201
|
Wek RC, Anthony TG, Staschke KA. Surviving and Adapting to Stress: Translational Control and the Integrated Stress Response. Antioxid Redox Signal 2023; 39:351-373. [PMID: 36943285 PMCID: PMC10443206 DOI: 10.1089/ars.2022.0123] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023]
Abstract
Significance: Organisms adapt to changing environments by engaging cellular stress response pathways that serve to restore proteostasis and enhance survival. A primary adaptive mechanism is the integrated stress response (ISR), which features phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2). Four eIF2α kinases respond to different stresses, enabling cells to rapidly control translation to optimize management of resources and reprogram gene expression for stress adaptation. Phosphorylation of eIF2 blocks its guanine nucleotide exchange factor, eIF2B, thus lowering the levels of eIF2 bound to GTP that is required to deliver initiator transfer RNA (tRNA) to ribosomes. While bulk messenger RNA (mRNA) translation can be sharply lowered by heightened phosphorylation of eIF2α, there are other gene transcripts whose translation is unchanged or preferentially translated. Among the preferentially translated genes is ATF4, which directs transcription of adaptive genes in the ISR. Recent Advances and Critical Issues: This review focuses on how eIF2α kinases function as first responders of stress, the mechanisms by which eIF2α phosphorylation and other stress signals regulate the exchange activity of eIF2B, and the processes by which the ISR triggers differential mRNA translation. To illustrate the synergy between stress pathways, we describe the mechanisms and functional significance of communication between the ISR and another key regulator of translation, mammalian/mechanistic target of rapamycin complex 1 (mTORC1), during acute and chronic amino acid insufficiency. Finally, we discuss the pathological conditions that stem from aberrant regulation of the ISR, as well as therapeutic strategies targeting the ISR to alleviate disease. Future Directions: Important topics for future ISR research are strategies for modulating this stress pathway in disease conditions and drug development, molecular processes for differential translation and the coordinate regulation of GCN2 and other stress pathways during physiological and pathological conditions. Antioxid. Redox Signal. 39, 351-373.
Collapse
Affiliation(s)
- Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Tracy G. Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Kirk A. Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| |
Collapse
|
202
|
Pakarinen E, Lindholm P. CDNF and MANF in the brain dopamine system and their potential as treatment for Parkinson's disease. Front Psychiatry 2023; 14:1188697. [PMID: 37555005 PMCID: PMC10405524 DOI: 10.3389/fpsyt.2023.1188697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 08/10/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by gradual loss of midbrain dopamine neurons, leading to impaired motor function. Preclinical studies have indicated cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) to be potential therapeutic molecules for the treatment of PD. CDNF was proven to be safe and well tolerated when tested in Phase I-II clinical trials in PD patients. Neuroprotective and neurorestorative effects of CDNF and MANF were demonstrated in animal models of PD, where they promoted the survival of dopamine neurons and improved motor function. However, biological roles of endogenous CDNF and MANF proteins in the midbrain dopamine system have been less clear. In addition to extracellular trophic activities, CDNF/MANF proteins function intracellularly in the endoplasmic reticulum (ER), where they modulate protein homeostasis and protect cells against ER stress by regulating the unfolded protein response (UPR). Here, our aim is to give an overview of the biology of endogenous CDNF and MANF in the brain dopamine system. We will discuss recent studies on CDNF and MANF knockout animal models, and effects of CDNF and MANF in preclinical models of PD. To elucidate possible roles of CDNF and MANF in human biology, we will review CDNF and MANF tissue expression patterns and regulation of CDNF/MANF levels in human diseases. Finally, we will discuss novel findings related to the molecular mechanism of CDNF and MANF action in ER stress, UPR, and inflammation, all of which are mechanisms potentially involved in the pathophysiology of PD.
Collapse
Affiliation(s)
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
203
|
Prasad V, Cerikan B, Stahl Y, Kopp K, Magg V, Acosta-Rivero N, Kim H, Klein K, Funaya C, Haselmann U, Cortese M, Heigwer F, Bageritz J, Bitto D, Jargalsaikhan S, Neufeldt C, Pahmeier F, Boutros M, Yamauchi Y, Ruggieri A, Bartenschlager R. Enhanced SARS-CoV-2 entry via UPR-dependent AMPK-related kinase NUAK2. Mol Cell 2023; 83:2559-2577.e8. [PMID: 37421942 DOI: 10.1016/j.molcel.2023.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 02/14/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remodels the endoplasmic reticulum (ER) to form replication organelles, leading to ER stress and unfolded protein response (UPR). However, the role of specific UPR pathways in infection remains unclear. Here, we found that SARS-CoV-2 infection causes marginal activation of signaling sensor IRE1α leading to its phosphorylation, clustering in the form of dense ER-membrane rearrangements with embedded membrane openings, and XBP1 splicing. By investigating the factors regulated by IRE1α-XBP1 during SARS-CoV-2 infection, we identified stress-activated kinase NUAK2 as a novel host-dependency factor for SARS-CoV-2, HCoV-229E, and MERS-CoV entry. Reducing NUAK2 abundance or kinase activity impaired SARS-CoV-2 particle binding and internalization by decreasing cell surface levels of viral receptors and viral trafficking likely by modulating the actin cytoskeleton. IRE1α-dependent NUAK2 levels were elevated in SARS-CoV-2-infected and bystander non-infected cells, promoting viral spread by maintaining ACE2 cell surface levels and facilitating virion binding to bystander cells.
Collapse
Affiliation(s)
- Vibhu Prasad
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany.
| | - Berati Cerikan
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Yannick Stahl
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Katja Kopp
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Vera Magg
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Nelson Acosta-Rivero
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Heeyoung Kim
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Katja Klein
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Charlotta Funaya
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Mirko Cortese
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany; Department of Biotechnology, Life Science and Engineering, University of Applied Sciences, Bingen am Rhein, Germany
| | - Josephine Bageritz
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - David Bitto
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Saruul Jargalsaikhan
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Christopher Neufeldt
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Felix Pahmeier
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University of Bristol, Bristol, UK; Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Alessia Ruggieri
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany; German Center for Infection Research, Heidelberg Partner Site, Heidelberg, Germany.
| |
Collapse
|
204
|
Liang W, Fu L, Feng M, Wang X, Yun Z, Xu J. Endoplasmic Reticulum Stress and Autophagy Are Involved in Hepatotoxicity Induced by Tributyltin. TOXICS 2023; 11:607. [PMID: 37505572 PMCID: PMC10386594 DOI: 10.3390/toxics11070607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Tributyltin (TBT), a common contaminant in aquatic ecosystems, has severe toxic effects on multiple tissues and organs, especially the liver. Previous toxicogenomic analysis has indicated that the main mechanism of TBT-induced hepatotoxicity is related to the activation of the apoptotic pathway. However, the mechanism of action occurring before the activation of apoptosis is still unclear. Herein, we applied proteomic technology to explore the protein expression profile of TBT-treated HL7702 normal human liver cells. The ultrastructural changes in cells were observed by transmission electron microscopy. After low dose (2 μΜ) TBT treatment, activation of the unfolded protein response and endoplasmic reticulum stress were observed; the expression levels of PERK, ATF6, BiP, and CHOP were significantly elevated, and splicing of XBP1 mRNA was initiated. When the TBT concentration increased to 4 μΜ, the protein levels of Beclin1, Atg3, Atg5, Atg7, and Atg12-Atg5 were significantly elevated, and the protein level of LC3Ⅰ decreased while that of LC3Ⅱ increased, suggesting the activation of autophagy. As the TBT concentration continued to increase, autophagy could not eliminate the damage, and apoptosis eventually occurred. These results indicate novel pathways of hepatotoxicity induced by TBT and provide insights for future studies.
Collapse
Affiliation(s)
- Weiqi Liang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Lingling Fu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Mei Feng
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xiaorong Wang
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Zhaohui Yun
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
205
|
Zhao S, Feng H, Jiang D, Yang K, Wang ST, Zhang YX, Wang Y, Liu H, Guo C, Tang TS. ER Ca 2+ overload activates the IRE1α signaling and promotes cell survival. Cell Biosci 2023; 13:123. [PMID: 37400935 DOI: 10.1186/s13578-023-01062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Maintaining homeostasis of Ca2+ stores in the endoplasmic reticulum (ER) is crucial for proper Ca2+ signaling and key cellular functions. Although Ca2+ depletion has been known to cause ER stress which in turn activates the unfolded protein response (UPR), how UPR sensors/transducers respond to excess Ca2+ when ER stores are overloaded remain largely unclear. RESULTS Here, we report for the first time that overloading of ER Ca2+ can directly sensitize the IRE1α-XBP1 axis. The overloaded ER Ca2+ in TMCO1-deficient cells can cause BiP dissociation from IRE1α, promote the dimerization and stability of the IRE1α protein, and boost IRE1α activation. Intriguingly, attenuation of the over-activated IRE1α-XBP1s signaling by a IRE1α inhibitor can cause a significant cell death in TMCO1-deficient cells. CONCLUSIONS Our data establish a causal link between excess Ca2+ in ER stores and the selective activation of IRE1α-XBP1 axis, underscoring an unexpected role of overload of ER Ca2+ in IRE1α activation and in preventing cell death.
Collapse
Affiliation(s)
- Song Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongfang Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Tong Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xin Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Caixia Guo
- Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
206
|
Capinha L, Jennings P, Commandeur JNM. Exposure to Cis- and Trans-regioisomers of S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-glutathione result in quantitatively and qualitatively different cellular effects in RPTEC/TERT1 cells. Toxicol Lett 2023:S0378-4274(23)00205-9. [PMID: 37353095 DOI: 10.1016/j.toxlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Bioactivation of trichloroethylene (TCE) via glutathione conjugation is associated with several adverse effects in the kidney and other extrahepatic tissues. Of the three regioisomeric conjugates formed, S-(1,2-trans-dichlorovinyl)-glutathione (1,2-trans-DCVG), S-(1,2-cis-dichlorovinyl)-glutathione and S-(2,2-dichlorovinyl)-glutathione, only 1,2-trans-DCVG and its corresponding cysteine-conjugate, 1,2-trans-DCVC, have been subject to extensive mechanistic studies. In the present study, the metabolism and cellular effects of 1,2-cis-DCVG, the major regioisomer formed by rat liver fractions, and 1,2-cis-DCVC were investigated for the first time using RPTEC/TERT1-cells as in vitro renal model. In contrast to 1,2-trans-DCVG/C, the cis-regioisomers showed minimal effects on cell viability and mitochondrial respiration. Transcriptomics analysis showed that both 1,2-cis-DCVC and 1,2-trans-DCVC caused Nrf2-mediated antioxidant responses, with 3µM as lowest effective concentration. An ATF4-mediated integrated stress response and p53-mediated responses were observed starting from 30µM for 1,2-trans-DCVC and 125µM for 1,2-cis-DCVC. Comparison of the metabolism of the DCVG regioisomers by LC/MS showed comparable rates of processing to their corresponding DCVC. No detectable N-acetylation was observed in RPTEC/TERT1 cells. Instead, N-glutamylation of DCVC to form N-γ-glutamyl-S-(dichlorovinyl)-L-cysteine was identified as a novel route of metabolism. The results suggest that 1,2-cis-DCVC may be of less toxicological concern for humans than 1,2-trans-DCVC, considering its lower intrinsic toxicity and lower rate of formation by human liver fractions.
Collapse
Affiliation(s)
- Liliana Capinha
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| | - Jan N M Commandeur
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.
| |
Collapse
|
207
|
Piper JA, Al Hammouri N, Jansen MI, Rodgers KJ, Musumeci G, Dhungana A, Ghorbanpour SM, Bradfield LA, Castorina A. L-Proline Prevents Endoplasmic Reticulum Stress in Microglial Cells Exposed to L-azetidine-2-carboxylic Acid. Molecules 2023; 28:4808. [PMID: 37375363 DOI: 10.3390/molecules28124808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
L-Azetidine-2-carboxylic acid (AZE) is a non-protein amino acid that shares structural similarities with its proteogenic L-proline amino acid counterpart. For this reason, AZE can be misincorporated in place of L-proline, contributing to AZE toxicity. In previous work, we have shown that AZE induces both polarization and apoptosis in BV2 microglial cells. However, it is still unknown if these detrimental effects involve endoplasmic reticulum (ER) stress and whether L-proline co-administration prevents AZE-induced damage to microglia. Here, we investigated the gene expression of ER stress markers in BV2 microglial cells treated with AZE alone (1000 µM), or co-treated with L-proline (50 µM), for 6 or 24 h. AZE reduced cell viability, nitric oxide (NO) secretion and caused a robust activation of the unfolded protein response (UPR) genes (ATF4, ATF6, ERN1, PERK, XBP1, DDIT3, GADD34). These results were confirmed by immunofluorescence in BV2 and primary microglial cultures. AZE also altered the expression of microglial M1 phenotypic markers (increased IL-6, decreased CD206 and TREM2 expression). These effects were almost completely prevented upon L-proline co-administration. Finally, triple/quadrupole mass spectrometry demonstrated a robust increase in AZE-bound proteins after AZE treatment, which was reduced by 84% upon L-proline co-supplementation. This study identified ER stress as a pathogenic mechanism for AZE-induced microglial activation and death, which is reversed by co-administration of L-proline.
Collapse
Affiliation(s)
- Jordan Allan Piper
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Nour Al Hammouri
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Kenneth J Rodgers
- Neurotoxin Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia n°97, 95123 Catania, Italy
| | - Amolika Dhungana
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Sahar Masoumeh Ghorbanpour
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Laura A Bradfield
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
208
|
Rutledge CA, Lagranha C, Chiba T, Redding K, Stolz DB, Goetzman E, Sims-Lucas S, Kaufman BA. Metformin preconditioning protects against myocardial stunning and preserves protein translation in a mouse model of cardiac arrest. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100034. [PMID: 37425219 PMCID: PMC10327679 DOI: 10.1016/j.jmccpl.2023.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiac arrest (CA) causes high mortality due to multi-system organ damage attributable to ischemia-reperfusion injury. Recent work in our group found that among diabetic patients who experienced cardiac arrest, those taking metformin had less evidence of cardiac and renal damage after cardiac arrest when compared to those not taking metformin. Based on these observations, we hypothesized that metformin's protective effects in the heart were mediated by AMPK signaling, and that AMPK signaling could be targeted as a therapeutic strategy following resuscitation from CA. The current study investigates metformin interventions on cardiac and renal outcomes in a non-diabetic CA mouse model. We found that two weeks of metformin pretreatment protects against reduced ejection fraction and reduces kidney ischemia-reperfusion injury at 24 h post-arrest. This cardiac and renal protection depends on AMPK signaling, as demonstrated by outcomes in mice pretreated with the AMPK activator AICAR or metformin plus the AMPK inhibitor compound C. At this 24-h time point, heart gene expression analysis showed that metformin pretreatment caused changes supporting autophagy, antioxidant response, and protein translation. Further investigation found associated improvements in mitochondrial structure and markers of autophagy. Notably, Western analysis indicated that protein synthesis was preserved in arrest hearts of animals pretreated with metformin. The AMPK activation-mediated preservation of protein synthesis was also observed in a hypoxia/reoxygenation cell culture model. Despite the positive impacts of pretreatment in vivo and in vitro, metformin did not preserve ejection fraction when deployed at resuscitation. Taken together, we propose that metformin's in vivo cardiac preservation occurs through AMPK activation, requires adaptation before arrest, and is associated with preserved protein translation.
Collapse
Affiliation(s)
- Cody A. Rutledge
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia Lagranha
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takuto Chiba
- Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School, Pittsburgh, PA, USA
| | - Kevin Redding
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donna B. Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Goetzman
- Division of Genetic and Genomic Medicine, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sunder Sims-Lucas
- Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School, Pittsburgh, PA, USA
| | - Brett A. Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
209
|
Waigi EW, Webb RC, Moss MA, Uline MJ, McCarthy CG, Wenceslau CF. Soluble and insoluble protein aggregates, endoplasmic reticulum stress, and vascular dysfunction in Alzheimer's disease and cardiovascular diseases. GeroScience 2023; 45:1411-1438. [PMID: 36823398 PMCID: PMC10400528 DOI: 10.1007/s11357-023-00748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023] Open
Abstract
Dementia refers to a particular group of symptoms characterized by difficulties with memory, language, problem-solving, and other thinking skills that affect a person's ability to perform everyday activities. Alzheimer's disease (AD) is the most common form of dementia, affecting about 6.2 million Americans aged 65 years and older. Likewise, cardiovascular diseases (CVDs) are a major cause of disability and premature death, impacting 126.9 million adults in the USA, a number that increases with age. Consequently, CVDs and cardiovascular risk factors are associated with an increased risk of AD and cognitive impairment. They share important age-related cardiometabolic and lifestyle risk factors, that make them among the leading causes of death. Additionally, there are several premises and hypotheses about the mechanisms underlying the association between AD and CVD. Although AD and CVD may be considered deleterious to health, the study of their combination constitutes a clinical challenge, and investigations to understand the mechanistic pathways for the cause-effect and/or shared pathology between these two disease constellations remains an active area of research. AD pathology is propagated by the amyloid β (Aβ) peptides. These peptides give rise to small, toxic, and soluble Aβ oligomers (SPOs) that are nonfibrillar, and it is their levels that show a robust correlation with the extent of cognitive impairment. This review will elucidate the interplay between the effects of accumulating SPOs in AD and CVDs, the resulting ER stress response, and their role in vascular dysfunction. We will also address the potential underlying mechanisms, including the possibility that SPOs are among the causes of vascular injury in CVD associated with cognitive decline. By revealing common mechanistic underpinnings of AD and CVD, we hope that novel experimental therapeutics can be designed to reduce the burden of these devastating diseases. Graphical abstract Alzheimer's disease (AD) pathology leads to the release of Aβ peptides, and their accumulation in the peripheral organs has varying effects on various components of the cardiovascular system including endoplasmic reticulum (ER) stress and vascular damage. Image created with BioRender.com.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Melissa A Moss
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Mark J Uline
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Cententer (CTRC), Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Biomedical Engineering Program, Univeristy of South Carolina, Columbia, SC, USA.
| |
Collapse
|
210
|
Moon DO. Calcium's Role in Orchestrating Cancer Apoptosis: Mitochondrial-Centric Perspective. Int J Mol Sci 2023; 24:ijms24108982. [PMID: 37240331 DOI: 10.3390/ijms24108982] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is an essential intracellular messenger that plays a vital role in controlling a broad range of cellular processes, including apoptosis. This review offers an in-depth analysis of calcium's multifaceted role in apoptosis regulation, focusing on the associated signaling pathways and molecular mechanisms. We will explore calcium's impact on apoptosis through its effects on different cellular compartments, such as the mitochondria and endoplasmic reticulum (ER), and discuss the connection between calcium homeostasis and ER stress. Additionally, we will highlight the interplay between calcium and various proteins, including calpains, calmodulin, and Bcl-2 family members, and the role of calcium in regulating caspase activation and pro-apoptotic factor release. By investigating the complex relationship between calcium and apoptosis, this review aims to deepen our comprehension of the fundamental processes, and pinpointing possible treatment options for illnesses associated with imbalanced cell death is crucial.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
211
|
Groenendyk J, Michalak M. Interplay between calcium and endoplasmic reticulum stress. Cell Calcium 2023; 113:102753. [PMID: 37209448 DOI: 10.1016/j.ceca.2023.102753] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cellular homeostasis is crucial for the healthy functioning of the organism. Disruption of cellular homeostasis activates endoplasmic reticulum (ER) stress coping responses including the unfolded protein response (UPR). There are three ER resident stress sensors responsible for UPR activation - IRE1α, PERK and ATF6. Ca2+ signaling plays an important role in stress responses including the UPR and the ER is the main Ca2+ storage organelle and a source of Ca2+ for cell signaling. The ER contains many proteins involved in Ca2+ import/export/ storage, Ca2+ movement between different cellular organelles and ER Ca2+ stores refilling. Here we focus on selected aspects of ER Ca2+ homeostasis and its role in activation of the ER stress coping responses.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
212
|
Gao Y, Su X, Xue T, Zhang N. The beneficial effects of astragaloside IV on ameliorating diabetic kidney disease. Biomed Pharmacother 2023; 163:114598. [PMID: 37150034 DOI: 10.1016/j.biopha.2023.114598] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) has become the major cause of chronic kidney disease or end-stage renal disease. There is still a need for innovative treatment strategies for preventing, arresting, treating, and reversing DKD, and a plethora of scientific evidence has revealed that Chinese herbal monomers can attenuate DKD in multiple ways. Astragaloside IV (AS-IV) is one of the active ingredients of Astragalus membranaceus and was selected as a chemical marker in the Chinese Pharmacopeia for quality control purposes. An increasing amount of studies indicate that AS-IV is a promising novel drug for the treatment of DKD. AS-IV has been shown to improve DKD by combating oxidative stress, attenuating endoplasmic reticulum stress, regulating calcium homeostasis, alleviating inflammation, improving vascular function, improving epithelial to mesenchymal transition and so on. This review briefly summarizes the pathogenesis of DKD, systematically reviews the mechanisms by which AS-IV improves DKD, and aims to facilitate related pharmacological research and development to promote the utilization of Chinese herbal monomers in DKD.
Collapse
Affiliation(s)
- Yiwei Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Xin Su
- Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Taiqi Xue
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Ning Zhang
- Department of Nephrology and Endocrinology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, China.
| |
Collapse
|
213
|
Abstract
The problems associated with economic development and social progress have led to an increase in the occurrence of cardiovascular diseases (CVDs), which affect the health of an increasing number of people and are a leading cause of disease and population mortality worldwide. Endoplasmic reticulum stress (ERS), a hot topic of interest for scholars in recent years, has been confirmed in numerous studies to be an important pathogenetic basis for many metabolic diseases and play an important role in maintaining physiological processes. The endoplasmic reticulum (ER) is a major organelle that is involved in protein folding and modification synthesis, and ERS occurs when several physiological and pathological factors allow excessive amounts of unfolded/misfolded proteins to accumulate. ERS often leads to initiation of the unfolded protein response (UPR) in a bid to re-establish tissue homeostasis; however, UPR has been documented to induce vascular remodeling and cardiomyocyte damage under various pathological conditions, leading to or accelerating the development of CVDs such as hypertension, atherosclerosis, and heart failure. In this review, we summarize the latest knowledge gained concerning ERS in terms of cardiovascular system pathophysiology, and discuss the feasibility of targeting ERS as a novel therapeutic target for the treatment of CVDs. Investigation of ERS has immense potential as a new direction for future research involving lifestyle intervention, the use of existing drugs, and the development of novel drugs that target and inhibit ERS.
Collapse
Affiliation(s)
- Zhao Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Liang Zhang
- Section 4, Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
214
|
Ulaganathan T, Perales S, Mani S, Baskhairoun BA, Rajasingh J. Pathological implications of cellular stress in cardiovascular diseases. Int J Biochem Cell Biol 2023; 158:106397. [PMID: 36931385 PMCID: PMC10124590 DOI: 10.1016/j.biocel.2023.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Cellular stress has been a key factor in the development of cardiovascular diseases. Major types of cellular stress such as mitochondrial stress, endoplasmic reticulum stress, hypoxia, and replicative stress have been implicated in clinical complications of cardiac patients. The heart is the central regulator of the body by supplying oxygenated blood throughout the system. Impairment of cellular function could lead to heart failure, myocardial infarction, ischemia, and even stroke. Understanding the effect of these distinct types of cellular stress on cardiac function is crucial for the scientific community to understand and develop novel therapeutic approaches. This review will comprehensively explain the different mechanisms of cellular stress and the most recent findings related to stress-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Thennavan Ulaganathan
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Biotechnology, SRM Institute of Science and Technology, kattankulathur, Tamilnadu, 603203, India
| | - Selene Perales
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Saiprahalad Mani
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Biotechnology, SRM Institute of Science and Technology, kattankulathur, Tamilnadu, 603203, India
| | - Boula A Baskhairoun
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Johnson Rajasingh
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Medicine-Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
215
|
Petrosyan E, Fares J, Fernandez LG, Yeeravalli R, Dmello C, Duffy JT, Zhang P, Lee-Chang C, Miska J, Ahmed AU, Sonabend AM, Balyasnikova IV, Heimberger AB, Lesniak MS. Endoplasmic Reticulum Stress in the Brain Tumor Immune Microenvironment. Mol Cancer Res 2023; 21:389-396. [PMID: 36652630 PMCID: PMC10159901 DOI: 10.1158/1541-7786.mcr-22-0920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Immunotherapy has emerged as a powerful strategy for halting cancer progression. However, primary malignancies affecting the brain have been exempt to this success. Indeed, brain tumors continue to portend severe morbidity and remain a globally lethal disease. Extensive efforts have been directed at understanding how tumor cells survive and propagate within the unique microenvironment of the central nervous system (CNS). Cancer genetic aberrations and metabolic abnormalities provoke a state of persistent endoplasmic reticulum (ER) stress that in turn promotes tumor growth, invasion, therapeutic resistance, and the dynamic reprogramming of the infiltrating immune cells. Consequently, targeting ER stress is a potential therapeutic approach. In this work, we provide an overview of how ER stress response is advantageous to brain tumor development, discuss the significance of ER stress in governing antitumor immunity, and put forth therapeutic strategies of regulating ER stress to augment the effect of immunotherapy for primary CNS tumors.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jawad Fares
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Luis G. Fernandez
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Ragini Yeeravalli
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Crismita Dmello
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Joseph T. Duffy
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Peng Zhang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Jason Miska
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Atique U. Ahmed
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Adam M. Sonabend
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Irina V. Balyasnikova
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Maciej S. Lesniak
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
216
|
Wu K, Chen L, Qiu Z, Zhao B, Hou J, Lei S, Jiang M, Xia Z. Protective Effect and Mechanism of Xbp1s Regulating HBP/O-GlcNAcylation through GFAT1 on Brain Injury after SAH. Biomedicines 2023; 11:biomedicines11051259. [PMID: 37238930 DOI: 10.3390/biomedicines11051259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
(1) SAH induces cellular stress and endoplasmic reticulum stress, activating the unfolded protein response (UPR) in nerve cells. IRE1 (inositol-requiring enzyme 1) is a protein that plays a critical role in cellular stress response. Its final product, Xbp1s, is essential for adapting to changes in the external environment. This process helps maintain proper cellular function in response to various stressors. O-GlcNAcylation, a means of protein modification, has been found to be involved in SAH pathophysiology. SAH can increase the acute O-GlcNAcylation level of nerve cells, which enhances the stress capacity of nerve cells. The GFAT1 enzyme regulates the level of O-GlcNAc modification in cells, which could be a potential target for neuroprotection in SAH. Investigating the IRE1/XBP1s/GFAT1 axis could offer a promising avenue for future research. (2) Methods: SAH was induced using a suture to perforate an artery in mice. HT22 cells with Xbp1 loss- and gain-of-function in neurons were generated. Thiamet-G was used to increase O-GlcNAcylation; (3) Results: Severe neuroinflammation caused by subarachnoid hemorrhage leads to extensive endoplasmic reticulum stress of nerve cells. Xbp1s, the final product of unfolded proteins induced by endoplasmic reticulum stress, can induce the expression of the hexosamine pathway rate limiting enzyme GFAT1, increase the level of O-GlcNAc modification of cells, and have a protective effect on neural cells; (4) Conclusions: The correlation between Xbp1s displayed by immunohistochemistry and O-GlcNAc modification suggests that the IRE1/XBP1 branch of unfolded protein reaction plays a key role in subarachnoid hemorrhage. IRE1/XBP1 branch is a new idea to regulate protein glycosylation modification, and provides a promising strategy for clinical perioperative prevention and treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Kefan Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Shaoqin Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Meng Jiang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430064, China
| |
Collapse
|
217
|
Ong G, Logue SE. Unfolding the Interactions between Endoplasmic Reticulum Stress and Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12050981. [PMID: 37237847 DOI: 10.3390/antiox12050981] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is caused by an imbalance in cellular redox state due to the accumulation of reactive oxygen species (ROS). While homeostatic levels of ROS are important for cell physiology and signaling, excess ROS can induce a variety of negative effects ranging from damage to biological macromolecules to cell death. Additionally, oxidative stress can disrupt the function of redox-sensitive organelles including the mitochondria and endoplasmic reticulum (ER). In the case of the ER, the accumulation of misfolded proteins can arise due to oxidative stress, leading to the onset of ER stress. To combat ER stress, cells initiate a highly conserved stress response called the unfolded protein response (UPR). While UPR signaling, within the context of resolving ER stress, is well characterised, how UPR mediators respond to and influence oxidative stress is less defined. In this review, we evaluate the interplay between oxidative stress, ER stress and UPR signaling networks. Specifically, we assess how UPR signaling mediators can influence antioxidant responses.
Collapse
Affiliation(s)
- Gideon Ong
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Susan E Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- The Children's Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
218
|
Fan X, Yang X, Guo N, Gao X, Zhao Y. Development of an endoplasmic reticulum stress-related signature with potential implications in prognosis and immunotherapy in head and neck squamous cell carcinoma. Diagn Pathol 2023; 18:51. [PMID: 37087456 PMCID: PMC10122290 DOI: 10.1186/s13000-023-01338-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/12/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a multisite malignancy that responds well to immunotherapy. Despite the initial enthusiasm, the clinical benefits of immunotherapy in HNSCC patients are overall limited. Endoplasmic reticulum stress (ERS) has been indicated to play a key role in the process of anti-tumor immune response mediation. However, ERS-related biomarkers which can accurately predict prognosis and immunotherapy response in HNSCC are still lacking. METHODS AND RESULTS In this study, we identify and validate an ERS-related signature comprises of six genes (ASNS, EXOSC6, BAK1, TPP1, EXOSC8, and TATDN2) that can predict the prognosis of HNSCC patients. GSEA analysis indicates that the ERS-related signature is significantly correlated with tumor immunity in HNSCC. Moreover, the infiltration of naive B cells and CD8 + T cells are significantly diminished in patients with high-risk scores compared to those with low-risk scores, while macrophages and activated mast cells are remarkably enhanced. Furthermore, the ERS-related signature also displays a tremendous potential for predicting immunotherapy response in HNSCC. CONCLUSIONS Our study identifies an ERS-related signature that can predict the prognosis of HNSCC patients and highlights its potential value as a predictive biomarker of immunotherapy response, potentially enabling more precise and personalized immunotherapy response and paving the way for further investigation of the prognostic and therapeutic potentials of ERS.
Collapse
Affiliation(s)
- Xinlong Fan
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, 110042, Shenyang, Liaoning Province, P R China
| | - Xiao Yang
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, 110042, Shenyang, Liaoning Province, P R China
| | - Nan Guo
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, 110042, Shenyang, Liaoning Province, P R China
| | - Xin Gao
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, 110042, Shenyang, Liaoning Province, P R China
| | - Yuejiao Zhao
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, 110042, Shenyang, Liaoning Province, P R China.
| |
Collapse
|
219
|
Yang FC, Agosto-Peña J. Epigenetic regulation by ASXL1 in myeloid malignancies. Int J Hematol 2023; 117:791-806. [PMID: 37062051 DOI: 10.1007/s12185-023-03586-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/22/2023] [Indexed: 04/17/2023]
Abstract
Myeloid malignancies are clonal hematopoietic disorders that are comprised of a spectrum of genetically heterogeneous disorders, including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), chronic myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML). Myeloid malignancies are characterized by excessive proliferation, abnormal self-renewal, and/or differentiation defects of hematopoietic stem cells (HSCs) and myeloid progenitor cells hematopoietic stem/progenitor cells (HSPCs). Myeloid malignancies can be caused by genetic and epigenetic alterations that provoke key cellular functions, such as self-renewal, proliferation, biased lineage commitment, and differentiation. Advances in next-generation sequencing led to the identification of multiple mutations in myeloid neoplasms, and many new gene mutations were identified as key factors in driving the pathogenesis of myeloid malignancies. The polycomb protein ASXL1 was identified to be frequently mutated in all forms of myeloid malignancies, with mutational frequencies of 20%, 43%, 10%, and 20% in MDS, CMML, MPN, and AML, respectively. Significantly, ASXL1 mutations are associated with a poor prognosis in all forms of myeloid malignancies. The fact that ASXL1 mutations are associated with poor prognosis in patients with CMML, MDS, and AML, points to the possibility that ASXL1 mutation is a key factor in the development of myeloid malignancies. This review summarizes the recent advances in understanding myeloid malignancies with a specific focus on ASXL1 mutations.
Collapse
Affiliation(s)
- Feng-Chun Yang
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Joel Agosto-Peña
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
220
|
Matai L, Slack FJ. MicroRNAs in Age-Related Proteostasis and Stress Responses. Noncoding RNA 2023; 9:26. [PMID: 37104008 PMCID: PMC10143298 DOI: 10.3390/ncrna9020026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for lin-4 in C. elegans, the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.
Collapse
Affiliation(s)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
221
|
Morales C, Fernandez M, Ferrer R, Raimunda D, Carrer DC, Bollo M. Ursodeoxycholic Acid Binds PERK and Ameliorates Neurite Atrophy in a Cellular Model of GM2 Gangliosidosis. Int J Mol Sci 2023; 24:7209. [PMID: 37108372 PMCID: PMC10138647 DOI: 10.3390/ijms24087209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
The Unfolded protein response (UPR), triggered by stress in the endoplasmic reticulum (ER), is a key driver of neurodegenerative diseases. GM2 gangliosidosis, which includes Tay-Sachs and Sandhoff disease, is caused by an accumulation of GM2, mainly in the brain, that leads to progressive neurodegeneration. Previously, we demonstrated in a cellular model of GM2 gangliosidosis that PERK, a UPR sensor, contributes to neuronal death. There is currently no approved treatment for these disorders. Chemical chaperones, such as ursodeoxycholic acid (UDCA), have been found to alleviate ER stress in cell and animal models. UDCA's ability to move across the blood-brain barrier makes it interesting as a therapeutic tool. Here, we found that UDCA significantly diminished the neurite atrophy induced by GM2 accumulation in primary neuron cultures. It also decreased the up-regulation of pro-apoptotic CHOP, a downstream PERK-signaling component. To explore its potential mechanisms of action, in vitro kinase assays and crosslinking experiments were performed with different variants of recombinant protein PERK, either in solution or in reconstituted liposomes. The results suggest a direct interaction between UDCA and the cytosolic domain of PERK, which promotes kinase phosphorylation and dimerization.
Collapse
Affiliation(s)
| | | | | | | | | | - Mariana Bollo
- Instituto de Investigación Médica M y M Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| |
Collapse
|
222
|
Wu PJ, Chiou HL, Hsieh YH, Lin CL, Lee HL, Liu IC, Ying TH. Induction of immunogenic cell death effect of licoricidin in cervical cancer cells by enhancing endoplasmic reticulum stress-mediated high mobility group box 1 expression. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37013980 DOI: 10.1002/tox.23793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Licoricidin (LCD) is an activity compound of the roots of Glycyrrhiza uralensis, which has therapeutic efficacy, including anti-virus, anti-cancer, and enhanced immunity in Traditional Chinese Medicine. Herein, this study aimed to clarify the effect of LCD on cervical cancer cells. In the present study, we found that LCD significantly inhibited cell viability via inducing cell apoptosis and companies with cleaved-PARP protein expression and caspase-3/-9 activity. Cell viability was markedly reversed these effects by pan-caspase inhibitor Z-VAD-FMK treatment. Furthermore, we showed that LCD-induced ER (endoplasmic reticulum) stress triggers upregulating the protein level of GRP78 (Bip), CHOP, and IRE1α, and subsequently confirmed the mRNA level by quantitative real-time polymerase chain reaction. In addition, LCD exhibited the release of danger-associated molecular patterns from cervical cancer cells, such as the release of high-mobility group box 1 (HMGB1), secretion of ATP, and exposure of calreticulin (CRT) on the cell surface, which led to immunogenic cell death (ICD). These results provide a novel foundation that LCD induces ICD via triggering ER stress in human cervical cancer cells. LCD might be an ICD inducer of immunotherapy in progressive cervical cancer.
Collapse
Affiliation(s)
- Pei-Ju Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - I-Chun Liu
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
223
|
Lei N, Song H, Zeng L, Ji S, Meng X, Zhu X, Li X, Feng Q, Liu J, Mu J. Persistent Lipid Accumulation Leads to Persistent Exacerbation of Endoplasmic Reticulum Stress and Inflammation in Progressive NASH via the IRE1α/TRAF2 Complex. Molecules 2023; 28:3185. [PMID: 37049952 PMCID: PMC10095702 DOI: 10.3390/molecules28073185] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a metabolic disorder that often leads to other severe liver diseases, yet treatment options are limited. Endoplasmic reticulum (ER) stress is an important pathogenetic mechanism of NASH and plays a key role in tandem steatosis as well as liver inflammation. This study aims to develop a progressive NASH model through sustained lipid accumulation and to elucidate its molecular mechanism through IRE1α/TRAF2 complex. Male SD rats were fed a high-fat diet (HFD) for 4, 8, and 12 weeks to induce progressive NASH. MRNA sequencing and PPI analysis were used to screen core genes. Transmission electron microscopy, immunofluorescence staining, ELISA, qRT-PCR, and Western blotting were used at each time point to compare differences between each index of progressive NASH at 4, 8, and 12 weeks. Sustained lipid accumulation led to structural disruption of the ER, a reduction in ER number, and an increase of lipid droplet aggregation in hepatocytes. Persistent lipid accumulation led to a persistent increase in mRNA and protein expression of the IRE1α/TRAF2 complex, IKK/IκB/NF-κB signaling pathway and ASK1/JNK1 signaling pathway, and TNF-α, IL-1β, and IL-6 also continued to increase. Persistent lipid accumulation led to a persistent exacerbation of ER stress and inflammation in progressive NASH via the IRE1α/TRAF2 complex.
Collapse
Affiliation(s)
- Na Lei
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Hongfei Song
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Ling Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China;
| | - Shaoxiu Ji
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Xiangbo Meng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Xiuying Zhu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Xiuyan Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Jibin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| | - Jie Mu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (N.L.); (H.S.); (S.J.); (X.M.); (X.Z.)
| |
Collapse
|
224
|
Koppes EA, Johnson MA, Moresco JJ, Luppi P, Lewis DW, Stolz DB, Diedrich JK, Yates JR, Wek RC, Watkins SC, Gollin SM, Park HJ, Drain P, Nicholls RD. Insulin secretion deficits in a Prader-Willi syndrome β-cell model are associated with a concerted downregulation of multiple endoplasmic reticulum chaperones. PLoS Genet 2023; 19:e1010710. [PMID: 37068109 PMCID: PMC10138222 DOI: 10.1371/journal.pgen.1010710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 04/27/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a multisystem disorder with neurobehavioral, metabolic, and hormonal phenotypes, caused by loss of expression of a paternally-expressed imprinted gene cluster. Prior evidence from a PWS mouse model identified abnormal pancreatic islet development with retention of aged insulin and deficient insulin secretion. To determine the collective roles of PWS genes in β-cell biology, we used genome-editing to generate isogenic, clonal INS-1 insulinoma lines having 3.16 Mb deletions of the silent, maternal- (control) and active, paternal-allele (PWS). PWS β-cells demonstrated a significant cell autonomous reduction in basal and glucose-stimulated insulin secretion. Further, proteomic analyses revealed reduced levels of cellular and secreted hormones, including all insulin peptides and amylin, concomitant with reduction of at least ten endoplasmic reticulum (ER) chaperones, including GRP78 and GRP94. Critically, differentially expressed genes identified by whole transcriptome studies included reductions in levels of mRNAs encoding these secreted peptides and the group of ER chaperones. In contrast to the dosage compensation previously seen for ER chaperones in Grp78 or Grp94 gene knockouts or knockdown, compensation is precluded by the stress-independent deficiency of ER chaperones in PWS β-cells. Consistent with reduced ER chaperones levels, PWS INS-1 β-cells are more sensitive to ER stress, leading to earlier activation of all three arms of the unfolded protein response. Combined, the findings suggest that a chronic shortage of ER chaperones in PWS β-cells leads to a deficiency of protein folding and/or delay in ER transit of insulin and other cargo. In summary, our results illuminate the pathophysiological basis of pancreatic β-cell hormone deficits in PWS, with evolutionary implications for the multigenic PWS-domain, and indicate that PWS-imprinted genes coordinate concerted regulation of ER chaperone biosynthesis and β-cell secretory pathway function.
Collapse
Affiliation(s)
- Erik A Koppes
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marie A Johnson
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James J Moresco
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrizia Luppi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dale W Lewis
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jolene K Diedrich
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R Yates
- Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Hyun Jung Park
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Peter Drain
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Robert D Nicholls
- Division of Genetic and Genomic Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
225
|
Qin L, Fan W, Zheng F, Chen H, Qian P, Li X. Swine IFI6 confers antiviral effects against Japanese encephalitis virus in vitro and in vivo. J Gen Virol 2023; 104. [PMID: 37097881 DOI: 10.1099/jgv.0.001847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Swine are considered to be an important intermediate host in the cycle of Japanese encephalitis virus (JEV) infection. Most existing antiviral studies of JEV mainly focus on the host factor of the dead-end hosts. However, little research has addressed this in swine. Here, we found that swine interferon alpha-inducible protein 6 (sIFI6) possessed antiviral activity against JEV. In vitro studies showed that overexpression of sIFI6 inhibited the infection of JEV, while sIFI6 knockdown enhanced the infection of JEV in PK-15 cells. In addition, we also found that the structural integrity of sIFI6 was required by anti-JEV activity and that sIFI6 interacted with JEV nonstructural protein 4A (NS4A), an integral membrane protein with a pivotal function in replication complex during JEV replication. The interaction domain was mapped to the fourth transmembrane domain (TMD), also known as the 2K peptide of NS4A. The antiviral activity of sIFI6 was regulated by endoplasmic reticulum (ER) stress-related protein, Bip. In vivo studies revealed that sIFI6 alleviated symptoms of JEV infection in C57BL/6 mice. In addition, the antiviral spectrum of sIFI6 showed that sIFI6 specifically inhibited JEV infection. In conclusion, this study identified sIFI6 as a host factor against JEV infection for the first time. Our findings provide a potential drug target against JEV infection.
Collapse
Affiliation(s)
- Liuxing Qin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenchun Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Feiteng Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China
- Key Laboratory of Prevention and Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, PR China
| |
Collapse
|
226
|
Natural Product Skatole Ameliorates Lipotoxicity-Induced Multiple Hepatic Damage under Hyperlipidemic Conditions in Hepatocytes. Nutrients 2023; 15:nu15061490. [PMID: 36986221 PMCID: PMC10052055 DOI: 10.3390/nu15061490] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/22/2023] Open
Abstract
Skatole (3-methylindole, 3MI) is a natural-origin compound derived from plants, insects, and microbial metabolites in human intestines. Skatole has an anti-lipid peroxidation effect and is a biomarker for several diseases. However, its effect on hepatocyte lipid metabolism and lipotoxicity has not been elucidated. Hepatic lipotoxicity is induced by excess saturated free fatty acids in hyperlipidemia, which directly damages the hepatocytes. Lipotoxicity is involved in several metabolic diseases and hepatocytes, particularly affecting nonalcoholic fatty liver disease (NAFLD) progression. NAFLD is caused by the accumulation of fat by excessive free fatty acids (FFAs) in the blood and is accompanied by hepatic damage, such as endoplasmic reticulum (ER) stress, abnormal glucose and insulin metabolism, oxidative stress, and lipoapoptosis with lipid accumulation. Hepatic lipotoxicity causes multiple hepatic damages in NAFLD and has a directly effect on the progression from NAFLD to nonalcoholic steatohepatitis (NASH). This study confirmed that the natural compound skatole improves various damages to hepatocytes caused by lipotoxicity in hyperlipidemic conditions. To induce lipotoxicity, we exposed HepG2, SNU-449, and Huh7 cells to palmitic acid, a saturated fatty acid, and confirmed the protective effect of skatole. Skatole inhibited fat accumulation in the hepatocytes, reduced ER and oxidative stress, and recovered insulin resistance and glucose uptake. Importantly, skatole reduced lipoapoptosis by regulating caspase activity. In conclusion, skatole ameliorated multiple types of hepatocyte damage induced by lipotoxicity in the presence of excess free fatty acids.
Collapse
|
227
|
Sun J, Mai K, Ai Q. Effects of GRP78 on Endoplasmic Reticulum Stress and Inflammatory Response in Macrophages of Large Yellow Croaker ( Larimichthys crocea). Int J Mol Sci 2023; 24:ijms24065855. [PMID: 36982929 PMCID: PMC10054070 DOI: 10.3390/ijms24065855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Endoplasmic reticulum (ER) homeostasis plays a vital role in cell physiological functions. Various factors can destroy the homeostasis of the ER and cause ER stress. Moreover, ER stress is often related to inflammation. Glucose-regulated protein 78 (GRP78) is an ER chaperone, which plays a vital role in maintaining cellular homeostasis. Nevertheless, the potential effects of GRP78 on ER stress and inflammation is still not fully elucidated in fish. In the present study, ER stress and inflammation was induced by tunicamycin (TM) or palmitic acid (PA) in the macrophages of large yellow croakers. GRP78 was treated with an agonist/inhibitor before or after the TM/PA treatment. The results showed that the TM/PA treatment could significantly induce ER stress and an inflammatory response in the macrophages of large yellow croakers whereas the incubation of the GRP78 agonist could reduce TM/PA-induced ER stress and an inflammatory response. Moreover, the incubation of the GRP78 inhibitor could further induce TM/PA-induced ER stress and an inflammatory response. These results provide an innovative idea to explain the relationship between GRP78 and TM/PA-induced ER stress or inflammation in large yellow croakers.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
228
|
Ma S, Han J, Li Z, Xiao S, Zhang J, Yan J, Tang T, Barr T, Kraft AS, Caligiuri MA, Yu J. An XBP1s-PIM-2 positive feedback loop controls IL-15-mediated survival of natural killer cells. Sci Immunol 2023; 8:eabn7993. [PMID: 36897958 DOI: 10.1126/sciimmunol.abn7993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Spliced X-box-binding protein 1 (XBP1s) is an essential transcription factor downstream of interleukin-15 (IL-15) and AKT signaling, which controls cell survival and effector functions of human natural killer (NK) cells. However, the precise mechanisms, especially the downstream targets of XBP1s, remain unknown. In this study, by using XBP1 conditional knockout mice, we found that XBP1s is critical for IL-15-mediated NK cell survival but not proliferation in vitro and in vivo. Mechanistically, XBP1s regulates homeostatic NK cell survival by targeting PIM-2, a critical anti-apoptotic gene, which in turn stabilizes XBP1s protein by phosphorylating it at Thr58. In addition, XBP1s enhances the effector functions and antitumor immunity of NK cells by recruiting T-bet to the promoter region of Ifng. Collectively, our findings identify a previously unknown mechanism by which IL-15-XBP1s signaling regulates the survival and effector functions of NK cells.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jiazhuo Yan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tingting Tang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
229
|
Ben-Khoud Y, Chen CS, Ali MMU. Alternative ATPase domain interactions in eukaryotic Hsp70 chaperones. Front Mol Biosci 2023; 10:1155784. [PMID: 37006606 PMCID: PMC10061150 DOI: 10.3389/fmolb.2023.1155784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Hsp70 molecular chaperones are essential components for maintaining protein homeostasis within cells. They interact with substrate or client proteins in a well characterised fashion that is regulated by ATP and supported by co-chaperones. In eukaryotes there is a vast array of Hsp70 isoforms that may facilitate adaption to a particular cellular compartment and distinct biological role. Emerging data indicate a novel type of interaction between Hsp70 and client protein that does not fit with the classical Hsp70 ATP regulated substrate mechanism. In this review, we highlight Hsp70 ATPase domain interactions with binding partners from various biological systems that we refer to as Hsp70 ATPase alternative binding proteins or HAAB proteins. We identify common mechanistic features that may define how Hsp70 operates when associating with proteins in this alternative HAAB mode of action.
Collapse
Affiliation(s)
- Yassin Ben-Khoud
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Chao-Sheng Chen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Maruf M U Ali
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
230
|
Subramanian K, Paul S, Libby A, Patterson J, Arterbery A, Knight J, Castaldi C, Wang G, Avitzur Y, Martinez M, Lobritto S, Deng Y, Geliang G, Kroemer A, Fishbein T, Mason A, Dominguez-Villar M, Mariappan M, Ekong UD. HERV1-env Induces Unfolded Protein Response Activation in Autoimmune Liver Disease: A Potential Mechanism for Regulatory T Cell Dysfunction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:732-744. [PMID: 36722941 PMCID: PMC10691554 DOI: 10.4049/jimmunol.2100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Regulatory T cells (Tregs) are not terminally differentiated but can acquire effector properties. Here we report an increased expression of human endogenous retrovirus 1 (HERV1-env) proteins in Tregs of patients with de novo autoimmune hepatitis and autoimmune hepatitis, which induces endoplasmic reticulum (ER) stress. HERV1-env-triggered ER stress activates all three branches (IRE1, ATF6, and PERK) of the unfolded protein response (UPR). Our coimmunoprecipitation studies show an interaction between HERV1-env proteins and the ATF6 branch of the UPR. The activated form of ATF6α activates the expression of RORC and STAT3 by binding to promoter sequences and induces IL-17A production. Silencing of HERV1-env results in recovery of Treg suppressive function. These findings identify ER stress and UPR activation as key factors driving Treg plasticity (species: human).
Collapse
Affiliation(s)
- Kumar Subramanian
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Saikat Paul
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Libby
- Dept of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC
| | - Jordan Patterson
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | - Adam Arterbery
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
| | - James Knight
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, USA
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, ON, Canada
| | - Mercedes Martinez
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Steve Lobritto
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, USA
| | - Yanhong Deng
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Gan Geliang
- Yale Center for Analytical Sciences, New Haven, CT, USA
| | - Alexander Kroemer
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Thomas Fishbein
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Andrew Mason
- Division of Gastroenterology, University of Alberta, Edmonton, AB, Canada
| | | | | | - Udeme D. Ekong
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
231
|
Ramalingam M, Jang S, Hwang J, Kim B, Cho HH, Kim E, Jeong HS. Neuroprotective Effects of the Neural-Induced Adipose-Derived Stem Cell Secretome against Rotenone-Induced Mitochondrial and Endoplasmic Reticulum Dysfunction. Int J Mol Sci 2023; 24:5622. [PMID: 36982698 PMCID: PMC10054666 DOI: 10.3390/ijms24065622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have therapeutic effects on neurodegenerative diseases (NDDs) known by their secreted molecules, referred to as the "secretome". The mitochondrial complex I inhibitor, rotenone (ROT), reproduces α-synuclein (α-syn) aggregation seen in Parkinson's disease (PD). In this present study, we examined the neuroprotective effects of the secretome from neural-induced human adipose tissue-derived stem cells (NI-ADSC-SM) during ROT toxicity in SH-SY5Y cells. Exposure to ROT significantly impaired the mitophagy by increased LRRK2, mitochondrial fission, and endoplasmic reticulum (ER) stress (ERS). ROT also increased the levels of calcium (Ca2+), VDAC, and GRP75, and decreased phosphorylated (p)-IP3R Ser1756/total (t)-IP3R1. However, NI-ADSC-SM treatment decreased Ca2+ levels along with LRRK2, insoluble ubiquitin, mitochondrial fission by halting p-DRP1 Ser616, ERS by reducing p-PERK Thr981, p-/t-IRE1α, p-SAPK, ATF4, and CHOP. In addition, NI-ADSC-SM restored the mitophagy, mitochondrial fusion, and tethering to the ER. These data suggest that NI-ADSC-SM decreases ROT-induced dysfunction in mitochondria and the ER, which subsequently stabilized tethering in mitochondria-associated membranes in SH-SY5Y cells.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (J.H.)
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (J.H.)
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (J.H.)
| | - Boeun Kim
- Gwangju Alzheimer’s Disease and Related Dementias (GARD) Cohort Center, Chosun University, Gwangju 61452, Republic of Korea;
| | - Hyong-Ho Cho
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju 61469, Republic of Korea;
| | - Eungpil Kim
- Biopharmaceutical Research Center, Jeonnam Bioindustry Foundation, Hwasun 58141, Republic of Korea;
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea; (S.J.); (J.H.)
| |
Collapse
|
232
|
Liang X, Liu J, Liu X, Jin Y, Xu M, Han Z, Wang K, Zhang C, Zou F, Zhou L. LINP1 represses unfolded protein response by directly inhibiting eIF2α phosphorylation to promote cutaneous squamous cell carcinoma. Exp Hematol Oncol 2023; 12:31. [PMID: 36918934 PMCID: PMC10012465 DOI: 10.1186/s40164-023-00395-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Endoplasmic reticulum stress (ER stress) may destroy endoplasmic reticulum homeostasis (ER homeostasis) and leads to programmable cell death. Unfolded protein response (UPR) originally stimulated by ER stress is critical for the survival of tumor cells through trying to re-establish ER homeostasis as an adaption to harsh microenvironment. However, mechanisms involving key regulators in modulating UPR remain underexplored. METHODS The expression of LINP1 in cutaneous squamous cell carcinoma (cSCC) tissues and cell lines was assessed. Subsequently, LINP1 was knocked out, knocked down or overexpressed in cSCC cells. CCK-8 assays, colony forming assays, transwell migration assays and invasiveness measurement by matrigel-coated transwell were performed to examine the role of LINP1 in cSCC development through gain-of-function and loss-of-function experiments. Transcriptomic sequencing (RNA-Seq) was conducted and indicated the key downstream signaling events regulated by LINP1 including UPR and apoptosis signaling. Furthermore, the direct interaction between LINP1 and eIF2α to modulate UPR and apoptosis was confirmed by RNA pulldown, RNA immunoprecipitation (RIP), ChIP-qPCR and in vitro phosphorylation assays. RESULTS In this study, LncRNA in non-homologous end joining pathway 1 (LINP1) was identified to be one of the top ten highest-expressed LncRNAs in cSCC, the second most common cancer in the world. Functional studies using in vitro and in vivo models revealed that LINP1 functions as an oncogene to promote cell proliferation, colony formation, migration and invasiveness while inhibiting cell apoptosis in cSCC. Transcriptomic sequencing after knockdown of LINP1 indicated LINP1 negatively regulates UPR-related pathways involving key effectors for activating UPR and the apoptosis following the prolonged UPR. Mechanistic study showed LINP1 physically interacts with eIF2α to inhibit its phosphorylation for avoiding unmitigated UPR. Loss of LINP1 followed by enhanced eIF2α phosphorylation led to overactivated UPR and induced DDIT3 expression, contributing to ER stress-induced apoptosis and suppression of cSCC development. CONCLUSIONS Our findings demonstrate a novel regulatory hierarchy of UPR by demonstrating LINP1 as a critical modulator for eIF2α phosphorylation and a suppressor of UPR-mediated apoptosis, which suggests a novel therapeutic target for cSCC treatment.
Collapse
Affiliation(s)
- Xiaoting Liang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyu Liu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xingyuan Liu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yi Jin
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Minna Xu
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ke Wang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chunting Zhang
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Liang Zhou
- Department of Toxicology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
233
|
Kwon J, Kim J, Kim KI. Crosstalk between endoplasmic reticulum stress response and autophagy in human diseases. Anim Cells Syst (Seoul) 2023; 27:29-37. [PMID: 36860271 PMCID: PMC9970256 DOI: 10.1080/19768354.2023.2181217] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Cells activate protective mechanisms to overcome stressful conditions that threaten cellular homeostasis, including imbalances in calcium, redox, and nutrient levels. Endoplasmic reticulum (ER) stress activates an intracellular signaling pathway, known as the unfolded protein response (UPR), to mitigate such circumstances and protect cells. Although ER stress is sometimes a negative regulator of autophagy, UPR induced by ER stress typically activates autophagy, a self-degradative pathway that further supports its cytoprotective role. Sustained activation of ER stress and autophagy is known to trigger cell death and is considered a therapeutic target for certain diseases. However, ER stress-induced autophagy can also lead to treatment resistance in cancer and exacerbation of certain diseases. Since the ER stress response and autophagy affect each other, and the degree of their activation is closely related to various diseases, understanding their relationship is very important. In this review, we summarize the current understanding of two fundamental cellular stress responses, the ER stress response and autophagy, and their crosstalk under pathological conditions to help develop therapies for inflammatory diseases, neurodegenerative disorders, and cancer.
Collapse
Affiliation(s)
- Junhee Kwon
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Jihyun Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea, Keun Il Kim Department of Biological Sciences, Sookmyung Women’s University, Seoul04310, Republic of Korea
| |
Collapse
|
234
|
Du J, Zhao H, Zhu M, Dong Y, Peng L, Li J, Zhao Q, Yu Q, Li M. Atg8 and Ire1 in combination regulate the autophagy-related endoplasmic reticulum stress response in Candida albicans. Res Microbiol 2023; 174:103996. [PMID: 36328097 DOI: 10.1016/j.resmic.2022.103996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
The unfolded protein response (UPR) is an important pathway to prevent endoplasmic reticulum (ER) stress in eukaryotic cells. In Saccharomyces cerevisiae, Ire1 is a key regulatory factor required for HAC1 gene splicing for further production of functional Hac1 and activation of UPR gene expression. Autophagy is another mechanism involved in the attenuation of ER stress by ER-phagy, and Atg8 is a core protein in autophagy. Both autophagy and UPR are critical for ER stress response, but whether they act individually or in combination in Candida albicans is unknown. In this study, we explored the interaction between Ire1 and the autophagy protein Atg8 for the ER stress response by constructing the atg8Δ/Δire1Δ/Δ double mutant in the pathogenic fungus C. albicans. Compared to the single mutants atg8Δ/Δ or ire1Δ/Δ, atg8Δ/Δire1Δ/Δ exhibited much higher sensitivity to various ER stress-inducing agents and more severe attenuation of UPR gene expression under ER stress. Further investigations showed that the double mutant had a defect in ER-phagy, which was associated with attenuated vacuolar fusion under ER stress. This study revealed that Ire1 and Atg8 in combination function in the activation of the UPR and ER-phagy to maintain ER homeostasis under ER stress in C. albicans.
Collapse
Affiliation(s)
- Jiawen Du
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengsen Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yixuan Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
235
|
Li J, Ge H, Xu Y, Xie J, Karim N, Yan F, Mo J, Chen W. Chlorogenic acid alleviates oxidative damage in hepatocytes by regulating miR-199a-5p/GRP78 axis. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
236
|
Kwon OW, Kim D, Koh E, Yang HJ. Korean Red Ginseng and Rb1 facilitate remyelination after cuprizone diet-induced demyelination. J Ginseng Res 2023; 47:319-328. [PMID: 36926609 PMCID: PMC10014189 DOI: 10.1016/j.jgr.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/29/2022] [Accepted: 09/27/2022] [Indexed: 03/18/2023] Open
Abstract
Background Demyelination has been observed in neurological disorders, motivating researchers to search for components for enhancing remyelination. Previously we found that Rb1, a major ginsenoside in Korean Red Ginseng (KRG), enhances myelin formation. However, it has not been studied whether Rb1 or KRG function in remyelination after demyelination in vivo. Methods Mice were fed 0.2% cuprizone-containing chow for 5 weeks and returned to normal chow with daily oral injection of vehicle, KRG, or Rb1 for 3 weeks. Brain sections were stained with luxol fast blue (LFB) staining or immunohistochemistry. Primary oligodendrocyte or astrocyte cultures were subject to normal or stress condition with KRG or Rb1 treatment to measure gene expressions of myelin, endoplasmic reticulum (ER) stress, antioxidants and leukemia inhibitory factor (LIF). Results Compared to the vehicle, KRG or Rb1 increased myelin levels at week 6.5 but not 8, when measured by the LFB+ or GST-pi+ area within the corpus callosum. The levels of oligodendrocyte precursor cells, astrocytes, and microglia were high at week 5, and reduced afterwards but not changed by KRG or Rb1. In primary oligodendrocyte cultures, KRG or Rb1 increased expression of myelin genes, ER stress markers, and antioxidants. Interestingly, under cuprizone treatment, elevated ER stress markers were counteracted by KRG or Rb1. Under rotenone treatment, reduced myelin gene expressions were recovered by Rb1. In primary astrocyte cultures, KRG or Rb1 decreased LIF expression. Conclusion KRG and Rb1 may improve myelin regeneration during the remyelination phase in vivo, potentially by directly promoting myelin gene expression.
Collapse
Affiliation(s)
- Oh Wook Kwon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Dalnim Kim
- Korea Institute of Brain Science, Seoul, Republic of Korea
| | - Eugene Koh
- Temasek Life Sciences Laboratories, Singapore
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
- Corresponding author. Department of Integrative Biosciences, University of Brain Education, 284-31, Gyochonjisan-gil, Mokcheon-eup, Dongnam-gu, Cheonan-si, Chungcheongnam-do, 31228, Republic of Korea.
| |
Collapse
|
237
|
Greene ES, Maynard C, Mullenix G, Bedford M, Dridi S. Potential role of endoplasmic reticulum stress in broiler woody breast myopathy. Am J Physiol Cell Physiol 2023; 324:C679-C693. [PMID: 36717103 DOI: 10.1152/ajpcell.00275.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although broiler (meat-type) chickens are one of the most efficient protein sources that supports the livelihoods and food security of billions of people worldwide, they are facing several challenges. Due to its unknown etiology and heavy economic impact, woody breast (WB) myopathy is one of the most challenging problems facing the poultry industry, and for which there is no effective solution. Here, using a primary chicken myotube culture model, we show that hypoxia and endoplasmic reticulum (ER) stress are an integral component of the etiology of the myopathy. Multiple components of the ER stress response are significantly upregulated in WB as compared with normal muscle, and this response was mimicked by hypoxic conditions in chicken primary myotube culture. In addition, apoptotic pathways were activated as indicated by increases in active caspase 3 protein levels in both WB-affected tissues and hypoxic myotube culture, and caspase 3 activity and apoptosis in hypoxic myotube culture. Finally, as a phenotypic hallmark of WB is enhanced fibrosis and increased collagen aggregation, here, we show that hypoxic conditions increase collagen 1A1 and 1A2 gene expression, as well as collagen 1 protein levels in primary myotubes. These effects were partially reversed by tauroursodeoxycholic acid (TUDCA), an ER-stress inhibitor, in myotube culture. Taken together, these findings indicate that hypoxia and ER stress are present in WB, hypoxia can upregulate the cell death arm of the unfolded protein response (UPR) and lead to collagen production in a culture model of WB. This opens new vistas for potential mechanistic targets for future effective interventions to mitigate this myopathy.
Collapse
Affiliation(s)
- Elizabeth S Greene
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
| | - Clay Maynard
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
| | - Garrett Mullenix
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, United States
| |
Collapse
|
238
|
Kovaleva V, Yu LY, Ivanova L, Shpironok O, Nam J, Eesmaa A, Kumpula EP, Sakson S, Toots U, Ustav M, Huiskonen JT, Voutilainen MH, Lindholm P, Karelson M, Saarma M. MANF regulates neuronal survival and UPR through its ER-located receptor IRE1α. Cell Rep 2023; 42:112066. [PMID: 36739529 DOI: 10.1016/j.celrep.2023.112066] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-located protein with cytoprotective effects in neurons and pancreatic β cells in vitro and in models of neurodegeneration and diabetes in vivo. However, the exact mode of MANF action has remained elusive. Here, we show that MANF directly interacts with the ER transmembrane unfolded protein response (UPR) sensor IRE1α, and we identify the binding interface between MANF and IRE1α. The expression of wild-type MANF, but not its IRE1α binding-deficient mutant, attenuates UPR signaling by decreasing IRE1α oligomerization; phosphorylation; splicing of Xbp1, Atf6, and Txnip levels; and protecting neurons from ER stress-induced death. MANF-IRE1α interaction and not MANF-BiP interaction is crucial for MANF pro-survival activity in neurons in vitro and is required to protect dopamine neurons in an animal model of Parkinson's disease. Our data show IRE1α as an intracellular receptor for MANF and regulator of neuronal survival.
Collapse
Affiliation(s)
- Vera Kovaleva
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| | - Li-Ying Yu
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Larisa Ivanova
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
| | - Olesya Shpironok
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Jinhan Nam
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Ave Eesmaa
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Sven Sakson
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Juha T Huiskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Merja H Voutilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
239
|
CHIP Haploinsufficiency Exacerbates Hepatic Steatosis via Enhanced TXNIP Expression and Endoplasmic Reticulum Stress Responses. Antioxidants (Basel) 2023; 12:antiox12020458. [PMID: 36830016 PMCID: PMC9951908 DOI: 10.3390/antiox12020458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
TXNIP is a critical regulator of glucose homeostasis, fatty acid synthesis, and cholesterol accumulation in the liver, and it has been reported that metabolic diseases, such as obesity, atherosclerosis, hyperlipidemia, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD), are associated with endoplasmic reticulum (ER) stress. Because CHIP, an E3 ligase, was known to be involved in regulating tissue injury and inflammation in liver, its role in regulating ER stress-induced NAFLD was investigated in two experimental NAFLD models, a tunicamycin (TM)-induced and other diet-induced NAFLD mice models. In the TM-induced NAFLD model, intraperitoneal injection of TM induced liver steatosis in both CHIP+/+ and CHIP+/- mice, but it was severely exacerbated in CHIP+/- mice compared to CHIP+/+ mice. Key regulators of ER stress and de novo lipogenesis were also enhanced in the livers of TM-inoculated CHIP+/- mice. Furthermore, in the diet-induced NAFLD models, CHIP+/- mice developed severely impaired glucose tolerance, insulin resistance and hepatic steatosis compared to CHIP+/+ mice. Interestingly, CHIP promoted ubiquitin-dependent degradation of TXNIP in vitro, and inhibition of TXNIP was further found to alleviate the inflammation and ER stress responses increased by CHIP inhibition. In addition, the expression of TXNIP was increased in mice deficient in CHIP in the TM- and diet-induced models. These findings suggest that CHIP modulates ER stress and inflammatory responses by inhibiting TXNIP, and that CHIP protects against TM- or HF-HS diet-induced NAFLD and serves as a potential therapeutic means for treating liver diseases.
Collapse
|
240
|
Pontisso I, Ornelas-Guevara R, Combettes L, Dupont G. A journey in UPR modelling. Biol Cell 2023; 115:e2200111. [PMID: 36751133 DOI: 10.1111/boc.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023]
Abstract
Protein folding and protein maturation largely occur in the controlled environment of the Endoplasmic Reticulum (ER). Perturbation to the correct functioning of this organelle leads to altered proteostasis and accumulation of misfolded proteins in the ER lumen. This condition is commonly known as ER stress and is appearing as an important contributor in the pathogenesis of several human diseases. Monitoring of the quality control processes is mediated by the Unfolded Protein Response (UPR). This response consists in a complex network of signalling pathways that aim to restore protein folding and ER homeostasis. Conditions in which UPR is not able to overcome ER stress lead to a switch of the UPR signalling program from an adaptive to a pro-apoptotic one, revealing a key role of UPR in modulating cell fate decisions. Because of its high complexity and its involvement in the regulation of different cellular outcomes, UPR has been the centre of the development of computational models, which tried to better dissect the role of UPR or of its specific components in several contexts. In this review, we go through the existing mathematical models of UPR. We emphasize how their study contributed to an improved characterization of the role of this intricate response in the modulation of cellular functions.
Collapse
Affiliation(s)
- Ilaria Pontisso
- Institut de Biologie Intégrative de la Cellule (I2BC) - CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France.,"Calcium signaling and microbial infections", Inserm U1280, Gif-sur-Yvette, France
| | | | - Laurent Combettes
- Institut de Biologie Intégrative de la Cellule (I2BC) - CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France.,"Calcium signaling and microbial infections", Inserm U1280, Gif-sur-Yvette, France
| | - Geneviève Dupont
- Unit of Theoretical Chronobiology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
241
|
Bashir S, Banday M, Qadri O, Pal D, Bashir A, Hilal N, Altaf M, Fazili KM. The Bcl-2 family protein bid interacts with the ER stress sensor IRE1 to differentially modulate its RNase activity. FEBS Lett 2023; 597:962-974. [PMID: 36723387 DOI: 10.1002/1873-3468.14593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/02/2023]
Abstract
IRE1 is a transmembrane signalling protein that activates the unfolded protein response under endoplasmic reticulum stress. IRE1 is endowed with kinase and endoribonuclease activities. The ribonuclease activity of IRE1 can switch substrate specificities to carry out atypical splicing of Xbp1 mRNA or trigger the degradation of specific mRNAs. The mechanisms regulating the distinct ribonuclease activities of IRE1 have yet to be fully understood. Here, we report the Bcl-2 family protein Bid as a novel recruit of the IRE1 complex, which directly interacts with the cytoplasmic domain of IRE1. Bid binding to IRE1 leads to a decrease in IRE1 phosphorylation in a way that it can only perform Xbp1 splicing while mRNA degradation activity is repressed. The RNase outputs of IRE1 have been found to regulate the homeostatic-apoptotic switch. This study, thus, provides insight into IRE1-mediated cell survival.
Collapse
Affiliation(s)
- Samirul Bashir
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Mariam Banday
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Ozaira Qadri
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Debnath Pal
- Department of Computational and Data Science (CDS), Indian Institute of Science (IISc), Bengaluru, India
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Nazia Hilal
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | - Mohammad Altaf
- Department of Biotechnology, University of Kashmir, Hazratbal J&K, India
| | | |
Collapse
|
242
|
Widyasari K, Bwalya J, Kim K. Binding immunoglobulin 2 functions as a proviral factor for potyvirus infections in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:179-187. [PMID: 36416097 PMCID: PMC9831281 DOI: 10.1111/mpp.13284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Infection of viruses from the genera Bromovirus, Potyvirus, and Potexvirus in Nicotiana benthamiana induces significant up-regulation of the genes that encode the HSP70 family, including binding immunoglobulin protein 2 (BiP2). Three up-regulated genes were knocked down and infection assays with these knockdown lines demonstrated the importance of the BiP2 gene for potyvirus infection but not for infection by the other tested viruses. Distinct symptoms of cucumber mosaic virus (CMV) and potato virus X (PVX) were observed in the BiP2 knockdown line at 10 days postagroinfiltration. Interestingly, following inoculation with either soybean mosaic virus (SMV) or pepper mottle virus (PepMoV) co-expressing green fluorescent protein (GFP), neither crinkle symptoms nor GFP signals were observed in the BiP2 knockdown line. Subsequent reverse transcription-quantitative PCR analysis demonstrated that knockdown of BiP2 resulted in a significant decrease of SMV and PepMoV RNA accumulation but not PVX or CMV RNA accumulation. Further yeast two-hybrid and co-immunoprecipitation analyses validated the interaction between BiP2 and nuclear inclusion protein b (NIb) of SMV. Together, our findings suggest the crucial role of BiP2 as a proviral host factor necessary for potyvirus infection. The interaction between BiP2 and NIb may be the critical factor determining susceptibility in N. benthamiana, but further studies are needed to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Kristin Widyasari
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - John Bwalya
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
| | - Kook‐Hyung Kim
- Department of Agricultural BiotechnologySeoul National UniversitySeoulSouth Korea
- Research Institute of Agriculture and Life SciencesSeoul National UniversitySeoulSouth Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoulSouth Korea
| |
Collapse
|
243
|
Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, Ren J. Endoplasmic reticulum stress in liver diseases. Hepatology 2023; 77:619-639. [PMID: 35524448 PMCID: PMC9637239 DOI: 10.1002/hep.32562] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle that fosters the correct folding of linear polypeptides and proteins, a process tightly governed by the ER-resident enzymes and chaperones. Failure to shape the proper 3-dimensional architecture of proteins culminates in the accumulation of misfolded or unfolded proteins within the ER, disturbs ER homeostasis, and leads to canonically defined ER stress. Recent studies have elucidated that cellular perturbations, such as lipotoxicity, can also lead to ER stress. In response to ER stress, the unfolded protein response (UPR) is activated to reestablish ER homeostasis ("adaptive UPR"), or, conversely, to provoke cell death when ER stress is overwhelmed and sustained ("maladaptive UPR"). It is well documented that ER stress contributes to the onset and progression of multiple hepatic pathologies including NAFLD, alcohol-associated liver disease, viral hepatitis, liver ischemia, drug toxicity, and liver cancers. Here, we review key studies dealing with the emerging role of ER stress and the UPR in the pathophysiology of liver diseases from cellular, murine, and human models. Specifically, we will summarize current available knowledge on pharmacological and non-pharmacological interventions that may be used to target maladaptive UPR for the treatment of nonmalignant liver diseases.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Neil Kaplowitz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Cynthia Lebeaupin
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute for Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
244
|
The cellular biology of plasma cells: Unmet challenges and opportunities. Immunol Lett 2023; 254:6-12. [PMID: 36646289 DOI: 10.1016/j.imlet.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Plasma cells and the antibodies they secrete are paramount for protection against infection but can also be implicated in diseases including autoantibody-mediated disease and multiple myeloma. Plasma cell terminal differentiation relies on a transcriptional switch and on important morphological changes. The cellular and molecular mechanisms underlying these processes are partly understood and how plasma cells manage to survive for long periods of time while secreting large quantities of antibodies remains unclear. In this review we aim to put in perspective what is known about plasma cell cellular biology to highlight the challenges faced by this field of research but also to illustrate how new opportunities may arise from the study of the fundamental mechanisms sustaining plasma cell survival and function.
Collapse
|
245
|
Yue J, Sun X, Duan X, Sun C, Chen H, Sun H, Zhang L. Triphenyl phosphate proved more potent than its metabolite diphenyl phosphate in inducing hepatic insulin resistance through endoplasmic reticulum stress. ENVIRONMENT INTERNATIONAL 2023; 172:107749. [PMID: 36680801 DOI: 10.1016/j.envint.2023.107749] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Triphenyl phosphate (TPHP) is a widely used flame retardant and plasticizer and has been detected extensively in environmental media, wildlife and human bodies. Several epidemiological and animal studies have revealed that TPHP exposure is positively associated with glucose homeostasis disruption and diabetes. However, the effects of TPHP on hepatic glucose homeostasis and the underlying mechanisms remain unclear. The present work aimed to investigate the cytotoxicity and glucose metabolism disruption of TPHP and its metabolite diphenyl phosphate (DPHP) within hepatocytes. The cell viability assay undertaken on human normal liver (L02) cells showed that TPHP exhibited more potent hepatotoxicity than DPHP. RNA sequencing (RNA-seq) data showed that TPHP and DPHP presented different modes of toxic action. Insulin resistance is one of the predominant toxicities for TPHP, but not for DPHP. The insulin-stimulated glucose uptake and glycogen synthesis were impaired by TPHP, while DPHP exhibited no significant impairment on these factors. TPHP exposure induced endoplasmic reticulum (ER) stress, and the ER stress antagonist 4-PBA restored the impairment of insulin-stimulated glucose uptake and glycogen synthesis induced by TPHP. TPHP could also induce liver ER stress and insulin resistance in mice. Taken together, the results suggested that TPHP induces more potent insulin resistance through ER stress than its metabolite DPHP.
Collapse
Affiliation(s)
- Junjie Yue
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xuan Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoyu Duan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Caiting Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lianying Zhang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
246
|
Mitochondrial remodelling is essential for female germ cell differentiation and survival. PLoS Genet 2023; 19:e1010610. [PMID: 36696418 PMCID: PMC9901744 DOI: 10.1371/journal.pgen.1010610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells often possess immature mitochondria with few inner membrane invaginations, which increase as stem cells differentiate. Despite this being a conserved feature across many stem cell types in numerous organisms, how and why mitochondria undergo such remodelling during stem cell differentiation has remained unclear. Here, using Drosophila germline stem cells (GSCs), we show that Complex V drives mitochondrial remodelling during the early stages of GSC differentiation, prior to terminal differentiation. This endows germline mitochondria with the capacity to generate large amounts of ATP required for later egg growth and development. Interestingly, impairing mitochondrial remodelling prior to terminal differentiation results in endoplasmic reticulum (ER) lipid bilayer stress, Protein kinase R-like ER kinase (PERK)-mediated activation of the Integrated Stress Response (ISR) and germ cell death. Taken together, our data suggest that mitochondrial remodelling is an essential and tightly integrated aspect of stem cell differentiation. This work sheds light on the potential impact of mitochondrial dysfunction on stem and germ cell function, highlighting ER lipid bilayer stress as a potential major driver of phenotypes caused by mitochondrial dysfunction.
Collapse
|
247
|
Bonsignore G, Martinotti S, Ranzato E. Endoplasmic Reticulum Stress and Cancer: Could Unfolded Protein Response Be a Druggable Target for Cancer Therapy? Int J Mol Sci 2023; 24:ijms24021566. [PMID: 36675080 PMCID: PMC9865308 DOI: 10.3390/ijms24021566] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Unfolded protein response (UPR) is an adaptive response which is used for re-establishing protein homeostasis, and it is triggered by endoplasmic reticulum (ER) stress. Specific ER proteins mediate UPR activation, after dissociation from chaperone Glucose-Regulated Protein 78 (GRP78). UPR can decrease ER stress, producing an ER adaptive response, block UPR if ER homeostasis is restored, or regulate apoptosis. Some tumour types are linked to ER protein folding machinery disturbance, highlighting how UPR plays a pivotal role in cancer cells to keep malignancy and drug resistance. In this review, we focus on some molecules that have been revealed to target ER stress demonstrating as UPR could be a new target in cancer treatment.
Collapse
|
248
|
Qin C, Wang Y, Zhang Y, Zhu Y, Wang Y, Cao F. Transcriptome-wide analysis reveals the molecular mechanisms of cannabinoid type II receptor agonists in cardiac injury induced by chronic psychological stress. Front Genet 2023; 13:1095428. [PMID: 36704356 PMCID: PMC9871316 DOI: 10.3389/fgene.2022.1095428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Growing evidence has supported that chronic psychological stress would cause heart damage, However the mechanisms involved are not clear and effective interventions are insufficient. Cannabinoid type 2 receptor (CB2R) can be a potential treatment for cardiac injury. This study is aimed to investigate the protective mechanism of CB2R agonist against chronic psychological stress-induced cardiac injury. Methods: A mouse chronic psychological stress model was constructed based on a chronic unpredictable stress pattern. Mice were performed a three-week psychological stress procedure, and cardiac tissues of them were collected for whole-transcriptome sequencing. Overlap analysis was performed on differentially expressed mRNAs (DE-mRNAs) and ER stress-related genes (ERSRGs), and bioinformatic methods were used to predict the ceRNA networks and conduct pathway analysis. The expressions of the DE-ERSRGs were validated by RT-qPCR. Results: In the comparison of DE mRNA in Case group, Control group and Treatment group, three groups of ceRNA networks and ceRNA (circ) networks were constructed. The DE-mRNAs were mainly enriched in chromatid-relevant terms and Hematopoietic cell lineage pathway. Additionally, 13 DE-ERSRGs were obtained by the overlap analysis, which were utilized to establish a ceRNA network with 15 nodes and 14 edges and a ceRNA (circ) network with 23 nodes and 28 edges. Furthermore, four DE-ERSRGs (Cdkn1a, Atf3, Fkbp5, Gabarapl1) in the networks were key, which were mainly enriched in response to extracellular stimulus, response to nutrient levels, cellular response to external stimulus, and FoxO signaling pathway. Finally, the RT-qPCR results showed almost consistent expression patterns of 13 DE-ERSRGs between the transcriptome and tissue samples. Conclusion: The findings of this study provide novel insights into the molecular mechanisms of chronic psychological stress-induced cardiac diseases and reveal novel targets for the cardioprotective effects of CB2R agonists.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujia Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Zhu
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China,Beijing Key Laboratory of Research on Aging and Related Diseases, Beijing, China,*Correspondence: Feng Cao,
| |
Collapse
|
249
|
Chen G, Wei T, Ju F, Li H. Protein quality control and aggregation in the endoplasmic reticulum: From basic to bedside. Front Cell Dev Biol 2023; 11:1156152. [PMID: 37152279 PMCID: PMC10154544 DOI: 10.3389/fcell.2023.1156152] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Endoplasmic reticulum (ER) is the largest membrane-bound compartment in all cells and functions as a key regulator in protein biosynthesis, lipid metabolism, and calcium balance. Mammalian endoplasmic reticulum has evolved with an orchestrated protein quality control system to handle defective proteins and ensure endoplasmic reticulum homeostasis. Nevertheless, the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum may occur during pathological conditions. The inability of endoplasmic reticulum quality control system to clear faulty proteins and aggregates from the endoplasmic reticulum results in the development of many human disorders. The efforts to comprehensively understand endoplasmic reticulum quality control network and protein aggregation will benefit the diagnostics and therapeutics of endoplasmic reticulum storage diseases. Herein, we overview recent advances in mammalian endoplasmic reticulum protein quality control system, describe protein phase transition model, and summarize the approaches to monitor protein aggregation. Moreover, we discuss the therapeutic applications of enhancing endoplasmic reticulum protein quality control pathways in endoplasmic reticulum storage diseases.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingyi Wei
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Furong Ju
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong kong SAR, China
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, China
- AoBio Medical, Shanghai, China
- *Correspondence: Haisen Li,
| |
Collapse
|
250
|
Celik C, Lee SYT, Yap WS, Thibault G. Endoplasmic reticulum stress and lipids in health and diseases. Prog Lipid Res 2023; 89:101198. [PMID: 36379317 DOI: 10.1016/j.plipres.2022.101198] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
The endoplasmic reticulum (ER) is a complex and dynamic organelle that regulates many cellular pathways, including protein synthesis, protein quality control, and lipid synthesis. When one or multiple ER roles are dysregulated and saturated, the ER enters a stress state, which, in turn, activates the highly conserved unfolded protein response (UPR). By sensing the accumulation of unfolded proteins or lipid bilayer stress (LBS) at the ER, the UPR triggers pathways to restore ER homeostasis and eventually induces apoptosis if the stress remains unresolved. In recent years, it has emerged that the UPR works intimately with other cellular pathways to maintain lipid homeostasis at the ER, and so does at cellular levels. Lipid distribution, along with lipid anabolism and catabolism, are tightly regulated, in part, by the ER. Dysfunctional and overwhelmed lipid-related pathways, independently or in combination with ER stress, can have reciprocal effects on other cellular functions, contributing to the development of diseases. In this review, we summarize the current understanding of the UPR in response to proteotoxic stress and LBS and the breadth of the functions mitigated by the UPR in different tissues and in the context of diseases.
Collapse
Affiliation(s)
- Cenk Celik
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Wei Sheng Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore.
| |
Collapse
|