because they lack the capacity for significant protein synthesis. We examine the axonal transport of the cytosolic chaperonin containing T- complex polypeptide 1 (CCT) by labeling lumbar motor neurons with [35S]methionine and examining sciatic nerve proteins by 2-D gel electrophoresis and immunoblotting. All CCT subunits identifiable with specific antibodies, namely CCTalpha, CCTbeta, CCTgamma and CCTepsilon/CCTtheta; (the latter two subunits colocalized in analyses of rat nerve samples), appeared to be labeled in "slow component b" of axonal transport along with the molecular chaperone Hsc73 and actin, a major folding substrate for CCT. Our results are consistent with molecular chaperones having a post-translational role in maintaining the native form of actin during its slow transport to the axon terminal and ensuring its correct assembly into microfilaments.
Collapse
Affiliation(s)
- Gregory J Bourke
- Department of Physiology and The Neuroscience Center, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
214
|
Abstract
Intracellular organelle transport is driven by motors that act upon microtubules or microfilaments. The microtubulebased motors, cytoplasmic dynein and kinesin, are believed to be responsible for retrograde and anterograde transport of intracellular cargo along microtubules. Many vesicles display bidirectional movement; however, the mechanism regulating directionality is unresolved. Directional movement might be accomplished by alternative binding of different motility factors to the cargo. Alternatively,different motors could associate with the same cargo and have their motor activity regulated. Although several studies have focused on the behavior of specific types of cargoes, little is known about the traffic of the motors themselves and how it correlates with cargo movement. To address this question, we studied cytoplasmic dynein dynamics in living Dictyostelium cells expressing dynein intermediate chain-green fluorescent protein (IC-GFP) fusion in an IC-null background. Dynein-associated structures display fast linear movement along microtubules in both minus-end and plus-end directions, with velocities similar to that of dynein and kinesin-like motors. In addition, dynein puncta often rapidly reverse their direction. Dynein stably associates with cargo moving in both directions as well as with those that rapidly reverse their direction of movement, suggesting that directional movement is not regulated by altering motor-cargo association but rather by switching activity of motors associated with the cargo. These observations suggest that both plus- and minus-end-directed motors associate with a given cargo and that coordinated regulation of motor activities controls vesicle directionality.
Collapse
Affiliation(s)
- Shuo Ma
- Department of Cell and Molecular Biology, Robert H. Lurie Comprehensive Cancer Center, and Center for Genetic Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
215
|
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002; 156:1051-63. [PMID: 11901170 PMCID: PMC2173473 DOI: 10.1083/jcb.200108057] [Citation(s) in RCA: 678] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effect of microtubule-associated tau protein on trafficking of vesicles and organelles in primary cortical neurons, retinal ganglion cells, and neuroblastoma cells. Tau inhibits kinesin-dependent transport of peroxisomes, neurofilaments, and Golgi-derived vesicles into neurites. Loss of peroxisomes makes cells vulnerable to oxidative stress and leads to degeneration. In particular, tau inhibits transport of amyloid precursor protein (APP) into axons and dendrites, causing its accumulation in the cell body. APP tagged with yellow fluorescent protein and transfected by adenovirus associates with vesicles moving rapidly forward in the axon (approximately 80%) and slowly back (approximately 20%). Both movements are strongly inhibited by cotransfection with fluorescently tagged tau (cyan fluorescent protein-tau) as seen by two-color confocal microscopy. The data suggests a linkage between tau and APP trafficking, which may be significant in Alzheimer's disease.
Collapse
Affiliation(s)
- K Stamer
- Max-Planck-Unit for Structural Molecular Biology, 22607 Hamburg, Germany
| | | | | | | | | |
Collapse
|
216
|
Abstract
The bulk of neuronally synthesized proteins destined for the axon is transported in a phase of transport approximately 100 times slower (1mm/day) than the vesicular traffic of fast axonal transport (100mm/day). Of late, a number of studies have shed considerable light on the controversies and mechanisms surrounding this slow phase of axonal transport. Along-standing controversy has centered on the form of the transported proteins. One major transport cargo, neurofilament protein, has now been seen in a number of contexts to be transported primarily in a polymeric form, whereas a second cargo tubulin is transported as a small oligomer. The development of techniques to visualize the slow transport process in live cells has demonstrated that instantaneous motions of transported neurofilaments, and presumably other slow transport cargoes, are fast, bidirectional and interspersed with long pauses. This and additional biochemical efforts indicate that traditional fast motors, such as conventional kinesin and dynein, are responsible for these fast motions.
Collapse
Affiliation(s)
- Jagesh V Shah
- Ludwig Institute for Cancer Research, and Departments of Cellular and Molecular Medicine and Neurosciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | |
Collapse
|
217
|
Abstract
The highly regulated expression of neurofilament (NF) proteins during axon outgrowth suggests that NFs are important for axon development, but their contribution to axon growth is unclear. Previous experiments in Xenopus laevis embryos demonstrated that antibody-induced disruption of NFs stunts axonal growth but left unresolved how the loss of NFs affects the dynamics of axon growth. In the current study, dissociated cultures were made from the spinal cords of embryos injected at the two-cell stage with an antibody to the middle molecular mass NF protein (NF-M), and time-lapse videomicroscopy was used to study early neurite outgrowth in descendants of both the injected and uninjected blastomeres. The injected antibody altered the growth dynamics primarily in long neurites (>85 microm). These neurites were initiated just as early and terminated growth no sooner than did normal ones. Rather, they spent relatively smaller fractions of time actively extending than normal. When growth occurred, it did so at the same velocity. In very young neurites, which have NFs made exclusively of peripherin, NFs were unaffected, but in the shaft of older neurites, which have NFs that contain NF-M, NFs were disrupted. Thus growth was affected only after NFs were disrupted. In contrast, the distributions of alpha-tubulin and mitochondria were unaffected; thus organelles were still transported into neurites. However, mitochondrial staining was brighter in descendants of injected blastomeres, suggesting a greater demand for energy. Together, these results suggest a model in which intra-axonal NFs facilitate elongation of long axons by making it more efficient.
Collapse
|
218
|
Xie K, Gupta RP, Abou-Donia MB. Protein levels of neurofilament subunits in the hen central nervous system following prevention and potentiation of diisopropyl phosphorofluoridate (DFP)-induced delayed neurotoxicity(1). Biochem Pharmacol 2002; 63:11-9. [PMID: 11754869 DOI: 10.1016/s0006-2952(01)00858-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, which produces delayed neurotoxicity (OPIDN) in hens in 7-14 days. OPIDN is characterized by mild ataxia in its initial stages and severe ataxia or paralysis in about 3 weeks. It is marked by distal swollen axons, and exhibits aggregations of neurofilaments (NFs), microtubules, proliferated smooth endoplasmic reticulum, and multivesicular bodies. These aggregations subsequently undergo disintegration, leaving empty varicosities. Previous studies in this laboratory have shown an increased level of medium-molecular weight NF (NF-M) and decreased levels of high- and low-molecular weight NF (NF-H, NF-L) proteins in the spinal cord of DFP-treated hens. The main objective of this investigation was to study the effect of DFP administration on NF subunit levels when OPIDN is prevented or potentiated by pretreatment or post-treatment with phenylmethylsulfonyl fluoride (PMSF), respectively. Hens pretreated or post-treated with PMSF were killed 1, 5, 10, and 20 days after the last treatment. The alteration in NF subunit protein levels observed in DFP-treated hen spinal cords was not observed in protected hens. Estimation of NFs in the potentiation experiments, however, showed a different pattern of alteration in NF subunit levels. The results showed that an alteration in NF subunit levels in DFP-treated hens might be related to the development of OPIDN, since these changes were suppressed in PMSF-protected hens. However, results from PMSF post-treated hen spinal cords suggested that potentiation of OPIDN by PMSF was mediated by a mechanism different from that followed by DFP alone to produce OPIDN.
Collapse
Affiliation(s)
- Keqin Xie
- Neurotoxicology Laboratory, School of Life Science, University of Science and Technology of China, 230027, Hefei, Anhui, P. R. China
| | | | | |
Collapse
|
219
|
Reynolds AJ, Hendry IA, Bartlett SE. Anterograde and retrograde transport of active extracellular signal-related kinase 1 (ERK1) in the ligated rat sciatic nerve. Neuroscience 2001; 105:761-71. [PMID: 11516839 DOI: 10.1016/s0306-4522(01)00235-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neurons are one of the most polarized cells and often the nerve terminals may be located long distances from the cell body, thus signal transduction in neurons unlike other cells may need to be conducted over large distances. The mitogen-activated protein/extracellular signal-regulated kinases (MAP kinases or ERKs) regulate a diverse array of functions and in neurons, the ERK signalling pathways appear to have an important role in activity-dependent regulation of neuronal function. Using the ligated rat sciatic nerve as an experimental model we previously showed that the ERK1/2, MAP/ERK kinase (MEK1/2) and the p110 catalytic subunit of PI3-kinase are transported in the rat sciatic nerve. We have extended these findings to determine if these proteins are transported in the active state using antibodies that specifically detect the active form of ERK1/2, MEK1/2 and AKT which is activated downstream of PI3-kinase. We show significant accumulation of active ERK1 on the proximal and distal sides of a nerve ligation after 16 h. Active ERK2 also appeared to be accumulating at the ligature, however this did not reach statistical significance. In contrast there was not any significant accumulation of active MEK1/2 or active AKT. A component of both active ERK1 and active ERK2 is present in between the two ligations suggesting they are also present in the surrounding Schwann cells and are activated in response to nerve injury. Taken together our results suggest that a component of the accumulation of active ERK1 on the distal and proximal side of the nerve ligations results from transport in the anterograde and retrograde direction in the rat sciatic nerve.
Collapse
Affiliation(s)
- A J Reynolds
- Division of Neuroscience, The John Curtin School of Medical Resarch, Australian National University, Canberra
| | | | | |
Collapse
|
220
|
Abstract
The recent demonstration that the fast axonal transport motors kinesin and dynein participate in axonal transport of neurofilaments--known to undergo slow transport--supports and extends recent studies indicating that some neurofilaments exhibit alternating bursts of fast axonal transport interspersed with periods of non-motility. In addition, these findings unify both certain aspects of axonal transport and neurofilament biology. We discuss these data herein in the context of both older and more recent studies of neurofilament dynamics.
Collapse
Affiliation(s)
- T B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Dept of Biological Sciences, University of Massachusetts Lowell, 01854,
| | | |
Collapse
|
221
|
Almenar-Queralt A, Goldstein LS. Linkers, packages and pathways: new concepts in axonal transport. Curr Opin Neurobiol 2001; 11:550-7. [PMID: 11595487 DOI: 10.1016/s0959-4388(00)00248-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The molecular mechanisms that generate efficient and directed transport of proteins and organelles in axons remain poorly understood. In the past year, many studies have identified specific transmembrane or scaffold proteins that might link motor proteins to their cargoes. These studies have also identified previously unsuspected pathways and raised the intriguing possibility that pre-packaged groups of functionally related proteins are transported together in the axon. Evidence suggests that fast molecular motor proteins have a role in slow axonal transport, and the axonal transport machinery has been implicated in the genesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- A Almenar-Queralt
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0683, USA
| | | |
Collapse
|
222
|
Abstract
Two definite genetic causes of adult motor neuron degeneration have been identified to date: CAG repeat expansion in the androgen receptor gene in Kennedy's disease and point mutations in the SOD1 gene, encoding the enzyme, Cu/Zn superoxide dismutase, in some familial forms of amyotrophic lateral sclerosis. Although both have unrelated genetic causes, Kennedy's disease and SOD1-linked amyotrophic lateral sclerosis share several pathogenic features. First, expanded androgen receptor and mutant Cu/Zn superoxide dismutase have a propensity to aggregate into insoluble complexes and form inclusion bodies in affected neurons. Deposits of mutant proteins could be detrimental to neuronal viability by interfering with the normal housekeeping functions of chaperones and of the ubiquitin/proteasome system. Secondly, cytoskeletal function may be impaired in both diseases as decreased transactivational activity of expanded androgen receptor may cause an abnormal pattern of tubulin expression in motor neurons in Kennedy's disease and disruption of neurofilament organisation is a hallmark of amyotrophic lateral sclerosis. The concept of activation of overlapping cell death cascades by two distinct genetic defects could help elucidating downstream pathogenic processes and may provide novel targets for pharmacological intervention or gene therapy for the treatment of motor neuron disorders.
Collapse
Affiliation(s)
- J M Gallo
- Department of Neurology, Institute of Psychiatry, King's College London, London, UK.
| |
Collapse
|
223
|
Wang L, Brown A. Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Mol Biol Cell 2001; 12:3257-67. [PMID: 11598207 PMCID: PMC60171 DOI: 10.1091/mbc.12.10.3257] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Observations on naturally occurring gaps in the axonal neurofilament array of cultured neurons have demonstrated that neurofilament polymers move along axons in a rapid, intermittent, and highly asynchronous manner. In contrast, studies on axonal neurofilaments using laser photobleaching have not detected movement. Here, we describe a modified photobleaching strategy that does permit the direct observation of neurofilament movement. Axons of cultured neurons expressing GFP-tagged neurofilament protein were bleached by excitation with the mercury arc lamp of a conventional epifluorescence microscope for 12-60 s. The length of the bleached region ranged from 10 to 60 microm. By bleaching thin axons, which have relatively few neurofilaments, we were able to reduce the fluorescent intensity enough to allow the detection of neurofilaments that moved in from the surrounding unbleached regions. Time-lapse imaging at short intervals revealed rapid, intermittent, and highly asynchronous movement of fluorescent filaments through the bleached regions at peak rates of up to 2.8 microm/s. The kinetics of movement were very similar to our previous observations on neurofilaments moving through naturally occurring gaps, which indicates that the movement was not impaired by the photobleaching process. These results demonstrate that fluorescence photobleaching can be used to study the slow axonal transport of cytoskeletal polymers, but only if the experimental strategy is designed to ensure that rapid asynchronous movements can be detected. This may explain the failure of previous photobleaching studies to reveal the movement of neurofilament proteins and other cytoskeletal proteins in axons.
Collapse
Affiliation(s)
- L Wang
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
224
|
Salata MW, Dillman JF, Lye RJ, Pfister KK. Growth factor regulation of cytoplasmic dynein intermediate chain subunit expression preceding neurite extension. J Neurosci Res 2001; 65:408-16. [PMID: 11536324 DOI: 10.1002/jnr.1168] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytoplasmic dynein is a motor protein responsible for intracellular movements toward the minus ends of microtubules. The intermediate chains are one of the subunits important for binding dynein to cargo. The intermediate chains are encoded by two genes and are translated into at least five different polypeptide isoforms in rat brain. In rat optic nerve, dynein with only one of the intermediate chain polypeptides is found associated with membrane bounded organelles in fast anterograde transport. Dynein containing the other intermediate chain polypeptides associates with a different set of proteins, in the slow transport component. To determine if the intermediate chain expression levels are regulated during neurite differentiation, we analyzed the protein levels by two-dimensional SDS-PAGE and intermediate chain mRNA by RT-PCR in cultured rat pheochromocytoma (PC12) cells. In the absence of nerve growth factor, the major intermediate chain isoform is the IC74-2C polypeptide. IC74-2C is ubiquitous and is utilized for constitutive dynein function and association with membrane bounded organelles. Within 24 hr of the addition of nerve growth factor to the cultures, there is an increased expression of the developmentally regulated isoforms that are associated with the actin cytoskeleton. This change in intermediate chain isoform expression preceded neurite growth. Nerve growth factor induced differentiation also results in increased light intermediate chain phosphorylation. The growth factor induced changes in the expression of dynein intermediate chains suggests that specific intermediate chain isoforms are utilized during axon growth.
Collapse
Affiliation(s)
- M W Salata
- Division of Mathematics and Natural Sciences, Gordon College, Barnesville, Georgia, USA
| | | | | | | |
Collapse
|
225
|
Aihara Y, Inoue T, Tashiro T, Okamoto K, Komiya Y, Mikoshiba K. Movement of endoplasmic reticulum in the living axon is distinct from other membranous vesicles in its rate, form, and sensitivity to microtubule inhibitors. J Neurosci Res 2001; 65:236-46. [PMID: 11494358 DOI: 10.1002/jnr.1147] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The endoplasmic reticulum (ER) is the major membranous component present throughout the axon. Although other membranous structures such as synaptic vesicles are known to move via fast axonal transport, the dynamics of ER in the axon still remains unknown. To study the dynamics of ER in the axon, we have directly visualized the movement of two ER-specific membrane proteins, the sarcoplasmic/endoplasmic reticulum calcium-ATPase and the inositol 1,4,5-trisphosphate receptor, both of which were tagged with green fluorescence protein (GFP) and expressed in cultured chick dorsal root ganglion neurons. In contrast to GFP-tagged synaptophysin that moved as vesicles at 1 microm/sec predominantly in the anterograde direction in the typical style of fast axonal transport, the two ER proteins did not move in a discrete vesicular form. Their movement determined by the fluorescence recovery after photobleaching technique was bi-directional, 10-fold slower (approximately 0.1 microm/sec), and temperature-sensitive. The rate of movement of ER was also sensitive to low doses of vinblastine and nocodazole that did not affect the rate of synaptophysin-GFP, further suggesting that it is also distinct from the well-documented movement of membranous vesicles in its relation with microtubules.
Collapse
MESH Headings
- Animals
- Axonal Transport
- Axons/ultrastructure
- Biolistics
- Biomarkers
- Calcium Channels/analysis
- Calcium Channels/genetics
- Calcium-Transporting ATPases/analysis
- Calcium-Transporting ATPases/genetics
- Cells, Cultured
- Chick Embryo
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/physiology
- Ganglia, Spinal/cytology
- Green Fluorescent Proteins
- Inositol 1,4,5-Trisphosphate Receptors
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Microscopy, Confocal
- Microscopy, Fluorescence
- Microtubules/drug effects
- Motion
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/genetics
- Neurons, Afferent/drug effects
- Neurons, Afferent/ultrastructure
- Nocodazole/pharmacology
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases
- Synaptophysin/metabolism
- Temperature
- Transfection
- Vinblastine/pharmacology
Collapse
Affiliation(s)
- Y Aihara
- Department of Neurology, Gunma University School of Medicine, 3-39-22 Showa-machi, Maebashi-shi, Gunma-371-8511, Japan.
| | | | | | | | | | | |
Collapse
|
226
|
Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J Neurosci 2001. [PMID: 11264295 DOI: 10.1523/jneurosci.21-07-02195.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the steady-state distribution and axonal transport of neurofilament (NF) subunits within growing axonal neurites of NB2a/d1 cells. Ultrastructural analyses demonstrated a longitudinally oriented "bundle" of closely apposed NFs that was surrounded by more widely spaced individual NFs. NF bundles were recovered during fractionation and could be isolated from individual NFs by sedimentation through sucrose. Immunoreactivity toward the restrictive C-terminal phospho-dependent antibody RT97 was significantly more prominent on bundled than on individual NFs. Microinjected biotinylated NF subunits, GFP-tagged NF subunits expressed after transfection, and radiolabeled endogenous subunits all associated with individual NFs before they associated with bundled NFs. Biotinylated and GFP-tagged NF subunits did not accumulate uniformly along bundled NFs; they initially appeared within the proximal portion of the NF bundle and only subsequently were observed along the entire length of bundled NFs. These findings demonstrate that axonal NFs are not homogeneous but, rather, consist of distinct populations. One of these is characterized by less extensive C-terminal phosphorylation and a relative lack of NF-NF interactions. The other is characterized by more extensive C-terminal NF phosphorylation and increased NF-NF interactions and either undergoes markedly slower axonal transport or does not transport and undergoes turnover via subunit and/or filament exchange with individual NFs. Inhibition of phosphatase activities increased NF-NF interactions within living cells. These findings collectively suggest that C-terminal phosphorylation and NF-NF interactions are responsible for slowing NF axonal transport.
Collapse
|
227
|
Reilein AR, Rogers SL, Tuma MC, Gelfand VI. Regulation of molecular motor proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 204:179-238. [PMID: 11243595 DOI: 10.1016/s0074-7696(01)04005-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Motor proteins in the kinesin, dynein, and myosin superfamilies are tightly regulated to perform multiple functions in the cell requiring force generation. Although motor proteins within families are diverse in sequence and structure, there are general mechanisms by which they are regulated. We first discuss the regulation of the subset of kinesin family members for which such information exists, and then address general mechanisms of kinesin family regulation. We review what is known about the regulation of axonemal and cytoplasmic dyneins. Recent work on cytoplasmic dynein has revealed the existence of multiple isoforms for each dynein chain, making the study of dynein regulation more complicated than previously realized. Finally, we discuss the regulation of myosins known to be involved in membrane trafficking. Myosins and kinesins may be evolutionarily related, and there are common themes of regulation between these two classes of motors.
Collapse
Affiliation(s)
- A R Reilein
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana 61801, USA
| | | | | | | |
Collapse
|
228
|
Xu Z, Tung VW. Temporal and spatial variations in slow axonal transport velocity along peripheral motoneuron axons. Neuroscience 2001; 102:193-200. [PMID: 11226683 DOI: 10.1016/s0306-4522(00)00449-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuronal axons are cellular extensions that can reach more than a meter in length. To maintain such a structure, macromolecules synthesized in cell bodies must be transported to the distal axons. Proteins associated with membranous organelles are generally transported in several fast transported groups, while cytoplasmic proteins, mostly composed of cytoskeletal proteins, are transported in slowly transported groups. Neurofilaments are a main component in the slowly transported group. Composed of three polypeptide subunits (NF-H, NF-M and NF-L), they are the most abundant cytoskeletal element in large myelinated axons. In various neurological or neurotoxic disorders, selective accumulation of neurofilaments was observed in different compartments of a neuron (cell bodies, proximal or distal axons). The underlying mechanism for this regional selectivity has been unclear. Using the classical pulse labeling method, we examined the changes in neurofilament transport velocity in transgenic mice that overexpress different neurofilament subunits. We present evidence that at least three velocities of neurofilament transport exist along peripheral motor axons. Each of these velocities was altered differently depending on which neurofilament subunit was overexpressed. We suggest that neurofilament transport in motor axons consists of multiple successive stages and that each of these stages is carried out by different transport mechanisms. These differences provide a basis for the regional deficiencies in axonal transport associated with several neurological disorders.
Collapse
Affiliation(s)
- Z Xu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
229
|
Grant P, Sharma P, Pant HC. Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. ACTA ACUST UNITED AC 2001. [PMID: 11248670 DOI: 10.1046/j.1432-1327.2001.02025.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5), a complex of Cdk5 and its activator p35 (Cdk5/p35), phosphorylates diverse substrates which have multifunctional roles in the nervous system. During development, it participates in neuronal differentiation, migration, axon outgrowth and synaptogenesis. Cdk5, acting together with other kinases, phosphorylates numerous KSPXK consensus motifs in diverse cytoskeletal protein target molecules, including neurofilaments, and microtubule associated proteins, tau and MAPs. Phosphorylation regulates the dynamic interactions of cytoskeletal proteins with one another during all aspects of neurogenesis and axon radial growth. In this review we shall focus on Cdk5 and its regulation as it modulates neurofilament metabolism in axon outgrowth, cytoskeletal stabilization and radial growth. We suggest that Cdk5/p35 forms compartmentalized macromolecular complexes of cytoskeletal substrates, other neuronal kinases, phosphatases and activators ('phosphorylation machines') which facilitate the dynamic molecular interactions that underlie these processes.
Collapse
Affiliation(s)
- P Grant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
230
|
Yoon KH, Yoon M, Moir RD, Khuon S, Flitney FW, Goldman RD. Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J Cell Biol 2001; 153:503-16. [PMID: 11331302 PMCID: PMC2190576 DOI: 10.1083/jcb.153.3.503] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2001] [Accepted: 03/07/2001] [Indexed: 11/22/2022] Open
Abstract
The properties of keratin intermediate filaments (IFs) have been studied after transfection with green fluorescent protein (GFP)-tagged K18 and/or K8 (type I/II IF proteins). GFP-K8 and -K18 become incorporated into tonofibrils, which are comprised of bundles of keratin IFs. These tonofibrils exhibit a remarkably wide range of motile and dynamic activities. Fluorescence recovery after photobleaching (FRAP) analyses show that they recover their fluorescence slowly with a recovery t(1/2) of approximately 100 min. The movements of bleach zones during recovery show that closely spaced tonofibrils (<1 microm apart) often move at different rates and in different directions. Individual tonofibrils frequently change their shapes, and in some cases these changes appear as propagated waveforms along their long axes. In addition, short fibrils, termed keratin squiggles, are seen at the cell periphery where they move mainly towards the cell center. The motile properties of keratin IFs are also compared with those of type III IFs (vimentin) in PtK2 cells. Intriguingly, the dynamic properties of keratin tonofibrils and squiggles are dramatically different from those of vimentin fibrils and squiggles within the same cytoplasmic regions. This suggests that there are different factors regulating the dynamic properties of different types of IFs within the same cytoplasmic regions.
Collapse
Affiliation(s)
- Kyeong Han Yoon
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
- Department of Dermatology, Ajou University School of Medicine, Suwon 442-721, Korea
| | - Miri Yoon
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Robert D. Moir
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Satya Khuon
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | - Frederick W. Flitney
- School of Biology, University of St. Andrews, St. Andrews KY16 9TS, Scotland, United Kingdom
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
231
|
Xie K, Gupta RP, Abou-Donia MB. Effect of prevention and potentiation of diisopropyl phosphorofluoridate (DFP)-induced delayed neurotoxicity on the mRNA expression of neurofilament subunits in hen central nervous system. Biochem Cell Biol 2001. [DOI: 10.1139/o00-099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diisopropyl phosphorofluoridate (DFP) is an organophosphorus ester, which produces mild ataxia in 714 days and severe ataxia or paralysis in about 20 days (OPIDN) in hens. Previous studies in this laboratory have shown enhanced temporal expression of neurofilament (NF) subunit mRNAs in the spinal cord (SC) of DFP-treated hens. The main objective of this investigation was to study the effect of DFP administration on NF subunit mRNAs expression, when OPIDN is protected or potentiated by pre-treatment or post-treatment, respectively, with phenylmethylsulfonyl fluoride (PMSF). The hens were sacrificed 1, 5, 10, and 20 days after the last treatment. In contrast with enhanced mRNA expression of NF subunits reported in OPIDN, there was no alteration in the expression of NF subunits in the SC of PMSF-protected hens that did not develop OPIDN. PMSF post-treatment of DFP-treated hens, which enhanced delayed neurotoxicity produced by a low dose of DFP, exhibited decrease in the mRNA expression of NF subunits in SC at all time periods (120 days) of observation. The expression of NF subunits was also studied in the degeneration-resistant tissue cerebrum of treated hens. The results from protected hens suggested that temporal enhanced expression of NF subunit mRNAs in DFP-treated hens might be contributing to the development of OPIDN in hens. By contrast, PMSF post-treatment seemed to potentiate OPIDN by a mechanism different from that followed by DFP alone to produce OPIDN.Key words: diisopropyl phosphorofluoridate, phenylmethylsulfonyl fluoride, hen, spinal cord, neurofilament mRNAs.
Collapse
|
232
|
Chou YH, Helfand BT, Goldman RD. New horizons in cytoskeletal dynamics: transport of intermediate filaments along microtubule tracks. Curr Opin Cell Biol 2001; 13:106-9. [PMID: 11163141 DOI: 10.1016/s0955-0674(00)00181-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Until recently, the dynamic properties of intermediate filaments (IF) were attributed primarily to the exchange of subunits between a disassembled pool and polymerized 10nm filaments. During interphase, this subunit exchange process was thought to produce local modifications in IF structure. During cell division, shifts in the equilibrium between subunits and polymers were thought to lead to either the global or regional disassembly of IF networks, thereby facilitating their distribution into daughter cells. Recently, novel structural forms of IF that undergo rapid and directed transport in several cell types were revealed. Time-lapse observations of motile IF structures in different cell systems have also revealed novel insights into the mechanisms underlying the transport of cytoskeletal components throughout the cytoplasm and the molecular basis of the 'crosstalk' between different cytoskeletal systems.
Collapse
Affiliation(s)
- Y H Chou
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
233
|
Abstract
Neurofilament disorganisation is a hallmark of various neurodegenerative diseases. We review here current knowledge of neurofilament structure, gene expression and function. Neurofilament involvement in motoneurone neurological diseases is discussed in view of recent data from transgenic and spontaneous mouse mutants. In the mammalian neurone, the three neurofilament subunits are assembled into intermediate filaments as obligate heteropolymers. The subunits are expressed differentially during development and adult life according to the cell type and its physiological state. In addition to the well-established role of neurofilaments in the control of axonal calibre, there is increasing evidence that neurofilaments can interact with other cytoskeletal components and can modulate the axoplasmic flow. Although the extent to which neurofilament abnormalities contribute to the pathogenesis in human diseases remains unknown, emerging evidence suggests that disorganised neurofilaments can provoke degeneration and death of neurones. BioEssays 23:24-33, 2001.
Collapse
Affiliation(s)
- C Perrone Capano
- International Institute of Genetics and Biophysics, CNR, via Marconi 12, 80125 Naples, Italy.
| | | | | |
Collapse
|
234
|
Yabe JT, Chan WK, Chylinski TM, Lee S, Pimenta AF, Shea TB. The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation. CELL MOTILITY AND THE CYTOSKELETON 2001; 48:61-83. [PMID: 11124711 DOI: 10.1002/1097-0169(200101)48:1<61::aid-cm6>3.0.co;2-s] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The forms in which neurofilament (NF) subunits undergo axonal transport is controversial. Recent studies from have provided real-time visualization of the slow axonal transport of NF subunits by transfecting neuronal cultures with constructs encoding green fluorescent protein (GFP)-conjugated NF-M subunits. In our studies in differentiated NB2a/d1 cells, the majority NF subunits underwent transport in the form of punctate NF precursors, while studies in cultured neurons have demonstrated transport of NF subunits in predominantly filamentous form. Although different constructs were used in these studies, transfection of the same cultured neurons with our construct yielded the filamentous pattern observed by others, while transfection of our cultures with their construct generated punctate structures, confirming that the observed differences did not reflect variances in assembly-competence among the constructs. Manipulation of intracellular kinase, phosphatase, and protease activities shifted the predominant form of GFP-conjugated subunits between punctate and filamentous, confirming, as shown previously for vimentin, that punctate structures represent precursors for intermediate filament formation. Since these prior studies were conducted at markedly differing neuronal differentiation states, we tested the alternate hypothesis that these differing results reflected developmental alterations in NF dynamics that accompany various stages of neuritogenesis. We conducted time-course analyses of transfected NB2a/d1 cells, including monitoring of transfected cells over several days, as well as transfecting cells at varying intervals prior to and following induction of differentiation and axonal neurite outgrowth. GFP-conjugated subunits were predominantly filamentous during the period of most robust axonal outgrowth and NF accumulation, and presented a mixed profile of punctate and filamentous forms prior to neuritogenesis and following the developmental slowing of neurite outgrowth. These analyses demonstrate that NF subunits are capable of undergoing axonal transport in multiple forms, and that the predominant form in which NF subunits undergo axonal transport varies in accord with the rate of axonal elongation and accumulation of NFs within developing axons.
Collapse
Affiliation(s)
- J T Yabe
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, USA
| | | | | | | | | | | |
Collapse
|
235
|
Yuan A, Mills RG, Chia CP, Bray JJ. Tubulin and neurofilament proteins are transported differently in axons of chicken motoneurons. Cell Mol Neurobiol 2000; 20:623-32. [PMID: 11100972 PMCID: PMC11537528 DOI: 10.1023/a:1007090422866] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. We previously showed that actin is transported in an unassembled form with its associated proteins actin depolymerizing factor, cofilin, and profilin. Here we examine the specific activities of radioactively labeled tubulin and neurofilament proteins in subcellular fractions of the chicken sciatic nerve following injection of L-[35S]methionine into the lumbar spinal cord. 2. At intervals of 12 and 20 days after injection, nerves were cut into 1-cm segments and separated into Triton X-100-soluble and particulate fractions. Analysis of the fractions by high-resolution two-dimensional gel electrophoresis, immunoblotting, fluorography, and computer densitometry showed that tubulin was transported as a unimodal wave at a slower average rate (2-2.5 mm/day) than actin (4-5 mm/day). Moreover, the specific activity of soluble tubulin was five times that of its particulate form, indicating that tubulin is transported in a dimeric or small oligomeric form and is assembled into stationary microtubules. 3. Neurofilament triplet proteins were detected only in the particulate fractions and transported at a slower average rate (1 mm/day) than either actin or tubulin. 4. Our results indicate that the tubulin was transported in an unpolymerized form and that the neurofilament proteins were transported in an insoluble, presumably polymerized form.
Collapse
Affiliation(s)
- A Yuan
- School of Biological Sciences, University of Nebraska-Lincoln, 68588-0118, USA.
| | | | | | | |
Collapse
|
236
|
Abstract
Efforts to observe the slow axonal transport of cytoskeletal polymers during the past decade have yielded conflicting results, and this has generated considerable controversy. The movement of neurofilaments has now been seen, and it is rapid, infrequent and highly asynchronous. This motile behaviour could explain why slow axonal transport has eluded observation for so long.
Collapse
Affiliation(s)
- A Brown
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA.
| |
Collapse
|
237
|
Abstract
Slow axonal transport conveys cytoskeletal proteins from cell body to axon tip. This transport provides the axon with the architectural elements that are required to generate and maintain its elongate shape and also generates forces within the axon that are necessary for axon growth and navigation. The mechanisms of cytoskeletal transport in axons are unknown. One hypothesis states that cytoskeletal proteins are transported within the axon as polymers. We tested this hypothesis by visualizing individual cytoskeletal polymers in living axons and determining whether they undergo vectorial movement. We focused on neurofilaments in axons of cultured sympathetic neurons because individual neurofilaments in these axons can be visualized by optical microscopy. Cultured sympathetic neurons were infected with recombinant adenovirus containing a construct encoding a fusion protein combining green fluorescent protein (GFP) with the heavy neurofilament protein subunit (NFH). The chimeric GFP-NFH coassembled with endogenous neurofilaments. Time lapse imaging revealed that individual GFP-NFH-labeled neurofilaments undergo vigorous vectorial transport in the axon in both anterograde and retrograde directions but with a strong anterograde bias. NF transport in both directions exhibited a broad spectrum of rates with averages of approximately 0.6-0.7 microm/sec. However, movement was intermittent, with individual neurofilaments pausing during their transit within the axon. Some NFs either moved or paused for the most of the time they were observed, whereas others were intermediate in behavior. On average, neurofilaments spend at most 20% of the time moving and rest of the time paused. These results establish that the slow axonal transport machinery conveys neurofilaments.
Collapse
|
238
|
Shah JV, Flanagan LA, Janmey PA, Leterrier JF. Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 2000; 11:3495-508. [PMID: 11029051 PMCID: PMC15009 DOI: 10.1091/mbc.11.10.3495] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Neuronal cytoskeletal elements such as neurofilaments, F-actin, and microtubules are actively translocated by an as yet unidentified mechanism. This report describes a novel interaction between neurofilaments and microtubule motor proteins that mediates the translocation of neurofilaments along microtubules in vitro. Native neurofilaments purified from spinal cord are transported along microtubules at rates of 100-1000 nm/s to both plus and minus ends. This motion requires ATP and is partially inhibited by vanadate, consistent with the activity of neurofilament-bound molecular motors. Motility is in part mediated by the dynein/dynactin motor complex and several kinesin-like proteins. This reconstituted motile system suggests how slow net movement of cytoskeletal polymers may be achieved by alternating activities of fast microtubule motors.
Collapse
Affiliation(s)
- J V Shah
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
239
|
Terada S, Hirokawa N. Moving on to the cargo problem of microtubule-dependent motors in neurons. Curr Opin Neurobiol 2000; 10:566-73. [PMID: 11084318 DOI: 10.1016/s0959-4388(00)00129-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vigorous investigation has finally begun to shed light on the cargo problem of the microtubule-dependent motors, kinesin and dynein superfamily proteins. Biochemical observations have suggested that the potential cargoes of certain populations of motor proteins seem to be in vesicle-form, each vesicle possessing specific functional marker molecules. In addition to the close relationship between microtubule-dependent motors and cargoes in vesicle-form, kinesin has also been highlighted as an apparent driving force for another cargo in non-vesicle-form, cytoplasmic protein. On the basis of new biophysical and cell-biological evidence, the controversy over the movement of cytoplasmic cargoes has entered a new phase.
Collapse
Affiliation(s)
- S Terada
- Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan.
| | | |
Collapse
|
240
|
Affiliation(s)
- Ying-Hao Chou
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611
| | - Robert D. Goldman
- Northwestern University Medical School, Department of Cell and Molecular Biology, Chicago, Illinois 60611
| |
Collapse
|
241
|
Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC. Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 2000; 150:165-76. [PMID: 10893265 PMCID: PMC2185569 DOI: 10.1083/jcb.150.1.165] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1999] [Accepted: 06/05/2000] [Indexed: 02/06/2023] Open
Abstract
Neurofilaments are transported through axons by slow axonal transport. Abnormal accumulations of neurofilaments are seen in several neurodegenerative diseases, and this suggests that neurofilament transport is defective. Excitotoxic mechanisms involving glutamate are believed to be part of the pathogenic process in some neurodegenerative diseases, but there is currently little evidence to link glutamate with neurofilament transport. We have used a novel technique involving transfection of the green fluorescent protein-tagged neurofilament middle chain to measure neurofilament transport in cultured neurons. Treatment of the cells with glutamate induces a slowing of neurofilament transport. Phosphorylation of the side-arm domains of neurofilaments has been associated with a slowing of neurofilament transport, and we show that glutamate causes increased phosphorylation of these domains in cell bodies. We also show that glutamate activates members of the mitogen-activated protein kinase family, and that these kinases will phosphorylate neurofilament side-arm domains. These results provide a molecular framework to link glutamate excitotoxicity with neurofilament accumulation seen in some neurodegenerative diseases.
Collapse
Affiliation(s)
- S Ackerley
- Department of Neuroscience, The Institute of Psychiatry, Kings College London, London SE5 8AF United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Shea TB, Yabe J. Occam's Razor slices through the mysteries of neurofilament axonal transport: can it really be so simple? Traffic 2000; 1:522-3. [PMID: 11208138 DOI: 10.1034/j.1600-0854.2000.010610.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- T B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts, Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | |
Collapse
|
243
|
Abstract
In neurons, cytoskeletal proteins are transported from where they are made - the cell body - along the axons, but it has long been disputed whether they are transported as subunits or polymers. A new analysis of neurofilament movement may help to resolve the controversy.
Collapse
|