201
|
Lee KS, Lee LE, Levine E. HandKAchip - Hands-free killing assay on a chip. Sci Rep 2016; 6:35862. [PMID: 27775015 PMCID: PMC5075874 DOI: 10.1038/srep35862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/05/2016] [Indexed: 01/24/2023] Open
Abstract
Small animals such as the roundworm C. elegans are excellent models for studying bacterial infection and host response, as well as for genetic and chemical screens. A key methodology is the killing assay, in which the number of surviving animals is tracked as a function of the time post infection. This is a labor-intensive procedure, prone to human error and subjective choices, and often involves undesired perturbation to the animals and their environment. In addition, the survival of animals is just one aspect of a multi-dimensional complex biological process. Here we report a microfluidic-based approach for performing killing assays in worms, compatible with standard assays performed on solid media. In addition to providing accurate and reproducible survival curves at a considerably reduced labor, this approach allows acquisition of a multitude of quantitative data with minimal undesired perturbations. These measurements are obtained automatically at a worm-by-worm resolution using a custom image processing workflow. The proposed approach is simple, scalable, and extendable, and is significantly more economical than standard manual protocols.
Collapse
Affiliation(s)
- Kyung Suk Lee
- Department of Physics and Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lucy E. Lee
- Department of Physics and Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Erel Levine
- Department of Physics and Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
202
|
Fan X, Liang Q, Lian T, Wu Q, Gaur U, Li D, Yang D, Mao X, Jin Z, Li Y, Yang M. Rapamycin preserves gut homeostasis during Drosophila aging. Oncotarget 2016; 6:35274-83. [PMID: 26431326 PMCID: PMC4742104 DOI: 10.18632/oncotarget.5895] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 01/25/2023] Open
Abstract
Gut homeostasis plays an important role in maintaining the overall body health during aging. Rapamycin, a specific inhibitor of mTOR, exerts prolongevity effects in evolutionarily diverse species. However, its impact on the intestinal homeostasis remains poorly understood. Here, we demonstrate that rapamycin can slow down the proliferation rate of intestinal stem cells (ISCs) in the aging guts and induce autophagy in the intestinal epithelium in Drosophila. Rapamycin can also significantly affect the FOXO associated genes in intestine and up-regulate the negative regulators of IMD/Rel pathway, consequently delaying the microbial expansion in the aging guts. Collectively, these findings reveal that rapamycin can delay the intestinal aging by inhibiting mTOR and thus keeping stem cell proliferation in check. These results will further explain the mechanism of healthspan and lifespan extension by rapamycin in Drosophila.
Collapse
Affiliation(s)
- Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Qing Liang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Ting Lian
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Qi Wu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Uma Gaur
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xueping Mao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Zhihua Jin
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Zhejiang, P.R. China
| | - Ying Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
203
|
Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci U S A 2016; 113:E6823-E6830. [PMID: 27791141 DOI: 10.1073/pnas.1612047113] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.
Collapse
|
204
|
Fernández-Bedmar Z, Alonso-Moraga A. In vivo and in vitro evaluation for nutraceutical purposes of capsaicin, capsanthin, lutein and four pepper varieties. Food Chem Toxicol 2016; 98:89-99. [PMID: 27746329 DOI: 10.1016/j.fct.2016.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/18/2016] [Accepted: 10/10/2016] [Indexed: 11/28/2022]
Abstract
The purpose of this study is to determine the nutraceutic potential of different Capsicum sp, capsaicin, capsanthin and lutein and provide data in order to clarify the conflicting results obtained for capsaicin by different authors. To achieve these objectives, in vivo (geno/antigenotoxicity and lifespan assays in the animal model Drosophila) and in vitro (cytotoxicity and DNA-fragmentation assays in HL60 promyelocytic cell line) assays were carried out. Results showed that i) none of the tested substances were genotoxic except green hot pepper and capsaicin at the highest tested concentration (5 mg/mL and 11.5 μM respectively), ii) all tested substances except green hot pepper are antimutagenic against H2O2-induced damage, iii) only red sweet pepper significantly extend the lifespan and healthspan of D. melanogaster at 1.25 and 2.5 mg/mL, iv) all pepper varieties induce dose-depended cytotoxic effect in HL60 cells with different IC50, and v) all pepper varieties and capsaicin exerted proapoptotic effect on HL60 cells. IN CONCLUSION (i) sweet peppers could be suggested as nutraceutical food, (ii) hot peppers should be moderately consumed, and (iii) supplementary studies are necessary to clarify the synergic effect of the carotenoids and capsaicinoids in the hot pepper food matrix.
Collapse
|
205
|
Giraldo YM, Kamhi JF, Fourcassié V, Moreau M, Robson SKA, Rusakov A, Wimberly L, Diloreto A, Kordek A, Traniello JFA. Lifespan behavioural and neural resilience in a social insect. Proc Biol Sci 2016; 283:rspb.2015.2603. [PMID: 26740614 DOI: 10.1098/rspb.2015.2603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Analyses of senescence in social species are important to understanding how group living influences the evolution of ageing in society members. Social insects exhibit remarkable lifespan polyphenisms and division of labour, presenting excellent opportunities to test hypotheses concerning ageing and behaviour. Senescence patterns in other taxa suggest that behavioural performance in ageing workers would decrease in association with declining brain functions. Using the ant Pheidole dentata as a model, we found that 120-day-old minor workers, having completed 86% of their laboratory lifespan, showed no decrease in sensorimotor functions underscoring complex tasks such as alloparenting and foraging. Collaterally, we found no age-associated increases in apoptosis in functionally specialized brain compartments or decreases in synaptic densities in the mushroom bodies, regions associated with integrative processing. Furthermore, brain titres of serotonin and dopamine--neuromodulators that could negatively impact behaviour through age-related declines--increased in old workers. Unimpaired task performance appears to be based on the maintenance of brain functions supporting olfaction and motor coordination independent of age. Our study is the first to comprehensively assess lifespan task performance and its neurobiological correlates and identify constancy in behavioural performance and the absence of significant age-related neural declines.
Collapse
Affiliation(s)
| | - J Frances Kamhi
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Vincent Fourcassié
- Research Center on Animal Cognition, CNRS, Toulouse 31062 Cedex 9, France Research Center on Animal Cognition, Université de Toulouse, Toulouse 31062 Cedex 9, France
| | - Mathieu Moreau
- Research Center on Animal Cognition, CNRS, Toulouse 31062 Cedex 9, France Research Center on Animal Cognition, Université de Toulouse, Toulouse 31062 Cedex 9, France
| | - Simon K A Robson
- College of Marine and Environmental Science, James Cook University, Townsville 4811, Australia
| | - Adina Rusakov
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | | | - Adrianna Kordek
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | |
Collapse
|
206
|
Shipp SL, Cline MA, Gilbert ER. Recent advances in the understanding of how neuropeptide Y and α-melanocyte stimulating hormone function in adipose physiology. Adipocyte 2016; 5:333-350. [PMID: 27994947 DOI: 10.1080/21623945.2016.1208867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between the brain and the adipose tissue has been the focus of many studies in recent years, with the "brain-fat axis" identified as a system that orchestrates the assimilation and usage of energy to maintain body mass and adequate fat stores. It is now well-known that appetite-regulating peptides that were studied as neurotransmitters in the central nervous system can act both on the hypothalamus to regulate feeding behavior and also on the adipose tissue to modulate the storage of energy. Energy balance is thus partly controlled by factors that can alter both energy intake and storage/expenditure. Two such factors involved in these processes are neuropeptide Y (NPY) and α-melanocyte stimulating hormone (α-MSH). NPY, an orexigenic factor, is associated with promoting adipogenesis in both mammals and chickens, while α-MSH, an anorexigenic factor, stimulates lipolysis in rodents. There is also evidence of interaction between the 2 peptides. This review aims to summarize recent advances in the study of NPY and α-MSH regarding their role in adipose tissue physiology, with an emphasis on the cellular and molecular mechanisms. A greater understanding of the brain-fat axis and regulation of adiposity by bioactive peptides may provide insights on strategies to prevent or treat obesity and also enhance nutrient utilization efficiency in agriculturally-important species.
Collapse
|
207
|
Shilovsky GA, Putyatina TS, Markov AV, Skulachev VP. Contribution of Quantitative Methods of Estimating Mortality Dynamics to Explaining Mechanisms of Aging. BIOCHEMISTRY (MOSCOW) 2016; 80:1547-59. [PMID: 26638679 DOI: 10.1134/s0006297915120020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Accumulation of various types of unrepaired damage of the genome because of increasing production of reactive oxygen species and decreasing efficiency of the antioxidant defense system and repair systems can cause age-related diseases and emergence of phenotypic signs of senescence. This should lead to increasing vulnerability and to mortality monotonously increasing with age independently of the position of the species on the evolutionary tree. In this light, the survival, mortality, and fertility curves for 45 animal and plant species and one alga published by the Max Planck Institute for Demographic Research (Germany/Denmark) are of special interest (Jones, O. R., et al. (2014) Nature, 505, 169-173). We divided all species treated in that study into four groups according to the ratio of mortality at the terminal age (which corresponds to 5% survival) and average mortality during the entire studied period. For animals of group IV (long-lived and senescent), including humans, the Jones method makes it possible to trace mortality during the entire life cycle. The same applies to short-lived animals (e.g. nematodes or the tundra vole), whether they display the Gompertz type of senescence or not. However, in long-lived species with a less pronounced increase in mortality with age (e.g. the freshwater crocodile, hermit crab, or Scots pine), as well as in animals of average lifespan that reach the terminal age earlier than they could have enough time to become senescent, the Jones method is capable of characterizing only a small part of the life cycle and does not allow judging how senescence manifests itself at late stages of the life cycle. Thus, it is known that old trees display signs of biological senescence rather clearly; although Jones et al. consider them non-senescent organisms because less than 5% of sexually mature individuals survive to display the first manifestations of these characters. We have concluded that the classification proposed by Jones et al. makes it possible to approximately divide animals and plants only by their levels of the Gompertz type of senescence (i.e. actuarial senescence), whereas susceptibility to biological senescence can be estimated only when principally different models are applied.
Collapse
Affiliation(s)
- G A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | | | |
Collapse
|
208
|
Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity. Nat Commun 2016; 7:12871. [PMID: 27647497 PMCID: PMC5034330 DOI: 10.1038/ncomms12871] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/10/2016] [Indexed: 01/09/2023] Open
Abstract
Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia–axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10. Importantly, boosting PI3K/Draper activity in aged glia significantly reverses slow phagocytic responses. Moreover, several hours post axotomy, early hallmarks of Wallerian degeneration (WD) are delayed in aged flies. We propose that slow clearance of degenerating axons is mechanistically twofold, resulting from deferred initiation of axonal WD and reduced PI3K/Draper-dependent glial phagocytic function. Interventions that boost glial engulfment activity, however, can substantially reverse delayed clearance of damaged neuronal debris. Glial engulfment declines with age, but the mechanism is unclear. Here authors show that in the Drosophila olfactory system, glial phagocytosis of injury-induced degenerating axons decreases with age due to reduced PI3K/Draper activity, and restoring Draper in aged glia rescues such defects.
Collapse
|
209
|
Zou X, Santa-Maria CA, O'Brien J, Gius D, Zhu Y. Manganese Superoxide Dismutase Acetylation and Dysregulation, Due to Loss of SIRT3 Activity, Promote a Luminal B-Like Breast Carcinogenic-Permissive Phenotype. Antioxid Redox Signal 2016; 25:326-36. [PMID: 26935174 PMCID: PMC4991597 DOI: 10.1089/ars.2016.6641] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Breast cancer is the most common nondermatologic malignancy among women in the United States, among which endocrine receptor-positive breast cancer accounts for up to 80%. Endocrine receptor-positive breast cancers can be categorized molecularly into luminal A and B subtypes, of which the latter is an aggressive form that is less responsive to endocrine therapy with inferior prognosis. RECENT ADVANCES Sirtuin, an aging-related gene involved in mitochondrial metabolism, is associated with life span, and more importantly, murine models lacking Sirt3 spontaneously develop tumors that resemble human luminal B breast cancer. Furthermore, these tumors exhibit aberrant manganese superoxide dismutase (MnSOD) acetylation at lysine 68 and lysine 122 and have abnormally high reactive oxygen species (ROS) levels, which have been observed in many types of breast cancer. CRITICAL ISSUES The mechanism of how luminal B breast cancer develops resistance to endocrine therapy remains unclear. MnSOD, a primary mitochondrial detoxification enzyme, functions by scavenging excessive ROS from the mitochondria and maintaining mitochondrial and cellular homeostasis. Sirt3, a mitochondrial fidelity protein, can regulate the activity of MnSOD through deacetylation. In this study, we discuss a possible mechanism of how loss of SIRT3-guided MnSOD acetylation results in endocrine therapy resistance of human luminal B breast cancer. FUTURE DIRECTIONS Acetylation of MnSOD and other mitochondrial proteins, due to loss of SIRT3, may explain the connection between ROS and development of luminal B breast cancer and how luminal B breast cancer becomes resistant to endocrine therapy. Antioxid. Redox Signal. 25, 326-336.
Collapse
Affiliation(s)
- Xianghui Zou
- 1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,2 Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,3 Driskill Graduate Program in Life Science, Feinburg School of Medicine, Northwestern University , Chicago, Illinois
| | - Cesar Augusto Santa-Maria
- 4 Division of Medical Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Joseph O'Brien
- 1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,2 Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - David Gius
- 1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,2 Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| | - Yueming Zhu
- 1 Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois.,2 Department of Pharmacology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
210
|
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29:90-112. [PMID: 27353257 PMCID: PMC5991498 DOI: 10.1016/j.arr.2016.06.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging. Though inherently complex, aging is characterized by numerous changes that take place at different levels of the biological hierarchy. We therefore explore some of the most relevant changes that take place during aging and, finally, we overview the current status of emergent aging therapies and what the future holds for this field of research. From this multi-dimensional approach, it becomes clear that an integrative approach that couples aging research with systems biology, capable of providing novel insights into how and why we age, is necessary.
Collapse
Affiliation(s)
- João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gustavo M Silva
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
211
|
Rueppell O, Aumer D, Moritz RF. Ties between ageing plasticity and reproductive physiology in honey bees (Apis mellifera) reveal a positive relation between fecundity and longevity as consequence of advanced social evolution. CURRENT OPINION IN INSECT SCIENCE 2016; 16:64-68. [PMID: 27720052 PMCID: PMC5094365 DOI: 10.1016/j.cois.2016.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 05/12/2023]
Abstract
Honey bees (Apis mellifera) are the best studied model of ageing among the social insects. As in other social insects, the reproductive queen far outlives her non-reproductive workers despite developing from the same genome in the same colony environment. Thus, the different social roles of the two female castes are critical for the profound phenotypic plasticity. In several special cases, such as the reproductive workers of Apis mellifera capensis, within-caste plasticity enables further studies of the fecundity-longevity syndrome in honey bees. At present, molecular evidence suggests that a reorganization of physiological control pathways may facilitate longevity of reproductive individuals. However, the social role and social environment of the different colony members are also very important and one of the key future questions is how much social facilitation versus internal regulation is responsible for the positive association between fecundity and longevity in honey bees.
Collapse
Affiliation(s)
- Olav Rueppell
- University of North Carolina at Greensboro, Department of Biology, Greensboro, NC, USA.
| | - Denise Aumer
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| | - Robin Fa Moritz
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
212
|
Zamberlan DC, Amaral GP, Arantes LP, Machado ML, Mizdal CR, Campos MMA, Soares FAA. Rosmarinus officinalis L. increases Caenorhabditis elegans stress resistance and longevity in a DAF-16, HSF-1 and SKN-1-dependent manner. ACTA ACUST UNITED AC 2016; 49:e5235. [PMID: 27533765 PMCID: PMC4988476 DOI: 10.1590/1414-431x20165235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/06/2016] [Indexed: 11/21/2022]
Abstract
Improving overall health and quality of life, preventing diseases and increasing life expectancy are key concerns in the field of public health. The search for antioxidants that can inhibit oxidative damage in cells has received a lot of attention. Rosmarinus officinalis L. represents an exceptionally rich source of bioactive compounds with pharmacological properties. In the present study, we explored the effects of the ethanolic extract of R. officinalis (eeRo) on stress resistance and longevity using the non-parasitic nematode Caenorhabditis elegans as a model. We report for the first time that eeRo increased resistance against oxidative and thermal stress and extended C. elegans longevity in an insulin/IGF signaling pathway-dependent manner. These data emphasize the eeRo beneficial effects on C. elegans under stress.
Collapse
Affiliation(s)
- D C Zamberlan
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - G P Amaral
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - L P Arantes
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - M L Machado
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - C R Mizdal
- Departamento de Análises Clínicas Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - M M A Campos
- Departamento de Análises Clínicas Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - F A A Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| |
Collapse
|
213
|
Aging, Clonality, and Rejuvenation of Hematopoietic Stem Cells. Trends Mol Med 2016; 22:701-712. [PMID: 27380967 DOI: 10.1016/j.molmed.2016.06.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/12/2023]
Abstract
Aging is associated with reduced organ function and increased disease incidence. Hematopoietic stem cell (HSC) aging driven by both cell intrinsic and extrinsic factors is linked to impaired HSC self-renewal and regeneration, aging-associated immune remodeling, and increased leukemia incidence. Compromised DNA damage responses and the increased production of reactive oxygen species (ROS) have been previously causatively attributed to HSC aging. However, recent paradigm-shifting concepts, such as global epigenetic and cytoskeletal polarity shifts, cellular senescence, as well as the clonal selection of HSCs upon aging, provide new insights into HSC aging mechanisms. Rejuvenating agents that can reprogram the epigenetic status of aged HSCs or senolytic drugs that selectively deplete senescent cells provide promising translational avenues for attenuating hematopoietic aging and, potentially, alleviating aging-associated immune remodeling and myeloid malignancies.
Collapse
|
214
|
Abstract
Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer.
Collapse
Affiliation(s)
- Sangita Pal
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Genes and Development Graduate Program, University of Texas Graduate School of the Biomedical Sciences at Houston, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Corresponding author.
| |
Collapse
|
215
|
Salminen A, Kaarniranta K, Kauppinen A. Age-related changes in AMPK activation: Role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res Rev 2016; 28:15-26. [PMID: 27060201 DOI: 10.1016/j.arr.2016.04.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
AMP-activated protein kinase (AMPK) is a fundamental regulator of energy metabolism, stress resistance, and cellular proteostasis. AMPK signaling controls an integrated signaling network which is involved in the regulation of healthspan and lifespan e.g. via FoxO, mTOR/ULK1, CRCT-1/CREB, and SIRT1 signaling pathways. Several studies have demonstrated that the activation capacity of AMPK signaling declines with aging, which impairs the maintenance of efficient cellular homeostasis and enhances the aging process. However, it seems that the aging process affects AMPK activation in a context-dependent manner since occasionally, it can also augment AMPK activation, possibly attributable to the type of insult and tissue homeostasis. Three protein phosphatases, PP1, PP2A, and PP2C, inhibit AMPK activation by dephosphorylating the Thr172 residue of AMPKα, required for AMPK activation. In addition, several upstream signaling pathways can phosphorylate Ser/Thr residues in the β/γ interaction domain of the AMPKα subunit that subsequently blocks the activation of AMPK. These inhibitory pathways include the insulin/AKT, cyclic AMP/PKA, and RAS/MEK/ERK pathways. We will examine the evidence whether the efficiency of AMPK responsiveness declines during the aging process. Next, we will review the mechanisms involved in curtailing the activation of AMPK. Finally, we will elucidate the potential age-related changes in the inhibitory regulation of AMPK signaling that might be a part of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
216
|
Asthana J, Mishra BN, Pandey R. Acacetin promotes healthy aging by altering stress response in Caenorhabditis elegans. Free Radic Res 2016; 50:861-74. [PMID: 27150237 DOI: 10.1080/10715762.2016.1187268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The progression in lifespan has been associated with elevated intracellular reactive oxygen species (ROS) and oxidative stress level which contributes to development of age related disorders. The discovery of lifespan modulating phytomolecules may promote development of natural therapies against age related afflictions. Acacetin (5,7-dihydroxy-4-methoxyflavone), is a naturally occurring flavonoid known to possess therapeutic properties. To this end, the present study evaluates effect of acacetin (AC) on lifespan, stress and neurotoxicity for the first time by using well-established free living, multicellular Caenorhabditis elegans model system. The 25 μM dose of AC significantly prolonged the mean lifespan of worms by 27.31% in comparison to untreated control and other tested doses of AC. Additionally, AC enhanced stress resistance against oxidative and thermal stress in worms. Furthermore, AC attenuated age related intracellular ROS level, aggregation of age pigment lipofuscin and increased the mean survival in stress hypersensitive mev-1 mutant by 40.5%. AC supplementation also reduced the alpha synuclein aggregation in transgenic worm model of Parkinson's disease. The enhanced stress resistance, lifespan and alleviation of age related pathology can be attributed to increment in stress modulatory enzymes like superoxide dismutase (SOD) and catalase (CAT) level. Altogether the results suggest AC exposure maintains stress level, health span and extends mean lifespan of C. elegans. The longevity promoting and neuromodulatory effects of AC are mediated by up regulation of the stress response genes sod-3 and gst-4. The present finding gives new insights of natural remedies and their future prospects in developing therapeutic interventions for managing age related diseases.
Collapse
Affiliation(s)
- Jyotsna Asthana
- a Microbial Technology and Nematology Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow , India ;,b Department of Biotechnology , I.E.T. Campus, Dr. A.P.J. Abdul Kalam Technical University , Lucknow , India
| | - B N Mishra
- b Department of Biotechnology , I.E.T. Campus, Dr. A.P.J. Abdul Kalam Technical University , Lucknow , India
| | - Rakesh Pandey
- a Microbial Technology and Nematology Department , CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow , India
| |
Collapse
|
217
|
Gaffney CJ, Shephard F, Chu J, Baillie DL, Rose A, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ. Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle. J Cachexia Sarcopenia Muscle 2016; 7:181-92. [PMID: 27493871 PMCID: PMC4864282 DOI: 10.1002/jcsm.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Declines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for identifying and understanding these pathways. Recently, it was reported that UNC-105/degenerin channel activation produced muscle protein degradation via an unknown mechanism. METHODS Generation of transgenic and double mutant C. elegans, RNAi, and drug treatments were utilized to assess molecular events governing protein degradation. Western blots were used to measure protein content. Cationic dyes and adenosine triphosphate (ATP) production assays were utilized to measure mitochondrial function. RESULTS unc-105 gain-of-function mutants display aberrant muscle protein degradation and a movement defect; both are reduced in intragenic revertants and in let-2 mutants that gate the hyperactive UNC-105 channel. Degradation is not suppressed by interventions suppressing proteasome-mediated, autophagy-mediated, or calpain-mediated degradation nor by suppressors of degenerin-induced neurodegeneration. Protein degradation, but not the movement defect, is decreased by treatment with caspase inhibitors or RNAi against ced-3 or ced-4. Adult unc-105 muscles display a time-dependent fragmentation of the mitochondrial reticulum that is associated with impaired mitochondrial membrane potential and that correlates with decreased rates of maximal ATP production. Reduced levels of CED-4, which is sufficient to activate CED-3 in vitro, are observed in unc-105 mitochondrial isolations. CONCLUSIONS Constitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia.
Collapse
Affiliation(s)
- Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Freya Shephard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Jeff Chu
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BCV5A 1S6 Canada; Department of Medical Genetics University of British Columbia Vancouver BCV6T 1Z4 Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Ann Rose
- Department of Medical Genetics University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| |
Collapse
|
218
|
Zhang JY, Deng YN, Zhang M, Su H, Qu QM. SIRT3 Acts as a Neuroprotective Agent in Rotenone-Induced Parkinson Cell Model. Neurochem Res 2016; 41:1761-73. [PMID: 27053302 DOI: 10.1007/s11064-016-1892-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/13/2016] [Accepted: 03/17/2016] [Indexed: 12/11/2022]
Abstract
SIRT3 is a member of Sirtuins family, which belongs to NAD(+) dependent class III histone deacetylases. Emerging evidence suggests that SIRT3 plays a pivotal role in regulating mitochondrial function. Mitochondrial dysfunction is a main pathogenesis of Parkinson's disease (PD). Here, we have investigated the protective effect of SIRT3 for PD cell model. The rotenone-induced human neuroblastoma SH-SY5Y cells damage was used as PD cell model. The lentiviral vectors were used to over-expression or knockdown SIRT3 expression. The cell viability was analyzed using MTT method. The apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured by flow cytometer. Superoxide dismutase (SOD) and glutathione (GSH) were detected by using automated microplate reader. The accumulation of α-synuclein was determined by immunofluorescence staining. SIRT3 knockdown significantly worsen rotenone-induced decline of cell viability (p < 0.01) and enhanced cell apoptosis (p < 0.01), exacerbated the decrease of SOD (p < 0.05) and GSH (p < 0.05), and augmented the accumulation of α-synuclein (p < 0.05). While SIRT3 overexpression dramatically increased cell viability (p < 0.01), and decreased cell apoptosis (p < 0.01), prevented the accumulation of α-synuclein (p < 0.05), suppressed the reducing of SOD (p < 0.05) and GSH (p < 0.01), decreased ROS generation (p < 0.05), and alleviated MMP collapse (p < 0.01) induced by rotenone. SIRT3 has neuroprotective effect in PD cell model and could be developed into a therapeutic agent for PD patients.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Yong-Ning Deng
- Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Meng Zhang
- Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China
| | - Hua Su
- Department of Anesthesia and Perioperative Care, Center for Cerebrovascular Research, University of California, San Francisco, San Francisco, CA, USA
| | - Qiu-Min Qu
- Department of Neurology, First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Rd, Xi'an, 710061, China.
| |
Collapse
|
219
|
Bartke A, List EO, Kopchick JJ. The somatotropic axis and aging: Benefits of endocrine defects. Growth Horm IGF Res 2016; 27:41-45. [PMID: 26925766 PMCID: PMC4792645 DOI: 10.1016/j.ghir.2016.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/27/2016] [Accepted: 02/12/2016] [Indexed: 12/15/2022]
Abstract
Reduced somatotropic [growth hormone (GH) and insulin-like growth factor-1 (IGF-1)] action has been associated with delayed and slower aging, reduced risk of frailty, reduced age-related disease and functional decline, and with remarkably extended longevity. Recent studies have added to the evidence that these relationships discovered in laboratory populations of mice apply to other mammalian species. However, the relationship of the somatotropic signaling to human aging is less striking, complex and controversial. In mice, targeted deletion of GH receptors (GHR) in the liver, muscle or adipose tissue affected multiple metabolic parameters but failed to reproduce the effects of global GHR deletion on longevity. Continued search for mechanisms of extended longevity in animals with GH deficiency or resistance focused attention on different pathways of mechanistic target of rapamycin (mTOR), energy metabolism, regulation of local IGF-1 levels and resistance to high-fat diet (HFD).
Collapse
Affiliation(s)
- Andrzej Bartke
- SIU School of Medicine, Department of Internal Medicine, 801 N. Rutledge, P.O. Box 19628, Springfield, IL 62794-9628, United States.
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States
| |
Collapse
|
220
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. Aging Dis 2016; 7:180-200. [PMID: 27114850 PMCID: PMC4809609 DOI: 10.14336/ad.2015.0929] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an environmental stress at high altitude and underground conditions but it is also present in many chronic age-related diseases, where blood flow into tissues is impaired. The oxygen-sensing system stimulates gene expression protecting tissues against hypoxic insults. Hypoxia stabilizes the expression of hypoxia-inducible transcription factor-1α (HIF-1α), which controls the expression of hundreds of survival genes related to e.g. enhanced energy metabolism and autophagy. Moreover, many stress-related signaling mechanisms, such as oxidative stress and energy metabolic disturbances, as well as the signaling cascades via ceramide, mTOR, NF-κB, and TGF-β pathways, can also induce the expression of HIF-1α protein to facilitate cell survival in normoxia. Hypoxia is linked to prominent epigenetic changes in chromatin landscape. Screening studies have indicated that the stabilization of HIF-1α increases the expression of distinct histone lysine demethylases (KDM). HIF-1α stimulates the expression of KDM3A, KDM4B, KDM4C, and KDM6B, which enhance gene transcription by demethylating H3K9 and H3K27 sites (repressive epigenetic marks). In addition, HIF-1α induces the expression of KDM2B and KDM5B, which repress transcription by demethylating H3K4me2,3 sites (activating marks). Hypoxia-inducible KDMs support locally the gene transcription induced by HIF-1α, although they can also control genome-wide chromatin landscape, especially KDMs which demethylate H3K9 and H3K27 sites. These epigenetic marks have important role in the control of heterochromatin segments and 3D folding of chromosomes, as well as the genetic loci regulating cell type commitment, proliferation, and cellular senescence, e.g. the INK4 box. A chronic stimulation of HIF-1α can provoke tissue fibrosis and cellular senescence, which both are increasingly present with aging and age-related diseases. We will review the regulation of HIF-1α-dependent induction of KDMs and clarify their role in pathological processes emphasizing that long-term stress-related insults can impair the maintenance of chromatin landscape and provoke cellular senescence and tissue fibrosis associated with aging and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Kuopio University Hospital, Finland; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
221
|
Studer L, Vera E, Cornacchia D. Programming and Reprogramming Cellular Age in the Era of Induced Pluripotency. Cell Stem Cell 2016; 16:591-600. [PMID: 26046759 DOI: 10.1016/j.stem.2015.05.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to reprogram adult somatic cells back to pluripotency presents a powerful tool for studying cell-fate identity and modeling human disease. However, the reversal of cellular age during reprogramming results in an embryonic-like state of induced pluripotent stem cells (iPSCs) and their derivatives, which presents specific challenges for modeling late onset disease. This age reset requires novel methods to mimic age-related changes but also offers opportunities for studying cellular rejuvenation in real time. Here, we discuss how iPSC research may transform studies of aging and enable the precise programming of cellular age in parallel to cell-fate specification.
Collapse
Affiliation(s)
- Lorenz Studer
- Developmental Biology and Center of Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10003, USA.
| | - Elsa Vera
- Developmental Biology and Center of Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10003, USA
| | - Daniela Cornacchia
- Developmental Biology and Center of Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10003, USA
| |
Collapse
|
222
|
Kumar S, Dietrich N, Kornfeld K. Angiotensin Converting Enzyme (ACE) Inhibitor Extends Caenorhabditis elegans Life Span. PLoS Genet 2016; 12:e1005866. [PMID: 26918946 PMCID: PMC4769152 DOI: 10.1371/journal.pgen.1005866] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/23/2016] [Indexed: 01/23/2023] Open
Abstract
Animal aging is characterized by progressive, degenerative changes in many organ systems. Because age-related degeneration is a major contributor to disability and death in humans, treatments that delay age-related degeneration are desirable. However, no drugs that delay normal human aging are currently available. To identify drugs that delay age-related degeneration, we used the powerful Caenorhabditis elegans model system to screen for FDA-approved drugs that can extend the adult lifespan of worms. Here we show that captopril extended mean lifespan. Captopril is an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure in humans. To explore the mechanism of captopril, we analyzed the acn-1 gene that encodes the C. elegans homolog of ACE. Reducing the activity of acn-1 extended the mean life span. Furthermore, reducing the activity of acn-1 delayed age-related degenerative changes and increased stress resistance, indicating that acn-1 influences aging. Captopril could not further extend the lifespan of animals with reduced acn-1, suggesting they function in the same pathway; we propose that captopril inhibits acn-1 to extend lifespan. To define the relationship with previously characterized longevity pathways, we analyzed mutant animals. The lifespan extension caused by reducing the activity of acn-1 was additive with caloric restriction and mitochondrial insufficiency, and did not require sir-2.1, hsf-1 or rict-1, suggesting that acn-1 functions by a distinct mechanism. The interactions with the insulin/IGF-1 pathway were complex, since the lifespan extensions caused by captopril and reducing acn-1 activity were additive with daf-2 and age-1 but required daf-16. Captopril treatment and reducing acn-1 activity caused similar effects in a wide range of genetic backgrounds, consistent with the model that they act by the same mechanism. These results identify a new drug and a new gene that can extend the lifespan of worms and suggest new therapeutic strategies for addressing age-related degenerative changes.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
223
|
Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, Kurata S, Hoeijmakers J, Nishimura EK. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 2016; 351:aad4395. [PMID: 26912707 DOI: 10.1126/science.aad4395] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022]
Abstract
Hair thinning and loss are prominent aging phenotypes but have an unknown mechanism. We show that hair follicle stem cell (HFSC) aging causes the stepwise miniaturization of hair follicles and eventual hair loss in wild-type mice and in humans. In vivo fate analysis of HFSCs revealed that the DNA damage response in HFSCs causes proteolysis of type XVII collagen (COL17A1/BP180), a critical molecule for HFSC maintenance, to trigger HFSC aging, characterized by the loss of stemness signatures and by epidermal commitment. Aged HFSCs are cyclically eliminated from the skin through terminal epidermal differentiation, thereby causing hair follicle miniaturization. The aging process can be recapitulated by Col17a1 deficiency and prevented by the forced maintenance of COL17A1 in HFSCs, demonstrating that COL17A1 in HFSCs orchestrates the stem cell-centric aging program of the epithelial mini-organ.
Collapse
Affiliation(s)
- Hiroyuki Matsumura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yasuaki Mohri
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Nguyen Thanh Binh
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan. Department of Stem Cell Medicine, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-0934, Japan
| | - Hironobu Morinaga
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Makoto Fukuda
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mayumi Ito
- Departments of Dermatology and Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Sotaro Kurata
- Beppu Garden-Hill Clinic, Kurata Clinic, Beppu city, Oita 8740831, Japan
| | - Jan Hoeijmakers
- Department of Genetics, Cancer Genomics Center, Erasmus MC, Room Ee 722, Dr. Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
224
|
Kučerová L, Kubrak OI, Bengtsson JM, Strnad H, Nylin S, Theopold U, Nässel DR. Slowed aging during reproductive dormancy is reflected in genome-wide transcriptome changes in Drosophila melanogaster. BMC Genomics 2016; 17:50. [PMID: 26758761 PMCID: PMC4711038 DOI: 10.1186/s12864-016-2383-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 01/06/2016] [Indexed: 12/28/2022] Open
Abstract
Background In models extensively used in studies of aging and extended lifespan, such as C. elegans and Drosophila, adult senescence is regulated by gene networks that are likely to be similar to ones that underlie lifespan extension during dormancy. These include the evolutionarily conserved insulin/IGF, TOR and germ line-signaling pathways. Dormancy, also known as dauer stage in the larval worm or adult diapause in the fly, is triggered by adverse environmental conditions, and results in drastically extended lifespan with negligible senescence. It is furthermore characterized by increased stress resistance and somatic maintenance, developmental arrest and reallocated energy resources. In the fly Drosophila melanogaster adult reproductive diapause is additionally manifested in arrested ovary development, improved immune defense and altered metabolism. However, the molecular mechanisms behind this adaptive lifespan extension are not well understood. Results A genome wide analysis of transcript changes in diapausing D. melanogaster revealed a differential regulation of more than 4600 genes. Gene ontology (GO) and KEGG pathway analysis reveal that many of these genes are part of signaling pathways that regulate metabolism, stress responses, detoxification, immunity, protein synthesis and processes during aging. More specifically, gene readouts and detailed mapping of the pathways indicate downregulation of insulin-IGF (IIS), target of rapamycin (TOR) and MAP kinase signaling, whereas Toll-dependent immune signaling, Jun-N-terminal kinase (JNK) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways are upregulated during diapause. Furthermore, we detected transcriptional regulation of a large number of genes specifically associated with aging and longevity. Conclusions We find that many affected genes and signal pathways are shared between dormancy, aging and lifespan extension, including IIS, TOR, JAK/STAT and JNK. A substantial fraction of the genes affected by diapause have also been found to alter their expression in response to starvation and cold exposure in D. melanogaster, and the pathways overlap those reported in GO analysis of other invertebrates in dormancy or even hibernating mammals. Our study, thus, shows that D. melanogaster is a genetically tractable model for dormancy in other organisms and effects of dormancy on aging and lifespan. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2383-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucie Kučerová
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm, Sweden.
| | - Olga I Kubrak
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Jonas M Bengtsson
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Sören Nylin
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| | - Ulrich Theopold
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm, Sweden.
| | - Dick R Nässel
- Department of Zoology, Stockholm University, S-106 91, Stockholm, Sweden.
| |
Collapse
|
225
|
Kim S, Welsh DA, Myers L, Cherry KE, Wyckoff J, Jazwinski SM. Non-coding genomic regions possessing enhancer and silencer potential are associated with healthy aging and exceptional survival. Oncotarget 2016; 6:3600-12. [PMID: 25682868 PMCID: PMC4414140 DOI: 10.18632/oncotarget.2877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
We have completed a genome-wide linkage scan for healthy aging using data collected from a family study, followed by fine-mapping by association in a separate population, the first such attempt reported. The family cohort consisted of parents of age 90 or above and their children ranging in age from 50 to 80. As a quantitative measure of healthy aging, we used a frailty index, called FI34, based on 34 health and function variables. The linkage scan found a single significant linkage peak on chromosome 12. Using an independent cohort of unrelated nonagenarians, we carried out a fine-scale association mapping of the region suggestive of linkage and identified three sites associated with healthy aging. These healthy-aging sites (HASs) are located in intergenic regions at 12q13-14. HAS-1 has been previously associated with multiple diseases, and an enhancer was recently mapped and experimentally validated within the site. HAS-2 is a previously uncharacterized site possessing genomic features suggestive of enhancer activity. HAS-3 contains features associated with Polycomb repression. The HASs also contain variants associated with exceptional longevity, based on a separate analysis. Our results provide insight into functional genomic networks involving non-coding regulatory elements that are involved in healthy aging and longevity.
Collapse
Affiliation(s)
- Sangkyu Kim
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - David A Welsh
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Leann Myers
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Katie E Cherry
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jennifer Wyckoff
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
226
|
Brown-Borg HM. Reduced growth hormone signaling and methionine restriction: interventions that improve metabolic health and extend life span. Ann N Y Acad Sci 2015; 1363:40-9. [PMID: 26645136 DOI: 10.1111/nyas.12971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/11/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023]
Abstract
Interventions that improve health are often associated with longevity. Reduced growth hormone signaling has been shown to increase life span in mice by over 50%. Similarly, reductions in dietary intake of methionine, in rats and mice, result in life-span extension. Many factors affect metabolic health, mitochondrial function, and resistance to stressors, each of which influence aging and life span. This paper presents a comparison of these two interventions, as well as the results of a study combining these interventions, to understand potential mechanisms underlying their effectiveness in enhancing healthy aging.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
227
|
Mitteldorf J. An epigenetic clock controls aging. Biogerontology 2015; 17:257-65. [DOI: 10.1007/s10522-015-9617-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 10/07/2015] [Indexed: 12/22/2022]
|
228
|
Fang M, Fan Z, Tian W, Zhao Y, Li P, Xu H, Zhou B, Zhang L, Wu X, Xu Y. HDAC4 mediates IFN-γ induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:294-305. [PMID: 26619800 DOI: 10.1016/j.bbagrm.2015.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/13/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Metabolic homeostasis is achieved through balanced energy storage and output. Impairment of energy expenditure is a hallmark event in patients with obesity and type 2 diabetes. Previously we have shown that the pro-inflammatory cytokine interferon gamma (IFN-γ) disrupts energy expenditure in skeletal muscle cells via hypermethylated in cancer 1 (HIC1)-class II transactivator (CIITA) dependent repression of SIRT1 transcription. Here we report that repression of SIRT1 transcription by IFN-γ paralleled loss of histone acetylation on the SIRT1 promoter region with simultaneous recruitment of histone deacetylase 4 (HDAC4). IFN-γ activated HDAC4 in vitro and in vivo by up-regulating its expression and stimulating its nuclear accumulation. HIC1 and CIITA recruited HDAC4 to the SIRT1 promoter and cooperated with HDAC4 to repress SIRT1 transcription. HDAC4 depletion by small interfering RNA or pharmaceutical inhibition normalized histone acetylation on the SIRT1 promoter and restored SIRT1 expression in the presence of IFN-γ. Over-expression of HDAC4 suppressed the transcription of genes involved in energy expenditure in a SIRT1-dependent manner. In contrast, HDAC4 knockdown/inhibition neutralized the effect of IFN-γ on cellular metabolism by normalizing SIRT1 expression. Therefore, our data reveal a role for HDAC4 in regulating cellular energy output and as such provide insights into rationalized design of novel anti-diabetic therapeutics.
Collapse
Affiliation(s)
- Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Zhiwen Fan
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenfang Tian
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuhao Zhao
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Bisheng Zhou
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liping Zhang
- Department of Biochemistry, Xinjiang Medical University, Urumqi, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
229
|
Serrano-Fujarte I, López-Romero E, Cuéllar-Cruz M. Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress. Microb Pathog 2015; 90:22-33. [PMID: 26550764 DOI: 10.1016/j.micpath.2015.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/23/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022]
Abstract
Biofilms of Candida species are associated with high morbidity and hospital mortality. Candida forms biofilms by adhering to human host epithelium through cell wall proteins (CWP) and simultaneously neutralizing the reactive oxygen species (ROS) produced during the respiratory burst by phagocytic cells. The purpose of this paper is to identify the CWP of Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis expressed after exposure to different concentrations of H2O2 using a proteomic approach. CWP obtained from sessile cells, both treated and untreated with the oxidizing agent, were resolved by one and two-dimensional (2D-PAGE) gels and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Some of these proteins were identified and found to correspond to moonlighting CWP such as: (i) glycolytic enzymes, (ii) heat shock, (iii) OSR proteins, (iv) general metabolic enzymes and (v) highly conserved proteins, which are up- or down-regulated in the presence or absence of ROS. We also found that the expression of these CWP is different for each Candida species. Moreover, RT-PCR assays allowed us to demonstrate that transcription of the gene coding for Eno1, one of the moonlight-like CWP identified in response to the oxidant agent, is differentially regulated. To our knowledge this is the first demonstration that, in response to oxidative stress, each species of Candida, differentially regulates the expression of moonlighting CWP, which may protect the organism from the ROS generated during phagocytosis. Presumptively, these proteins allow the pathogen to adhere and form a biofilm, and eventually cause invasive candidiasis in the human host. We propose that, in addition to the antioxidant mechanisms present in Candida, the moonlighting CWP also confer protection to these pathogens from oxidative stress.
Collapse
Affiliation(s)
- Isela Serrano-Fujarte
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Everardo López-Romero
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico
| | - Mayra Cuéllar-Cruz
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Mexico.
| |
Collapse
|
230
|
Genotype-dependent lifespan effects in peptone deprived Caenorhabditis elegans. Sci Rep 2015; 5:16259. [PMID: 26539794 PMCID: PMC4634109 DOI: 10.1038/srep16259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Dietary restriction appears to act as a general non-genetic mechanism that can robustly prolong lifespan. There have however been reports in many systems of cases where restricted food intake either shortens, or does not affect, lifespan. Here we analyze lifespan and the effect of food restriction via deprived peptone levels on lifespan in wild isolates and introgression lines (ILs) of the nematode Caenorhabditis elegans. These analyses identify genetic variation in lifespan, in the effect of this variation in diet on lifespan and also in the likelihood of maternal, matricidal, hatching. Importantly, in the wild isolates and the ILs, we identify genotypes in which peptone deprivation mediated dietary restriction reduces lifespan. We also identify, in recombinant inbred lines, a locus that affects maternal hatching, a phenotype closely linked to dietary restriction in C. elegans. These results indicate that peptone deprivation mediated dietary restriction affects lifespan in C. elegans in a genotype-dependent manner, reducing lifespan in some genotypes. This may operate by a mechanism similar to dietary restriction.
Collapse
|
231
|
McCormick MA, Delaney JR, Tsuchiya M, Tsuchiyama S, Shemorry A, Sim S, Chou ACZ, Ahmed U, Carr D, Murakami CJ, Schleit J, Sutphin GL, Wasko BM, Bennett CF, Wang AM, Olsen B, Beyer RP, Bammler TK, Prunkard D, Johnson SC, Pennypacker JK, An E, Anies A, Castanza AS, Choi E, Dang N, Enerio S, Fletcher M, Fox L, Goswami S, Higgins SA, Holmberg MA, Hu D, Hui J, Jelic M, Jeong KS, Johnston E, Kerr EO, Kim J, Kim D, Kirkland K, Klum S, Kotireddy S, Liao E, Lim M, Lin MS, Lo WC, Lockshon D, Miller HA, Moller RM, Muller B, Oakes J, Pak DN, Peng ZJ, Pham KM, Pollard TG, Pradeep P, Pruett D, Rai D, Robison B, Rodriguez AA, Ros B, Sage M, Singh MK, Smith ED, Snead K, Solanky A, Spector BL, Steffen KK, Tchao BN, Ting MK, Vander Wende H, Wang D, Welton KL, Westman EA, Brem RB, Liu XG, Suh Y, Zhou Z, Kaeberlein M, Kennedy BK. A Comprehensive Analysis of Replicative Lifespan in 4,698 Single-Gene Deletion Strains Uncovers Conserved Mechanisms of Aging. Cell Metab 2015; 22:895-906. [PMID: 26456335 PMCID: PMC4862740 DOI: 10.1016/j.cmet.2015.09.008] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/31/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023]
Abstract
Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome comparison demonstrated a significant conservation in longevity pathways between yeast and C. elegans. Among the mechanisms of aging identified, deletion of tRNA exporter LOS1 robustly extended lifespan. Dietary restriction (DR) and inhibition of mechanistic Target of Rapamycin (mTOR) exclude Los1 from the nucleus in a Rad53-dependent manner. Moreover, lifespan extension from deletion of LOS1 is nonadditive with DR or mTOR inhibition, and results in Gcn4 transcription factor activation. Thus, the DNA damage response and mTOR converge on Los1-mediated nuclear tRNA export to regulate Gcn4 activity and aging.
Collapse
Affiliation(s)
- Mark A McCormick
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Joe R Delaney
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Mitsuhiro Tsuchiya
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Scott Tsuchiyama
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anna Shemorry
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sylvia Sim
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Umema Ahmed
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Daniel Carr
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Jennifer Schleit
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - George L Sutphin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Christopher F Bennett
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brady Olsen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard P Beyer
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Theodor K Bammler
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Donna Prunkard
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Simon C Johnson
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Elroy An
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Arieanna Anies
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony S Castanza
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Eunice Choi
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Nick Dang
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shiena Enerio
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Marissa Fletcher
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lindsay Fox
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Sarani Goswami
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Sean A Higgins
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Molly A Holmberg
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Di Hu
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Jessica Hui
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Monika Jelic
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Ki-Soo Jeong
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elijah Johnston
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Emily O Kerr
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jin Kim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Diana Kim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Katie Kirkland
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Shannon Klum
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Soumya Kotireddy
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Eric Liao
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Lim
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael S Lin
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Winston C Lo
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dan Lockshon
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Hillary A Miller
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Richard M Moller
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Brian Muller
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Jonathan Oakes
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Diana N Pak
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Zhao Jun Peng
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Kim M Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tom G Pollard
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Prarthana Pradeep
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dillon Pruett
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Dilreet Rai
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Brett Robison
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Ariana A Rodriguez
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Bopharoth Ros
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Michael Sage
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Manpreet K Singh
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Erica D Smith
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Katie Snead
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Amrita Solanky
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Benjamin L Spector
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Kristan K Steffen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Bie Nga Tchao
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Marc K Ting
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Helen Vander Wende
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Dennis Wang
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - K Linnea Welton
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Eric A Westman
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Xin-Guang Liu
- Aging Research Institute, Guangdong Medical College, Dongguan 523808, Guangdong, P.R. China
| | - Yousin Suh
- Aging Research Institute, Guangdong Medical College, Dongguan 523808, Guangdong, P.R. China; Department of Genetics, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Zhongjun Zhou
- Department of Biochemistry, University of Hong Kong, Hong Kong
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Brian K Kennedy
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
232
|
Hunter GJ, Trinh CH, Bonetta R, Stewart EE, Cabelli DE, Hunter T. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex. Protein Sci 2015; 24:1777-88. [PMID: 26257399 PMCID: PMC4622211 DOI: 10.1002/pro.2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/03/2015] [Indexed: 01/18/2023]
Abstract
C. elegans MnSOD-3 has been implicated in the longevity pathway and its mechanism of catalysis is relevant to the aging process and carcinogenesis. The structures of MnSOD-3 provide unique crystallographic evidence of a dynamic region of the tetrameric interface (residues 41-54). We have determined the structure of the MnSOD-3-azide complex to 1.77-Å resolution. Analysis of this complex shows that the substrate analog, azide, binds end-on to the manganese center as a sixth ligand and that it ligates directly to a third and new solvent molecule also positioned within interacting distance to the His30 and Tyr34 residues of the substrate access funnel. This is the first structure of a eukaryotic MnSOD-azide complex that demonstrates the extended, uninterrupted hydrogen-bonded network that forms a proton relay incorporating three outer sphere solvent molecules, the substrate analog, the gateway residues, Gln142, and the solvent ligand. This configuration supports the formation and release of the hydrogen peroxide product in agreement with the 5-6-5 catalytic mechanism for MnSOD. The high product dissociation constant k4 of MnSOD-3 reflects low product inhibition making this enzyme efficient even at high levels of superoxide.
Collapse
Affiliation(s)
- Gary J Hunter
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of LeedsLeeds, United Kingdom
| | - Rosalin Bonetta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Emma E Stewart
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, University of LeedsLeeds, United Kingdom
| | - Diane E Cabelli
- Chemistry Department, Brookhaven National LaboratoryUpton, New York
| | - Therese Hunter
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
233
|
Lee EB, Kim JH, Cha YS, Kim M, Song SB, Cha DS, Jeon H, Eun JS, Han S, Kim DK. Lifespan Extending and Stress Resistant Properties of Vitexin from Vigna angularis in Caenorhabditis elegans. Biomol Ther (Seoul) 2015; 23:582-9. [PMID: 26535084 PMCID: PMC4624075 DOI: 10.4062/biomolther.2015.128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/07/2015] [Accepted: 09/30/2015] [Indexed: 01/24/2023] Open
Abstract
Several theories emphasize that aging is closely related to oxidative stress and disease. The formation of excess ROS can lead to DNA damage and the acceleration of aging. Vigna angularis is one of the important medicinal plants in Korea. We isolated vitexin from V. angularis and elucidated the lifespan-extending effect of vitexin using the Caenorhabditis elegans model system. Vitexin showed potent lifespan extensive activity and it elevated the survival rates of nematodes against the stressful environments including heat and oxidative conditions. In addition, our results showed that vitexin was able to elevate antioxidant enzyme activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner. These studies demonstrated that the increased stress tolerance of vitexin-mediated nematode could be attributed to increased expressions of stress resistance proteins such as superoxide dismutase (SOD-3) and heat shock protein (HSP-16.2). In this work, we also studied whether vitexin-mediated longevity activity was associated with aging-related factors such as progeny, food intake, growth and movement. The data revealed that these factors were not affected by vitexin treatment except movement. Vitexin treatment improved the body movement of aged nematode, suggesting vitexin affects healthspan as well as lifespan of nematode. These results suggest that vitexin might be a probable candidate which could extend the human lifespan.
Collapse
Affiliation(s)
- Eun Byeol Lee
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Jun Hyeong Kim
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Mina Kim
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seuk Bo Song
- Department of Functional Crop, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Jae Soon Eun
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Sooncheon Han
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Dae Keun Kim
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| |
Collapse
|
234
|
Xu BL, Wang R, Ma LN, Dong W, Zhao ZW, Zhang JS, Wang YL, Zhang X. Comparison of the effects of resveratrol and caloric restriction on learning and memory in juvenile C57BL/6J mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:1118-23. [PMID: 26949500 PMCID: PMC4764114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/23/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Both caloric restriction (CR) and resveratrol (RSV) have been shown to improve learning and memory, but their potential effects in juvenile animals were unknown. Here, we evaluated the effects of RSV and CR on learning and memory function in juvenile mice and investigated potential molecular mechanisms. METHODS Six-week-old C57BL/6J mice were assigned to one of three different dietary groups: normal control (stock diet) (n=12), CR diet (30% caloric reduction diet) (n=12), and RSV diet (stock diet supplemented with 18.6 mg/kg RSV) (n=12), for 6 months. Body weight and blood glucose were measured every 4 weeks. Serum cholesterol and serum triglyceride levels were examined using biochemical methods. Serum insulin and insulin-like growth factor 1 (IGF-1) levels were evaluated using enzyme linked immunosorbant assay (ELISA), and protein expression of silent mating type information regulation 2 homology 1 (SIRT1), p53, p16, peroxisome proliferator-activated receptor γ (PPARγ), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phosphorylated-cAMP response element-binding protein (p-CREB), and IGF-1 were examined with immunohistochemistry. RESULTS Although long-term CR diet did not alter physiological conditions in juvenile mice relative to control, RSV supplementation slightly elevated blood glucose, serum triglyceride, and serum insulin levels. Both CR and RSV improved learning and memory function, although the effect of CR was significantly greater. Both CR and RSV downregulated p53 and upregulated IGF-1 in hippocampal CA1 region of mice. CONCLUSION We demonstrate that CR and RSV may improve learning and memory by downregulating p53 and upregulating IGF-1 in hippocampal CA1 region of juvenile mice.
Collapse
Affiliation(s)
- Bao-Lei Xu
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
- Corresponding author: Rong Wang. Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China. Tel: +86-10-63159572; Fax: 86-10-63159572;
| | - Li-Na Ma
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Wen Dong
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Zhi-Wei Zhao
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Jing-Shuang Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yu-Lan Wang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xu Zhang
- Central Laboratory, Xuanwu Hospital, Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Beijing Geriatric Medical Research Center, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
235
|
Senescence in the wild: Insights from a long-term study on Seychelles warblers. Exp Gerontol 2015; 71:69-79. [DOI: 10.1016/j.exger.2015.08.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 11/23/2022]
|
236
|
Zeng Y, Yang K. Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem Biophys Res Commun 2015; 468:167-72. [PMID: 26522222 DOI: 10.1016/j.bbrc.2015.10.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The process of aging involves retinal cell damage that leads to visual dysfunction. Sirtuin (Sirt) 1 can prevent oxidative stress, DNA damage, and apoptosis. In the present study, we measured the expression of Sirt1 as a functional regulator in the retina during the aging process. METHODS The visual function and Sirt1 expression in young (1 month) and old (19 months) Sprague-Dawley (SD) rats. Electroretinogram (ERG) and real-time polymerase chain reaction (PCR) or Western blotting were performed. Resveratrol, an activator of Sirt1, was orally administered to SD rats at a dose of 5 mg/kg/day for 19 months. The expression of Sirt1, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) was evaluated in the retinas of mice that did and did not receive resveratrol treatment. Apoptosis was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. RESULTS With decreasing b-wave amplitude, the expression level of Sirt1 was significantly reduced in aged retinas compared to that in young retinas. After 19 months of treatment with resveratrol, the Sirt1 expression level and b-wave amplitude increased. In old rats treated with resveratrol, the expression levels of BDNF and TrkB were up-regulated. Compared to young retinas, the aged retinas exhibited higher apoptosis, but resveratrol delayed this process. CONCLUSIONS Our data demonstrated a reduction of Sirt1 expression during the aging process of the retina, but enhancing Sirt1 expression reversed the degeneration of the retina. These results suggested that increasing Sirt1 expression may protect retinal neurons and visual function via regulating neurotrophin and its receptor.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Ophthalmology of the Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Laboratory of Clinical Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China; Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China.
| | - Ke Yang
- Institute of Cardiovascular Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
237
|
Goldsmith TC. Emerging programmed aging mechanisms and their medical implications. Med Hypotheses 2015; 86:92-6. [PMID: 26547271 DOI: 10.1016/j.mehy.2015.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/30/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
For many generations programmed aging in humans was considered theoretically impossible and medical attempts to treat or delay age-related diseases were based on non-programmed aging theories. However, there is now an extensive theoretical basis for programmed mammal aging and substantially funded medical research efforts based on programmed aging theories are underway. This article describes the very different disease mechanism concepts that logically result from the theories and the impacts emerging programmed aging mechanisms will have on funding and performing medical research on age-related conditions.
Collapse
|
238
|
Asthana J, Yadav D, Pant A, Yadav AK, Gupta MM, Pandey R. Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2015; 71:1160-8. [PMID: 26433219 DOI: 10.1093/gerona/glv173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 09/15/2015] [Indexed: 11/12/2022] Open
Abstract
The advancements in the field of gerontology have unraveled the signaling pathways that regulate life span, suggesting that it might be feasible to modulate aging. To this end, we isolated a novel phytomolecule Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside (ARX) from Premna integrifolia and evaluated its antiaging effects in Caenorhabditis elegans The spectral data analysis revealed the occurrence of a new compound ARX. Out of the three tested pharmacological doses of ARX, viz. 5, 25, and 50 µM, the 25-µM dose was able to extend life span in C. elegans by more than 39%. The present study suggests that ARX affects bacterial metabolism, which in turn leads to dietary restriction (DR)-like effects in the worms. The effect of ARX on worms with mutations (mev-1, eat-2, sir-2.1, skn-1, daf-16, and hsf-1) indicates that ARX-mediated life-span extension involves mechanisms associated with DR and maintenance of cellular redox homeostasis. This study is the first time report on longevity-promoting activity of ARX in C. elegans mediated by stress and DR-regulating genes. This novel phytomolecule can contribute in designing therapeutics for managing aging and age-related diseases.
Collapse
Affiliation(s)
| | - Deepti Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | | | - A K Yadav
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - M M Gupta
- Analytical Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology and
| |
Collapse
|
239
|
Salminen A, Kauppinen A, Kaarniranta K. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process. Cell Mol Life Sci 2015; 72:3897-914. [PMID: 26118662 PMCID: PMC11114064 DOI: 10.1007/s00018-015-1978-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023]
Abstract
Recent studies have revealed that the members of an ancient family of nonheme Fe(2+)/2-oxoglutarate-dependent dioxygenases (2-OGDO) are involved in the functions associated with the aging process. 2-Oxoglutarate and O2 are the obligatory substrates and Fe(2+) a cofactor in the activation of 2-OGDO enzymes, which can induce the hydroxylation of distinct proteins and the demethylation of DNA and histones. For instance, ten-eleven translocation 1-3 (TET1-3) are the demethylases of DNA, whereas Jumonji C domain-containing histone lysine demethylases (KDM2-7) are the major epigenetic regulators of chromatin landscape, known to be altered with aging. The functions of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD1-3) as well as those of collagen hydroxylases are associated with age-related degeneration. Moreover, the ribosomal hydroxylase OGFOD1 controls mRNA translation, which is known to decline with aging. 2-OGDO enzymes are the sensors of energy metabolism, since the Krebs cycle intermediate 2-oxoglutarate is an activator whereas succinate and fumarate are the potent inhibitors of 2-OGDO enzymes. In addition, O2 availability and iron redox homeostasis control the activities of 2-OGDO enzymes in tissues. We will briefly elucidate the catalytic mechanisms of 2-OGDO enzymes and then review the potential functions of the above-mentioned 2-OGDO enzymes in the control of the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, 70029, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
- Department of Ophthalmology, Kuopio University Hospital, P.O.B. 100, 70029, Kuopio, Finland.
| |
Collapse
|
240
|
Fujita Y, Fujiwara K, Zenitani S, Yamashita T. Acetylation of NDPK-D Regulates Its Subcellular Localization and Cell Survival. PLoS One 2015; 10:e0139616. [PMID: 26426123 PMCID: PMC4591271 DOI: 10.1371/journal.pone.0139616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
Nucleoside diphosphate kinases (NDPK) are ubiquitous enzymes that catalyze the reversible phosphotransfer of γ-phosphates between di- and triphosphonucleosides. NDPK-D (Nm23-H4) is the only member of the NDPK family with a mitochondrial targeting sequence. Despite the high expression of NDPK-D in the developing central nervous system, its function remains to be determined. In this study, we show that NDPK-D knockdown induces apoptosis in neuroblastoma cells as well as in mouse cortex, suggesting that NDPK-D is required for neuronal survival. We identified NDPK-D as a binding partner of NAD+-dependent histone deacetylase, SIRT1, by yeast two-hybrid screening. NDPK-D co-localized with SIRT1, and the association of these molecules was confirmed by co-immunoprecipitation. Inhibition of SIRT1 increases the acetylation of NDPK-D. Overexpression of NDPK-D along with SIRT1, or mutation in the acetylated lysine residues in NDPK-D, increases its nuclear accumulation. Furthermore, the NDPK-D acetylation-mimic mutant increased apoptosis in N1E-115 cells. Our data demonstrate that acetylation regulates the shuttling of NDPK-D between nucleus and cytoplasm, and increased acetylation of NDPK-D causes apoptosis.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Kei Fujiwara
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Shigetake Zenitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2–2 Yamadaoka, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
241
|
Effects of Caloric Intake on Learning and Memory Function in Juvenile C57BL/6J Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:759803. [PMID: 26491687 PMCID: PMC4600554 DOI: 10.1155/2015/759803] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/18/2022]
Abstract
Dietary composition may influence neuronal function as well as processes underlying synaptic plasticity. In this study, we aimed to determine the effect of high and low caloric diets on a mouse model of learning and memory and to explore mechanisms underlying this process. Mice were divided into three different dietary groups: normal control (n = 12), high-caloric (HC) diet (n = 12), and low-caloric (LC) diet (n = 12). After 6 months, mice were evaluated on the Morris water maze to assess spatial memory ability. We found that HC diet impaired learning and memory function relative to both control and LC diet. The levels of SIRT1 as well as its downstream effectors p53, p16, and peroxisome proliferator-activated receptor γ (PPARγ) were decreased in brain tissues obtained from HC mice. LC upregulated SIRT1 but downregulated p53, p16, and PPARγ. The expressions of PI3K and Akt were not altered after HC or LC diet treatment, but both LC and HC elevated the levels of phosphorylated-cAMP response element-binding protein (p-CREB) and IGF-1 in hippocampal CA1 region. Therefore, HC diet-induced dysfunction in learning and memory may be prevented by caloric restriction via regulation of the SIRT1-p53 or IGF-1 signaling pathways and phosphorylation of CREB.
Collapse
|
242
|
Wit J, Loeschcke V, Kellermann V. Life span variation in 13 Drosophila
species: a comparative study on life span, environmental variables and stress resistance. J Evol Biol 2015. [DOI: 10.1111/jeb.12706] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- J. Wit
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
| | - V. Loeschcke
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
| | - V. Kellermann
- Department of Bioscience, Genetics, Ecology and Evolution; Aarhus University; Aarhus C Denmark
- Department of Biological Sciences; Monash University; Clayton Vic. Australia
| |
Collapse
|
243
|
Jeong SM, Haigis MC. Sirtuins in Cancer: a Balancing Act between Genome Stability and Metabolism. Mol Cells 2015; 38:750-8. [PMID: 26420294 PMCID: PMC4588717 DOI: 10.14348/molcells.2015.0167] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/18/2022] Open
Abstract
Genomic instability and altered metabolism are key features of most cancers. Recent studies suggest that metabolic reprogramming is part of a systematic response to cellular DNA damage. Thus, defining the molecules that fine-tune metabolism in response to DNA damage will enhance our understanding of molecular mechanisms of tumorigenesis and have profound implications for the development of strategies for cancer therapy. Sirtuins have been established as critical regulators in cellular homeostasis and physiology. Here, we review the emerging data revealing a pivotal function of sirtuins in genome maintenance and cell metabolism, and highlight current advances about the phenotypic consequences of defects in these critical regulators in tumorigenesis. While many questions should be addressed about the regulation and context-dependent functions of sirtuins, it appears clear that sirtuins may provide a promising, exciting new avenue for cancer therapy.
Collapse
Affiliation(s)
- Seung Min Jeong
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
| | - Marcia C. Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA,
USA
| |
Collapse
|
244
|
Qian H, Xu X, Niklason LE. Bmk-1 regulates lifespan in Caenorhabditis elegans by activating hsp-16. Oncotarget 2015; 6:18790-9. [PMID: 26299918 PMCID: PMC4662456 DOI: 10.18632/oncotarget.4618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022] Open
Abstract
The genetics of aging is typically concerned with lifespan determination that is associated with alterations in expression levels or mutations of particular genes. Previous reports in C. elegans have shown that the bmk-1 gene has important functions in chromosome segregation, and this has been confirmed with its mammalian homolog, KIF11. However, this gene has never been implicated in aging or lifespan regulation. Here we show that the bmk-1 gene is an important lifespan regulator in worms. We show that reducing bmk-1 expression using RNAi shortens worm lifespan by 32%, while over-expression of bmk-1 extends worm lifespan by 25%, and enhances heat-shock stress resistance. Moreover, bmk-1 over-expression increases the level of hsp-16 and decreases ced-3 in C. elegans. Genetic epistasis analysis reveals that hsp-16 is essential for the lifespan extension by bmk-1. These findings suggest that bmk-1 may act through enhanced hsp-16 function to protect cells from stress and inhibit the apoptosis pathway, thereby conferring worm longevity. Though it remains unclear whether this is a distinct function from chromosomal segregation, bmk-1 is a potential new target for extension of lifespan and enhancement of healthspan.
Collapse
Affiliation(s)
- Hong Qian
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangru Xu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.,Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Laura E Niklason
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
245
|
Figueroa M, Castell-Miller CV, Li F, Hulbert SH, Bradeen JM. Pushing the boundaries of resistance: insights from Brachypodium-rust interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:558. [PMID: 26284085 PMCID: PMC4519692 DOI: 10.3389/fpls.2015.00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/07/2015] [Indexed: 05/20/2023]
Abstract
The implications of global population growth urge transformation of current food and bioenergy production systems to sustainability. Members of the family Poaceae are of particular importance both in food security and for their applications as biofuel substrates. For centuries, rust fungi have threatened the production of valuable crops such as wheat, barley, oat, and other small grains; similarly, biofuel crops can also be susceptible to these pathogens. Emerging rust pathogenic races with increased virulence and recurrent rust epidemics around the world point out the vulnerability of monocultures. Basic research in plant immunity, especially in model plants, can make contributions to understanding plant resistance mechanisms and improve disease management strategies. The development of the grass Brachypodium distachyon as a genetically tractable model for monocots, especially temperate cereals and grasses, offers the possibility to overcome the experimental challenges presented by the genetic and genomic complexities of economically valuable crop plants. The numerous resources and tools available in Brachypodium have opened new doors to investigate the underlying molecular and genetic bases of plant-microbe interactions in grasses and evidence demonstrating the applicability and advantages of working with B. distachyon is increasing. Importantly, several interactions between B. distachyon and devastating plant pathogens, such rust fungi, have been examined in the context of non-host resistance. Here, we discuss the use of B. distachyon in these various pathosystems. Exploiting B. distachyon to understand the mechanisms underpinning disease resistance to non-adapted rust fungi may provide effective and durable approaches to fend off these pathogens. The close phylogenetic relationship among Brachypodium spp. and grasses with industrial and agronomic value support harnessing this model plant to improve cropping systems and encourage its use in translational research.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Claudia V. Castell-Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - James M. Bradeen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
246
|
Abstract
Components or downstream targets of many signaling pathways such as Insulin/IGF-1 and TOR, as well as genes involved in cellular metabolism and bioenergetics can extend worm lifespan 20% or more. The C. elegans gene pch-2 and its homologs, including TRIP13 in humans, have been studied for their functions in cell mitosis and meiosis, but have never been implicated in lifespan regulation. Here we show that over-expression of TRIP13 in human fibroblasts confers resistance to environmental stressors such as UV radiation and oxidative stress. Furthermore, pch-2 overexpression in C. elegans extends worm lifespan, and enhances worm survival in response to various stressors. Conversely, reducing pch-2 expression with RNAi shortens worm lifespan. Additional genetic epistasis analysis indicates that the molecular mechanism of pch-2 in worm longevity is tied to functions of the sirtuin family, implying that pch-2 is another chromatin regulator for worm longevity. These findings suggest a novel function of the pch-2 gene involved in lifespan determination.
Collapse
|
247
|
He YH, Lu X, Yang LQ, Xu LY, Kong QP. Association of the insulin-like growth factor binding protein 3 (IGFBP-3) polymorphism with longevity in Chinese nonagenarians and centenarians. Aging (Albany NY) 2015; 6:944-56. [PMID: 25553725 PMCID: PMC4276788 DOI: 10.18632/aging.100703] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human lifespan is determined greatly by genetic factors and some investigations have identified putative genes implicated in human longevity. Although some genetic loci have been associated with longevity, most of them are difficult to replicate due to ethnic differences. In this study, we analyzed the association of 18 reported gene single nucleotide polymorphisms (SNPs) with longevity in 1075 samples consisting of 567 nonagenarians/centenarians and 508 younger controls using the GenomeLab SNPstream Genotyping System. Our results confirm the association of the forkhead box O3 (FOXO3) variant (rs13217795) and the ATM serine/threonine kinase (ATM) variant (rs189037) genotypes with longevity (p=0.0075 and p=0.026, using the codominant model and recessive model, respectively). Of note is that we first revealed the association of insulin-like growth factor binding protein 3 (IGFBP-3) gene polymorphism rs11977526 with longevity in Chinese nonagenarians/centenarians (p=0.033 using the dominant model and p=0.035 using the overdominant model). The FOXO3 and IGFBP-3 form important parts of the insulin/insulin-like growth factor-1 signaling pathway (IGF-1) implicated in human longevity, and the ATM gene is involved in sensing DNA damage and reducing oxidative stress, therefore our results highlight the important roles of insulin pathway and oxidative stress in the longevity in the Chinese population.
Collapse
Affiliation(s)
- Yong-Han He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China. KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Xiang Lu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China. KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China. KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| | - Liang-You Xu
- Dujiangyan Longevity Research Centre, Dujiangyan 611830, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China. KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming 650223, China
| |
Collapse
|
248
|
A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab 2015; 22:86-99. [PMID: 26094889 PMCID: PMC4509734 DOI: 10.1016/j.cmet.2015.05.012] [Citation(s) in RCA: 560] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 12/14/2022]
Abstract
Prolonged fasting (PF) promotes stress resistance, but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, 4 days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems, an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration. Bi-monthly FMD cycles started at middle age extended longevity, lowered visceral fat, reduced cancer incidence and skin lesions, rejuvenated the immune system, and retarded bone mineral density loss. In old mice, FMD cycles promoted hippocampal neurogenesis, lowered IGF-1 levels and PKA activity, elevated NeuroD1, and improved cognitive performance. In a pilot clinical trial, three FMD cycles decreased risk factors/biomarkers for aging, diabetes, cardiovascular disease, and cancer without major adverse effects, providing support for the use of FMDs to promote healthspan.
Collapse
|
249
|
Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol 2015; 226:R17-28. [PMID: 26021555 PMCID: PMC4490104 DOI: 10.1530/joe-15-0173] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Both lifespan and healthspan are influenced by nutrition, with nutritional interventions proving to be robust across a wide range of species. However, the relationship between nutrition, health and aging is still not fully understood. Caloric restriction is the most studied dietary intervention known to extend life in many organisms, but recently the balance of macronutrients has been shown to play a critical role. In this review, we discuss the current understanding regarding the impact of calories and macronutrient balance in mammalian health and longevity, and highlight the key nutrient-sensing pathways that mediate the effects of nutrition on health and ageing.
Collapse
Affiliation(s)
- Samantha M Solon-Biet
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - Sarah J Mitchell
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - Rafael de Cabo
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - David Raubenheimer
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - David G Le Couteur
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| | - Stephen J Simpson
- Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia Charles Perkins CentreBuilding D17, University of Sydney, Sydney, New South Wales 2006, AustraliaANZAC Research Institute and the Ageing and Alzheimers InstituteCentre for Education and Research on Ageing, Concord Hospital, University of Sydney, Sydney, New South Wales, AustraliaSchool of Biological SciencesUniversity of Sydney, Sydney, New South Wales, AustraliaTranslational Gerontology BranchNational Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USAFaculty of Veterinary ScienceUniversity of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
250
|
Mekheimer RA, Sayed AAR, Ahmed EA, Sadek KU. Synthesis and Characterization of New 1,2,4-Triazolo[1,5-a]pyridines That Extend the Life Span ofCaenorhabiditis elegansvia Their Anti-Inflammatory/Antioxidant Effects. Arch Pharm (Weinheim) 2015; 348:650-65. [DOI: 10.1002/ardp.201500069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Ramadan A. Mekheimer
- Department of Chemistry, Faculty of Science for Girls; King Abdulaziz University; Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Science; El-Minia University; El-Minia Egypt
| | - Ahmed A. Radwan Sayed
- Department of Chemistry, Faculty of Science; El-Minia University; El-Minia Egypt
- Department of Biochemistry, Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Eltaib A. Ahmed
- Department of Chemistry, Faculty of Education; AlFashir University; AlFashir Sudan
| | - Kamal U. Sadek
- Department of Chemistry, Faculty of Science; El-Minia University; El-Minia Egypt
| |
Collapse
|