201
|
Gündüz D, Tanislav C, Sedding D, Parahuleva M, Santoso S, Troidl C, Hamm CW, Aslam M. Uridine Triphosphate Thio Analogues Inhibit Platelet P2Y 12 Receptor and Aggregation. Int J Mol Sci 2017; 18:ijms18020269. [PMID: 28146050 PMCID: PMC5343805 DOI: 10.3390/ijms18020269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 11/25/2022] Open
Abstract
Platelet P2Y12 is an important adenosine diphosphate (ADP) receptor that is involved in agonist-induced platelet aggregation and is a valuable target for the development of anti-platelet drugs. Here we characterise the effects of thio analogues of uridine triphosphate (UTP) on ADP-induced platelet aggregation. Using human platelet-rich plasma, we demonstrate that UTP inhibits P2Y12 but not P2Y1 receptors and antagonises 10 µM ADP-induced platelet aggregation in a concentration-dependent manner with an IC50 value of ~250 µM. An eight-fold higher platelet inhibitory activity was observed with a 2-thio analogue of UTP (2S-UTP), with an IC50 of 30 µM. The 4-thio analogue (4S-UTP) with an IC50 of 7.5 µM was 33-fold more effective. A three-fold decrease in inhibitory activity, however, was observed by introducing an isobutyl group at the 4S- position. A complete loss of inhibition was observed with thio-modification of the γ phosphate of the sugar moiety, which yields an enzymatically stable analogue. The interaction of UTP analogues with P2Y12 receptor was verified by P2Y12 receptor binding and cyclic AMP (cAMP) assays. These novel data demonstrate for the first time that 2- and 4-thio analogues of UTP are potent P2Y12 receptor antagonists that may be useful for therapeutic intervention.
Collapse
Affiliation(s)
- Dursun Gündüz
- Department of Cardiology/Angiology, University Hospital Giessen, 35392 Giessen, Germany.
| | - Christian Tanislav
- Department of Neurology, University Hospital Giessen, 35392 Giessen, Germany.
| | - Daniel Sedding
- Department of Cardiology/Angiology, Hannover Medical School, 30625 Hannover, Germany.
| | - Mariana Parahuleva
- Department of Cardiology/Angiology, University Hospital Marburg, 35043 Marburg, Germany.
| | - Sentot Santoso
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, 35392 Giessen, Germany.
| | - Christian Troidl
- Department of Cardiology/Angiology, University Hospital Giessen, 35392 Giessen, Germany.
| | - Christian W Hamm
- Department of Cardiology/Angiology, University Hospital Giessen, 35392 Giessen, Germany.
| | - Muhammad Aslam
- Department of Cardiology/Angiology, University Hospital Giessen, 35392 Giessen, Germany.
| |
Collapse
|
202
|
Zhang Q, Wang D, Zhang M, Zhao Y, Yu Z. Studies on New Activities of Enantiomers of 2-(2-Hydroxypropanamido) Benzoic Acid: Antiplatelet Aggregation and Antithrombosis. PLoS One 2017; 12:e0170334. [PMID: 28107496 PMCID: PMC5249173 DOI: 10.1371/journal.pone.0170334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 01/03/2017] [Indexed: 11/18/2022] Open
Abstract
R-/S-2-(2-Hydroxypropanamido) benzoic acid (R-/S-HPABA), a marine-derived anti-inflammatory drug, however, the antiplatelet and antithrombotic effects have not been investigated. In this paper, the in vitro antiplatelet activities and in vivo antithrombotic effects of R-/S-HPABA were investigated, for the first time. The effects of R-/S-HPABA on platelet aggregation induced by adenosine diphosphate (ADP), collagen (COLL) and arachidonic acid (AA) were evaluated. In addition, the in vivo bleeding time, clotting time, collagen-epinephrine induced pulmonary thrombosis and common carotid artery thrombosis were also investigated in rats. R-/S-HPABA significantly inhibited ADP, COLL and AA induced platelet aggregation in rabbit platelet rich plasma in vitro compared with control group, to a degree similar to that of aspirin. Besides, R-/S-HPABA prolonged bleeding time and clotting time as well as increased the recovery rate obviously in pulmonary thrombosis. Moreover, the level of thromboxane B2 (TXB2) was decreased while the production of 6-keto-prostaglandin F1α (6-keto-PGF1α) was increased markedly by R-/S-HPABA. Furthermore, R-/S-HPABA reduced carotid artery thrombosis weight. These results illustrated that R-/S-HPABA could be a potent antiplatelet aggregation and antithrombotic agent.
Collapse
Affiliation(s)
- Qili Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Danlin Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Meiyan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail: (ZY); (YZ)
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
- * E-mail: (ZY); (YZ)
| |
Collapse
|
203
|
Pérez-Sen R, Gómez-Villafuertes R, Ortega F, Gualix J, Delicado EG, Miras-Portugal MT. An Update on P2Y 13 Receptor Signalling and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:139-168. [PMID: 28815513 DOI: 10.1007/5584_2017_91] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distribution of nucleotide P2Y receptors across different tissues suggests that they fulfil key roles in a number of physiological and pathological conditions. P2Y13 is one of the latest P2Y receptors identified, a novel member of the Gi-coupled P2Y receptor subfamily that responds to ADP, together with P2Y12 and P2Y14. Pharmacological studies drew attention to this new ADP receptor, with a pharmacology that overlaps that of P2Y12 receptors but with unique features and roles. The P2RY12-14 genes all reside on human chromosome 3 at 3q25.1 and their strong sequence homology supports their evolutionary origin through gene duplication. Polymorphisms of P2Y13 receptors have been reported in different human populations, yet their consequences remain unknown. The P2Y13 receptor is versatile in its signalling, extending beyond the canonical signalling of a Gi-coupled receptor. Not only can it couple to different G proteins (Gs/Gq) but the P2Y13 receptor can also trigger several intracellular pathways related to the activation of MAPKs (mitogen-activated protein kinases) and the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 axis. Moreover, the availability of P2Y13 receptor knockout mice has highlighted the specific functions in which it is involved, mainly in the regulation of cholesterol and glucose metabolism, bone homeostasis and aspects of central nervous system function like pain transmission and neuroprotection. This review summarizes our current understanding of this elusive receptor, not only at the pharmacological and molecular level but also, in terms of its signalling properties and specific functions, helping to clarify the involvement of P2Y13 receptors in pathological situations.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| |
Collapse
|
204
|
Barańska J, Czajkowski R, Pomorski P. P2Y 1 Receptors - Properties and Functional Activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639247 DOI: 10.1007/5584_2017_57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter we try to show a comprehensive image of current knowledge of structure, activity and physiological role of the P2Y1 purinergic receptor. The structure, distribution and changes in the expression of this receptor are summarized, as well as the mechanism of its signaling activity by the intracellular calcium mobilization. We try to show the connection between the components of its G protein activation and cellular or physiological effects, starting from changes in protein phosphorylation patterns and ending with such remote effects as receptor-mediated apoptosis. The special emphasis is put on the role of the P2Y1 receptor in cancer cells and neuronal plasticity. We concentrate on the P2Y1 receptor, it is though impossible to completely abstract from other aspects of nucleotide signaling and cross-talk with other nucleotide receptors is here discussed. Especially, the balance between P2Y1 and P2Y12 receptors, sharing the same ligand but signaling through different pathways, is presented.
Collapse
Affiliation(s)
- Jolanta Barańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Department of Cell Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland.
| |
Collapse
|
205
|
|
206
|
Lewis JP, Shuldiner AR. Clopidogrel pharmacogenetics: Beyond candidate genes and genome-wide association studies. Clin Pharmacol Ther 2016; 101:323-325. [PMID: 27649515 DOI: 10.1002/cpt.519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 11/07/2022]
Abstract
While it is well established that genetic variation is a significant contributor to interindividual variability in clopidogrel efficacy, candidate gene and genome-wide approaches have failed to reproducibly identify genetic determinants of antiplatelet response, apart from variants in CYP2C19, prompting the need for more innovative study designs. Herein, we highlight the potential benefit of exome sequencing of patients at the extremes of clopidogrel responsivity through examination of data reported in this issue of Clinical Pharmacology & Therapeutics.
Collapse
Affiliation(s)
- J P Lewis
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - A R Shuldiner
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
207
|
Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia 2016; 65:375-387. [DOI: 10.1002/glia.23097] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Mildner
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry; Charité-Universitätsmedizin Berlin; Berlin 10117 Germany
| | - Hao Huang
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry; Charité-Universitätsmedizin Berlin; Berlin 10117 Germany
| | - Josefine Radke
- Department of Neuropathology; Charité-Universitätsmedizin Berlin; Berlin 10117 Germany
- Berlin Institute of Health (BIH); Berlin Germany
- German Consortium for Translational Cancer Research (DKTK); Heidelberg Germany
| | - Werner Stenzel
- Department of Neuropathology; Charité-Universitätsmedizin Berlin; Berlin 10117 Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry; Charité-Universitätsmedizin Berlin; Berlin 10117 Germany
- Berlin Institute of Health (BIH); Berlin Germany
- Cluster of Excellence NeuroCure and DZNE; Berlin 10117 Germany
| |
Collapse
|
208
|
Salimi S, Lewis JP, Yerges-Armstrong LM, Mitchell BD, Saeed F, O'Connell JR, Perry JA, Ryan KA, Shuldiner AR, Parsa A. Clopidogrel Improves Skin Microcirculatory Endothelial Function in Persons With Heightened Platelet Aggregation. J Am Heart Assoc 2016; 5:JAHA.116.003751. [PMID: 27799230 PMCID: PMC5210318 DOI: 10.1161/jaha.116.003751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Platelet activation can lead to enhanced oxidative stress, inflammatory response, and endothelial dysfunction. To quantify the effects of platelet inhibition on endothelial function, we assessed platelet activity of healthy persons before and after clopidogrel administration and evaluated its effects on endothelial function. We hypothesized that clopidogrel, by attenuating platelet activity, would result in enhanced endothelial function. Methods and Results Microcirculatory endothelial function was quantified by laser Doppler flowmetry (LDF) mediated by thermal hyperemia (TH) and postocclusive reactive hyperemia, respectively, in 287 and 241 relatively healthy and homogenous Old Order Amish persons. LDF and platelet aggregation measures were obtained at baseline and after 7 days of clopidogrel administration. Our primary outcome was percentage change in post‐ versus preclopidogrel LDF measures. Preclopidogrel TH‐LDF and platelet aggregation were higher in women than in men (P<0.001). Clopidogrel administration was associated with ≈2‐fold higher percentage change in TH‐LDF in participants with high versus low baseline platelet aggregation (39.4±10.1% versus 17.4±5.6%, P=0.03). Clopidogrel also increased absolute TH‐LDF measures in persons with high platelet aggregation (1757±766 to 2154±1055, P=0.03), with a more prominent effect in women (1909±846 to 2518±1048, P=0.001). There was no evidence that clopidogrel influenced postocclusive reactive hyperemia LDF measures. Conclusions The administration of clopidogrel in healthy persons with high baseline platelet aggregation results in improved TH‐induced microcirculatory endothelial function. These data suggest that clopidogrel may have a beneficial effect on microcirculatory endothelial function, presumably through antiplatelet activity, and may confer additional vascular benefits. Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT00799396.
Collapse
Affiliation(s)
- Shabnam Salimi
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Joshua P Lewis
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Yerges-Armstrong
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.,Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD.,Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Faisal Saeed
- Department of Medicine, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Jeffry R O'Connell
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - James A Perry
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Kathleen A Ryan
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes & Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.,Department of Medicine, Baltimore Veterans Administration Medical Center, Baltimore, MD
| | - Afshin Parsa
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.,Department of Medicine, Baltimore Veterans Administration Medical Center, Baltimore, MD
| |
Collapse
|
209
|
Antithrombotic activity of Vitis labrusca extract on rat platelet aggregation. Blood Coagul Fibrinolysis 2016; 27:141-6. [PMID: 26340455 DOI: 10.1097/mbc.0000000000000394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vitis labrusca is a grapevine that has antioxidant, neuroprotective, hepatoprotective, and anticarcinogenic activity. However, the antithrombotic effect of Vitis labrusca leaves on platelets is yet to be ascertained. We investigated the inhibitory effect of V. labrusca leaf extract (VLE) on platelet aggregation in vitro and ex vivo. The thromboxane B2 (TXB2) and serotonin concentrations were measured by ELISA. The flavonoids content was measured by ultraperformance liquid chromatography (UPLC). The antithrombotic activity of VLE was evaluated using various agonists in vitro. VLE strongly inhibited adenosine diphosphate (ADP)-induced platelet aggregation. In rats, VLE treatment (100 mg/kg) reduced ADP-stimulated platelet aggregation, without affecting tail bleeding and coagulation time. Moreover, VLE significantly suppressed TXB2 and serotonin secretion. UPLC analysis indicated that VLE contains quercetin, isorhamnetin, and rutin. Our results indicate that VLE possesses antiplatelet activity via the suppression of TXB2 and serotonin, without affecting bleeding. Further, we identified the flavonoids present in VLE. Thus, VLE may be a potential agent for the prevention of cardiovascular diseases.
Collapse
|
210
|
Doly JS, Lorian E, Desormais I, Constans J, Bura Rivière A, Lacroix P. [Prevalence and prognosis of aspirin resistance in critical limb ischemia patients]. ACTA ACUST UNITED AC 2016; 41:358-364. [PMID: 27745943 DOI: 10.1016/j.jmv.2016.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To assess the prevalence and the association between aspirin resistance in critical limb ischemia patients using the VerifyNow® bed-side platelet test, and occurrence of cardiovascular morbidity and/or death at one year. MATERIALS AND METHODS National multicenter prospective observational study related to COPART II centers. From 2010 through 2014, 64 subjects hospitalized for critical limb ischemia and already treated by aspirin before the VerifyNow® test were included. A VerifyNow® test>550 ARU was defined as aspirin resistance. Critical limb ischemia was defined according to the TASC I criteria. The primary outcome was a composite including death, acute coronary syndrome, stroke and major amputation during the one-year follow-up period. RESULTS In all, 9/64 patients were aspirin resistant, the status was confirmed in one case. The prevalence of aspirin resistance was 14.06%. There was no significant difference between aspirin resistant and aspirin non-resistant groups in terms of cardiovascular history and glycemia status. Neither was there significant difference between the two groups in terms of survival. CONCLUSION Aspirin resistance was not predictive of poorer survival in critical limb ischemia patients. However, our population was limited. Considering that a clear definition of aspirin resistance and standardized diagnostic tests are lacking, complementary studies might be useful.
Collapse
Affiliation(s)
- J-S Doly
- Service chirurgie thoracique et cardiovasculaire et angiologie, unité de médecine vasculaire, CHU de Limoges, 2, avenue Martin-Luther-King, 87000 Limoges, France.
| | - E Lorian
- Service chirurgie thoracique et cardiovasculaire et angiologie, unité de médecine vasculaire, CHU de Limoges, 2, avenue Martin-Luther-King, 87000 Limoges, France
| | - I Desormais
- Service chirurgie thoracique et cardiovasculaire et angiologie, unité de médecine vasculaire, CHU de Limoges, 2, avenue Martin-Luther-King, 87000 Limoges, France
| | - J Constans
- Service chirurgie thoracique et cardiovasculaire et angiologie, unité de médecine vasculaire, CHU de Limoges, 2, avenue Martin-Luther-King, 87000 Limoges, France
| | - A Bura Rivière
- Service chirurgie thoracique et cardiovasculaire et angiologie, unité de médecine vasculaire, CHU de Limoges, 2, avenue Martin-Luther-King, 87000 Limoges, France
| | - P Lacroix
- Service chirurgie thoracique et cardiovasculaire et angiologie, unité de médecine vasculaire, CHU de Limoges, 2, avenue Martin-Luther-King, 87000 Limoges, France
| |
Collapse
|
211
|
Luiz MVSJ, Scavone C, Tzanno C. The CLOCK trial, a double-blinded randomized controlled trial: Trisodium citrate 30% and minocycline 3 mg/mL plus EDTA 30 mg/mL are effective and safe for catheter patency maintenance among CKD 5D patients on hemodialysis. Hemodial Int 2016; 21:294-304. [DOI: 10.1111/hdi.12492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marcus V. S. João Luiz
- Department of Pharmacology; Institute of Biomedical Sciences, University of São Paulo; São Paulo SP Brazil
| | - Cristoforo Scavone
- Department of Pharmacology; Institute of Biomedical Sciences, University of São Paulo; São Paulo SP Brazil
| | - Carmen Tzanno
- Department of Nephrology, Integrated Centre of Nephrology, Guarulhos, São Paulo State, Brazil
| |
Collapse
|
212
|
Li RHL, Stern JA, Ho V, Tablin F, Harris SP. Platelet Activation and Clopidogrel Effects on ADP-Induced Platelet Activation in Cats with or without the A31P Mutation in MYBPC3. J Vet Intern Med 2016; 30:1619-1629. [PMID: 27615120 PMCID: PMC5032873 DOI: 10.1111/jvim.14568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/23/2016] [Accepted: 08/02/2016] [Indexed: 01/14/2023] Open
Abstract
Background Clopidogrel is commonly prescribed to cats with perceived increased risk of thromboembolic events, but little information exists regarding its antiplatelet effects. Objective To determine effects of clopidogrel on platelet responsiveness in cats with or without the A31P mutation in the MYBPC3 gene. A secondary aim was to characterize variability in feline platelet responses to clopidogrel. Animals Fourteen healthy cats from a Maine Coon/outbred mixed Domestic cat colony: 8 cats homozygous for A31P mutation in the MYPBC3 gene and 6 wild‐type cats without the A31P mutation. Methods Ex vivo study. All cats received clopidogrel (18.75 mg PO q24h) for 14 days. Before and after clopidogrel treatment, adenosine diphosphate (ADP)‐induced P‐selectin expression was evaluated. ADP‐ and thrombin‐induced platelet aggregation was measured by optical aggregometry (OA). Platelet pVASP and ADP receptor response index (ARRI) were measured by Western blot analysis. Results Platelet activation from cats with the A31P mutation was significantly (P = .0095) increased [35.55% (18.58–48.55) to 58.90% (24.85–69.90)], in response to ADP. Clopidogrel treatment attenuated ADP‐induced P‐selectin expression and platelet aggregation. ADP‐ and PGE1‐treated platelets had a similar level of pVASP as PGE1‐treated platelets after clopidogrel treatment. Clopidogrel administration resulted in significantly lower ARRI [24.13% (12.46–35.50) to 11.30% (−7.383 to 23.27)] (P = .017). Two of 13 cats were nonresponders based on OA and flow cytometry. Conclusion and Clinical Importance Clopidogrel is effective at attenuating platelet activation and aggregation in some cats. Cats with A31P mutation had increased platelet activation relative to the variable response seen in wild‐type cats.
Collapse
Affiliation(s)
- R H L Li
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA.
| | - J A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - V Ho
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - F Tablin
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, CA
| | - S P Harris
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
213
|
Abstract
Background: The nucleotide adenosine triphosphate (ATP) has long been known to drive and participate in countless intracellular processes. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin. Knowledge of the sources and effects of extracellular ATP in human skin may help shape new therapies for skin injury, inflammation, and numerous other cutaneous disorders. Objective: The objective of this review is to introduce the reader to current knowledge regarding the sources and effects of extracellular ATP in human skin and to outline areas in which further research is necessary to clarify the nature and mechanism of these effects. Conclusion: Extracellular ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity.
Collapse
Affiliation(s)
| | - Richard D. Granstein
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
214
|
Abstract
Peripheral arterial disease (PAD) of the lower extremities is a common and potentially life-threatening manifestation of systemic atherosclerosis. Significant PAD is identified by an ankle brachial index (ABI) <0.90; its presence is strongly associated with the major modifiable cardiac risk factors. Early detection and treatment of asymptomatic PAD is a current focus of numerous cardiovascular guideline organizations as less than a third of patients report typical claudication symptoms. This has created an ever-increasing treatment gap, whereby millions of eligible patients are inadequately treated. Risk factor management including exercise, smoking cessation, and aggressive treatment of lipids and blood pressure are essential in PAD patients. However, life-long antiplatelet therapy provides additional reductions in vascular events beyond aggressive risk factor management. The use of aspirin as well as more potent antiplatelet therapies such as thienopyridines holds promise for reducing atherothrombosis in this very high-risk population.
Collapse
Affiliation(s)
- William R Hiatt
- Department of Medicine, University of Colorado School of Medicine, Section of Vascular Medicine, Divisions of Geriatrics and Cardiology, Denver, Colorado 80203, USA.
| | | |
Collapse
|
215
|
Yan Y, Huang J, Tang BZ. Kinetic trapping - a strategy for directing the self-assembly of unique functional nanostructures. Chem Commun (Camb) 2016; 52:11870-84. [PMID: 27494003 DOI: 10.1039/c6cc03620a] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular self-assembly into various nano- or microscopic structures based on non-covalent interactions between molecules has been recognized as a very efficient approach that leads to functional materials. Since most non-covalent interactions are relatively weak and form and break without significant activation barriers, the thermodynamic equilibrium of many supramolecular systems can be easily influenced by processing pathways that allow the system to stay in a kinetically trapped state. Thus far, kinetic traps have been found to be very important in producing more elaborate structural and functional diversity of self-assembled systems. In this review, we try to summarize the approaches that can produce kinetically trapped self-assemblies based on examples made by us. We focus on the following subjects: (1) supramolecular pathway dependent self-assembly, including kinetically trapped self-assemblies facilitated by host-guest chemistry, coordination chemistry, and electrostatic interactions; (2) physical processing pathway dependent self-assembly, including solvent quality controlled self-assembly, evaporation induced self-assembly and crystallization induced self-assembly.
Collapse
Affiliation(s)
- Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
216
|
Lecchi A, Femia EA, Paoletta S, Dupuis A, Ohlmann P, Gachet C, Jacobson KA, Machura K, Podda GM, Zieger B, Cattaneo M. Inherited dysfunctional platelet P2Y 12 receptor mutations associated with bleeding disorders. Hamostaseologie 2016; 36:279-283. [PMID: 27487748 DOI: 10.5482/hamo-16-03-0010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/20/2016] [Indexed: 11/05/2022] Open
Abstract
The platelet adenosine 5'-diphosphate (ADP) receptor P2Y12 (P2Y12R) plays a critical role in platelet aggregation. The present report illustrates an update of dysfunctional platelet P2Y12R mutations diagnosed with congenital lifelong bleeding problems. Described patients with heterozygous or homozygous substitution in the P2Y12R gene and qualitative abnormalities of the platelet P2Y12R are summarized. Recently, a further dysfunctional variant of P2Y12R has been identified in two brothers who presented with a lifelong severe bleeding disorder. During in vitro aggregation studies, the patient´s platelets show a markedly reduced and rapid reversible ADP-promoted aggregation. A homozygous c.561T>A substitution that changes the codon for His187 to Gln (p.His187Gln) in the P2Y12R gene has been identified. This mutation causes no change in receptor expression but decreases the affinity of the ligand for the receptor, even at high concentrations. Structure modelling studies indicated that the p.His187Gln mutation, located in the fifth transmembrane spanning domain (TM5), impairs conformational changes of the receptor. Structural integrity of the TM5 region is necessary for agonist and antagonist binding and for correct receptor function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Katharina Machura
- Katharina Machura, University Medical Center, Freiburg - Department of Pediatrics and Adolescent Medicine, Breisacher-Str. 66, 79106 Freiburg, Germany, Tel. +49/(0)761/27 06 37 10, E-mail:
| | | | | | | |
Collapse
|
217
|
Conroy S, Kindon N, Kellam B, Stocks MJ. Drug-like Antagonists of P2Y Receptors-From Lead Identification to Drug Development. J Med Chem 2016; 59:9981-10005. [PMID: 27413802 DOI: 10.1021/acs.jmedchem.5b01972] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P2Y receptors are expressed in virtually all cells and tissue types and mediate an astonishing array of biological functions, including platelet aggregation, smooth muscle cell proliferation, and immune regulation. The P2Y receptors belong to the G protein-coupled receptor superfamily and are composed of eight members encoded by distinct genes that can be subdivided into two groups on the basis of their coupling to specific G-proteins. Extensive research has been undertaken to find modulators of P2Y receptors, although to date only a limited number of small-molecule P2Y receptor antagonists have been approved by drug/medicines agencies. This Perspective reviews the known P2Y receptor antagonists, highlighting oral drug-like receptor antagonists, and considers future opportunities for the development of small molecules for clinical evaluation.
Collapse
Affiliation(s)
- Sean Conroy
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Nicholas Kindon
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Barrie Kellam
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| | - Michael J Stocks
- Centre for Biomolecular Sciences, University of Nottingham , University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
218
|
Bravo PE, Di Carli MF. Does clopidogrel affect the efficacy of myocardial perfusion imaging? J Nucl Cardiol 2016; 23:780-2. [PMID: 26338430 PMCID: PMC4779065 DOI: 10.1007/s12350-015-0280-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Paco E Bravo
- Noninvasive Cardiovascular Imaging Program, Divisions of Cardiovascular Medicine and Nuclear Medicine and Molecular Imaging, Departments of Medicine and Radiology, Heart and Vascular Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo F Di Carli
- Noninvasive Cardiovascular Imaging Program, Divisions of Cardiovascular Medicine and Nuclear Medicine and Molecular Imaging, Departments of Medicine and Radiology, Heart and Vascular Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
219
|
Abstract
We report the case of a 49-year-old male who took an overdose of 1650 mg of clopidogrel with suicidal intend. The patient developed abnormalities of platelet aggregation, but never developed symptoms. Clopidogrel is a commonly prescribed drug. Reports of overdose of clopidogrel were very rarely reported in the literature.
Collapse
Affiliation(s)
- G Kocabay
- Department of Internal Medicine, Istanbul Faculty of Medicine, University of Istanbul, Topkapi, Istanbul.
| | | | | | | |
Collapse
|
220
|
Platelets and coronary artery disease: Interactions with the blood vessel wall and cardiovascular devices. Biointerphases 2016; 11:029702. [DOI: 10.1116/1.4953246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
221
|
Zetterberg F, Svensson P. State of affairs: Design and structure–activity relationships of reversible P2Y 12 receptor antagonists. Bioorg Med Chem Lett 2016; 26:2739-2754. [DOI: 10.1016/j.bmcl.2016.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/10/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
|
222
|
Inherited platelet disorders: toward DNA-based diagnosis. Blood 2016; 127:2814-23. [PMID: 27095789 DOI: 10.1182/blood-2016-03-378588] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022] Open
Abstract
Variations in platelet number, volume, and function are largely genetically controlled, and many loci associated with platelet traits have been identified by genome-wide association studies (GWASs).(1) The genome also contains a large number of rare variants, of which a tiny fraction underlies the inherited diseases of humans. Research over the last 3 decades has led to the discovery of 51 genes harboring variants responsible for inherited platelet disorders (IPDs). However, the majority of patients with an IPD still do not receive a molecular diagnosis. Alongside the scientific interest, molecular or genetic diagnosis is important for patients. There is increasing recognition that a number of IPDs are associated with severe pathologies, including an increased risk of malignancy, and a definitive diagnosis can inform prognosis and care. In this review, we give an overview of these disorders grouped according to their effect on platelet biology and their clinical characteristics. We also discuss the challenge of identifying candidate genes and causal variants therein, how IPDs have been historically diagnosed, and how this is changing with the introduction of high-throughput sequencing. Finally, we describe how integration of large genomic, epigenomic, and phenotypic datasets, including whole genome sequencing data, GWASs, epigenomic profiling, protein-protein interaction networks, and standardized clinical phenotype coding, will drive the discovery of novel mechanisms of disease in the near future to improve patient diagnosis and management.
Collapse
|
223
|
Guarracino JF, Cinalli AR, Fernández V, Roquel LI, Losavio AS. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction. Neuroscience 2016; 326:31-44. [PMID: 27058149 DOI: 10.1016/j.neuroscience.2016.03.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/28/2023]
Abstract
It is known that adenosine 5'-triphosphate (ATP) is released along with the neurotransmitter acetylcholine (ACh) from motor nerve terminals. At mammalian neuromuscular junctions (NMJs), we have previously demonstrated that ATP is able to decrease ACh secretion by activation of P2Y receptors coupled to pertussis toxin-sensitive Gi/o protein. In this group, the receptor subtypes activated by adenine nucleotides are P2Y12 and P2Y13. Here, we investigated, by means of pharmacological and immunohistochemical assays, the P2Y receptor subtype that mediates the modulation of spontaneous and evoked ACh release in mouse phrenic nerve-diaphragm preparations. First, we confirmed that the preferential agonist for P2Y12-13 receptors, 2-methylthioadenosine 5'-diphosphate trisodium salt hydrate (2-MeSADP), reduced MEPP frequency without affecting MEPP amplitude as well as the amplitude and quantal content of end-plate potentials (EPPs). The effect on spontaneous secretion disappeared after the application of the selective P2Y12-13 antagonists AR-C69931MX or 2-methylthioadenosine 5'-monophosphate triethylammonium salt hydrate (2-MeSAMP). 2-MeSADP was more potent than ADP and ATP in reducing MEPP frequency. Then we demonstrated that the selective P2Y13 antagonist MRS-2211 completely prevented the inhibitory effect of 2-MeSADP on MEPP frequency and EPP amplitude, whereas the P2Y12 antagonist MRS-2395 failed to do this. The preferential agonist for P2Y13 receptors inosine 5'-diphosphate sodium salt (IDP) reduced spontaneous and evoked ACh secretion and MRS-2211 abolished IDP-mediated modulation. Immunohistochemical studies confirmed the presence of P2Y13 but not P2Y12 receptors at the end-plate region. Disappearance of P2Y13 receptors after denervation suggests the presynaptic localization of the receptors. We conclude that, at motor nerve terminals, the Gi/o protein-coupled P2Y receptors implicated in presynaptic inhibition of spontaneous and evoked ACh release are of the subtype P2Y13. This study provides new insights into the types of purinergic receptors that contribute to the fine-tuning of cholinergic transmission at mammalian neuromuscular junction.
Collapse
Affiliation(s)
- Juan F Guarracino
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina
| | - Alejandro R Cinalli
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina
| | - Verónica Fernández
- Departamento de Biología, Universidad Argentina John F Kennedy, Sarmiento 4564 (CP 1197), Buenos Aires, Argentina
| | - Liliana I Roquel
- Departamento de Biología, Universidad Argentina John F Kennedy, Sarmiento 4564 (CP 1197), Buenos Aires, Argentina
| | - Adriana S Losavio
- Laboratorio de Neurofisiología, Instituto de Investigaciones Médicas Lanari, IDIM-CONICET, Universidad de Buenos Aires, Combatientes de Malvinas 3150 (CP 1427), Buenos Aires, Argentina.
| |
Collapse
|
224
|
Arima Y, Kaikita K, Ishii M, Ito M, Sueta D, Oimatsu Y, Sakamoto K, Tsujita K, Kojima S, Nakagawa K, Hokimoto S, Ogawa H. Assessment of platelet-derived thrombogenicity with the total thrombus-formation analysis system in coronary artery disease patients receiving antiplatelet therapy. J Thromb Haemost 2016; 14:850-9. [PMID: 26773298 DOI: 10.1111/jth.13256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/18/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Accurate evaluation of thrombogenicity helps to prevent thrombosis and excessive bleeding. The total thrombus-formation analysis system (T-TAS) was developed for quantitative analysis of platelet thrombus formation by the use of microchips with thrombogenic surfaces (collagen, platelet chip [PL-chip]; collagen plus tissue factor, atherome chip [AR-chip]). We examined the utility of the T-TAS in the assessment of the efficacy of antiplatelet therapy in patients with coronary artery disease (CAD). METHODS AND RESULTS In this cross-sectional study, 372 consecutive patients admitted to the cardiovascular department were divided into three groups: patients not receiving any antiplatelet therapy (control, n = 56), patients receiving aspirin only (n = 69), and patients receiving aspirin and clopidogrel (n = 149). Blood samples were used for the T-TAS to measure the platelet thrombus-formation area under the curve (AUC) at various shear rates (1500 s(-1) [PL18 -AUC10 ] and 2000 s(-1) [PL24 -AUC10 ] for the PL-chip; 300 s(-1) [AR10 -AUC30 ] for the AR-chip). The on-clopidogrel platelet aggregation was measured by the use of P2Y12 reaction units (PRUs) with the VerifyNow system. The mean PL24 -AUC10 levels were 358 ± 111 (± standard deviation) (95% confidence interval [CI] 328.9-387.1) in the control group, 256 ± 108 (95% CI 230.5-281.5) in the aspirin group, and 113 ± 91 (95% CI 98.4-127.6) in the aspirin/clopidogrel group. In the aspirin/clopidogrel group, the PL24 -AUC10 was higher in poor metabolizers (PMs) with cytochrome P450 2C19(CYP2C19) polymorphisms (152 ± 112, 95% CI 103.4-200.6) than in the non-PM group (87 ± 74, 95% CI 73.8-100.2). CONCLUSIONS Our findings suggest that the PL24 -AUC10 level measured by the T-TAS is a potentially suitable index for the assessment of antiplatelet therapy in CAD patients.
Collapse
Affiliation(s)
- Y Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - K Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - M Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - M Ito
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - D Sueta
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Y Oimatsu
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - K Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - K Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - S Kojima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - K Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - S Hokimoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - H Ogawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
225
|
Nylander S, Schulz R. Effects of P2Y12 receptor antagonists beyond platelet inhibition--comparison of ticagrelor with thienopyridines. Br J Pharmacol 2016; 173:1163-78. [PMID: 26758983 PMCID: PMC5341337 DOI: 10.1111/bph.13429] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/02/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023] Open
Abstract
The effect and clinical benefit of P2Y12 receptor antagonists may not be limited to platelet inhibition and the prevention of arterial thrombus formation. Potential additional effects include reduction of the pro-inflammatory role of activated platelets and effects related to P2Y12 receptor inhibition on other cells apart from platelets. P2Y12 receptor antagonists, thienopyridines and ticagrelor, differ in their mode of action being prodrugs instead of direct acting and irreversibly instead of reversibly binding to P2Y12 . These key differences may provide different potential when it comes to additional effects. In addition to P2Y12 receptor blockade, ticagrelor is unique in having the only well-documented additional target of inhibition, the equilibrative nucleoside transporter 1. The current review will address the effects of P2Y12 receptor antagonists beyond platelets and the protection against arterial thrombosis. The discussion will include the potential for thienopyridines and ticagrelor to mediate anti-inflammatory effects, to conserve vascular function, to affect atherosclerosis, to provide cardioprotection and to induce dyspnea.
Collapse
Affiliation(s)
| | - Rainer Schulz
- Institute of PhysiologyJustus‐Liebig University GiessenGiessenGermany
| |
Collapse
|
226
|
Lee RH, Bergmeier W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) and hemITAM signaling and vascular integrity in inflammation and development. J Thromb Haemost 2016; 14:645-54. [PMID: 26749528 DOI: 10.1111/jth.13250] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/24/2015] [Indexed: 01/13/2023]
Abstract
Platelets are essential for maintaining hemostasis following mechanical injury to the vasculature. Besides this established function, novel roles of platelets are becoming increasingly recognized, which are critical in non-injury settings to maintain vascular barrier integrity. For example, during embryogenesis platelets act to support the proper separation of blood and lymphatic vessels. This role continues beyond birth, where platelets prevent leakage of blood into the lymphatic vessel network. During the course of inflammation, platelets are necessary to prevent local hemorrhage due to neutrophil diapedesis and disruption of endothelial cell-cell junctions. Surprisingly, platelets also work to secure tumor-associated blood vessels, inhibiting excessive vessel permeability and intra-tumor hemorrhaging. Interestingly, many of these novel platelet functions depend on immunoreceptor tyrosine-based activation motif (ITAM) signaling but not on signaling via G protein-coupled receptors, which plays a crucial role in platelet plug formation at sites of mechanical injury. Murine platelets express two ITAM-containing receptors: the Fc receptor γ-chain (FcRγ), which functionally associates with the collagen receptor GPVI, and the C-type lectin-like 2 (CLEC-2) receptor, a hemITAM receptor for the mucin-type glycoprotein podoplanin. Human platelets express an additional ITAM receptor, FcγRIIA. These receptors share common downstream effectors, including Syk, SLP-76 and PLCγ2. Here we will review the recent literature that highlights a critical role for platelet GPVI/FcRγ and CLEC-2 in vascular integrity during development and inflammation in mice and discuss the relevance to human disease.
Collapse
Affiliation(s)
- R H Lee
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - W Bergmeier
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
227
|
P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction. Neural Plast 2016; 2016:1207393. [PMID: 27069691 PMCID: PMC4812485 DOI: 10.1155/2016/1207393] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/10/2016] [Indexed: 01/02/2023] Open
Abstract
ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states.
Collapse
|
228
|
Sipe GO, Lowery RL, Tremblay MÈ, Kelly EA, Lamantia CE, Majewska AK. Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex. Nat Commun 2016; 7:10905. [PMID: 26948129 PMCID: PMC4786684 DOI: 10.1038/ncomms10905] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022] Open
Abstract
Microglia are the resident immune cells of the brain. Increasingly, they are recognized as important mediators of normal neurophysiology, particularly during early development. Here we demonstrate that microglia are critical for ocular dominance plasticity. During the visual critical period, closure of one eye elicits changes in the structure and function of connections underlying binocular responses of neurons in the visual cortex. We find that microglia respond to monocular deprivation during the critical period, altering their morphology, motility and phagocytic behaviour as well as interactions with synapses. To explore the underlying mechanism, we focused on the P2Y12 purinergic receptor, which is selectively expressed in non-activated microglia and mediates process motility during early injury responses. We find that disrupting this receptor alters the microglial response to monocular deprivation and abrogates ocular dominance plasticity. These results suggest that microglia actively contribute to experience-dependent plasticity in the adolescent brain. Microglia play key roles during early neurodevelopment. Here the authors show that microglia are important mediators of ocular dominance plasticity (ODP). Microglia respond to monocular deprivation during the visual critical period, and disrupting microglial P2Y12 purinergic receptor abrogates ODP.
Collapse
Affiliation(s)
- G O Sipe
- Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA.,Neuroscience Graduate Program, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA
| | - R L Lowery
- Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA.,Neuroscience Graduate Program, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA
| | - M-È Tremblay
- Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA
| | - E A Kelly
- Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA
| | - C E Lamantia
- Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA
| | - A K Majewska
- Department of Neuroscience, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA.,Neuroscience Graduate Program, University of Rochester, 601 Elmwood Avenue, box 603, Rochester, New York 14642, USA
| |
Collapse
|
229
|
Liu J, Nie XY, Zhang Y, Lu Y, Shi LW, Wang WM. CYP2C19*2 and Other Allelic Variants Affecting Platelet Response to Clopidogrel Tested by Thrombelastography in Patients with Acute Coronary Syndrome. Chin Med J (Engl) 2016; 128:2183-8. [PMID: 26265611 PMCID: PMC4717987 DOI: 10.4103/0366-6999.162515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: To investigate the contributions of CYP2C19 polymorphisms to the various clopidogrel responses tested by thrombelastography (TEG) in Chinese patients with the acute coronary syndrome (ACS). Methods: Patients were screened prospectively with ACS diagnose and were treated with clopidogrel and aspirin dual antiplatelet therapy. CYP2C19 loss of function (LOF) and gain of function (GOF) genotype, adenosine 5′-diphosphate (ADP)-channel platelet inhibition rate (PIR) tested by TEG and the occurrence of 3-month major adverse cardiovascular events and ischemic events were assessed in 116 patients. Results: High on-treatment platelet reactivity (HTPR) prevalence defined by PIR <30% by TEG in ADP-channel was 32.76% (38/116). With respect to the normal wild type, CYP2C19*2, and *3 LOF alleles, and *17 GOF alleles, patients were classified into three metabolism phenotypes: 41.38% were extensive metabolizers (EMs), 56.90% were intermediate metabolizers (IMs), and 1.72% were poor metabolizers (PMs). Of the enrolled patients, 31.47%, 5.17%, and 0.43%, respectively, were carriers of *2, *3, and *17 alleles. The HTPR incidence differed significantly according to CYP2C19 genotypes, accounting for 18.75%, 41.54%, and 100.00% in EMs, IMs, and PMs, respectively. Eighteen (17.24%) ischemic events occurred during the 3-month follow-up, and there was a significant difference in ischemic events between HTPR group and nonhigh on-treatment platelet reactivity group. Conclusions: Genetic CYP2C19 polymorphisms are relative to the inferior, the antiplatelet activity after clopidogrel admission and may increase the incidence of ischemic events in patients with ACS.
Collapse
Affiliation(s)
| | | | | | | | - Lu-Wen Shi
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | | |
Collapse
|
230
|
Li XQ, Ma N, Li XG, Wang B, Sun SS, Gao F, Mo DP, Song LG, Sun X, Liu L, Zhao XQ, Wang YL, Wang YJ, Zhao ZG, Miao ZR. Association of PON1, P2Y12 and COX1 with Recurrent Ischemic Events in Patients with Extracranial or Intracranial Stenting. PLoS One 2016; 11:e0148891. [PMID: 26870959 PMCID: PMC4752331 DOI: 10.1371/journal.pone.0148891] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 01/04/2016] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE Short-term combined use of clopidogrel and aspirin improves cerebrovascular outcomes in patients with symptomatic extracranial or intracranial stenosis. Antiplatelet non-responsiveness is related to recurrent ischemic events, but the culprit genetic variants responsible for the non-responsiveness have not been well studied. We aimed to identify the genetic variants associated with poor clinical outcomes. METHODS Patients with symptomatic extracranial or intracranial stenosis scheduled for stenting and receiving dual antiplatelets (clopidogrel 75 mg and aspirin 100 mg daily) for at least 5 days before intervention were enrolled. Ischemic events including recurrent transient ischemic attack, stroke, myocardial infarction, and vascular-related mortality within 12 months follow-up were recorded. We examined the influence of genetic polymorphisms on treatment outcome in our patients. RESULTS A total of 268 patients were enrolled into our study and ischemic events were observed in 39 patients. For rs662 of paraoxonase 1 (PON1), allele C was associated with an increased risk of ischemic events (OR = 1.64, 95%CI = 1.03-2.62, P = 0.029). The A-allele carriers of rs2046934 of P2Y12 had a significant association with adverse events (OR = 2.01, 95%CI = 1.10-3.67, P = 0.041). The variant T-allele of cyclooxygenase-1 (COX1) rs1330344 significantly increased the risk of recurrent clinical events (OR = 1.85, 95%CI = 1.12-3.03, P = 0.017). The other single nucleotide polymorphism (SNP) had no association with ischemic events. CONCLUSIONS PON1, P2Y12 and COX1 polymorphisms were associated with poorer vascular outcomes. Testing for these polymorphisms may be valuable in the identification of patients at risk for recurrent ischemic events.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Department of Neurology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xin-Gang Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Shu-Sen Sun
- College of Pharmacy, Western New England University, Springfield, Massachusetts, United States of America
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Da-Peng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Li-Gang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Lian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xing-Quan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi-Long Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Jun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Gang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- * E-mail: (ZGZ); (ZRM)
| | - Zhong-Rong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, National Clinical Research Center for Neurological Diseases, Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (ZGZ); (ZRM)
| |
Collapse
|
231
|
Radiopharmaceuticals for PET imaging of neuroinflammation. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2016. [DOI: 10.1016/j.mednuc.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
232
|
Swiatkowski P, Murugan M, Eyo UB, Wang Y, Rangaraju S, Oh SB, Wu LJ. Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury. Neuroscience 2016; 318:22-33. [PMID: 26791526 DOI: 10.1016/j.neuroscience.2016.01.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Abstract
Microglia, the resident immune cells in the central nervous system (CNS), constantly survey the surrounding neural parenchyma and promptly respond to brain injury. Activation of purinergic receptors such as P2Y12 receptors (P2Y12R) in microglia has been implicated in chemotaxis toward ATP that is released by injured neurons and astrocytes. Activation of microglial P2Y12R elicits outward potassium current that is associated with microglial chemotaxis in response to injury. This study aimed at investigating the identity of the potassium channel implicated in microglial P2Y12R-mediated chemotaxis following neuronal injury and understanding the purinergic signaling pathway coupled to the channel. Using a combination of two-photon imaging, electrophysiology and genetic tools, we found the ATP-induced outward current to be largely dependent on P2Y12R activation and mediated by G-proteins. Similarly, P2Y12R-coupled outward current was also evoked in response to laser-induced single neuron injury. This current was abolished in microglia obtained from mice lacking P2Y12R. Dissecting the properties of the P2Y12R-mediated current using a pharmacological approach revealed that both the ATP and neuronal injury-induced outward current in microglia was sensitive to quinine (1mM) and bupivacaine (400μM), but not tetraethylammonium (TEA) (10mM) and 4-aminopyridine (4-AP) (5mM). These results suggest that the quinine/bupivacaine-sensitive potassium channels are the functional effectors of the P2Y12R-mediated signaling in microglia activation following neuronal injury.
Collapse
Affiliation(s)
- P Swiatkowski
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States; Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ 08854, United States
| | - M Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - U B Eyo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Y Wang
- Stomatological Hospital, Anhui Medical University, Hefei, Anhui 230032, China
| | - S Rangaraju
- Department of Neurology, Emory University School of Medicine, 12 Executive Park Drive NE, Atlanta, GA 30329, United States
| | - S B Oh
- Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - L-J Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
233
|
Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci U S A 2016; 113:1074-9. [PMID: 26755608 DOI: 10.1073/pnas.1520398113] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microglia are integral functional elements of the central nervous system, but the contribution of these cells to the structural integrity of the neurovascular unit has not hitherto been assessed. We show here that following blood-brain barrier (BBB) breakdown, P2RY12 (purinergic receptor P2Y, G-protein coupled, 12)-mediated chemotaxis of microglia processes is required for the rapid closure of the BBB. Mice treated with the P2RY12 inhibitor clopidogrel, as well as those in which P2RY12 was genetically ablated, exhibited significantly diminished movement of juxtavascular microglial processes and failed to close laser-induced openings of the BBB. Thus, microglial cells play a previously unrecognized protective role in the maintenance of BBB integrity following cerebrovascular damage. Because clopidogrel antagonizes the platelet P2Y12 receptor, it is widely prescribed for patients with coronary artery and cerebrovascular disease. As such, these observations suggest the need for caution in the postincident continuation of P2RY12-targeted platelet inhibition.
Collapse
|
234
|
Field TS, Castellanos M, Weksler BB, Benavente OR. Antiplatelet Therapy for Secondary Prevention of Stroke. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00061-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
235
|
Effects of omeprazole or pantoprazole on platelet function in non-ST-segment elevation acute coronary syndrome patients receiving clopidogrel. Mil Med Res 2016; 3:38. [PMID: 28018669 PMCID: PMC5159972 DOI: 10.1186/s40779-016-0107-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/26/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND This study evaluated the effect of omeprazole or pantoprazole on platelet reactivity in non-ST-segment elevation acute coronary syndrome (NSTE-ACS) patients receiving clopidogrel. METHODS Consecutive patients with NSTE-ACS (n = 620) from general hospital of Shenyang Military Command were randomized to the omeprazole or pantoprazole (20 mg/d) group (1:1), and received routine dual antiplatelet treatment. Patients' reversion rate of adenosine diphosphate-induced platelet aggregation (ADP-PA) was assessed at baseline, 12 to 24 h after administration of medication, and after 72 h of percutaneous coronary intervention (PCI). The primary endpoint of the study was platelet reactivity assessed with ADP-PA at 30 days after PCI. Adverse events (AEs) were recorded for 30-day and 180-day follow-up periods. RESULTS There were no significant differences between both the groups in platelet response to clopidogrel at 12-24 h after drug administration (54.09% ± 18.90% vs 51.62% ± 19.85%, P = 0.12), 72 h after PCI (52.15% ± 19.45% vs 49.66% ± 20.05%, P = 0.18), and 30 days after PCI (50.44% ± 14.54% vs 48.52% ± 15.08%, P = 0.17). The rate of AEs did not differ significantly between groups during the 30-day (15.2% vs 14.8%, P = 0.91) and 180-day (16.5% vs 14.5%, P = 0.50) follow-up periods after PCI. CONCLUSIONS The addition of omeprazole or pantoprazole to clopidogrel did not restrict the effect of platelet aggregation by reducing the conversion of clopidogrel. Compared with clopidogrel alone, pantoprazole-clopidogrel and omeprazole-clopidogrel combinations did not increase the incidence of adverse clinical events during 30-day and 180-day follow-up periods after PCI. TRIAL REGISTRATION The study is registered in the National Institutes of Health website with identifier NCT01735227. Registered 14 November 2012.
Collapse
|
236
|
Sibbing D, Kastrati A, Berger PB. Pre-treatment with P2Y12inhibitors in ACS patients: who, when, why, and which agent? Eur Heart J 2015; 37:1284-95. [DOI: 10.1093/eurheartj/ehv717] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/06/2015] [Indexed: 12/22/2022] Open
|
237
|
Burnstock G. Blood cells: an historical account of the roles of purinergic signalling. Purinergic Signal 2015; 11:411-34. [PMID: 26260710 PMCID: PMC4648797 DOI: 10.1007/s11302-015-9462-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022] Open
Abstract
The involvement of purinergic signalling in the physiology of erythrocytes, platelets and leukocytes was recognised early. The release of ATP and the expression of purinoceptors and ectonucleotidases on erythrocytes in health and disease are reviewed. The release of ATP and ADP from platelets and the expression and roles of P1, P2Y(1), P2Y(12) and P2X1 receptors on platelets are described. P2Y(1) and P2X(1) receptors mediate changes in platelet shape, while P2Y(12) receptors mediate platelet aggregation. The changes in the role of purinergic signalling in a variety of disease conditions are considered. The successful use of P2Y(12) receptor antagonists, such as clopidogrel and ticagrelor, for the treatment of thrombosis, myocardial infarction and stroke is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK.
- Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
238
|
Terada C, Shiba M, Satake M, Tadokoro K. Real-time measurement of platelet shape change by light scattering under riboflavin and ultraviolet light treatment. Transfusion 2015; 56:587-95. [PMID: 26536611 DOI: 10.1111/trf.13404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/10/2015] [Accepted: 09/29/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND The adoption of pathogen reduction technologies (PRTs) is considered for the implementation of safer platelet (PLT) transfusion. However, the effects of PRT treatment including irradiation with ultraviolet (UV) light on PLT shape have not yet been fully clarified. STUDY DESIGN AND METHODS Leukoreduced PLT concentrates (PCs) were treated with riboflavin and UV light (Mirasol PRT, TerumoBCT). PLT shape and adenosine diphosphate (ADP)-induced shape change were evaluated by a light scattering method where the amplitude of the scattered signal intensity was measured as the indicator of the proportion of discoid PLTs. Using a modified fluorometer, the real-time effects of different wavelengths of UV light on PLT shape were examined over the range of 300 to 360 nm at the same dose. RESULTS The proportion of discoid PLTs in the Mirasol PRT-treated PCs decreased immediately after treatment. The difference in the proportion between PRT-treated and untreated PLTs became larger with storage. Although this modification correlated significantly with the pH decrease and P-selectin expression, the Mirasol PRT-treated PLTs retained sufficient ability to undergo an ADP-induced shape change. In the study using the modified fluorometer, the proportion of discoid PLTs significantly decreased with the wavelength (< 320 nm) of irradiated UV light. CONCLUSION Mirasol PRT treatment of PCs decreases the proportion of discoid PLTs, which seemed to be caused by the irradiation with UV light of short wavelengths (< 320 nm), not that of long wavelengths (≥ 320 nm) in the Mirasol PRT system. Modification of UV light wavelength may improve the quality of PRT-treated PCs.
Collapse
Affiliation(s)
- Chikahiro Terada
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Masayuki Shiba
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Masahiro Satake
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Kenji Tadokoro
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| |
Collapse
|
239
|
von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2015; 104:50-61. [PMID: 26519900 DOI: 10.1016/j.neuropharm.2015.10.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y receptors are widely expressed and play important roles in physiology and pathophysiology. One important example is the ADP-induced platelet aggregation mediated by P2Y1 and P2Y12 receptors. Active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel as well as the nucleoside analogue ticagrelor block P2Y12 receptors and thereby platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events. Moreover, P2Y receptors play important roles in the nervous system. Adenine nucleotides modulate neuronal activity and neuronal fibre outgrowth by activation of P2Y1 receptors and control migration of microglia by P2Y12 receptors. UDP stimulates microglial phagocytosis through activation of P2Y6 receptors. There is evidence for a role for P2Y2 receptors in Alzheimer's disease pathology. The P2Y receptor subtypes are highly diverse in both their amino acid sequences and their pharmacological profiles. Selective receptor ligands have been developed for the pharmacological characterization of the receptor subtypes. The recently published three-dimensional crystal structures of the human P2Y1 and P2Y12 receptors will facilitate the development of therapeutic agents that selectively target P2Y receptors. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany.
| | - Kristina Hoffmann
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany
| |
Collapse
|
240
|
Shchors K, Massaras A, Hanahan D. Dual Targeting of the Autophagic Regulatory Circuitry in Gliomas with Repurposed Drugs Elicits Cell-Lethal Autophagy and Therapeutic Benefit. Cancer Cell 2015; 28:456-471. [PMID: 26412325 DOI: 10.1016/j.ccell.2015.08.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 04/13/2015] [Accepted: 08/31/2015] [Indexed: 12/17/2022]
Abstract
The associations of tricyclic antidepressants (TCAs) with reduced incidence of gliomas and elevated autophagy in glioma cells motivated investigation in mouse models of gliomagenesis. First, we established that imipramine, a TCA, increased autophagy and conveyed modest therapeutic benefit in tumor-bearing animals. Then we screened clinically approved agents suggested to affect autophagy for their ability to enhance imipramine-induced autophagy-associated cell death. The anticoagulant ticlopidine, which inhibits the purinergic receptor P2Y12, potentiated imipramine, elevating cAMP, a modulator of autophagy, reducing cell viability in culture, and increasing survival in glioma-bearing mice. Efficacy of the combination was obviated by knockdown of the autophagic regulatory gene ATG7, implicating cell-lethal autophagy. This seemingly innocuous combination of TCAs and P2Y12 inhibitors may have applicability for treating glioma.
Collapse
Affiliation(s)
- Ksenya Shchors
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland
| | - Aristea Massaras
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland.
| |
Collapse
|
241
|
Cheng G, Liu D, Margetts P, Liu L, Zhao Z, Liu Z, Tang L, Fang Y, Li H, Guo Y, Chen F, Liu F. Valsartan combined with clopidogrel and/or leflunomide for the treatment of progressive immunoglobulin A nephropathy. Nephrology (Carlton) 2015; 20:77-84. [PMID: 25358874 DOI: 10.1111/nep.12359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
AIM The current standard treatment for IgA nephropathy relies on steroid and/or immunosuppressive therapy and angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor blocker (ARB). This study examines the benefits and safety of combining valsartan with clopidogrel and leflunomide as a treatment for progressive IgA nephropathy. METHODS Patients with primary IgA nephropathy, confirmed by renal biopsy, were recruited for this study. Patients were separated into four groups (n = 42 each) after 2 months of run-in period of valsartan treatment. All patients were treated with valsartan alone (Group 1) or valsartan and either clopidogrel (Group 2) or leflunomide (Group 3) or both clopidogrel and leflunomide (Group 4). Each group was followed up for their next 24 months for 24 h urinary protein excretion, serum creatinine and estimated glomerular filtration rate (eGFR) to assess the effect of the treatment. Adverse effects were recorded concurrently to evaluate the safety of the treatment. RESULTS Of all 168 patients, 107 were males and 61 were females, with an average age of 33.8 ± 8.79 years. Baseline characteristics were comparable among the four groups (P > 0.05) prior to the experimental treatment. There was a significant (P < 0.05) decrease in 24 h urinary protein excretion after 4 months of experimental treatment. At the end of the 24 months, groups 3 and 4 showed a respective 62.35% and 69.47% reduction in proteinuria. The serum creatinine was significantly higher (P < 0.05) in group 1 and 2 at the end of the follow-up, and their respective eGFR was significantly lower. The incidence of cardiovascular complication was 11.9% and 9.5% for group 1 and 3, respectively. CONCLUSIONS The treatment with Valsartan combined with Clopidogrel and Leflunomide can reduce the urinary proteins loss and renal function deterioration for IgA nephropathy patients and cause minimal adverse reactions. Our study suggests a new clinical treatment option for IgA nephropathy.
Collapse
Affiliation(s)
- Genyang Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Shakhidzhanov SS, Shaturny VI, Panteleev MA, Sveshnikova AN. Modulation and pre-amplification of PAR1 signaling by ADP acting via the P2Y12 receptor during platelet subpopulation formation. Biochim Biophys Acta Gen Subj 2015; 1850:2518-29. [PMID: 26391841 DOI: 10.1016/j.bbagen.2015.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/01/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Two major soluble blood platelet activators are thrombin and ADP. Of these two, only thrombin can induce mitochondrial collapse and programmed cell death leading to phosphatidylserine (PS) exposure required for blood clotting reactions acceleration. Thrombin can also greatly potentiate collagen-induced PS exposure. However, ADP acting through the P2Y12 receptor was shown to increase the PS-exposing (PS+) platelets fraction produced by thrombin or thrombin-plus-collagen via an unknown mechanism. METHODS We developed a comprehensive multicompartmental computational model of platelet PAR1-and-P2Y12 calcium signal transduction that included cytoplasmic signaling, dense tubular system and mitochondria. To test model predictions, flow cytometry experiments with washed, annexin V-labeled platelets were performed. RESULTS Stimulation of thrombin receptor PAR1 in the model induced cytoplasmic calcium oscillations, calcium uptake by mitochondria, opening of the permeability transition pore and collapse of the mitochondrial membrane potential. ADP stimulation of P2Y12 led to cAMP decrease that, in turn, caused changes in phospholipase C phosphorylation by protein kinase A, increase in cytoplasmic calcium level and, consequently, PS+ platelet formation. ADP addition before stimulation of PAR1 produced much greater increase of the PS+ fraction because cAMP concentration had time to go down prior to calcium oscillations; this prediction was also tested and confirmed experimentally. CONCLUSION These results suggest a mechanism of ADP-dependent PS exposure regulation and show a likely mode of action that could be important for the PS exposure regulation in thrombi, where ADP is released before thrombin formation.
Collapse
Affiliation(s)
- S S Shakhidzhanov
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia.
| | - V I Shaturny
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia.
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St, Moscow 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudnyi, 141700, Russia.
| | - A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, 1-2 Leninskie Gory, GSP-1, Moscow 119991, Rusia; Federal Research and Clinical Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela St, Moscow 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow 119991, Russia.
| |
Collapse
|
243
|
Hechler B, Gachet C. Purinergic Receptors in Thrombosis and Inflammation. Arterioscler Thromb Vasc Biol 2015; 35:2307-15. [PMID: 26359511 DOI: 10.1161/atvbaha.115.303395] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/27/2015] [Indexed: 12/23/2022]
Abstract
Under various pathological conditions, including thrombosis and inflammation, extracellular nucleotide levels may increase because of both active release and passive leakage from damaged or dying cells. Once in the extracellular compartment, nucleotides interact with plasma membrane receptors belonging to the P2 purinergic family, which are expressed by virtually all circulating blood cells and in most blood vessels. In this review, we focus on the specific role of the 3 platelet P2 receptors P2Y1, P2Y12, and P2X1 in hemostasis and arterial thrombosis. Beyond platelets, these 3 receptors, along with the P2Y2, P2Y6, and P2X7 receptors, constitute the main P2 receptors mediating the proinflammatory effects of nucleotides, which play important roles in various functions of circulating blood cells and cells of the vessel wall. Each of these P2 receptor subtypes specifically contributes to chronic or acute vascular inflammation and related diseases, such as atherosclerosis, restenosis, endotoxemia, and sepsis. The potential for therapeutic targeting of these P2 receptor subtypes is also discussed.
Collapse
Affiliation(s)
- Béatrice Hechler
- From the UMR_S949, INSERM, Strasbourg, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France; and Université de Strasbourg, Strasbourg, France
| | - Christian Gachet
- From the UMR_S949, INSERM, Strasbourg, France; Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France; and Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
244
|
Albuquerque FN, Bortnick A, Iqbal J, Ishibashi Y, Stone GW, Serruys PW. Dual antiplatelet therapy, drug-eluting stents and bioresorbable vascular scaffolds: Evolutionary perspectives. Catheter Cardiovasc Interv 2015; 87:909-19. [DOI: 10.1002/ccd.26099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/14/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Felipe N. Albuquerque
- Division of Cardiovascular Diseases-Montefiore Medical Center; Albert Einstein College of Medicine; New York New York
| | - Anna Bortnick
- Division of Cardiovascular Diseases-Montefiore Medical Center; Albert Einstein College of Medicine; New York New York
| | - Javaid Iqbal
- ThoraxCenter; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Yuki Ishibashi
- ThoraxCenter; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Gregg W. Stone
- Columbia University Medical Center/New York-Presbyterian Hospital; New York New York
| | - Patrick W. Serruys
- ThoraxCenter; Erasmus University Medical Center; Rotterdam The Netherlands
| |
Collapse
|
245
|
Makkawi M, Moheimani F, Alserihi R, Howells D, Wright M, Ashman L, Jackson DE. A complementary role for tetraspanin superfamily member CD151 and ADP purinergic P2Y12 receptor in platelets. Thromb Haemost 2015; 114:1004-19. [PMID: 26245294 DOI: 10.1160/th14-11-0967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/16/2015] [Indexed: 12/20/2022]
Abstract
P2Y12 receptor is required for sustained activation of integrin αIIbβ3, irreversible platelet aggregation and thrombus stabilisation. Tetraspanin superfamily member CD151 associates with integrin αIIbβ3 and plays critical roles in regulation of thrombus growth and stability in vivo. The possible functional relationship between P2Y12 and CD151 in a molecular cluster in platelets may affect thrombus formation. Hence our aim was to investigate the physical and functional requirements for this association in platelets. Our investigations reveal a specific and constitutive association between CD151 and P2Y12 receptor in human platelets shown by immunoprecipitation/western blot studies and by flow cytometry. Specifically, the prominent association involves CD151 with P2Y12 oligomers, and to a lesser extent P2Y12 monomers. This association is not altered by platelet aggregation induced by different agonists. There is also a distinct complex of tetraspanin CD151 with ADP purinergic receptor P2Y12 but not P2Y1. P2Y12 oligomer interaction with CD151 is selective as compared to other tetraspanins. To investigate the functional relationship between these receptors in platelets we used wild-type or CD151 knockout (KO) mice treated with either PBS or 50 mg/kg clopidogrel. CD151 KO mice treated with clopidogrel exhibited synergy in delayed kinetics of clot retraction, in PAR-4 and collagen-mediated platelet aggregation, platelet spreading on fibrinogen and without restricting cAMP inhibition. Clopidogrel treated CD151 KO arterioles showed smaller and less stable thrombi with increased tendency to embolise ex vivo and in vivo. These studies demonstrate a complementary role between CD151 and P2Y12 receptor in platelets in regulating thrombus growth and stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Denise E Jackson
- Prof. Denise E. Jackson, BAppSc (MLS), FAIMS, PhD, FFSc, Discipline Head and Program Leader of Laboratory Medicine, Head of Thrombosis and Vascular Diseases Laboratory, School of Medical Sciences, RMIT University, PO Box 71, Bundoora. Victoria 3083, Australia, Tel.: +61 3 9925 7392, Fax: +61 3 9925 7063, E-mail:
| |
Collapse
|
246
|
Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. J Comput Aided Mol Des 2015. [PMID: 26194851 DOI: 10.1007/s10822-015-9858-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The G protein-coupled P2Y12 receptor (P2Y12R) is an important antithrombotic target and of great interest for pharmaceutical discovery. Its recently solved, highly divergent crystallographic structures in complex either with nucleotides (full or partial agonist) or with a nonnucleotide antagonist raise the question of which structure is more useful to understand ligand recognition. Therefore, we performed extensive molecular modeling studies based on these structures and mutagenesis, to predict the binding modes of major classes of P2Y12R ligands previously reported. Various nucleotide derivatives docked readily to the agonist-bound P2Y12R, but uncharged nucleotide-like antagonist ticagrelor required a hybrid receptor resembling the agonist-bound P2Y12R except for the top portion of TM6. Supervised molecular dynamics (SuMD) of ticagrelor binding indicated interactions with the extracellular regions of P2Y12R, defining possible meta-binding sites. Ureas, sulfonylureas, sulfonamides, anthraquinones and glutamic acid piperazines docked readily to the antagonist-bound P2Y12R. Docking dinucleotides at both agonist- and antagonist-bound structures suggested interactions with two P2Y12R pockets. Thus, our structure-based approach consistently rationalized the main structure-activity relationships within each ligand class, giving useful information for designing improved ligands.
Collapse
|
247
|
Thomas MR, Storey RF. Effect of P2Y12 inhibitors on inflammation and immunity. Thromb Haemost 2015; 114:490-7. [PMID: 26156883 DOI: 10.1160/th14-12-1068] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/04/2015] [Indexed: 02/04/2023]
Abstract
Platelet P2Y12 inhibitors form a major part of the treatment strategy for patients with acute coronary syndromes (ACS) due to the importance of the platelet P2Y12 receptor in mediating the pathophysiology of arterial thrombosis. It has been increasingly recognised that platelets also have a critical role in inflammation and immune responses. P2Y12 inhibitors reduce platelet release of pro-inflammatory α-granule contents and the formation of pro-inflammatory platelet-leukocyte aggregates. These are important mediators of inflammation in a variety of different contexts. Clinical evidence shows that P2Y12 inhibition by clopidogrel is associated with a reduction in platelet-related mediators of inflammation, such as soluble P-selectin and CD40L, following atherothrombosis. Clopidogrel in addition to aspirin, compared to aspirin alone, also reduces markers of systemic inflammation such as tumour necrosis factor (TNF) α and C-reactive protein (CRP) following ACS. The more potent thienopyridine P2Y12 inhibitor, prasugrel, has been shown to decrease platelet P-selectin expression and platelet-leukocyte aggregate formation compared to clopidogrel. The PLATO study suggested that the novel P2Y12 inhibitor ticagrelor might improve clinical outcomes from pulmonary infections and sepsis compared to clopidogrel in patients with ACS. Ticagrelor is a more potent P2Y12 inhibitor than clopidogrel and also inhibits cellular adenosine uptake via equilibrative nucleoside transporter (ENT) 1, whereas clopidogrel does not. Further examination of the involvement of these mechanisms in inflammation and immunity is therefore warranted.
Collapse
Affiliation(s)
- Mark R Thomas
- Dr. Mark R. Thomas, BMedSci BMBS MRCP, Department of Cardiovascular Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK, Tel.: +44 114 3052019, Fax: +44 114 2266159, E-mail
| | | |
Collapse
|
248
|
Chen F, Yang Y, Fang C, Zhao J, Han M, Zhu Q, Bai X, Liu M, Yang G. Effect of fluvoxamine on the pharmacokinetics and pharmacodynamics of clopidogrel in rats. Xenobiotica 2015; 45:1122-8. [DOI: 10.3109/00498254.2015.1045570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
249
|
Abstract
The platelet P2Y12 receptor (P2Y12R) for adenosine 5'diphosphate (ADP) plays a central role in platelet function, hemostasis, and thrombosis. Patients with inherited P2Y12R defects display mild-to-moderate bleeding diatheses. Defects of P2Y12R should be suspected when ADP, even at high concentrations (≥ 10 μm), is unable to induce full, irreversible platelet aggregation. P2Y12R also plays a role in inflammation: its role in the pathogenesis of allergic asthma has been well characterized. In addition, inhibition or genetic deficiency of P2Y12R has antitumor effects. Drugs inhibiting P2Y12R are potent antithrombotic drugs. Clopidogrel is the P2Y12R antagonist that is most widely used in the clinical setting. Its most important drawback is its inability to inhibit adequately P2Y12R-dependent platelet function in about one-third of patients. New drugs, such as prasugrel and ticagrelor, which effectively inhibit P2Y12R in the vast majority of patients, have proved to be more efficacious than clopdidogrel in preventing major adverse cardiovascular events.
Collapse
Affiliation(s)
- M Cattaneo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Unità di Medicina 3, Ospedale San Paolo, Milan, Italy
| |
Collapse
|
250
|
Abstract
The current standard care for acute coronary syndromes is dual antiplatelet therapy combining the COX1 inhibitor aspirin with a drug targeting the P2Y12 receptor, together with anticoagulation during and after early revascularization by percutaneous intervention. In very high-risk patients, glycoprotein (GP) IIb/IIIa antagonists may also be used. Secondary prevention of ischemic events requires dual antiplatelet therapy for several months followed by lifelong low-dose aspirin. The duration of treatment and the drugs to combine nevertheless remain matters of debate and the focus of ongoing research. Despite great progress, there is still room for improved efficacy and this could involve new targets for both antiplatelet drugs (like the thrombin receptor PAR1) and anticoagulants. However, improved efficacy is offset by an increased risk of bleeding. Stroke patients are still waiting for better treatment, their bleeding risk being particularly high. New targets including the collagen receptor, glycoprotein VI (GPVI), and the GPIb-von Willebrand factor axis, governing platelet interaction with the diseased vessel wall, should enable us to complete the armamentarium of antiplatelet drugs.
Collapse
Affiliation(s)
- C Gachet
- UMR_S949, INSERM, Strasbourg, France
- Etablissement Français du Sang-Alsace (EFS-Alsace), Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|