201
|
Yan Y, Chen D, Han X, Liu M, Hu W. MiRNA-19a and miRNA-19b regulate proliferation of antler cells by targeting TGFBR2. MAMMAL RES 2019. [DOI: 10.1007/s13364-019-00469-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
202
|
Gadd45β promotes regeneration after injury through TGFβ-dependent restitution in experimental colitis. Exp Mol Med 2019; 51:1-14. [PMID: 31666502 PMCID: PMC6821912 DOI: 10.1038/s12276-019-0335-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022] Open
Abstract
Dysregulated immune responses and impaired function in intestinal epithelial cells contribute to the pathogenesis of inflammatory bowel disease (IBD). Growth arrest and DNA damage-inducible 45 beta (Gadd45β) has been implicated in the pathogenesis of various inflammatory symptoms. However, the role of Gadd45β in IBD is completely unknown. This study aimed to evaluate the role of Gadd45β in IBD. Gadd45β-KO mice exhibited drastically greater susceptibility to dextran sulfate sodium (DSS)-induced colitis and mortality than C57BL/6J mice. Bone marrow transplantation experiments revealed that Gadd45β functions predominantly in the intestinal epithelium and is critical during the recovery phase. Gadd45β regulates the TGF-β signaling pathway in colon tissue and epithelial cells by inhibiting Smurf-mediated degradation of TGF-β receptor type 1 via competitive binding to the N-terminal domain of Smad7. Furthermore, these results indicate that the Gadd45β-regulated TGF-β signaling pathway is involved in wound healing by enhancing epithelial restitution. These results expand the current understanding of the function of Gadd45β and its therapeutic potential in ulcerative colitis. A signaling molecule that prevents inflammatory damage in an animal model of ulcerative colitis offers a promising therapeutic target. The molecular drivers of this form of inflammatory bowel disease remain poorly understood, but the associated damage to the intestinal epithelium is primarily due to uncontrolled immune cell activity. Jung Hwan Hwang of the Korea Research Institute of Bioscience and Biotechnology, Daejeon, and coworkers have now demonstrated that a protein called Gadd45β helps to reduce inflammatory damage to the epithelial barrier. They showed that a mouse model of chemically induced ulcerative colitis exhibited more severe disease symptoms and higher mortality when these animals also lacked Gadd45β. This protein is generally known to modulate immune cell activity response, but in this disease model, the authors primarily observed activity within intestinal epithelial cells, where it appears to facilitate wound healing.
Collapse
|
203
|
Goebel EJ, Hart KN, McCoy JC, Thompson TB. Structural biology of the TGFβ family. Exp Biol Med (Maywood) 2019; 244:1530-1546. [PMID: 31594405 DOI: 10.1177/1535370219880894] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transforming growth factor beta (TGFβ) signaling pathway orchestrates a wide breadth of biological processes, ranging from bone development to reproduction. Given this, there has been a surge of interest from the drug development industry to modulate the pathway – at several points. This review discusses and provides additional context for several layers of the TGFβ signaling pathway from a structural biology viewpoint. The combination of structural techniques coupled with biophysical studies has provided a foundational knowledge of the molecular mechanisms governing this high impact, ubiquitous pathway, underlying many of the current therapeutic pursuits. This work seeks to consolidate TGFβ-related structural knowledge and educate other researchers of the apparent gaps that still prove elusive. We aim to highlight the importance of these structures and provide the contextual information to understand the contribution to the field, with the hope of advancing the discussion and exploration of the TGFβ signaling pathway. Impact statement The transforming growth factor beta (TGFβ) signaling pathway is a multifacetted and highly regulated pathway, forming the underpinnings of a large range of biological processes. Here, we review and consolidate the key steps in TGFβ signaling using literature rooted in structural and biophysical techniques, with a focus on molecular mechanisms and gaps in knowledge. From extracellular regulation to ligand–receptor interactions and intracellular activation cascades, we hope to provide an introductory base for understanding the TGFβ pathway as a whole.
Collapse
Affiliation(s)
- Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
204
|
Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-β2/ANGPTL4 axes. NPJ Precis Oncol 2019; 3:24. [PMID: 31602400 PMCID: PMC6776663 DOI: 10.1038/s41698-019-0094-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/09/2019] [Indexed: 02/05/2023] Open
Abstract
Metastatic outcomes depend on the interactions of metastatic cells with a specific organ microenvironment. Our previous studies have shown that triple-negative breast cancer (TNBC) MDA-MB-231 cells passaged in astrocyte-conditioned medium (ACM) show proclivity to form brain metastases, but the underlying mechanism is unknown. The combination of microarray analysis, qPCR, and ELISA assay were carried out to demonstrate the ACM-induced expression of angiopoietin-like 4 (ANGPTL4) in TNBC cells. A stable ANGPTL4-knockdown MDA-MB-231 cell line was generated by ANGPTL4 short-hairpin RNA (shRNA) and inoculated into mice via left ventricular injection to evaluate the role of ANGPTL4 in brain metastasis formation. The approaches of siRNA, neutralizing antibodies, inhibitors, and immunoprecipitation were used to demonstrate the involved signaling molecules. We first found that ACM-conditioned TNBC cells upregulated the expression of ANGPTL4, a secreted glycoprotein whose effect on tumor progression is known to be tumor microenvironment- and tumor-type dependent. Knockdown of ANGPTL4 in TNBC MDA-MB-231 cells with shRNA decreased ACM-induced tumor cell metastatic growth in the brain and attributed to survival in a mouse model. Furthermore, we identified that astrocytes produced transforming growth factor-beta 2 (TGF-β2), which in part is responsible for upregulation of ANGPTL4 expression in TNBC through induction of SMAD signaling. Moreover, we identified that tumor cells communicate with astrocytes, where tumor cell-derived interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) increased the expression of TGF-β2 in astrocytes. Collectively, these findings indicate that the invading TNBC cells interact with astrocytes in the brain microenvironment that facilitates brain metastases of TNBC cells through a TGF-β2/ANGPTL4 axis. This provides groundwork to target ANGPTL4 as a treatment for breast cancer brain metastases.
Collapse
|
205
|
Identification of a transforming growth factor-β type I receptor transcript in Eriocheir sinensis and its molting-related expression in muscle tissues. Mol Biol Rep 2019; 47:77-86. [PMID: 31571110 DOI: 10.1007/s11033-019-05108-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is conserved across animals, and knowledge of its roles during the molt cycle in crustaceans is presently very limited. This study investigates the roles of the TGF-β receptor in molting-related muscle growth in Eriocheir sinensis. Using the RT-PCR and RACE techniques, we obtained a 1722 bp cDNA sequence encoding a transforming growth factor-β type I receptor in Eriocheir sinensis, designated EsTGFBRI, which contains a 124 bp 5'-untranslated region, a 20 bp partial 3'-untranslated region and a 1578 bp open reading frame encoding 525 amino acids. The deduced EsTGFBRI contains an N-terminal 24 amino acid signal peptide, an activin type I and II receptor domain, a transmembrane helix region, a glycine-serine-rich motif, and a conserved serine/threonine kinase catalytic domain including an activation loop. The qRT-PCR results showed that EsTGFBRI gene was highly expressed in the intermolt testis and ovary in mature crabs. In juvenile crabs, the mRNA levels of EsTGFBRI in claw and abdominal muscles in the later premolt D3-4 stage were significantly higher than those in the intermolt C and postmolt A-B stages. There was no significant change in EsTGFBRI mRNA levels in walking leg muscles during the molt cycle. The results suggest that EsTGFBRI is probably play roles in molting-related muscle growth in E. sinensis. This study provides a necessary basis for elucidating the functions of TGF-β-like signaling mediated by TGFBRI in molting-related muscle growth in crustaceans.
Collapse
|
206
|
Kang JH, Jung MY, Leof EB. B7-1 drives TGF-β stimulated pancreatic carcinoma cell migration and expression of EMT target genes. PLoS One 2019; 14:e0222083. [PMID: 31483844 PMCID: PMC6726221 DOI: 10.1371/journal.pone.0222083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022] Open
Abstract
B7-1 proteins are routinely expressed on the surface of antigen presenting cells (APC) and within the innate immune system. They function to establish a biologically optimal and dynamic balance between immune activation and inhibition or self-tolerance. Interactions between B7-1 and its receptors, which include CD28, CTLA4 and PD-L1, contribute to both stimulatory as well as inhibitory or homeostatic regulation. In the current study, we investigated whether the tumor-promoting actions of transforming growth factor beta (TGF-β) disrupted this equilibrium in pancreatic cancer to promote malignant progression and an enhanced means to evade immune detection. The data show that B7-1 is (i) upregulated following treatment of pancreatic carcinoma cells with TGF-β; (ii) induced by TGF-β via both Smad2/3-dependent and independent pathways; (iii) required for pancreatic tumor cell in vitro migration/invasion; and (iv) necessary for TGF-β regulated epithelial-mesenchymal transition (EMT) through induction of Snail family members. Results from the proposed studies provide valuable insights into mechanisms whereby TGF-β regulates both the innate immune response and intrinsic properties of pancreatic tumor growth.
Collapse
Affiliation(s)
- Jeong-Han Kang
- Departments of Medicine and Biochemistry & Molecular Biology, Division of Pulmonary and Critical Care Medicine, Thoracic Disease Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Mi-Yeon Jung
- Departments of Medicine and Biochemistry & Molecular Biology, Division of Pulmonary and Critical Care Medicine, Thoracic Disease Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Edward B. Leof
- Departments of Medicine and Biochemistry & Molecular Biology, Division of Pulmonary and Critical Care Medicine, Thoracic Disease Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| |
Collapse
|
207
|
Integrin-Mediated TGFβ Activation Modulates the Tumour Microenvironment. Cancers (Basel) 2019; 11:cancers11091221. [PMID: 31438626 PMCID: PMC6769837 DOI: 10.3390/cancers11091221] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/26/2022] Open
Abstract
TGFβ (transforming growth factor-beta) is a pleotropic cytokine with contrasting effects in cancer. In normal tissue and early tumours, TGFβ acts as a tumour suppressor, limiting proliferation and inducing apoptosis. However, these effects are eventually abrogated by the loss or inactivation of downstream signalling within the TGFβ pathway, and in established tumours, TGFβ then acts as a tumour promotor through multiple mechanisms including inducing epithelial-to-mesenchymal transition (EMT), promoting formation of cancer-associated fibroblasts (CAFs) and increasing angiogenesis. TGFβ is secrereted as a large latent complex and is embedded in the extracellular matrix or held on the surface of cells and must be activated before mediating its multiple functions. Thus, whilst TGFβ is abundant in the tumour microenvironment (TME), its functionality is regulated by local activation. The αv-integrins are major activators of latent-TGFβ. The potential benefits of manipulating the immune TME have been highlighted by the clinical success of immune-checkpoint inhibitors in a number of solid tumour types. TGFβ is a potent suppressor of T-cell-mediated immune surveillance and a key cause of resistance to checkpoint inhibitors. Therefore, as certain integrins locally activate TGFβ, they are likely to have a role in the immunosuppressive TME, although this remains to be confirmed. In this review, we discussed the role of TGFβ in cancer, the role of integrins in activating TGFβ in the TME, and the potential benefits of targeting integrins to augment immunotherapies.
Collapse
|
208
|
Rak AY, Trofimov AV, Ischenko AM. Anti-mullerian hormone receptor type II as a Potential Target for Antineoplastic Therapy. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2019. [DOI: 10.1134/s1990750819030053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
209
|
Golan T, Parikh R, Jacob E, Vaknine H, Zemser-Werner V, Hershkovitz D, Malcov H, Leibou S, Reichman H, Sheinboim D, Percik R, Amar S, Brenner R, Greenberger S, Kung A, Khaled M, Levy C. Adipocytes sensitize melanoma cells to environmental TGF-β cues by repressing the expression of miR-211. Sci Signal 2019; 12:12/591/eaav6847. [PMID: 31337739 DOI: 10.1126/scisignal.aav6847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-β (TGF-β) superfamily members are critical signals in tissue homeostasis and pathogenesis. Melanoma grows in the epidermis and invades the dermis before metastasizing. This disease progression is accompanied by increased sensitivity to microenvironmental TGF-β. Here, we found that skin fat cells (adipocytes) promoted metastatic initiation by sensitizing melanoma cells to TGF-β. Analysis of melanoma clinical samples revealed that adipocytes, usually located in the deeper hypodermis layer, were present in the upper dermis layer within proximity to in situ melanoma cells, an observation that correlated with disease aggressiveness. In a coculture system, adipocytes secreted the cytokines IL-6 and TNF-α, which induced a proliferative-to-invasive phenotypic switch in melanoma cells by repressing the expression of the microRNA miR-211. In a xenograft model, miR-211 exhibited a dual role in melanoma progression, promoting cell proliferation while inhibiting metastatic spread. Bioinformatics and molecular analyses indicated that miR-211 directly targeted and repressed the translation of TGFBR1 mRNA, which encodes the type I TGF-β receptor. Hence, through this axis of cytokine-mediated repression of miR-211, adipocytes increased the abundance of the TGF-β receptor in melanoma cells, thereby enhancing cellular responsiveness to TGF-β ligands. The induction of TGF-β signaling, in turn, resulted in a proliferative-to-invasive phenotypic switch in cultured melanoma cells. Pharmacological inhibition of TGF-β prevented these effects. Our findings further reveal a molecular link between fat cells and metastatic progression in melanoma that might be therapeutically targeted in patients.
Collapse
Affiliation(s)
- Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Etai Jacob
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.,Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hananya Vaknine
- Institute of Pathology, E. Wolfson Medical Center, Holon 58100, Israel
| | | | - Dov Hershkovitz
- Institute of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hagar Malcov
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stav Leibou
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadar Reichman
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Danna Sheinboim
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Percik
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Institute of Endocrinology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sarah Amar
- Institute of Pathology, E. Wolfson Medical Center, Holon 58100, Israel
| | - Ronen Brenner
- Institute of Pathology, E. Wolfson Medical Center, Holon 58100, Israel
| | | | - Andrew Kung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mehdi Khaled
- INSERM 1186, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
210
|
Wijayarathna R, Hedger MP. Activins, follistatin and immunoregulation in the epididymis. Andrology 2019; 7:703-711. [DOI: 10.1111/andr.12682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- R. Wijayarathna
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Vic. Australia
- Department of Molecular and Translational Sciences School of Clinical Sciences Monash University Clayton Vic. Australia
| | - M. P. Hedger
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Vic. Australia
- Department of Molecular and Translational Sciences School of Clinical Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
211
|
Kim SK, Whitley MJ, Krzysiak TC, Hinck CS, Taylor AB, Zwieb C, Byeon CH, Zhou X, Mendoza V, López-Casillas F, Furey W, Hinck AP. Structural Adaptation in Its Orphan Domain Engenders Betaglycan with an Alternate Mode of Growth Factor Binding Relative to Endoglin. Structure 2019; 27:1427-1442.e4. [PMID: 31327662 DOI: 10.1016/j.str.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Betaglycan (BG) and endoglin (ENG), homologous co-receptors of the TGF-β family, potentiate the signaling activity of TGF-β2 and inhibin A, and BMP-9 and BMP-10, respectively. BG exists as monomer and forms 1:1 growth factor (GF) complexes, while ENG exists as a dimer and forms 2:1 GF complexes. Herein, the structure of the BG orphan domain (BGO) reveals an insertion that blocks the region that the endoglin orphan domain (ENGO) uses to bind BMP-9, preventing it from binding in the same manner. Using binding studies with domain-deleted forms of TGF-β and BGO, as well as small-angle X-ray scattering data, BGO is shown to bind its cognate GF in an entirely different manner compared with ENGO. The alternative interfaces likely engender BG and ENG with the ability to selectively bind and target their cognate GFs in a unique temporal-spatial manner, without interfering with one another or other TGF-β family GFs.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Matthew J Whitley
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA; X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Christian Zwieb
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Chang-Hyeock Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Xiaohong Zhou
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Valentín Mendoza
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - William Furey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, Room 2051, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
212
|
Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity. Proc Natl Acad Sci U S A 2019; 116:15505-15513. [PMID: 31315975 DOI: 10.1073/pnas.1906253116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TGFβ family ligands, which include the TGFβs, BMPs, and activins, signal by forming a ternary complex with type I and type II receptors. For TGFβs and BMPs, structures of ternary complexes have revealed differences in receptor assembly. However, structural information for how activins assemble a ternary receptor complex is lacking. We report the structure of an activin class member, GDF11, in complex with the type II receptor ActRIIB and the type I receptor Alk5. The structure reveals that receptor positioning is similar to the BMP class, with no interreceptor contacts; however, the type I receptor interactions are shifted toward the ligand fingertips and away from the dimer interface. Mutational analysis shows that ligand type I specificity is derived from differences in the fingertips of the ligands that interact with an extended loop specific to Alk4 and Alk5. The study also reveals differences for how TGFβ and GDF11 bind to the same type I receptor, Alk5. For GDF11, additional contacts at the fingertip region substitute for the interreceptor interactions that are seen for TGFβ, indicating that Alk5 binding to GDF11 is more dependent on direct contacts. In support, we show that a single residue of Alk5 (Phe84), when mutated, abolishes GDF11 signaling, but has little impact on TGFβ signaling. The structure of GDF11/ActRIIB/Alk5 shows that, across the TGFβ family, different mechanisms regulate type I receptor binding and specificity, providing a molecular explanation for how the activin class accommodates low-affinity type I interactions without the requirement of cooperative receptor interactions.
Collapse
|
213
|
Shi H, Liu CB, Xiao HJ. Stable expression of constitutively activated ALK3 suppresses rat hepatic stellate cell activation. Shijie Huaren Xiaohua Zazhi 2019; 27:807-813. [DOI: 10.11569/wcjd.v27.i13.807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is related to activation of hepatic stellate cells (HSCs) and epithelial mesenchymal transformation (EMT), in which transforming growth factor-β1 (TGF-β1) plays a pivotal role, but bone morphogenetic protein-7 (BMP7) can antagonize TGF-β1. Currently, the TGF-β/BMPs-Smad signaling pathway is a hot topic of research in this field. ALK3 belongs to the constitutively activated type Ⅰ receptor of BMPs, and its role in the molecular mechanism of hepatic fibrosis is rarely studied.
AIM To detect the expression of Samd1, P-Smad1, and fibrosis-related genes E-cadherin, α-SMA, and col1A2 in cultured rat HSCs (HSC-T6) to investigate how BMP-7 antagonizes TGF-β1 in the development of liver fibrosis and its anti-hepatic fibrosis mechanisms.
METHODS After HSCs-T6 were transfected with constitutively active cDNA construct expressing ALK3, RT-PCR method was used to screen the cell line with stable ALK3 expression and detect the mRNA level of col1A2. MTT assay was used to examine the proliferation of HSC-T6 cells with high expression of ALK3. Western blot method was used to detect the expression of Smad1, P-Smad1, E-cadherin, α-SMA, and co1lA2. Optic microscopy was used to detect the morphological changes of HSC-T6 cells with high expression of ALK3.
RESULTS Compared with control cells, ALK3 high expression restrained the growth of HSC-T6 cells, suppressed the expression of α-SMA and col1A2, promoted the expression of P-Smad1 and E-cadherin, but had no significant effect on Samd1.
CONCLUSION BMP-7 competitively antagonizes TGF-β1 induced fibrosis by enhancing the phosphorylation of Samd1.
Collapse
Affiliation(s)
- Hui Shi
- Department of Gastroenterology, the First Affiliated Hospital of Hainan Medical College, Haikou 570000, Hainan Province, China,Key Laboratory of Tumor Microenvironment and Immunotherapy of Hubei Province, Three Gorges University, Yichang 443000, Hubei Province, China,Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Chang-Bai Liu
- Key Laboratory of Tumor Microenvironment and Immunotherapy of Hubei Province, Three Gorges University, Yichang 443000, Hubei Province, China,Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - He-Jie Xiao
- Institute of Liver Diseases, China Three Gorges University, Yichang 443000, Hubei Province, China
| |
Collapse
|
214
|
IL-7 is a Key Driver Cytokine in Spondyloarthritis? J Immunol Res 2019; 2019:7453236. [PMID: 31276000 PMCID: PMC6560328 DOI: 10.1155/2019/7453236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
The rationale for a type 17 signature in the pathogenesis of spondyloarthritis (SpA) has been increasing and being ratified in studies recently. IL-7 is a cytokine whose ability to stimulate IL-17 production in both innate and adaptive immunity cells has made it a promising target not only for a better understanding of the disease as well as an important potential therapeutic target in patients with SpA.
Collapse
|
215
|
Rak AY, Trofimov AV, Ischenko AM. [Mullerian inhibiting substance type II receptor as a potential target for antineoplastic therapy]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:202-213. [PMID: 31258143 DOI: 10.18097/pbmc20196503202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The review considers properties of the type II anti-Mullerian hormone receptor (mullerian inhibiting substance receptor type II, MISRII), a transmembrane sensor with its own serine/threonine protein kinase activity, triggering apoptosis of the Mullerian ducts in mammalian embryogenesis and providing formation of the male type reproductive system. According to recent data, MISRII overexpression in the postnatal period is found in cells of a number of ovarian, mammary gland, and prostate tumors, and anti-Mullerian hormone (AMH) has a pro-apoptotic effect on MISRII-positive tumor cells. This fact makes MISRII a potential target for targeted anti-cancer therapy. Treatment based on targeting MISRII seems to be a much more effective alternative to the traditional one and will significantly reduce the drug dose. However, the mechanism of MISRII-AMH interaction is still poorly understood, so the development of new anticancer drugs is complicated. The review analyzes MISRII molecular structure and expression levels in various tissues and cell lines, as well as current understanding of the AMH binding mechanisms and data on the possibility of using MISRII as a target for the action of AMH-based antineoplastic drugs.
Collapse
Affiliation(s)
- A Ya Rak
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia
| | - A V Trofimov
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| | - A M Ischenko
- State Research Institute of Highly Pure Biopreparations, Saint-Petersburg, Russia
| |
Collapse
|
216
|
Hartley J, Abken H. Chimeric antigen receptors designed to overcome transforming growth factor-β-mediated repression in the adoptive T-cell therapy of solid tumors. Clin Transl Immunology 2019; 8:e1064. [PMID: 31236274 PMCID: PMC6589154 DOI: 10.1002/cti2.1064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells produced lasting remissions in the treatment of advanced, so far refractory B-cell malignancies; however, the elimination of solid tumors remains so far elusive. The low efficacy of CAR T cells is thought to be due to the immune-repressive milieu within the tumor lesion, predominantly mediated by transforming growth factor-β (TGF-β) that represses effector T-cell activities and drives differentiation towards regulatory T cells (Tregs). Seeking to boost antitumor immunity, TGF-β is currently targeted by different means in pre-clinical studies. While a recent clinical trial showed the utility of shielding CAR T cells from TGF-β repression, further strategies in counteracting TGF-β in the adoptive cell therapy warrant exploration. We here discuss the most recent advances in the field and draw future developments to make CAR T-cell therapy more potent in the treatment of solid cancer.
Collapse
Affiliation(s)
- Jordan Hartley
- RCI Regensburg Centre for Interventional Immunology Chair Genetic Immunotherapy University Hospital Regensburg Regensburg Germany
| | - Hinrich Abken
- RCI Regensburg Centre for Interventional Immunology Chair Genetic Immunotherapy University Hospital Regensburg Regensburg Germany
| |
Collapse
|
217
|
Engineered biomaterials to mitigate growth factor cost in cell biomanufacturing. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2018.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
218
|
Epigenetic Reprogramming of TGF-β Signaling in Breast Cancer. Cancers (Basel) 2019; 11:cancers11050726. [PMID: 31137748 PMCID: PMC6563130 DOI: 10.3390/cancers11050726] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
The Transforming Growth Factor-β (TGF-β) signaling pathway has a well-documented, context-dependent role in breast cancer development. In normal and premalignant cells, it acts as a tumor suppressor. By contrast, during the malignant phases of breast cancer progression, the TGF-β signaling pathway elicits tumor promoting effects particularly by driving the epithelial to mesenchymal transition (EMT), which enhances tumor cell migration, invasion and ultimately metastasis to distant organs. The molecular and cellular mechanisms that govern this dual capacity are being uncovered at multiple molecular levels. This review will focus on recent advances relating to how epigenetic changes such as acetylation and methylation control the outcome of TGF-β signaling and alter the fate of breast cancer cells. In addition, we will highlight how this knowledge can be further exploited to curb tumorigenesis by selective targeting of the TGF-β signaling pathway.
Collapse
|
219
|
Adipose-Derived Tissue in the Treatment of Dermal Fibrosis: Antifibrotic Effects of Adipose-Derived Stem Cells. Ann Plast Surg 2019; 80:297-307. [PMID: 29309331 DOI: 10.1097/sap.0000000000001278] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Treatment of hypertrophic scars and other fibrotic skin conditions with autologous fat injections shows promising clinical results; however, the underlying mechanisms of its antifibrotic action have not been comprehensively studied. Adipose-derived stem cells, or stromal cell-derived factors, inherent components of the transplanted fat tissue, seem to be responsible for its therapeutic effects on difficult scars. The mechanisms by which this therapeutic effect takes place are diverse and are mostly mediated by paracrine signaling, which switches on various antifibrotic molecular pathways, modulates the activity of the central profibrotic transforming growth factor β/Smad pathway, and normalizes functioning of fibroblasts and keratinocytes in the recipient site. Direct cell-to-cell communications and differentiation of cell types may also play a positive role in scar treatment, even though they have not been extensively studied in this context. A more thorough understanding of the fat tissue antifibrotic mechanisms of action will turn this treatment from an anecdotal remedy to a more controlled, timely administered technology.
Collapse
|
220
|
Van Hul W, Boudin E, Vanhoenacker FM, Mortier G. Camurati-Engelmann Disease. Calcif Tissue Int 2019; 104:554-560. [PMID: 30721323 DOI: 10.1007/s00223-019-00532-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Camurati-Engelmann disease or progressive diaphyseal dysplasia is a rare autosomal dominant sclerosing bone dysplasia. Mainly the skull and the diaphyses of the long tubular bones are affected. Clinically, the patients suffer from bone pain, easy fatigability, and decreased muscle mass and weakness in the proximal parts of the lower limbs resulting in gait disturbances. The disease-causing mutations are located within the TGFβ-1 gene and expected to or thought to disrupt the binding between TGFβ1 and its latency-associated peptide resulting in an increased signaling of the pathway and subsequently accelerated bone turnover. In preclinical studies, it was shown that targeting the type I receptor ameliorates the high bone turnover. In patients, treatment options are currently mostly limited to corticosteroids that may relieve the pain, and improve the muscle weakness and fatigue. In this review, the clinical and radiological characteristics as well as the molecular genetics of this condition are discussed.
Collapse
Affiliation(s)
- Wim Van Hul
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, 2650, Edegem, Belgium.
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Filip M Vanhoenacker
- AZ Sint-Maarten, Antwerp University Hospital and Ghent University, Mechelen, Belgium
| | - Geert Mortier
- Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
221
|
Zhang W, Du Y, Zou Y, Luo J, Lü Y, Yu W. Smad Anchor for Receptor Activation and Phospho-Smad3 Were Upregulated in Patients with Temporal Lobe Epilepsy. J Mol Neurosci 2019; 68:91-98. [PMID: 30847724 DOI: 10.1007/s12031-019-01285-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/21/2019] [Indexed: 01/02/2023]
Abstract
Smad anchor for receptor activation (SARA) is an important regulator of transforming growth factor β (TGF-β) signaling by recruiting Smad2/3 to TGF-β receptors. We recently demonstrated that the expressions of SARA and level of downstream phospho-Smad3 (p-Smad3) were upregulated in the brain in the epileptic rat model, but were never examined in patients with temporal lobe epilepsy (TLE). In this study, we examined the expressions of SARA and level of p-Smad3 in brain tissues of TLE patients using immunohistochemistry and western blot to demonstrate that SARA activation in neurons is sufficient to facilitate TGF- β pathway in patients to regulate epilepsy. We found that the expressions of SARA and level of p-Smad3 were significantly upregulated in neurons of the temporal cortex of TLE patients compared to controls. Moreover, SARA and p-Smad3 were strongly stained in the cytoplasm in the temporal cortex of TLE patients. Our results indicate that upregulation of SARA and p-Smad3 in cortex neurons might be involved in the development of intractable temporal lobe epilepsy.
Collapse
Affiliation(s)
- Wenbo Zhang
- Institute of Neuroscience, Department of Human Anatomy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingshi Du
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yan Zou
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weihua Yu
- Institute of Neuroscience, Department of Human Anatomy, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
222
|
Ongaro L, Schang G, Ho CC, Zhou X, Bernard DJ. TGF-β Superfamily Regulation of Follicle-Stimulating Hormone Synthesis by Gonadotrope Cells: Is There a Role for Bone Morphogenetic Proteins? Endocrinology 2019; 160:675-683. [PMID: 30715256 PMCID: PMC6388655 DOI: 10.1210/en.2018-01038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/28/2019] [Indexed: 02/08/2023]
Abstract
Bone morphogenetic proteins (BMPs) are pleiotropic ligands in the TGF-β superfamily. In the early to mid-2000s, several BMPs, including BMP2, were shown to regulate FSH synthesis alone and in synergy with activins in immortalized gonadotrope-like cell lines and primary pituitary cultures. Activins are also TGF-β family members, which were identified and named based on their abilities to stimulate FSH production selectively. Mechanistic analyses suggested that BMP2 promoted expression of the FSHβ subunit gene (Fshb) via at least two nonmutually exclusive mechanisms. First, BMP2 stimulated the production of the inhibitor of DNA-binding proteins 1, 2, and 3 (Id1, Id2, and Id3), which potentiated the stimulatory actions of homolog of Drosophila mothers against decapentaplegic 3 (SMAD3) on the Fshb promoter. SMAD3 is an intracellular signaling protein that canonically mediates the actions of activins and is an essential regulator of Fshb production in vitro and in vivo. Second, BMP2 was shown to activate SMAD3-dependent signaling via its canonical type IA receptor, BMPR1A (also known as ALK3). This was a surprising result, as ALK3 conventionally activates distinct SMAD proteins. Although these initial results were compelling, they were challenged by contemporaneous and subsequent observations. For example, inhibitors of BMP signaling did not specifically impair FSH production in cultured pituitary cells. Of perhaps greater significance, mice lacking ALK3 in gonadotrope cells produced FSH normally. Therefore, the physiological role of BMPs in FSH synthesis in vivo is presently uncertain.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Catherine C Ho
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, Centre for Research in Reproduction and Development, McGill University, Montreal, Quebec, Canada
- Correspondence: Daniel J. Bernard, PhD, Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Room 1315, Montréal, Québec H3G 1Y6, Canada. E-mail:
| |
Collapse
|
223
|
TGF-β inducible epithelial-to-mesenchymal transition in renal cell carcinoma. Oncotarget 2019; 10:1507-1524. [PMID: 30863498 PMCID: PMC6407676 DOI: 10.18632/oncotarget.26682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial step in cancer progression and the number one reason for poor prognosis and worse overall survival of patients. Although this essential process has been widely studied in many solid tumors as e.g. melanoma and breast cancer, more detailed research in renal cell carcinoma (RCC) is required, especially for the major EMT-inducer transforming growth factor beta (TGF-β). Here, we provide a study of six different RCC cell lines of two different RCC subtypes and their response to recombinant TGF-β1 treatment. We established a model system shifting the cells to a mesenchymal cell type without losing their mesenchymal character even in the absence of the external stimulus. This model system forms a solid basis for future studies of the EMT process in RCCs to better understand the molecular basis of this process responsible for cancer progression.
Collapse
|
224
|
Fat Chance: The Rejuvenation of Irradiated Skin. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2092. [PMID: 30881833 PMCID: PMC6416118 DOI: 10.1097/gox.0000000000002092] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) helps cure and palliate thousands of patients with a range of malignant diseases. A major drawback, however, is the collateral damage done to tissues surrounding the tumor in the radiation field. The skin and subcutaneous tissue are among the most severely affected regions. Immediately following RT, the skin may be inflamed, hyperemic, and can form ulcers. With time, the dermis becomes progressively indurated. These acute and chronic changes cause substantial patient morbidity, yet there are few effective treatment modalities able to reduce radiodermatitis. Fat grafting is increasingly recognized as a tool able to reverse the fibrotic skin changes and rejuvenate the irradiated skin. This review outlines the current progress toward describing and understanding the cellular and molecular effects of fat grafting in irradiated skin. Identification of the key factors involved in the pathophysiology of fibrosis following RT will inform therapeutic interventions to enhance its beneficial effects.
Collapse
|
225
|
Gordian E, Welsh EA, Gimbrone N, Siegel EM, Shibata D, Creelan BC, Cress WD, Eschrich SA, Haura EB, Muñoz-Antonia T. Transforming growth factor β-induced epithelial-to-mesenchymal signature predicts metastasis-free survival in non-small cell lung cancer. Oncotarget 2019; 10:810-824. [PMID: 30783512 PMCID: PMC6368226 DOI: 10.18632/oncotarget.26574] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/29/2018] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGFβ) plays a key role in regulating epithelial-to-mesenchymal transition (EMT). A gene expression signature (TGFβ-EMT) associated with TGFβ-induced EMT activities was developed using human Non-Small Cell Lung Carcinoma (NSCLC) cells treated with TGFβ-1 and subjected to Affymetrix microarray analysis. The final 105-probeset TGFβ-EMT signature covers 77 genes, and a NanoString assay utilized a subset of 60 of these genes (TGFβ-EMTN signature). We found that the TGFβ-EMT and TGFβ-EMTN gene signatures predicted overall survival (OS) and metastasis-free survival (MFS). The TGFβ-EMT signature was validated as prognostic of 5-year MFS in 3 cohorts: a 133 NSCLC tumor dataset (P = 0.0002), a NanoString assays of RNA isolated from formalin-fixed paraffin-embedded samples from these same tumors (P = 0.0015), and a previously published NSCLC MFS dataset (P = 0.0015). The separation between high and low metastasis signature scores was higher at 3 years (ΔMFS TGFβ-EMT = −28.6%; ΔMFS TGFβ-EMTN = −25.2%) than at 5 years (ΔMFS TGFβ-EMT = −18.6%; ΔMFS TGFβ-EMTN = −11.8%). In addition, the TGFβ-EMT signature correlated with whether the cancer had already metastasized or not at time of surgery in a colon cancer cohort. The results show that the TGFβ-EMT signature successfully discriminated lung cancer cell lines capable of undergoing EMT in response to TGFβ-1 and predicts MFS in lung adenocarcinomas. Thus, the TGFβ-EMT signature has the potential to be developed as a clinically relevant predictive biomarker, for example to identify those patients with resected early stage lung cancer who may benefit from adjuvant therapy.
Collapse
Affiliation(s)
- Edna Gordian
- Tumor Biology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Cancer Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Nicholas Gimbrone
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Erin M Siegel
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ben C Creelan
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - William Douglas Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Teresita Muñoz-Antonia
- Tumor Biology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
226
|
Neal SJ, Dolezal D, Jusić N, Pignoni F. Drosophila ML-DmD17-c3 cells respond robustly to Dpp and exhibit complex transcriptional feedback on BMP signaling components. BMC DEVELOPMENTAL BIOLOGY 2019; 19:1. [PMID: 30669963 PMCID: PMC6341649 DOI: 10.1186/s12861-019-0181-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 01/07/2023]
Abstract
Background BMP signaling is involved in myriad metazoan developmental processes, and study of this pathway in Drosophila has contributed greatly to our understanding of its molecular and genetic mechanisms. These studies have benefited not only from Drosophila’s advanced genetic tools, but from complimentary in vitro culture systems. However, the commonly-used S2 cell line is not intrinsically sensitive to the major BMP ligand Dpp and must therefore be augmented with exogenous pathway components for most experiments. Results Herein we identify and characterize the responses of Drosophila ML-DmD17-c3 cells, which are sensitive to Dpp stimulation and exhibit characteristic regulation of BMP target genes including Dad and brk. Dpp signaling in ML-DmD17-c3 cells is primarily mediated by the receptors Put and Tkv, with additional contributions from Wit and Sax. Furthermore, we report complex regulatory feedback on core pathway genes in this system. Conclusions Native ML-DmD17-c3 cells exhibit robust transcriptional responses to BMP pathway induction. We propose that ML-DmD17-c3 cells are well-suited for future BMP pathway analyses. Electronic supplementary material The online version of this article (10.1186/s12861-019-0181-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott J Neal
- Center for Vision Research and Department of Ophthalmology, Upstate Medical University, NRB-4610, 505 Irving Ave, Syracuse, 13210, NY, USA.
| | - Darin Dolezal
- Center for Vision Research and Department of Ophthalmology, Upstate Medical University, NRB-4610, 505 Irving Ave, Syracuse, 13210, NY, USA.,Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY, USA.,Current Address: Department of Surgical Pathology, Yale-New Haven Hospital, New Haven, CT, USA
| | - Nisveta Jusić
- Center for Vision Research and Department of Ophthalmology, Upstate Medical University, NRB-4610, 505 Irving Ave, Syracuse, 13210, NY, USA
| | - Francesca Pignoni
- Center for Vision Research and Department of Ophthalmology, Upstate Medical University, NRB-4610, 505 Irving Ave, Syracuse, 13210, NY, USA. .,Department of Biochemistry and Molecular Biology, Upstate Medical University, Syracuse, NY, USA. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
227
|
Zhou Q, Xia S, Guo F, Hu F, Wang Z, Ni Y, Wei T, Xiang H, Shang D. Transforming growth factor-β in pancreatic diseases: Mechanisms and therapeutic potential. Pharmacol Res 2019; 142:58-69. [PMID: 30682425 DOI: 10.1016/j.phrs.2019.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/27/2018] [Accepted: 01/18/2019] [Indexed: 12/16/2022]
Abstract
Pancreatic diseases, such as acute pancreatitis, chronic pancreatitis, and pancreatic cancer, are common gastrointestinal diseases resulting in the development of local and systemic complications with a high risk of death. Numerous studies have examined pancreatic diseases over the past few decades; however, the pathogenesis remains unclear, and there is a lack of effective treatment options. Recently, emerging evidence has suggested that transforming growth factor beta (TGF-β) exerts controversial functions in apoptosis, inflammatory responses, and carcinogenesis, indicating its complex role in the pathogenesis of pancreas-associated disease. Therefore, a further understanding of relevant TGF-β signalling will provide new ideas and potential therapeutic targets for preventing disease progression. This is the first systematic review of recent data from animal and human clinical studies focusing on TGF-β signalling in pancreas damage and diseases. This information may aid in the development of therapeutic agents for regulating TGF-β in this pathology to prevent or treat pancreatic diseases.
Collapse
Affiliation(s)
- Qi Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China; Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilin Xia
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fenglin Hu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yujia Ni
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tianfu Wei
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Dong Shang
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China; Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
228
|
Regulatory cytokine function in the respiratory tract. Mucosal Immunol 2019; 12:589-600. [PMID: 30874596 PMCID: PMC7051906 DOI: 10.1038/s41385-019-0158-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 02/04/2023]
Abstract
The respiratory tract is an important site of immune regulation; required to allow protective immunity against pathogens, while minimizing tissue damage and avoiding aberrant inflammatory responses to inhaled allergens. Several cell types work in concert to control pulmonary immune responses and maintain tolerance in the respiratory tract, including regulatory and effector T cells, airway and interstitial macrophages, dendritic cells and the airway epithelium. The cytokines transforming growth factor β, interleukin (IL-) 10, IL-27, and IL-35 are key coordinators of immune regulation in tissues such as the lung. Here, we discuss the role of these cytokines during respiratory infection and allergic airway disease, highlighting the critical importance of cellular source and immunological context for the effects of these cytokines in vivo.
Collapse
|
229
|
Schug C, Urnauer S, Jaeckel C, Schmohl KA, Tutter M, Steiger K, Schwenk N, Schwaiger M, Wagner E, Nelson PJ, Spitzweg C. TGFB1-driven mesenchymal stem cell-mediated NIS gene transfer. Endocr Relat Cancer 2019; 26:89-101. [PMID: 30121623 DOI: 10.1530/erc-18-0173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/13/2018] [Indexed: 01/01/2023]
Abstract
Based on their excellent tumor-homing capacity, genetically engineered mesenchymal stem cells (MSCs) are under investigation as tumor-selective gene delivery vehicles. Transgenic expression of the sodium iodide symporter (NIS) in genetically engineered MSCs allows noninvasive tracking of MSC homing by imaging of functional NIS expression as well as therapeutic application of 131I. The use of tumor stroma-activated promoters can improve tumor-specific MSC-mediated transgene delivery. The essential role of transforming growth factor B1 (TGFB1) and the SMAD downstream target in the signaling between tumor and the surrounding stroma makes the biology of this pathway a potential option to better control NIS expression within the tumor milieu. Bone marrow-derived MSCs were stably transfected with a NIS-expressing plasmid driven by a synthetic SMAD-responsive promoter (SMAD-NIS-MSCs). Radioiodide uptake assays revealed a 4.9-fold increase in NIS-mediated perchlorate-sensitive iodide uptake in SMAD-NIS-MSCs after TGFB1 stimulation compared to unstimulated cells demonstrating the successful establishment of MSCs, which induce NIS expression in response to activation of TGFB1 signaling using a SMAD-responsive promoter. 123I-scintigraphy revealed significant tumor-specific radioiodide accumulation and thus NIS expression after systemic application of SMAD-NIS-MSCs into mice harboring subcutaneous tumors derived from the human hepatocellular carcinoma (HCC) cell line HuH7, which express TGFB1. 131I therapy in SMAD-NIS-MSCs-treated mice demonstrated a significant delay in tumor growth and prolonged survival. Making use of the tumoral TGFB1 signaling network in the context of MSC-mediated NIS gene delivery is a promising approach to foster tumor stroma-selectivity of NIS transgene expression and tailor NIS-based gene therapy to TGFB1-rich tumor environments.
Collapse
Affiliation(s)
- Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Carsten Jaeckel
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mariella Tutter
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Klinikum Rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum Rechts der Isar der Technischen Universitaet Muenchen, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
230
|
Expression, purification, and evaluation of in vivo anti-fibrotic activity for soluble truncated TGF-β receptor II as a cleavable His-SUMO fusion protein. World J Microbiol Biotechnol 2018; 34:181. [PMID: 30474742 DOI: 10.1007/s11274-018-2565-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/21/2018] [Indexed: 01/15/2023]
Abstract
Excessive production of transforming growth factor-β1 (TGF-β1) and its binding to transforming growth factor-β receptor type II (TGF-βRII) promotes fibrosis by activation of the TGF-β1-mediated signaling pathway. Thus, the truncated extracellular domain of TGF-βRII (tTβRII) is a promising anti-fibrotic candidate, as it lacks the signal transduction domain. In this work, the native N-terminal tTβRII was prepared as a His-SUMO fusion protein (termed His-SUMO-tTβRII) in Escherichia coli strain BL21 (DE3). His-SUMO-tTβRII was expressed as a soluble protein under optimal conditions (6 h of induction with 0.5 mM IPTG at 37 °C). His-SUMO-tTβRII was purified by Ni-NTA resin chromatography, and then cleaved with SUMO protease to release native tTβRII, which was re-purified using a Ni-NTA column. Approximately 12 mg of native tTβRII was obtained from a one liter fermentation culture with no less than 95% purity. In vivo studies demonstrated that tTβRII prevented CCl4-induced liver fibrosis, as evidenced by the inhibition of fibrosis-related Col I and α-SMA protein expression in C57BL/6 mice. In addition, tTβRII downregulated phosphorylation of SMAD2/3, which partly repressed TGF-β1-mediated signaling. These data indicate that the His-SUMO expression system is an efficient approach for preparing native tTβRII that possesses anti-liver fibrotic activity, allowing for the large-scale production of tTβRII, which potentially could serve as an anti-fibrotic candidate for treatment of TGF-β1-related diseases.
Collapse
|
231
|
AlMuraikhi N, Ali D, Alshanwani A, Vishnubalaji R, Manikandan M, Atteya M, Siyal A, Alfayez M, Aldahmash A, Kassem M, Alajez NM. Stem cell library screen identified ruxolitinib as regulator of osteoblastic differentiation of human skeletal stem cells. Stem Cell Res Ther 2018; 9:319. [PMID: 30463599 PMCID: PMC6249887 DOI: 10.1186/s13287-018-1068-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/18/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
Background Better understanding of the signaling pathways that regulate human bone marrow stromal stem cell (hBMSC) differentiation into bone-forming osteoblasts is crucial for their clinical use in regenerative medicine. Chemical biology approaches using small molecules targeting specific signaling pathways are increasingly employed to manipulate stem cell differentiation fate. Methods We employed alkaline phosphatase activity and staining assays to assess osteoblast differentiation and Alizarin R staining to assess mineralized matrix formation of cultured hBMSCs. Changes in gene expression were assessed using an Agilent microarray platform, and data normalization and bioinformatics were performed using GeneSpring software. For in vivo ectopic bone formation experiments, hMSCs were mixed with hydroxyapatite–tricalcium phosphate granules and implanted subcutaneously into the dorsal surface of 8-week-old female nude mice. Hematoxylin and eosin staining and Sirius Red staining were used to detect bone formation in vivo. Results We identified several compounds which inhibited osteoblastic differentiation of hMSCs. In particular, we identified ruxolitinib (INCB018424) (3 μM), an inhibitor of JAK-STAT signaling that inhibited osteoblastic differentiation and matrix mineralization of hMSCs in vitro and reduced ectopic bone formation in vivo. Global gene expression profiling of ruxolitinib-treated cells identified 847 upregulated and 822 downregulated mRNA transcripts, compared to vehicle-treated control cells. Bioinformatic analysis revealed differential regulation of multiple genetic pathways, including TGFβ and insulin signaling, endochondral ossification, and focal adhesion. Conclusions We identified ruxolitinib as an important regulator of osteoblast differentiation of hMSCs. It is plausible that inhibition of osteoblast differentiation by ruxolitinib may represent a novel therapeutic strategy for the treatment of pathological conditions caused by accelerated osteoblast differentiation and mineralization. Electronic supplementary material The online version of this article (10.1186/s13287-018-1068-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nihal AlMuraikhi
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Dalia Ali
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia.,Molecular Endocrinology Unit (KMEB), Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark
| | - Aliah Alshanwani
- Department of Physiology, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Radhakrishnan Vishnubalaji
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Muthurangan Manikandan
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Muhammad Atteya
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia.,Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Abdulaziz Siyal
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia.,Prince Naif Health Research Center, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia.,Molecular Endocrinology Unit (KMEB), Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, 11461, Kingdom of Saudi Arabia. .,Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
232
|
Murakami K, Etlinger JD. Role of SMURF1 ubiquitin ligase in BMP receptor trafficking and signaling. Cell Signal 2018; 54:139-149. [PMID: 30395943 DOI: 10.1016/j.cellsig.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/28/2022]
Abstract
Heterozygous germline mutations in the bone morphogenetic protein type II receptor gene (BMPRII) are associated with hereditary pulmonary arterial hypertension (HPAH). Missense mutations, both in the extracellular ligand-binding and cytoplasmic kinase domains, mostly involve substitution of conserved Cys residues. Singular substitution at any of those Cys residues causes cytoplasmic, perinuclear localization of BMPR with reduced cell surface expression and BMP signaling. The present study examined the effect of Cys residue substitution on BMPR endocytic trafficking and lysosome degradation. We demonstrate that endocytosis/lysosomal degradation of BMPR occurs by two distinct pathways. SMURF1 ubiquitin ligase induces lysosomal degradation of BMPR, while ligase-inactive SMURF1 maintains BMPR protein level and cell surface expression. Substitution of BMPR Cys residues increases lysosomal degradation which is blocked by ligase-inactive SMURF1, elevating protein levels of Cys-substituted BMPRs. Expression of Cys-substituted BMPR suppresses basal BMP signaling activity which is also up-regulated by ligase-inactive SMURF1. Cys-residue substitution thus appears to cause BMPR endocytosis to lysosomes in a SMURF1 ubiquitin ligase-associated pathway. Kinase-activated BMPR undergoes endocytic/lysosomal degradation by a pathway with certain unique properties. Therefore, our results describe a novel mechanism whereby SMURF1 ubiquitin ligase regulates constitutive endocytosis of BMPR which may be mediated by its conserved Cys residues.
Collapse
Affiliation(s)
- Koko Murakami
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA.
| | - Joseph D Etlinger
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York 10595, USA
| |
Collapse
|
233
|
Shen SJ, Zhang YH, Gu XX, Jiang SJ, Xu LJ. Yangfei Kongliu Formula, a compound Chinese herbal medicine, combined with cisplatin, inhibits growth of lung cancer cells through transforming growth factor-β1 signaling pathway. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2018; 15:242-251. [PMID: 28494854 DOI: 10.1016/s2095-4964(17)60330-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the tumor inhibition effect of Yangfei Kongliu Formula (YKF), a compound Chinese herbal medicine, combined with cisplatin (DDP) and its action mechanisms. METHODS C57BL/6 mice with Lewis lung carcinoma were divided into six groups: control group (C), DDP group (2 mg/kg, DDP), low-dose YKF group (2.43 g/kg, L), high-dose YKF group (24.3 g/kg, H), low-dose YKF combined with DDP group (L + DDP) and high-dose YKF combined with DDP group (H + DDP). Transforming growth factor-β1 (TGF-β1), mothers against decapentaplegic homolog 3 (Smad3) and Smad7 levels were measured with quantitative real-time polymerase chain reaction (qPCR), Western blotting and immunohistochemistry. An enzyme-linked immunosorbent assay was used to analyze the expressions of interleukin-2 (IL-2) and tumor necrosis factor-α (TNF-α). RESULTS YKF combined with DDP significantly inhibited the growth and metastasis of tumors relative to the control group, and YKF groups (P < 0.05). There was no significant difference between high-dose YKF group and low-dose YKF group (P > 0.05). We also found that the expression levels of TGF-β1 and Smad3 were both significantly decreased by YKF relative to the control group (P < 0.05). Furthermore, after treatment with YKF combined with DDP, the expression levels of TGF-β1 and Smad3 were decreased but the expression level of Smad7 was increased relative to the DDP group (P < 0.05). Compared to the DDP group, the combination of YKF and DDP enhanced the effect of tumor inhibition (P < 0.05), showing obvious synergy between YKF and DDP. Treatment with DDP or YKF decreased serum levels of IL-2 and TNF-α relative to the control group (P < 0.05). Furthermore, the expression levels of IL-2 and TNF-α were significantly decreased when treated with YKF in combination with DDP. Co-treatment with YKF and DDP significantly inhibited tumor growth, decreased the expressions of TGF-β1, Smad3, IL-2 and TNF-α and increased the expression of Smad7; these differences were significant relative to both YKF groups and the control group (P < 0.05). CONCLUSION YKF can inhibit tumor growth synergistically with DDP, mainly through the TGF-β1 signaling pathway.
Collapse
Affiliation(s)
- Shui-Jie Shen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu Province, China.,Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nantong 226000, Jiangsu Province, China
| | - Yong-Hong Zhang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu Province, China
| | - Xiao-Xia Gu
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nantong 226000, Jiangsu Province, China
| | - Shui-Ju Jiang
- Department of Respiratory Medicine, Nantong Third People's Hospital, Nantong 226006, Jiangsu Province, China
| | - Ling-Jun Xu
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nantong 226000, Jiangsu Province, China
| |
Collapse
|
234
|
Zong X, Yu P, Lu H, Pan B, Song G, Lai C, Guo X, Jin X, Jiang D. Phage Display, Peptide Production and Biological Assessment of Key Sequence of TGF-β1. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9774-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
235
|
Toomer K, Sauls K, Fulmer D, Guo L, Moore K, Glover J, Stairley R, Bischoff J, Levine RA, Norris RA. Filamin-A as a Balance between Erk/Smad Activities During Cardiac Valve Development. Anat Rec (Hoboken) 2018; 302:117-124. [PMID: 30288957 PMCID: PMC6312478 DOI: 10.1002/ar.23911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 11/10/2022]
Abstract
Mitral valve prolapse (MVP) affects 2.4% of the population and has poorly understood etiology. Recent genetic studies have begun to unravel the complexities of MVP and through these efforts, mutations in the FLNA (Filamin-A) gene were identified as disease causing. Our in vivo and in vitro studies have validated these genetic findings and have revealed FLNA as a central regulator of valve morphogenesis. The mechanisms by which FLNA mutations result in myxomatous mitral valve disease are currently unknown, but may involve proteins previously associated with mutated regions of the FLNA protein, such as the small GTPase signaling protein, R-Ras. Herein, we report that Filamin-A is required for R-Ras expression and activation of the Ras-Mek-Erk pathway. Loss of the Ras/Erk pathway correlated with hyperactivation of pSmad2/3, increased extracellular matrix (ECM) production and enlarged mitral valves. Analyses of integrin receptors in the mitral valve revealed that Filamin-A was required for β1-integrin expression and provided a potential mechanism for impaired ECM compaction and valve enlargement. Our data support Filamin-A as a protein that regulates the balance between Erk and Smad activation and an inability of Filamin-A deficient valve interstitial cells to effectively remodel the increased ECM production through a β1-integrin mechanism. As a consequence, loss of Filamin-A function results in increased ECM production and generation of a myxomatous phenotype characterized by improperly compacted mitral valve tissue. Anat Rec, 302:117-124, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katelynn Toomer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Kimberly Sauls
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Diana Fulmer
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Lilong Guo
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Kelsey Moore
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Janiece Glover
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Rebecca Stairley
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Cardiology Division, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, Massachusetts
| | - Russell A Norris
- Cardiovascular Developmental Biology Center, Department of Regenerative Medicine and Cell Biology, College of Medicine, Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
236
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018; 10:v10100538. [PMID: 30279347 PMCID: PMC6212953 DOI: 10.3390/v10100538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
237
|
Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat Commun 2018; 9:4011. [PMID: 30275444 PMCID: PMC6167353 DOI: 10.1038/s41467-018-06224-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
TGFβ1 has been implicated in regulating functional aspects of several distinct immune cell populations including central nervous system (CNS) resident microglia. Activation and priming of microglia have been demonstrated to contribute to the progression of neurodegenerative diseases and, thus, underlie stringent control by endogenous regulatory factors including TGFβ1. Here, we demonstrate that deletion of Tgfbr2 in adult postnatal microglia does neither result in impairment of the microglia-specific gene expression signatures, nor is microglial survival and maintenance affected. Tgfbr2-deficient microglia were characterised by distinct morphological changes and transcriptome analysis using RNAseq revealed that loss of TGFβ signalling results in upregulation of microglia activation and priming markers. Moreover, protein arrays demonstrated increased secretion of CXCL10 and CCL2 accompanied by activation of immune cell signalling as evidenced by increased phosphorylation of TAK1. Together, these data underline the importance of microglial TGFβ signalling to regulate microglia adaptive changes.
Collapse
|
238
|
Paul D, Dixit A, Srivastava A, Tripathi M, Prakash D, Sarkar C, Ramanujam B, Banerjee J, Chandra PS. Altered transforming growth factor beta/SMAD3 signalling in patients with hippocampal sclerosis. Epilepsy Res 2018; 146:144-150. [DOI: 10.1016/j.eplepsyres.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 08/18/2018] [Indexed: 01/10/2023]
|
239
|
He L, Gasser RB, Korhonen PK, Di W, Li F, Zhang H, Li F, Zhou Y, Fang R, Zhao J, Hu M. A TGF-β type I receptor-like molecule with a key functional role in Haemonchus contortus development. Int J Parasitol 2018; 48:1023-1033. [PMID: 30266591 DOI: 10.1016/j.ijpara.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/09/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023]
Abstract
Here we investigated the gene of a transforming growth factor (TGF)-β type I receptor-like molecule in Haemonchus contortus, a highly pathogenic and economically important parasitic nematode of small ruminants. Designated Hc-tgfbr1, this gene is transcribed in all developmental stages of H. contortus, and the encoded protein has glycine-serine rich and kinase domains characteristic of a TGF-β family type I receptor. Expression of a GFP reporter driven by the putative Hc-tgfbr1 promoter localised to two intestinal rings, the anterior-most intestinal ring (int ring I) and the posterior-most intestinal ring (int ring IX) in Caenorhabditis elegans in vivo. Heterologous genetic complementation using a plasmid construct containing Hc-tgfbr1 genomic DNA failed to rescue the function of Ce-daf-1 (a known TGF-β type I receptor gene) in a daf-1-deficient mutant strain of C. elegans. In addition, a TGF-β type I receptor inhibitor, galunisertib, and double-stranded RNA interference (RNAi) were employed to assess the function of Hc-tgfbr1 in the transition from exsheathed L3 (xL3) to the L4 of H. contortus in vitro, revealing that both galunisertib and Hc-tgfbr1-specific double-stranded RNA could retard L4 development. Taken together, these results provide evidence that Hc-tgfbr1 is involved in developmental processes in H. contortus in the transition from the free-living to the parasitic stage.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Robin B Gasser
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wenda Di
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fangfang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hongrun Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Facai Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
240
|
Zhang ZH, Li MH, Liu D, Chen H, Chen DQ, Tan NH, Ma SC, Zhao YY. Rhubarb Protect Against Tubulointerstitial Fibrosis by Inhibiting TGF-β/Smad Pathway and Improving Abnormal Metabolome in Chronic Kidney Disease. Front Pharmacol 2018; 9:1029. [PMID: 30271345 PMCID: PMC6146043 DOI: 10.3389/fphar.2018.01029] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/24/2018] [Indexed: 12/01/2022] Open
Abstract
Tubulointerstitial fibrosis is the final common pathway for all kidney diseases leading to chronic kidney disease (CKD). TGF-β/Smad signaling pathway plays a key role in renal fibrosis. Previous studies have revealed that rhubarb extracts attenuated the increase of transforming growth factor-β 1 (TGF-β1) in CKD rats. To gain an in-depth insight into the mechanism of the anti-fibrotic activities of the rhubarb extracts, we investigated the influence of rhubarb extracts on TGF-β/Smad signaling pathway and the influence on metabolome in a rat model of CKD with adenine-induced chronic tubulointerstitial nephropathy. Male Sprague-Dawley rats were divided into four groups, including control, CKD, CKD + petroleum ether extract, CKD + ethyl acetate extract, and CKD + n-butanol extract groups. Kidneys harvested on the week three were evaluated for renal fibrosis, the expression of proteins in TGF-β/Smad signaling pathway and metabolomic study. We found rhubarb extracts suppressed TGF-β/Smad3-mediated renal fibrosis by reducing the TGF-β1, transforming growth factor-β receptor I (TGF-β RI), transforming growth factor-β receptor II (TGF-β RII), Smad2, p-Smad2, Smad3, p-Smad3, and Smad4, meanwhile increased Smad7. In addition, rhubarb extracts mitigated renal injury and dysfunction, and either fully or partially reversed the abnormalities of tissue metabolites. Thus, rebalancing the disorder of TGF-β/Smad signaling and metabolic dysfunction by treatment with rhubarb extracts may represent as an effective therapy for CKD associated with fibrosis.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China.,State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ming-Hua Li
- National Institutes for Food and Drug Control, State Food and Drug Administration, Beijing, China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Hua Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| | - Ning-Hua Tan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, State Food and Drug Administration, Beijing, China
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
241
|
TGF-β receptors: In and beyond TGF-β signaling. Cell Signal 2018; 52:112-120. [PMID: 30184463 DOI: 10.1016/j.cellsig.2018.09.002] [Citation(s) in RCA: 309] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/07/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) plays an important role in normal development and homeostasis. Dysregulation of TGF-β responsiveness and its downstream signaling pathways contribute to many diseases, including cancer initiation, progression, and metastasis. TGF-β ligands bind to three isoforms of the TGF-β receptor (TGFBR) with different affinities. TGFBR1 and 2 are both serine/threonine and tyrosine kinases, but TGFBR3 does not have any kinase activity. They are necessary for activating canonical or noncanonical signaling pathways, as well as for regulating the activation of other signaling pathways. Another prominent feature of TGF-β signaling is its context-dependent effects, temporally and spatially. The diverse effects and context dependency are either achieved by fine-tuning the downstream components or by regulating the expressions and activities of the ligands or receptors. Focusing on the receptors in events in and beyond TGF-β signaling, we review the membrane trafficking of TGFBRs, the kinase activity of TGFBR1 and 2, the direct interactions between TGFBR2 and other receptors, and the novel roles of TGFBR3.
Collapse
|
242
|
Katagiri T, Tsukamoto S, Nakachi Y, Kuratani M. Recent Topics in Fibrodysplasia Ossificans Progressiva. Endocrinol Metab (Seoul) 2018; 33:331-338. [PMID: 30229572 PMCID: PMC6145951 DOI: 10.3803/enm.2018.33.3.331] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 12/25/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease that is characterized by the formation of heterotopic bone tissues in soft tissues, such as skeletal muscle, ligament, and tendon. It is difficult to remove such heterotopic bones via internal medicine or invasive procedures. The identification of activin A receptor, type I (ACVR1)/ALK2 gene mutations associated with FOP has allowed the genetic diagnosis of FOP. The ACVR1/ALK2 gene encodes the ALK2 protein, which is a transmembrane kinase receptor in the transforming growth factor-β family. The relevant mutations activate intracellular signaling in vitro and induce heterotopic bone formation in vivo. Activin A is a potential ligand that activates mutant ALK2 but not wild-type ALK2. Various types of small chemical and biological inhibitors of ALK2 signaling have been developed to establish treatments for FOP. Some of these are in clinical trials in patients with FOP.
Collapse
Affiliation(s)
- Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
- Project of Clinical and Basic Research for FOP, Saitama Medical University, Saitama, Japan.
| | - Sho Tsukamoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
- Project of Clinical and Basic Research for FOP, Saitama Medical University, Saitama, Japan
| | - Yutaka Nakachi
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Mai Kuratani
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|
243
|
Chen Y, George A. TRIP-1 Promotes the Assembly of an ECM That Contains Extracellular Vesicles and Factors That Modulate Angiogenesis. Front Physiol 2018; 9:1092. [PMID: 30158875 PMCID: PMC6104305 DOI: 10.3389/fphys.2018.01092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/23/2018] [Indexed: 01/14/2023] Open
Abstract
Transforming growth factor beta receptor II interacting protein-1 (TRIP-1) was recently localized in the mineralized matrices of bone and dentin. The function of TRIP-1 in the ECM is enigmatic, as it is known to function as an intracellular endoplasmic reticulum protein during protein synthesis. Based on its localization pattern in bones and teeth, we posited that TRIP-1 must function as a regulatory protein with multiple functions during mineralization. In this study, we determined the in vivo function of TRIP-1 by an implantation assay performed using recombinant TRIP-1 and TRIP-1 overexpressing and knocked down cells embedded in a 3D biomimetic scaffold. After 4 weeks, the subcutaneous tissues from TRIP-1 overexpressing cells and scaffolds containing recombinant TRIP-1 showed higher expression levels of several ECM proteins such as fibronectin and collagen I. Picrosirius red and polarized microscopy was used to identify the birefringence of the collagen fibrils in the extracellular matrix (ECM). Interestingly, knockdown of TRIP-1 resulted in lower fibronectin and downregulation of the activation of the ERK MAP kinase. We further demonstrate that TRIP-1 overexpression leads to higher expression of pro-angiogenic marker VEGF and downregulation of anti-angiogenic factors such as pigment epithelium-derived factor and thrombospondin. Field emission scanning electron microscope results demonstrated that TRIP-1 overexpressing cells released large amount of extracellular microvesicles which were localized on the fibrillar matrix in the ECM. Overall, this study demonstrates that TRIP-1 can promote secretion of extracellular vesicles, synthesis of key osteogenic ECM matrix proteins and promote angiogenesis.
Collapse
Affiliation(s)
- Yinghua Chen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anne George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
244
|
Liu H, Zhang Z, Li Y, Wang X, Zhang Y, Chu Y, Yuan X, Wang X. Preparation and evaluation of anti-renal fibrosis activity of novel truncated TGF-β receptor type II. Biotechnol Appl Biochem 2018; 65:834-840. [PMID: 30066965 DOI: 10.1002/bab.1667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Production of excessive transforming growth factor-beta 1 (TGF-β1) with elevated TGF-β1 activity has been implicated in renal fibrosis via renal epithelial cells activation and collagen deposition. As such, attenuating the binding of TGF-β1 to its receptor TGF-beta receptor type II (TGF-βRII) in TGF-β1-dependent signaling is an attractive target for the control of renal fibrosis. Here, we verified the interaction between novel truncated human TGF-βRII (thTβRII, Thr23-Gln166) and TGF-β1, prepared thTβRII in Escherichia coli, and assessed the effects of thTβRII on TGF-β1-induced human kidney epithelial cells (HK-2) and unilateral ureteral obstruction (UUO) model of renal fibrosis. Our data showed that thTβRII accounted for up to 20% of the total protein and 40% of the inclusion bodies of whole cell lysates under the optimal conditions (0.8 mM IPTG and 25°C for 6 H). Most of the expressed protein in inclusion body was refolded by dialysis refolding procedures and purified by Ni2+ -IDA affinity chromatography. Furthermore, thTβRII decreased type I collagen and α-smooth muscle actin protein expression in TGF-β1-induced HK-2 cells, and ameliorated kidney morphology and fibrotic responses in fibrosis animal. These findings indicate that thTβRII holds great promise for developing new treatments for renal fibrosis.
Collapse
Affiliation(s)
- Haifeng Liu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China.,Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Zhongmin Zhang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yuting Li
- Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaoli Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yufei Zhang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| | - Xiaohua Wang
- Heilongjiang Province Key Laboratory for Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, People's Republic of China.,Laboratory of Medical Immunology and Pathogen Biology, Mudanjiang Medical University, Mudanjiang, People's Republic of China
| |
Collapse
|
245
|
Choi HS, Song JH, Kim IJ, Joo SY, Eom GH, Kim I, Cha H, Cho JM, Ma SK, Kim SW, Bae EH. Histone deacetylase inhibitor, CG200745 attenuates renal fibrosis in obstructive kidney disease. Sci Rep 2018; 8:11546. [PMID: 30068917 PMCID: PMC6070546 DOI: 10.1038/s41598-018-30008-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/20/2018] [Indexed: 01/09/2023] Open
Abstract
Tubulointerstitial fibrosis is a common feature of kidney disease. Histone deacetylase (HDAC) inhibitors have been reported to attenuate renal fibrosis progression. Here, we investigated the effect of CG200745, a novel HDAC inhibitor, on renal fibrosis development in a mouse model of unilateral ureteral obstruction (UUO). To examine the effects of CG200745 on renal fibrosis in UUO, C57BL/6 J male mice were divided into three groups: control, UUO, and CG200745 (30 mg/kg/day)-treated UUO groups. CG 200745 was administered through drinking water for 1 week. Human proximal tubular epithelial (HK-2) cells were also treated with CG200745 (10 µM) with or without TGF-β (2 ng/mL). Seven days after UUO, plasma creatinine did not differ among the groups. However, plasma neutrophil gelatinase-associated lipocalin (NGAL) levels were markedly increased in the UUO group, which were attenuated by CG200745 treatment. UUO kidneys developed marked fibrosis as indicated by collagen deposition and increased α-smooth muscle actin (SMA) and fibronectin expression. CG200745 treatment attenuated these fibrotic responses and suppressed UUO-induced production of transforming growth factor-beta1 (TGF-β) and phosphorylation of Smad-2/3. CG200745 treatment also attenuated UUO-induced inflammation as indicated by the expression of inflammatory markers. Furthermore, CG200745 attenuated phosphorylation of p38 mitogen-activated protein kinase in UUO kidneys. In HK-2 cells, TGF-β induced the expression of α-SMA and fibronectin, which were attenuated by CG200745 cotreatment. These results demonstrate that CG200745, a novel HDAC inhibitor, has a renoprotective effect by suppressing renal fibrosis and inflammation in a UUO mouse model.
Collapse
Affiliation(s)
- Hong Sang Choi
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Ji Hong Song
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - In Jin Kim
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Soo Yeon Joo
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Hyunju Cha
- CrystalGenomics, Inc., 5 F, Bldg A, Korea Bio Park, Seongnam, 13488, Korea
| | - Joong Myung Cho
- CrystalGenomics, Inc., 5 F, Bldg A, Korea Bio Park, Seongnam, 13488, Korea
| | - Seong Kwon Ma
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, South Korea
| | - Soo Wan Kim
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| | - Eun Hui Bae
- Departments of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| |
Collapse
|
246
|
Huang TW, Li ST, Fang KM, Young TH. Hyaluronan antagonizes the differentiation effect of TGF-β1 on nasal epithelial cells through down-regulation of TGF-β type I receptor. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S254-S263. [PMID: 30032656 DOI: 10.1080/21691401.2018.1491477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although hyaluronan (HA)-based biomaterials have been proposed to promote mucociliary differentiation of nasal epithelial cells (NECs), the mechanism by which HA affects the growth and differentiation of NECs has not been thoroughly explored. This study investigates the effect and mechanism of HA on the differentiation of NECs. The experiment cultures human NECs in four conditions, namely controls, transforming growth factor (TGF)-β1, TGF-β1 + HA and HA groups. In the TGF group, the NECs become irregular shape without formation of tight junction and mucociliary differentiation of NECs is inhibited. Epithelial-mesenchymal transition (EMT) of NECs also occurs in the TGF group. However, with addition of HA in TGF groups, NECs reveal the mucociliary phenotypes of epithelial cells with tight junction expression. Incubation of TGF-β1 in an NEC culture leads to an increase in phosphorylated type 1 TGF-β receptors (p-TβRI). This increase is attenuated when NECs are cultured in the presence of HA. Similar expressions are observed in phosphorylated smad2/smad3. Additionally, HA-dependent inhibition of TGF-β1 signalling is inhibited by co-incubation with a blocking antibody to CD44. Experimental results indicate that HA can antagonize TGF-β1 effect on EMT and mucociliary differentiation of NECs by down-regulation of TβR I, which is via CD44.
Collapse
Affiliation(s)
- Tsung-Wei Huang
- a Department of Electrical Engineering, College of Electrical and Communication Engineering , Yuan Ze University , Taoyuan , Taiwan.,b Department of Otolaryngology , Far Eastern Memorial Hospital , Taipei , Taiwan.,c Department of Health Care Administration , Oriental Institute of Technology , Taipei , Taiwan
| | - Sheng-Tien Li
- d College of Medicine and College of Engineering , Institute of Biomedical Engineering , National Taiwan University , Taipei , Taiwan
| | - Kai-Min Fang
- b Department of Otolaryngology , Far Eastern Memorial Hospital , Taipei , Taiwan
| | - Tai-Horng Young
- d College of Medicine and College of Engineering , Institute of Biomedical Engineering , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
247
|
Haruta M, Gaddameedi V, Burch H, Fernandez D, Sussman MR. Comparison of the effects of a kinase‐dead mutation of
FERONIA
on ovule fertilization and root growth of Arabidopsis. FEBS Lett 2018; 592:2395-2402. [DOI: 10.1002/1873-3468.13157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Miyoshi Haruta
- Biotechnology Center University of Wisconsin Madison WI USA
- Department of Biochemistry University of Wisconsin Madison WI USA
| | - Vilas Gaddameedi
- Biotechnology Center University of Wisconsin Madison WI USA
- Department of Biochemistry University of Wisconsin Madison WI USA
| | - Heather Burch
- Biotechnology Center University of Wisconsin Madison WI USA
- Department of Biochemistry University of Wisconsin Madison WI USA
| | | | - Michael R. Sussman
- Biotechnology Center University of Wisconsin Madison WI USA
- Department of Biochemistry University of Wisconsin Madison WI USA
| |
Collapse
|
248
|
Hinck AP. Structure-guided engineering of TGF-βs for the development of novel inhibitors and probing mechanism. Bioorg Med Chem 2018; 26:5239-5246. [PMID: 30026042 DOI: 10.1016/j.bmc.2018.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
The increasing availability of detailed structural information on many biological systems provides an avenue for manipulation of these structures, either for probing mechanism or for developing novel therapeutic agents for treating disease. This has been accompanied by the advent of several powerful new methods, such as the ability to incorporate non-natural amino acids or perform fragment screening, increasing the capacity to leverage this new structural information to aid in these pursuits. The abundance of structural information also provides new opportunities for protein engineering, which may become more and more relevant as treatment of diseases using gene therapy approaches become increasingly common. This is illustrated by example with the TGF-β family of proteins, for which there is ample structural information, yet no approved inhibitors for treating diseases, such as cancer and fibrosis that are promoted by excessive TGF-β signaling. The results presented demonstrate that through several relatively simple modifications, primarily involving the removal of an α-helix and replacement of it with a flexible loop, it is possible to alter TGF-βs from being potent signaling proteins into inhibitors of TGF-β signaling. The engineered TGF-βs have improved specificity relative to kinase inhibitors and a much smaller size compared to monoclonal antibodies, and thus may prove successful as either as an injected therapeutic or as a gene therapy-based therapeutic, where other classes of inhibitors have failed.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
249
|
Tang PMK, Zhang YY, Mak TSK, Tang PCT, Huang XR, Lan HY. Transforming growth factor-β signalling in renal fibrosis: from Smads to non-coding RNAs. J Physiol 2018; 596:3493-3503. [PMID: 29781524 DOI: 10.1113/jp274492] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is the key player in tissue fibrosis. However, antifibrotic therapy targeting this multifunctional protein may interfere with other physiological processes to cause side effects. Thus, precise therapeutic targets need to be identified by further understanding the underlying mechanisms of TGF-β1 signalling during fibrogenesis. Equilibrium of Smad signalling is crucial for TGF-β-mediated renal fibrosis, where Smad3 is pathogenic but Smad2 and Smad7 are protective. The activation of TGF-β1/Smad signalling triggers extracellular matrix deposition, and local myofibroblast generation and activation. Mechanistic studies have shown that TGF-β/Smad3 transits the microRNA profile from antifibrotic to profibrotic and therefore promotes renal fibrosis via regulating non-coding RNAs at transcriptional levels. More importantly, disease-specific Smad3-dependent long non-coding RNAs have been recently uncovered from mouse kidney disease models and may represent novel precision therapeutic targets for chronic kidney disease. In this review, mechanisms of TGF-β-driven renal fibrosis via non-coding RNAs and their translational capacities will be discussed in detail.
Collapse
Affiliation(s)
- Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying-Ying Zhang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Thomas Shiu-Kwong Mak
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Philip Chiu-Tsun Tang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
250
|
Alkhatib B, Liu C, Serra R. Tgfbr2 is required in Acan-expressing cells for maintenance of the intervertebral and sternocostal joints. JOR Spine 2018; 1:e1025. [PMID: 30662980 PMCID: PMC6333471 DOI: 10.1002/jsp2.1025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Members of the transforming growth factor beta (TGF-β) family are secreted proteins that regulate skeletal development. TGF-β signaling is critical in embryonic development of the annulus fibrosus (AF) of the intervertebral disc (IVD). To address the question of the role of TGF-β signaling in postnatal development and maintenance of the skeleton, we generated mice in which Tgfbr2 was deleted at 2-weeks of age in Aggrecan (Acan)-expressing cells using inducible Cre/LoxP recombination. METHODS Localization of Cre recombination was visualized by crossing Acantm1(cre/ERT2)Crm mice to fluorescent mTmG reporter mice. Acantm1(cre/ERT2)Crm mice were mated to Tgfbr2 LoxP/LoxP mice and Cre recombinase was activated by tamoxifen injection at 2-weeks postnatally. Following tamoxifen injection, mice were aged to 3, 6, and 12-months and control mice were compared to the experimental (cKO) group. Mice were initially analyzed using X-ray and skeletal preparations. Sternocostal joints and IVD tissues were further analyzed histologically by hematoxylin and eosin (H&E), Safranin O, and Picrosirius Red staining as well as Col10 immunostaining. RESULTS Cre recombination was observed in the IVD and sternocostal joints. X-ray analysis revealed osteophyte formation within the disc space of 12-month-old cKO mice. Skeletal preparations confirmed calcification within the IVD and the sternocostal joints in cKO mice. H&E staining of cKO IVD revealed disorganized growth plates, delay in the formation of the bony endplate, and Col10 staining in the AF indicative of ectopic endochondral bone formation. Furthermore, proteoglycan loss was observed and collagen bundles within the inner AF were thinner and less organized. Alterations in the IVD were apparent beginning at 3 months and were progressively more visible at 6 and 12 months. Similarly, histological analysis of cKO sternocostal joints revealed joint calcification, proteoglycan loss, and disorganization of the collagen architecture at 12 months of age. CONCLUSIONS TGF-β signaling is important for postnatal development and maintenance of fibrocartilaginous IVD and sternocostal joints.
Collapse
Affiliation(s)
- Bashar Alkhatib
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Cunren Liu
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabama
| | - Rosa Serra
- Department of Cell, Developmental and Integrative BiologyUniversity of Alabama at BirminghamBirminghamAlabama
| |
Collapse
|