201
|
Almeida S, Ryser S, Obarzanek-Fojt M, Hohl D, Huber M. The TRAF-interacting protein (TRIP) is a regulator of keratinocyte proliferation. J Invest Dermatol 2010; 131:349-57. [PMID: 21068752 DOI: 10.1038/jid.2010.329] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The TRAF-interacting protein (TRIP/TRAIP) is a RING-type E3 ubiquitin ligase inhibiting tumor necrosis factor-α (TNF-α)-mediated NF-κB activation. TRIP ablation results in early embryonic lethality in mice. To investigate TRIP function in epidermis, we examined its expression and the effect of TRIP knockdown (KD) in keratinocytes. TRIP mRNA expression was strongly downregulated in primary human keratinocytes undergoing differentiation triggered by high cell density or high calcium. Short-term phorbol-12-myristate-13-acetate (TPA) treatment or inhibition of phosphatidylinositol-3 kinase signaling in proliferative keratinocytes suppressed TRIP transcription. Inhibition by TPA was protein kinase C dependent. Keratinocytes undergoing KD of TRIP expression by lentiviral short-hairpin RNA (shRNA; T4 and T5) had strongly reduced proliferation rates compared with control shRNA. Cell cycle analysis demonstrated that TRIP-KD caused growth arrest in the G1/S phase. Keratinocytes with TRIP-KD resembled differentiated cells consistent with the augmented expression of differentiation markers keratin 1 and filaggrin. Luciferase-based reporter assays showed no increase in NF-κB activity in TRIP-KD keratinocytes, indicating that NF-κB activity in keratinocytes is not regulated by TRIP. TRIP expression was increased by ∼2-fold in basal cell carcinomas compared with normal skin. These results underline the important role of TRIP in the regulation of cell cycle progression and the tight linkage of its expression to keratinocyte proliferation.
Collapse
Affiliation(s)
- Stéphanie Almeida
- Service of Dermatology and Venereology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
202
|
Abstract
The Hedgehog (Hh) signaling pathway is critical for cell growth and differentiation during embryogenesis and early development. While it is mostly quiescent in adults, inappropriate reactivation of the Hh pathway has been shown to be involved in the development of cancer. A number of tumor types rely on overexpression of Hh ligands to activate the pathway in a paracrine manner from the tumor to the surrounding stroma. Alternatively, Hh ligands may act on cancer stem cells in some hematopoietic cancers, such as chronic myelogenous leukemia. However, the role of the Hh pathway is best established in tumors, such as basal cell carcinoma and medulloblastoma, where the pathway is activated via mutations. Understanding the contribution of Hh signaling in these various tumor types will be critical to the development and use of agents targeting this pathway in the clinic. We review here the activity of clinical inhibitors of the Hh pathway, including GDC-0449, a small molecule inhibitor of Smoothened (SMO).
Collapse
Affiliation(s)
- Jennifer A Low
- Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
203
|
Arko L, Katsyv I, Park GE, Luan WP, Park JK. Experimental approaches for the treatment of malignant gliomas. Pharmacol Ther 2010; 128:1-36. [PMID: 20546782 PMCID: PMC2939300 DOI: 10.1016/j.pharmthera.2010.04.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/28/2010] [Indexed: 12/13/2022]
Abstract
Malignant gliomas, which include glioblastomas and anaplastic astrocytomas, are the most common primary tumors of the brain. Over the past 30 years, the standard treatment for these tumors has evolved to include maximal safe surgical resection, radiation therapy and temozolomide chemotherapy. While the median survival of patients with glioblastomas has improved from 6 months to 14.6 months, these tumors continue to be lethal for the vast majority of patients. There has, however, been recent substantial progress in our mechanistic understanding of tumor development and growth. The translation of these genetic, epigenetic and biochemical findings into therapies that have been tested in clinical trials is the subject of this review.
Collapse
Affiliation(s)
- Leopold Arko
- Surgical and Molecular Neuro-oncology Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
204
|
Wang G, Zhang Z, Xu Z, Yin H, Bai L, Ma Z, Decoster MA, Qian G, Wu G. Activation of the sonic hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1359-67. [PMID: 20840857 DOI: 10.1016/j.bbamcr.2010.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 08/27/2010] [Accepted: 09/01/2010] [Indexed: 12/16/2022]
Abstract
The hedgehog signal pathway plays a crucial role in the angiogenesis and vascular remodeling. However, the function of this pathway in the pulmonary vascular smooth cell proliferation in response to hypoxia remains unknown. In this study, we have demonstrated that the main components of the hedgehog pathway, including sonic hedgehog (SHH), patched1 (PTCH1), smoothened (SMO), GLI and hypoxia-inducible factor 1 (HIF1) are expressed in the human pulmonary arterial smooth muscle cells (HPASMCs). Interestingly, hypoxia significantly enhanced the expression of SHH and HIF1, facilitated the translocation of GLI1 into the nuclei, and promoted the proliferation of HPASMCs. Furthermore, direct activation of the SHH pathway through incubation with the purified recombinant human SHH or with purmorphamine and SAG, two Smo agonists, also enhanced the proliferation of HPASMCs. Importantly, the treatment with anti-SHH and anti-HIF1 antibodies or cyclopamine, a specific SMO inhibitor, markedly inhibited the nuclear translocation of GLI1 and cell proliferation in the HPASMCs induced by hypoxia and activation of the SHH pathway. Moreover, the treatment with cyclopamine increased apoptosis in the hypoxic HPASMCs. These data strongly demonstrate for the first time that the SHH signaling plays a crucial role in the regulation of HPASMC growth in response to hypoxia.
Collapse
Affiliation(s)
- Guansong Wang
- Institute of Respiratory Diseases, Xinqiao Hospital of the Third Military Medical University, Chongqing 400037, P.R. China; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Mimeault M, Batra SK. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 2010; 62:497-524. [PMID: 20716670 PMCID: PMC2964899 DOI: 10.1124/pr.109.002329] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hedgehog (Hh)/glioma-associated oncogene (GLI) signaling network is among the most important and fascinating signal transduction systems that provide critical functions in the regulation of many developmental and physiological processes. The coordinated spatiotemporal interplay of the Hh ligands and other growth factors is necessary for the stringent control of the behavior of diverse types of tissue-resident stem/progenitor cells and their progenies. The activation of the Hh cascade might promote the tissue regeneration and repair after severe injury in numerous organs, insulin production in pancreatic beta-cells, and neovascularization. Consequently, the stimulation of the Hh pathway constitutes a potential therapeutic strategy to treat diverse human disorders, including severe tissue injuries; diabetes mellitus; and brain, skin, and cardiovascular disorders. In counterbalance, a deregulation of the Hh signaling network might lead to major tissular disorders and the development of a wide variety of aggressive and metastatic cancers. The target gene products induced through the persistent Hh activation can contribute to the self-renewal, survival, migration, and metastasis of cancer stem/progenitor cells and their progenies. Moreover, the pivotal role mediated through the Hh/GLI cascade during cancer progression also implicates the cooperation with other oncogenic products, such as mutated K-RAS and complex cross-talk with different growth factor pathways, including tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), Wnt/beta-catenin, and transforming growth factor-beta (TGF-beta)/TGF-beta receptors. Therefore, the molecular targeting of distinct deregulated gene products, including Hh and EGFR signaling components and other signaling elements that are frequently deregulated in highly tumorigenic cancer-initiating cells and their progenies, might constitute a potential therapeutic strategy to eradicate the total cancer cell mass. Of clinical interest is that these multitargeted approaches offer great promise as adjuvant treatments for improving the current antihormonal therapies, radiotherapies, and/or chemotherapies against locally advanced and metastatic cancers, thereby preventing disease relapse and the death of patients with cancer.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer, and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | |
Collapse
|
206
|
Affiliation(s)
- A. Ruiz i Altaba
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - F. Varnat
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
207
|
Brunner M, Thurnher D, Pammer J, Heiduschka G, Petzelbauer P, Schmid C, Schneider S, Erovic BM. Expression of hedgehog signaling molecules in Merkel cell carcinoma. Head Neck 2010; 32:333-40. [PMID: 19644931 DOI: 10.1002/hed.21191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The Hedgehog signaling pathway is important for human development and carcinogenesis in various malignancies. METHODS One tissue microarray with triplets of 28 samples from 25 patients with Merkel cell carcinoma (MCC) was constructed. Six samples of normal skin and 5 samples of normal oral mucosa served as controls. All samples were analyzed immunohistochemically with antibodies directed against Sonic hedgehog, Indian hedgehog, Patched, Smoothened, Gli-1, Gli-2, and Gli-3. RESULTS All investigated proteins were frequently and intensely overexpressed in MCCs (Sonic hedgehog, 93%; Indian hedgehog, 84%; Patched, 86%; Smoothened, 79%; Gli-1, 79%; Gli-2, 79%; Gli-3, 86%) compared with control samples. High levels of Patched and Indian hedgehog were significantly associated with an increase in patients overall (p = .015) and recurrence-free survival (p = .011), respectively. CONCLUSIONS Our results indicate that the Hedgehog signaling pathway is strongly activated in MCC and thus may play a role in carcinogenesis.
Collapse
Affiliation(s)
- Markus Brunner
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Sauk JJ, Nikitakis NG, Scheper MA. Are we on the brink of nonsurgical treatment for ameloblastoma? ACTA ACUST UNITED AC 2010; 110:68-78. [DOI: 10.1016/j.tripleo.2010.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/06/2010] [Accepted: 01/26/2010] [Indexed: 12/17/2022]
|
209
|
Wnt and related signaling pathways in melanomagenesis. Cancers (Basel) 2010; 2:1000-12. [PMID: 24281103 PMCID: PMC3835115 DOI: 10.3390/cancers2021000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/16/2022] Open
Abstract
Given the pivotal roles of morphogen pathways including Wnt, Notch, Hedgehog, and BMP pathways in the development of the neural crest lineage, it is not surprising that these signaling networks have also been implicated in the biology of malignant melanoma. Understanding the mechanisms by which these pathways can alter cell fate and other biological properties in tumor cells will be essential for determining whether the therapeutic targeting of these pathways has a potential role in melanoma treatment. This review highlights some of the recent findings with regards to how morphogen signaling may regulate melanoma cell biology.
Collapse
|
210
|
Chang H, Li Q, Moraes RC, Lewis MT, Hamel PA. Activation of Erk by sonic hedgehog independent of canonical hedgehog signalling. Int J Biochem Cell Biol 2010; 42:1462-71. [PMID: 20451654 DOI: 10.1016/j.biocel.2010.04.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/06/2010] [Accepted: 04/28/2010] [Indexed: 01/12/2023]
Abstract
Hedgehog (Hh) signalling is mediated through the Patched-1 (Ptch1) receptor. Hh-binding to Ptch1 blocks the inhibitory effects of Ptch1 on the activity of the transmembrane protein, Smoothened (Smo), resulting induction of target genes by the Gli-family of transcription factors. We demonstrate here that Hh-binding to Ptch1 stimulates activation of Erk1/2. This activation is insensitive to the small molecule Smo antagonists and occurs in a cell line that does not express Smo. Specifically, the C-terminus of Ptch1 harbours motifs encoding Class I and II SH3-binding sites. SH3-domain binding activity was verified using GST-c-src(SH3), -Grb2(SH3) and -p85beta(SH3) fusion-proteins. Ectopically expressed Grb2 or p85beta could also be co-immunoprecipitated with the Ptch1 C-terminus. Addition of Shh to serum-starved human mammary epithelial cells and Shh Light II fibroblasts stimulated phosphorylation of Erk1/2. Erk1/2 activation was observed in cells where Smo activity had been inhibited using cyclopamine and in the breast epithelial cell line, MCF10A, that does not express Smo. These data reveal novel binding activities for the C-terminal region of Ptch1 and define a signalling pathway stimulated by the Hh-ligands operating independently of pathways requiring Smo.
Collapse
Affiliation(s)
- Hong Chang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
211
|
Mas C, Ruiz i Altaba A. Small molecule modulation of HH-GLI signaling: current leads, trials and tribulations. Biochem Pharmacol 2010; 80:712-23. [PMID: 20412786 DOI: 10.1016/j.bcp.2010.04.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 01/07/2023]
Abstract
Many human sporadic cancers have been recently shown to require the activity of the Hedgehog-GLI pathway for sustained growth. The survival and expansion of cancer stem cells is also HH-GLI dependent. Here we review the advances on the modulation of HH-GLI signaling by small molecules. We focus on both natural compounds and synthetic molecules that target upstream pathway components, mostly SMOOTHENED, and those that target the last steps of the pathway, the GLI transcription factors. In this review we have sought to provide some bases for useful comparisons, listing original assays used and sources to facilitate comparisons of IC50 values. This area is a rapidly expanding field where biology, medicine and chemistry intersect, both in academia and industry. We also highlight current clinical trials, with positive results in early stages. While we have tried to be exhaustive regarding the molecules, not all data is in the public domain yet. Indeed, we have opted to avoid listing chemical structures but these can be easily found in the references given. Finally, we are hopeful that the best molecules will soon reach the patients but caution about the lack of investment on compounds that lack tight IP positions. While the market in developed nations is expected to compensate the investment and risk of making HH-GLI modulators, other sources or plans must be available for developing nations and poor patient populations. The promise of curing cancer recalls the once revered dream of El Dorado, which taught us that not everything that GLI-tters is gold.
Collapse
Affiliation(s)
- Christophe Mas
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 rue Michel Servet, CH-1211 Geneva, Switzerland.
| | | |
Collapse
|
212
|
SHP (small heterodimer partner) suppresses the transcriptional activity and nuclear localization of Hedgehog signalling protein Gli1. Biochem J 2010; 427:413-22. [PMID: 20175750 DOI: 10.1042/bj20091445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gli (glioma-associated oncogene homologue) proteins act as terminal effectors of the Hedgehog signalling pathway, which is implicated in the development of many human malignancies. Gli activation is important for cell proliferation and anti-apoptosis in various cancers. Several studies have suggested that nuclear receptors have anti-cancer effects by inhibiting the activation of various oncoproteins. However, the involvement of nuclear receptors on the Hedgehog/Gli signalling pathway is poorly defined. In the present study we identified SHP (small heterodimer partner) as a nuclear receptor that decreased the expression of Gli target genes by repressing the transcriptional activity of Gli1. The inhibitory effect of SHP was associated with the inhibition of Gli1 nuclear localization via protein-protein interaction. Finally, SHP overexpression decreased the expression of Gli target genes and SHP knockdown increased the expression of these genes. Taken together, these results suggest that SHP can play a negative role in Hedgehog/Gli1 signalling.
Collapse
|
213
|
Nitzki F, Zibat A, König S, Wijgerde M, Rosenberger A, Brembeck FH, Carstens PO, Frommhold A, Uhmann A, Klingler S, Reifenberger J, Pukrop T, Aberger F, Schulz-Schaeffer W, Hahn H. Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Res 2010; 70:2739-48. [PMID: 20233865 DOI: 10.1158/0008-5472.can-09-3743] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basal cell carcinoma (BCC) is the most common skin tumor in humans. Although BCCs rarely metastasize, they can cause significant morbidity due to local aggressiveness. Approximately 20% of BCCs show signs of spontaneous regression. The understanding of molecular events mediating spontaneous regression has the potential to reduce morbidity of BCC and, potentially, other tumors, if translated into tumor therapies. We show that BCCs induced in conditional Ptch(flox/flox)ERT2(+/-) knockout mice regress with time and show a more differentiated phenotype. Differentiation is accompanied by Wnt5a expression in the tumor stroma, which is first detectable at the fully developed tumor stage. Coculture experiments revealed that Wnt5a is upregulated in tumor-adjacent macrophages by soluble signals derived from BCC cells. In turn, Wnt5a induces the expression of the differentiation marker K10 in tumor cells, which is mediated by Wnt/Ca(2+) signaling in a CaMKII-dependent manner. These data support a role of stromal Wnt5a in BCC differentiation and regression, which may have important implications for development of new treatment strategies for this tumor. Taken together, our results establish BCC as an easily accessible model of tumor regression. The regression of BCC despite sustained Hedgehog signaling activity seems to be mediated by tumor-stromal interactions via Wnt5a signaling.
Collapse
Affiliation(s)
- Frauke Nitzki
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Varnat F, Duquet A, Malerba M, Zbinden M, Mas C, Gervaz P, Ruiz i Altaba A. Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 2010; 1:338-51. [PMID: 20049737 PMCID: PMC3378144 DOI: 10.1002/emmm.200900039] [Citation(s) in RCA: 370] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human colon cancers often start as benign adenomas through loss of APC, leading to enhanced βCATENIN (βCAT)/TCF function. These early lesions are efficiently managed but often progress to invasive carcinomas and incurable metastases through additional changes, the nature of which is unclear. We find that epithelial cells of human colon carcinomas (CCs) and their stem cells of all stages harbour an active HH-GLI pathway. Unexpectedly, they acquire a high HEDGEHOG-GLI (HH-GLI) signature coincident with the development of metastases. We show that the growth of CC xenografts, their recurrence and metastases require HH-GLI function, which induces a robust epithelial-to-mesenchymal transition (EMT). Moreover, using a novel tumour cell competition assay we show that the self-renewal of CC stem cells in vivo relies on HH-GLI activity. Our results indicate a key and essential role of the HH-GLI1 pathway in promoting CC growth, stem cell self-renewal and metastatic behavior in advanced cancers. Targeting HH-GLI1, directly or indirectly, is thus predicted to decrease tumour bulk and eradicate CC stem cells and metastases.
Collapse
Affiliation(s)
- Frédéric Varnat
- Department Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
215
|
Walter K, Omura N, Hong SM, Griffith M, Vincent A, Borges M, Goggins M. Overexpression of smoothened activates the sonic hedgehog signaling pathway in pancreatic cancer-associated fibroblasts. Clin Cancer Res 2010; 16:1781-9. [PMID: 20215540 DOI: 10.1158/1078-0432.ccr-09-1913] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Accumulating evidence suggests that cancer-associated stromal fibroblasts (CAF) contribute to tumor growth by actively communicating with cancer cells. Our aim is to identify signaling pathways involved in tumor-stromal cell interactions in human pancreatic cancer. EXPERIMENTAL DESIGN We established primary fibroblast cultures from human pancreatic adenocarcinomas and nonneoplastic pancreas tissues. To identify differentially expressed genes in CAFs, we did gene expression profiling of human pancreatic CAFs and nonneoplastic pancreatic fibroblasts. RESULTS The Hedgehog receptor Smoothened (SMO) was upregulated in CAFs relative to control fibroblasts. CAFs expressing SMO could transduce the Sonic hedgehog signal to activate Gli1 expression, and small interfering RNA knockdown of SMO blocked the induction of Gli1 in these cells. Stromal fibroblasts of human primary pancreatic adenocarcinomas overexpressed Smo compared with normal pancreatic fibroblasts. CONCLUSIONS These findings implicate overexpression of Smo as a mechanism for the activation of Hedgehog signaling in human pancreatic CAFs and suggest that stromal cells may be a therapeutic target for Smo antagonists in pancreatic cancer.
Collapse
Affiliation(s)
- Kimberly Walter
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
216
|
Fei DL, Li H, Kozul CD, Black KE, Singh S, Gosse JA, DiRenzo J, Martin KA, Wang B, Hamilton JW, Karagas MR, Robbins DJ. Activation of Hedgehog signaling by the environmental toxicant arsenic may contribute to the etiology of arsenic-induced tumors. Cancer Res 2010; 70:1981-8. [PMID: 20179202 PMCID: PMC2831120 DOI: 10.1158/0008-5472.can-09-2898] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exposure to the environmental toxicant arsenic, through both contaminated water and food, contributes to significant health problems worldwide. In particular, arsenic exposure is thought to function as a carcinogen for lung, skin, and bladder cancer via mechanisms that remain largely unknown. More recently, the Hedgehog signaling pathway has also been implicated in the progression and maintenance of these same cancers. Based on these similarities, we tested the hypothesis that arsenic may act in part through activating Hedgehog signaling. Here, we show that arsenic is able to activate Hedgehog signaling in several primary and established tissue culture cells as well as in vivo. Arsenic activates Hedgehog signaling by decreasing the stability of the repressor form of GLI3, one of the transcription factors that ultimately regulate Hedgehog activity. We also show, using tumor samples from a cohort of bladder cancer patients, that high levels of arsenic exposure are associated with high levels of Hedgehog activity. Given the important role Hedgehog signaling plays in the maintenance and progression of a variety of tumors, including bladder cancer, these results suggest that arsenic exposure may in part promote cancer through the activation of Hedgehog signaling. Thus, we provide an important insight into the etiology of arsenic-induced human carcinogenesis, which may be relevant to millions of people exposed to high levels of arsenic worldwide.
Collapse
Affiliation(s)
- Dennis Liang Fei
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Hua Li
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Courtney D. Kozul
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Kendall E. Black
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Samer Singh
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Julie A. Gosse
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - James DiRenzo
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
| | - Kathleen A. Martin
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Department of Surgery, Dartmouth Medical School, Hanover, NH 03755
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY 10021
| | - Joshua W. Hamilton
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Bay Paul Center in Comparative Molecular Biology & Evolution, Marine Biological Laboratory, Woods Hole MA 02543
| | - Margaret R. Karagas
- Section of Biostatistics and Epidemiology, Department of Community and Family Medicine, Dartmouth Medical School, Lebanon, NH 03756
| | - David J. Robbins
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755
- Norris Cotton Cancer Center, Lebanon, NH 03756
| |
Collapse
|
217
|
Yu Y, Merlino G. Roles for aberrant CXCR3 signaling in basal cell carcinoma: a case for dual activity. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2088-91. [PMID: 20185576 DOI: 10.2353/ajpath.2010.091284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yanlin Yu
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| | | |
Collapse
|
218
|
Lee W, Patel JH, Lockhart AC. Novel targets in esophageal and gastric cancer: beyond antiangiogenesis. Expert Opin Investig Drugs 2010; 18:1351-64. [PMID: 19642951 DOI: 10.1517/13543780903179286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cancers of the stomach, gastroesophageal junction and esophagus are a major cause of cancer-related deaths worldwide. In Western countries, adenocarcinomas of the distal esophagus, gastroesophageal junction and proximal stomach have been increasing in frequency more rapidly than other malignancies. The majority of newly diagnosed patients present with advanced disease and the overall survival remains dismal at approximately 10% at 5 years. Better understanding of tumor biology has led to the development of promising novel therapeutic strategies. There is therefore increasing optimism that some of these approaches will improve the outcomes in these increasingly common cancers. Given the success of antiangiogenesis as a therapeutic strategy in various types of cancer, there are ongoing efforts to investigate the utility of other targeted therapies in the treatment of gastric and esophageal cancers. This review will focus on novel therapeutic targets other than angiogenesis and provide a rationale for the further clinical evaluation of these agents in patients with upper gastrointestinal tract cancers.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy, University of Kentucky, Department of Pharmaceutical Sciences, 725 Rose Street, Room 444, Lexington, KY 40536-0082, USA .
| | | | | |
Collapse
|
219
|
Youssef KK, Van Keymeulen A, Lapouge G, Beck B, Michaux C, Achouri Y, Sotiropoulou PA, Blanpain C. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol 2010; 12:299-305. [PMID: 20154679 DOI: 10.1038/ncb2031] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/25/2010] [Indexed: 12/12/2022]
Abstract
For most types of cancers, the cell at the origin of tumour initiation is still unknown. Here, we used mouse genetics to identify cells at the origin of basal cell carcinoma (BCC), which is one of the most frequently occurring types of cancer in humans, and can result from the activation of the Hedgehog signalling pathway. Using mice conditionally expressing constitutively active Smoothened mutant (SmoM2), we activated Hedgehog signalling in different cellular compartments of the skin epidermis and determined in which compartments Hedgehog activation induces BCC formation. Activation of SmoM2 in hair follicle bulge stem cells and their transient amplifying progenies did not induce cancer formation, demonstrating that BCC does not originate from bulge stem cells, as previously thought. Using clonal analysis, we found that BCC arises from long-term resident progenitor cells of the interfollicular epidermis and the upper infundibulum. Our studies uncover the cells at the origin of BCC in mice and demonstrate that expression of differentiation markers in tumour cells is not necessarily predictive of the cancer initiating cells.
Collapse
|
220
|
McCalla-Martin AC, Chen X, Linder KE, Estrada JL, Piedrahita JA. Varying phenotypes in swine versus murine transgenic models constitutively expressing the same human Sonic hedgehog transcriptional activator, K5-HGLI2 Delta N. Transgenic Res 2010; 19:869-87. [PMID: 20099029 DOI: 10.1007/s11248-010-9362-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 01/04/2010] [Indexed: 01/27/2023]
Abstract
This study was undertaken to characterize the effects of constitutive expression of the hedgehog transcriptional activator, Gli2, in porcine skin. The keratinocyte-specific human transgene, K5-hGli2 Delta N, was used to produce transgenic porcine lines via somatic cell nuclear transfer techniques. In mice, K5-hGli2 Delta N induces epithelial downgrowths resembling basal cell carcinomas. Our porcine model also developed these basal cell carcinoma-like lesions, however gross tumor development was not appreciated. In contrast to the murine model, diffuse epidermal changes as well as susceptibility to cutaneous infections were seen in the swine model. Histologic analysis of transgenic piglets revealed generalized epidermal changes including: epidermal hyperplasia (acanthosis), elongated rete ridges, parakeratotic hyperkeratosis, epidermal neutrophilic infiltration, capillary loop dilation and hypogranulosis. By 2 weeks of age, the transgenic piglets developed erythematic and edematous lesions at high contact epidermal areas and extensor surfaces of distal limb joints. Despite antibiotic treatment, these lesions progressed to a deep bacterial pyoderma and pigs died or were euthanized within weeks of birth. Non-transgenic littermates were phenotypically normal by gross and histological analysis. In summary, constitutive expression of the human hGli2 Delta N in keratinocytes, results in cutaneous changes that have not been reported in the K5-hGli2 Delta N murine model. These findings indicate a need for a multiple species animal model approach in order to better understand the role of Gli2 in mammalian skin.
Collapse
Affiliation(s)
- Amy C McCalla-Martin
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
221
|
Stecca B, Ruiz i Altaba A. Context-dependent regulation of the GLI code in cancer by HEDGEHOG and non-HEDGEHOG signals. J Mol Cell Biol 2010; 2:84-95. [PMID: 20083481 DOI: 10.1093/jmcb/mjp052] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A surprisingly large and unrelated number of human tumors depend on sustained HEDGEHOG-GLI (HH-GLI) signaling for growth. This includes cancers of the skin, brain, colon, lungs, prostate, blood and pancreas among others. The basis of such commonality is not obvious. HH-GLI signaling has also been shown to be active in and required for cancer stem cell survival and expansion in different cancer types, and its activity is essential not only for tumor growth but also for recurrence and metastatic growth, two key medical problems. Here we review recent data on the role of HH-GLI signaling in cancer focusing on the role of the GLI code, the regulated combinatorial and cooperative function of repressive and activating forms of all Gli transcription factors, as a signaling nexus that integrates not only HH signals but also those of multiple tumor suppressors and oncogenes. Recent data support the view that the context-dependent regulation of the GLI code by oncogenes and tumor suppressors constitutes a basis for the widespread involvement of GLI1 in human cancers, representing a perversion of its normal role in the control of stem cell lineages during normal development and homeostasis.
Collapse
Affiliation(s)
- Barbara Stecca
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva CH-1211, Switzerland
| | | |
Collapse
|
222
|
D'Angelo RC, Wicha MS. Stem cells in normal development and cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 95:113-58. [PMID: 21075331 DOI: 10.1016/b978-0-12-385071-3.00006-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this chapter we provide an overview of stem cells in normal tissues as well as in many different types of cancers. All tissues in the body are derived from organ-specific stem cells that retain the ability to self-renew and differentiate into specific cell types. The cancer stem cell hypothesis suggests that tumors arise from cell populations with dysregulated self-renewal. This may be tissue stem cells or more differentiated cells that acquire self-renewal capabilities. In addition, we outline some useful assays for purification and isolation of cancer stem cells including the dye exclusion side population assay, flow cytometry sorting techniques for identification of putative cancer stem cell markers, tumorspheres assay, aldehyde dehydrogenase activity assay, PKH, and other membrane staining used to label the cancer stem cells, as well as in vivo xenograft transplantation assays. We also examine some of the cell signaling pathways that regulate stem cell self-renewal including the Notch, Hedgehog, HER2/PI3K/Akt/PTEN, and p53 pathways. We also review information demonstrating the involvement of the microenvironment or stem cell niche and its effects on the growth and maintenance of cancer stem cells. Finally, we highlight the therapeutic implications of targeting stem cells by inhibiting these pathways for the treatment and prevention of cancer.
Collapse
Affiliation(s)
- Rosemarie Chirco D'Angelo
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
223
|
Dormoy V, Danilin S, Lindner V, Thomas L, Rothhut S, Coquard C, Helwig JJ, Jacqmin D, Lang H, Massfelder T. The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Mol Cancer 2009; 8:123. [PMID: 20015350 PMCID: PMC2803450 DOI: 10.1186/1476-4598-8-123] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 12/16/2009] [Indexed: 11/24/2022] Open
Abstract
Background Human clear cell renal cell carcinoma (CRCC) remains resistant to therapies. Recent advances in Hypoxia Inducible Factors (HIF) molecular network led to targeted therapies, but unfortunately with only limited clinical significance. Elucidating the molecular processes involved in kidney tumorigenesis and resistance is central to the development of improved therapies, not only for kidney cancer but for many, if not all, cancer types. The oncogenic PI3K/Akt, NF-kB and MAPK pathways are critical for tumorigenesis. The sonic hedgehog (SHH) signaling pathway is crucial to normal development. Results By quantitative RT-PCR and immunoblot, we report that the SHH signaling pathway is constitutively reactivated in tumors independently of the von Hippel-Lindau (VHL) tumor suppressor gene expression which is inactivated in the majority of CRCC. The inhibition of the SHH signaling pathway by the specific inhibitor cyclopamine abolished CRCC cell growth as assessed by cell counting, BrdU incorporation studies, fluorescence-activated cell sorting and β-galactosidase staining. Importantly, inhibition of the SHH pathway induced tumor regression in nude mice through inhibition of cell proliferation and neo-vascularization, and induction of apoptosis but not senescence assessed by in vivo studies, immunoblot and immunohistochemistry. Gli1, cyclin D1, Pax2, Lim1, VEGF, and TGF-β were exclusively expressed in tumors and were shown to be regulated by SHH, as evidenced by immunoblot after SHH inhibition. Using specific inhibitors and immunoblot, the activation of the oncogenic PI3K/Akt, NF-kB and MAPK pathways was decreased by SHH inhibition. Conclusions These findings support targeting SHH for the treatment of CRCC and pave the way for innovative and additional investigations in a broad range of cancers.
Collapse
Affiliation(s)
- Valérian Dormoy
- INSERM U682, Section of Renal Cancer and Renal Physiopathology, University of Strasbourg, School of Medicine, Strasbourg, 67085 France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Town L, McGlinn E, Fiorenza S, Metzis V, Butterfield NC, Richman JM, Wicking C. The metalloendopeptidase genePitrm1is regulated by hedgehog signaling in the developing mouse limb and is expressed in muscle progenitors. Dev Dyn 2009; 238:3175-84. [DOI: 10.1002/dvdy.22126] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
225
|
Watson A, Kent P, Alam M, Paller AS, Umbach DM, Yoon JW, Iannaccone PM, Walterhouse DO. GLI1 genotypes do not predict basal cell carcinoma risk: a case control study. Mol Cancer 2009; 8:113. [PMID: 19948058 PMCID: PMC2789726 DOI: 10.1186/1476-4598-8-113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/30/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Susceptibility to basal cell carcinoma results from complex interactions between ultraviolet radiation exposure and genetic factors. The GLI1 oncogene is believed to play a role in the genesis of these tumors. We determined whether GLI1 polymorphisms were risk factors for developing basal cell carcinoma, either alone or in combination with patterns of past sun exposure, and whether there were functional differences among different GLI1 haplotypes. RESULTS GLI1 genotypes at c.2798 and c.3298 from 201 basal cell carcinoma patients were compared to 201 age and sex-matched controls. Neither genotype nor haplotype frequencies differed between cases and controls. However, the odds of developing basal cell carcinoma on the trunk compared to the head/neck appeared somewhat lower with carriers of the c.3298GC than the CC genotype. There was no evidence for interactions between skin type, childhood sunburning, average adult sun exposure, adult sunbathing, or intermittency of sun exposure and GLI1 haplotype. Additionally, we found no significant differences in transcription activation or cell transforming ability among the four GLI1 haplotypes. CONCLUSION These results suggest that different GLI1 genotypes alone or in combination with past sun exposure patterns as assessed in this study do not affect basal cell carcinoma risk.
Collapse
Affiliation(s)
- Andrea Watson
- Department of Pediatrics, University of Minnesota - Duluth, Minnesota, USA
| | - Paul Kent
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois, USA
| | - Murad Alam
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David M Umbach
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Joon Won Yoon
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and the Developmental Biology Program of the Children's Memorial Research Center, Chicago Illinois, USA
| | - Philip M Iannaccone
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and the Developmental Biology Program of the Children's Memorial Research Center, Chicago Illinois, USA
| | - David O Walterhouse
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and the Developmental Biology Program of the Children's Memorial Research Center, Chicago Illinois, USA
| |
Collapse
|
226
|
Gore SM, Kasper M, Williams T, Regl G, Aberger F, Cerio R, Neill GW, Philpott MP. Neuronal differentiation in basal cell carcinoma: possible relationship to Hedgehog pathway activation? J Pathol 2009; 219:61-8. [PMID: 19479712 DOI: 10.1002/path.2568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although deregulated Hedgehog signalling and elevated Gli transcription factor expression are known to promote the development of basal cell carcinoma (BCC), little is known about molecular mechanisms driving the development of specific growth pattern subtypes. Using gene array analysis, we have previously observed that over-expression of GLI1 in human keratinocytes promotes increased expression of the neuronal differentiation markers ARC and ULK1. We asked whether neuronal differentiation is a characteristic of BCC and whether there is any correlation with BCC subtype. Using RT-PCR and immunohistochemistry, we confirmed that the neuronal markers ARC, beta-tubulin III, GAP-43 and Neurofilament are expressed in human BCC but not in normal epidermis. Moreover, we found that expression of these neuronal differentiation markers showed strong correlation to BCC subtype, with more aggressive infiltrative and morphoeic BCC showing low levels or lack of expression compared to nodular, superficial and micronodular subtypes. Primary human keratinocytes retrovirally expressing GLI1(-) and GLI2(-) showed elevated levels of beta-tubulin III and ARC but not Neurofilament or GAP-43, suggesting that beta-tubulin III and Arc may be early targets of aberrant Gli expression in BCC, whereas expression of Neurofilament and GAP-43 are either later, downstream targets or under control of alternative pathways. We propose that neuronal differentiation is a feature of BCC and that expression of these markers is in part due to aberrant Hedgehog signalling. Moreover, we suggest that correlation between loss of expression of neuronal markers in infiltrative and morphoeic BCC subtypes reflects dedifferentiation of more aggressive BCC subtypes.
Collapse
Affiliation(s)
- Sinclair M Gore
- Centre for Cutaneous Research, St. Bartholomew's and the London, Queen Mary's School of Medicine and Dentistry, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
227
|
Mimeault M, Batra SK. Recent advances on skin-resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel anti-aging and cancer therapies. J Cell Mol Med 2009; 14:116-34. [PMID: 19725922 PMCID: PMC2916233 DOI: 10.1111/j.1582-4934.2009.00885.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent advances in skin-resident adult stem/progenitor cell research have revealed that these immature and regenerative cells with a high longevity provide critical functions in maintaining skin homeostasis and repair after severe injuries along the lifespan of individuals. The establishment of the functional properties of distinct adult stem/progenitor cells found in skin epidermis and hair follicles and extrinsic signals from their niches, which are deregulated during their aging and malignant transformation, has significantly improved our understanding on the etiopathogenesis of diverse human skin disorders and cancers. Particularly, enhanced ultraviolet radiation exposure, inflammation and oxidative stress and telomere attrition during chronological aging may induce severe DNA damages and genomic instability in the skin-resident stem/progenitor cells and their progenies. These molecular events may result in the alterations in key signalling components controlling their self-renewal and/or regenerative capacities as well as the activation of tumour suppressor gene products that trigger their growth arrest and senescence or apoptotic death. The progressive decline in the regenerative functions and/or number of skin-resident adult stem/progenitor cells may cause diverse skin diseases with advancing age. Moreover, the photoaging, telomerase re-activation and occurrence of different oncogenic events in skin-resident adult stem/progenitor cells may also culminate in their malignant transformation into cancer stem/progenitor cells and skin cancer initiation and progression. Therefore, the anti-inflammatory and anti-oxidant treatments and stem cell-replacement and gene therapies as well as the molecular targeting of their malignant counterpart, skin cancer-initiating cells offer great promise to treat diverse skin disorders and cancers.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|
228
|
Abstract
Polo-like kinase 1 (Plk1) is becoming an increasingly attractive target for cancer management. Plk1 has been shown to be overexpressed in a variety of cancers; however its role in skin cancers is not well-understood. We recently demonstrated that Plk1 is overexpressed in human melanoma and gene-knockdown as well as chemical-inhibition of Plk1 resulted in a significant decrease in melanoma cell viability and growth without affecting the growth of the normal human epidermal melanocytes (NHEMs). Further, the observed anti-proliferative response of Plk1 was found to be accompanied with a significant G(2)/M cell cycle arrest, mitotic catastrophe and induction of apoptosis in melanoma cells. In this study, we determined the expression profile of Plk1 in non-melanoma skin cancers viz. basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Our data demonstrated that like melanoma, Plk1 is significantly overexpressed in BCC and SCC samples. Further, we also found that compared to normal human epidermal keratinocytes (NHEKs), Plk1 was overexpressed at both the protein and mRNA levels in squamous A253 and A431 cells. In addition, a similar protein expression pattern was found for the downstream targets of Plk1, viz. Cdk1, Cyclin B1 and Cdc25C. We believe that the expression pattern of Plk1 in the various skin cancers, the observed insusceptibility of normal cells to Plk1 inhibition and the easy accessibility for topical applications lends the skin as an attractive tissue for Plk1 based cancer chemoprevention and chemotherapeutic applications.
Collapse
Affiliation(s)
- Travis L. Schmit
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Weixiong Zhong
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center; University of Wisconsin, Madison, WI
| | - Minakshi Nihal
- Department of Dermatology, University of Wisconsin, Madison, WI
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center; University of Wisconsin, Madison, WI
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
- University of Wisconsin Paul P. Carbone Comprehensive Cancer Center; University of Wisconsin, Madison, WI
| |
Collapse
|
229
|
ten Haaf A, Bektas N, von Serenyi S, Losen I, Arweiler EC, Hartmann A, Knüchel R, Dahl E. Expression of the glioma-associated oncogene homolog (GLI) 1 in human breast cancer is associated with unfavourable overall survival. BMC Cancer 2009; 9:298. [PMID: 19706168 PMCID: PMC2753634 DOI: 10.1186/1471-2407-9-298] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 08/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The transcription factor GLI1, a member of the GLI subfamily of Krüppel-like zinc finger proteins is involved in signal transduction within the hedgehog pathway. Aberrant hedgehog signalling has been implicated in the development of different human tumour entities such as colon and lung cancer and increased GLI1 expression has been found in these tumour entities as well. In this study we questioned whether GLI1 expression might also be important in human breast cancer development. Furthermore we correlated GLI1 expression with histopathological and clinical data to evaluate whether GLI1 could represent a new prognostic marker in breast cancer treatment. METHODS Applying semiquantitative realtime PCR analysis and immunohistochemistry (IHC) GLI1 expression was analysed in human invasive breast carcinomas (n = 229) in comparison to normal human breast tissues (n = 58). GLI1 mRNA expression was furthermore analysed in a set of normal (n = 3) and tumourous breast cell lines (n = 8). IHC data were statistically interpreted using SPSS version 14.0. RESULTS Initial analysis of GLI1 mRNA expression in a small cohort of (n = 5) human matched normal and tumourous breast tissues showed first tendency towards GLI1 overexpression in human breast cancers. However only a small sample number was included into these analyses and values for GLI1 overexpression were statistically not significant (P = 0.251, two-tailed Mann-Whitney U-test). On protein level, nuclear GLI1 expression in breast cancer cells was clearly more abundant than in normal breast epithelial cells (P = 0.008, two-tailed Mann-Whitney U-test) and increased expression of GLI1 protein in breast tumours significantly correlated with unfavourable overall survival (P = 0.019), but also with higher tumour stage (P < 0.001) and an increased number of tumour-positive axillar lymph nodes (P = 0.027). Interestingly, a highly significant correlation was found between GLI1 expression and the expression of SHH, a central upstream molecule of the hedgehog pathway that was previously analysed on the same tissue microarray. CONCLUSION Our study presents a systematic expression analysis of GLI1 in human breast cancer. Elevated levels of GLI1 protein in human breast cancer are associated with unfavourable prognosis and progressive stages of disease. Thus GLI1 protein expression measured e.g. by an IHC based scoring system might have an implication in future multi-marker panels for human breast cancer prognosis or molecular sub typing. The highly significant correlation between SHH and GLI1 expression characterises GLI1 as a potential functional downstream target of the hedgehog signalling pathway in human breast cancer as well. Furthermore, our study indicates that altered hedgehog signalling may represent a key disease pathway in the progression of human breast cancer.
Collapse
Affiliation(s)
- Anette ten Haaf
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Nuran Bektas
- Institute of Pathology, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Sonja von Serenyi
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Inge Losen
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Elfriede Christel Arweiler
- Institute of Medical Statistics, University Hospital of the RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Krankenhausstrasse 12, 91054 Erlangen, Germany
| | - Ruth Knüchel
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Edgar Dahl
- Molecular Oncology Group, Institute of Pathology, University Hospital of the RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
230
|
Tremblay MR, Lescarbeau A, Grogan MJ, Tan E, Lin G, Austad BC, Yu LC, Behnke ML, Nair SJ, Hagel M, White K, Conley J, Manna JD, Alvarez-Diez TM, Hoyt J, Woodward CN, Sydor JR, Pink M, MacDougall J, Campbell MJ, Cushing J, Ferguson J, Curtis MS, McGovern K, Read MA, Palombella VJ, Adams J, Castro AC. Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 2009; 52:4400-18. [PMID: 19522463 DOI: 10.1021/jm900305z] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent evidence suggests that blocking aberrant hedgehog pathway signaling may be a promising therapeutic strategy for the treatment of several types of cancer. Cyclopamine, a plant Veratrum alkaloid, is a natural product antagonist of the hedgehog pathway. In a previous report, a seven-membered D-ring semisynthetic analogue of cyclopamine, IPI-269609 (2), was shown to have greater acid stability and better aqueous solubility compared to cyclopamine. Further modifications of the A-ring system generated three series of analogues with improved potency and/or solubility. Lead compounds from each series were characterized in vitro and evaluated in vivo for biological activity and pharmacokinetic properties. These studies led to the discovery of IPI-926 (compound 28), a novel semisynthetic cyclopamine analogue with substantially improved pharmaceutical properties and potency and a favorable pharmacokinetic profile relative to cyclopamine and compound 2. As a result, complete tumor regression was observed in a Hh-dependent medulloblastoma allograft model after daily oral administration of 40 mg/kg of compound 28.
Collapse
|
231
|
Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med 2009; 15:1055-61. [PMID: 19701205 DOI: 10.1038/nm.2011] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/01/2009] [Indexed: 01/06/2023]
Abstract
Primary cilia are present on most mammalian cells and are implicated in transducing Hedgehog (Hh) signals during development; however, the prevalence of cilia on human tumors remains unclear, and the role of cilia in cancer has not been examined. Here we show that human basal cell carcinomas (BCCs) are frequently ciliated, and we test the role of cilia in BCC by conditionally deleting Kif3a (encoding kinesin family member 3A) or Ift88 (encoding intraflagellar transport protein 88), genes required for ciliogenesis, in two Hh pathway-dependent mouse tumor models. Ciliary ablation strongly inhibited BCC-like tumors induced by an activated form of Smoothened. In contrast, removal of cilia accelerated tumors induced by activated Gli2, a transcriptional effector of Hh signaling. These seemingly paradoxical effects are consistent with a dual role for cilia in mediating both the activation and the repression of the Hh signaling pathway. Our findings demonstrate that cilia function as unique signaling organelles that can either mediate or suppress tumorigenesis depending on the nature of the oncogenic initiating event.
Collapse
|
232
|
Robarge KD, Brunton SA, Castanedo GM, Cui Y, Dina MS, Goldsmith R, Gould SE, Guichert O, Gunzner JL, Halladay J, Jia W, Khojasteh C, Koehler MFT, Kotkow K, La H, Lalonde RL, Lau K, Lee L, Marshall D, Marsters JC, Murray LJ, Qian C, Rubin LL, Salphati L, Stanley MS, Stibbard JHA, Sutherlin DP, Ubhayaker S, Wang S, Wong S, Xie M. GDC-0449-a potent inhibitor of the hedgehog pathway. Bioorg Med Chem Lett 2009; 19:5576-81. [PMID: 19716296 DOI: 10.1016/j.bmcl.2009.08.049] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/09/2009] [Accepted: 08/11/2009] [Indexed: 12/14/2022]
Abstract
SAR for a wide variety of heterocyclic replacements for a benzimidazole led to the discovery of functionalized 2-pyridyl amides as novel inhibitors of the hedgehog pathway. The 2-pyridyl amides were optimized for potency, PK, and drug-like properties by modifications to the amide portion of the molecule resulting in 31 (GDC-0449). Amide 31 produced complete tumor regression at doses as low as 12.5mg/kg BID in a medulloblastoma allograft mouse model that is wholly dependent on the Hh pathway for growth and is currently in human clinical trials, where it is initially being evaluated for the treatment of BCC.
Collapse
Affiliation(s)
- Kirk D Robarge
- Genentech, Small Molecule Drug Discovery 1 DNA Way, South San Francisco, CA 94080, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Medina V, Calvo MB, Díaz-Prado S, Espada J. Hedgehog signalling as a target in cancer stem cells. Clin Transl Oncol 2009; 11:199-207. [PMID: 19380296 DOI: 10.1007/s12094-009-0341-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hedgehog (Hh) is one of the most important signalling pathways. Together with the Wnt, TGF-Beta/BMP and Notch pathways, it is involved in both embryonic development and adult tissue homeostasis. This is because Hh plays a central role in the proliferative control and differentiation of both embryonic stem cells and adult stem cells. In this way, an alteration in the Hh pathway, either by misexpression of components of that pathway or by changes in the expression of other cellular components that interfere with the Hh signalling system, may trigger the development of several types of cancer. This occurs because normal stem cells or their intermediaries toward differentiated mature cells are not part of the normal proliferative/ differentiation balance and begin to expand without control, triggering the generation of the so-called cancer stem cells. In this review, we will focus on the molecular aspects and the role of Hh signalling in normal tissues and in tumour development.
Collapse
Affiliation(s)
- Vanessa Medina
- Oncology Research Unit, University Hospital A Coruña, A Coruña, Spain.
| | | | | | | |
Collapse
|
234
|
Ju B, Spitsbergen J, Eden CJ, Taylor MR, Chen W. Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish. Mol Cancer 2009; 8:40. [PMID: 19555497 PMCID: PMC2711045 DOI: 10.1186/1476-4598-8-40] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 06/25/2009] [Indexed: 11/27/2022] Open
Abstract
The zebrafish has become an important model for cancer research. Several cancer models have been established by transgenic expression of human or mouse oncogenes in zebrafish. Since it is amenable to efficient transgenesis, zebrafish have immense potential to be used for studying interaction of oncogenes and pathways at the organismal level. Using the Gal4VP16-UAS binary transgenic expression approach, we established stable transgenic lines expressing an EGFP fusion protein of an activated zebrafish Smoothened (Smoa1-EGFP). Expression of the zebrafish Smoa1-EGFP itself did not lead to tumor formation either in founder fish or subsequent generations, however, co-expressing a constitutively active human AKT1 resulted in several tumor types, including spindle cell sarcoma, rhabdomyoma, ocular melanoma, astrocytoma, and myoxma. All tumor types showed GFP expression and increased Patched 1 levels, suggesting involvement of zebrafish Smoa1 in tumorigenesis. Immunofluorescence studies showed that tumors also expressed elevated levels of phosphorylated AKT, indicating activation of the PI3K-AKT pathway. These results suggest that co-activation of the hedgehog and AKT pathways promote tumorigenesis, and that the binary transgenic approach is a useful tool for studying interaction of oncogenes and oncogenic pathways in zebrafish.
Collapse
Affiliation(s)
- Bensheng Ju
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | | | | | | | |
Collapse
|
235
|
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most common type of skin cancer treated by the dermatologic surgeon. The discovery that patients with the nevoid BCC syndrome had mutations in the human homologue of the Drosophila patched gene led to a rapid increase in our understanding of the pathogenesis of BCC. It is theorized that altered regulation at multiple steps in the patched signal transduction pathway may contribute to the development of BCC. This pathway also plays an essential role in embryonic hair follicle development and during the hair cycle. Taken together, a considerable body of evidence suggests that at least some BCC may be derived from deregulated patched signaling in hair follicle stem cells. OBJECTIVE To review evidence of a follicular derivation of BCC and to highlight emerging therapeutic strategies to block deregulated patched signaling in BCC. CONCLUSION Deregulation of the patched signal transduction pathway is present in the vast majority of human BCCs. Pharmacologic inhibitors of this pathway may offer a therapeutic strategy to block tumor growth. The author has indicated no significant interest with commercial supporters.
Collapse
Affiliation(s)
- Jeff Donovan
- Division of Dermatology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
236
|
Rominger CM, Bee WLT, Copeland RA, Davenport EA, Gilmartin A, Gontarek R, Hornberger KR, Kallal LA, Lai Z, Lawrie K, Lu Q, McMillan L, Truong M, Tummino PJ, Turunen B, Will M, Zuercher WJ, Rominger DH. Evidence for allosteric interactions of antagonist binding to the smoothened receptor. J Pharmacol Exp Ther 2009; 329:995-1005. [PMID: 19304771 DOI: 10.1124/jpet.109.152090] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Smoothened receptor (Smo) mediates hedgehog (Hh) signaling critical for development, cell growth, and migration, as well as stem cell maintenance. Aberrant Hh signaling pathway activation has been implicated in a variety of cancers, and small-molecule antagonists of Smo have entered human clinical trials for the treatment of cancer. Here, we report the biochemical characterization of allosteric interactions of agonists and antagonists for Smo. Binding of two radioligands, [(3)H]3-chloro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)-phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.3) (agonist) and [(3)H]cyclopamine (antagonist), was characterized using human Smo expressed in human embryonic kidney 293F membranes. We observed full displacement of [(3)H]cyclopamine by all Smo agonist and antagonist ligands examined. N-[(1E)-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)methylidene]-4-(phenylmethyl)-1-piperazinamine (SANT-1), an antagonist, did not fully inhibit the binding of [(3)H]SAG-1.3. In a functional cell-based beta-lactamase reporter gene assay, SANT-1 and N-[3-(1H-benzimidazol-2-yl)-4-chlorophenyl]-3,4,5-tris(ethyloxy)-benzamide (SANT-2) fully inhibited 3-chloro-4,7-difluoro-N-[trans-4-(methylamino)cyclohexyl]-N-{[3-(4-pyridinyl)phenyl]methyl}-1-benzothiophene-2-carboxamide (SAG-1.5)-induced Hh pathway activation. Detailed "Schild-type" radioligand binding analysis with [(3)H]SAG-1.3 revealed that two structurally distinct Smoothened receptor antagonists, SANT-1 and SANT-2, bound in a manner consistent with that of allosteric modulation. Our mechanism of action characterization of radioligand binding to Smo combined with functional data provides a better understanding of small-molecule interactions with Smo and their influence on the Hh pathway.
Collapse
Affiliation(s)
- Cynthia M Rominger
- Oncology Center for Excellence in Drug Discovery, GlaxoSmithKline Pharmaceuticals, Collegeville, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Barginear MF, Leung M, Budman DR. The hedgehog pathway as a therapeutic target for treatment of breast cancer. Breast Cancer Res Treat 2009; 116:239-46. [PMID: 19479372 DOI: 10.1007/s10549-009-0423-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 12/18/2022]
Abstract
The Hedgehog (Hh) signaling pathway plays a key role in a variety of processes, such as embryogenesis and maintenance of adult tissue homeostasis. It is also becoming increasingly clear that this pathway can have a crucial role in tumorigenesis. Most recently, the Hh signaling pathway has been implicated in the development and maintenance of breast cancer. Here we review Hh signaling, advances in small molecule and antibody-based inhibitors targeting the Hh pathway, and dysregulation of the Hh signaling pathway in breast cancer.
Collapse
Affiliation(s)
- M F Barginear
- The Breast Cancer Medicine Program at the Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA.
| | | | | |
Collapse
|
238
|
Oh ST, Schramme A, Stark A, Tilgen W, Gutwein P, Reichrath J. The disintegrin-metalloproteinases ADAM 10, 12 and 17 are upregulated in invading peripheral tumor cells of basal cell carcinomas. J Cutan Pathol 2009; 36:395-401. [PMID: 19278423 DOI: 10.1111/j.1600-0560.2008.01082.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Members of the a disintegrin and metalloproteinase (ADAM) family are expressed in malignant tumors and participate in the pathogenesis of cancer. However, the presence of ADAM 10, 12, 17 and their role in basal cell carcinoma (BCC) have not been described. The purpose of this study was to investigate expression of ADAM 10, 12 and 17 in BCC. METHODS Expression of ADAM 10, 12 and 17 was analyzed by immunohistochemistry in skin tissues obtained from 25 patients with different types of BCC. RESULTS Immunoreactivity of ADAM 10, 12 and 17 was increased at the peripheral tumor margin compared with central areas of BCC tumor cell nests. Immunoreactivity of ADAM 10 and 12 was increased in the deep margin of invading tumor cell nests in mixed BCC. Focally increased expression of ADAM 12 was detected in squamous differentiated tumor cells of nodular BCC. In addition, immunoreactivity of ADAM 17 was increased in superficial BCC. CONCLUSIONS ADAM 10, 12 and 17 showed different expression pattern in BCC histologic subtypes, indicating their different role in the BCC pathogenesis. Overexpression of ADAM 10, 12 and 17 immunoreactivity in deep invasion area of BCC indicates that these three proteases may play an important role in the locally invasive and highly destructive growth behavior of BCC. Additionally, we suggest that ADAM 17 may play an important role in early development of BCC.
Collapse
Affiliation(s)
- Shin Taek Oh
- Department of Dermatology, Saarland University Hospital, Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
239
|
Kobune M, Takimoto R, Murase K, Iyama S, Sato T, Kikuchi S, Kawano Y, Miyanishi K, Sato Y, Niitsu Y, Kato J. Drug resistance is dramatically restored by hedgehog inhibitors in CD34+ leukemic cells. Cancer Sci 2009; 100:948-55. [PMID: 19245435 PMCID: PMC11158794 DOI: 10.1111/j.1349-7006.2009.01111.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aberrant reactivation of hedgehog (Hh) signaling has been described in a wide variety of human cancers and in cancer stem cells. However, the contribution of Hh signaling to leukemic cell regulation has remained unclear. In this study, we assessed the possibility that Hh pathway activation contributes to the survival and drug resistance of cluster of differentiation (CD)34+ leukemia cells. Hh signaling in leukemic cell lines and primary leukemic cells was screened by reverse transcription - polymerase chain reaction (RT-PCR) and a Hh signaling reporter assay. We found that Hh signaling is active in several human acute myeloid leukemia (AML) cells, especially primary CD34+ leukemic cells and cytokine-responsive CD34+ cell lines such as Kasumi-1, Kasumi-3 and TF-1. These CD34+ cells express the downstream effectors glioma-associated oncogene homolog (GLI)1 or GLI2, indicative of active Hh signaling. Moreover, inhibition of Hh signaling with the naturally derived Smoothened antagonist cyclopamine, endogenous Hh inhibitor hedgehog-interacting protein or anti-hedgehog neutralizing antibody induced apoptosis after 48 h of exposure, although these CD34+ cell lines exhibited resistance to cytarabine (Ara-C). In contrast, cyclopamine failed to affect growth or survival in U937 and HL-60 cell lines that lack expression of Hh receptor components, confirming that the effect of Hh inhibition is specific. Furthermore, combination with 10 microM cyclopamine significantly reduced drug resistance of CD34+ cell lines and primary CD34+ leukemic cells to Ara-C. These results suggest that aberrant Hh pathway activation is a feature of some CD34+ myeloid leukemic cells and Hh inhibitors may have a therapeutic role in the treatment of AML.
Collapse
Affiliation(s)
- Masayoshi Kobune
- Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-Ku, Sapporo, Hokkaido, 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
PTCH1 +/- dermal fibroblasts isolated from healthy skin of Gorlin syndrome patients exhibit features of carcinoma associated fibroblasts. PLoS One 2009; 4:e4818. [PMID: 19287498 PMCID: PMC2654107 DOI: 10.1371/journal.pone.0004818] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/28/2009] [Indexed: 11/19/2022] Open
Abstract
Gorlin's or nevoid basal cell carcinoma syndrome (NBCCS) causes predisposition to basal cell carcinoma (BCC), the commonest cancer in adult human. Mutations in the tumor suppressor gene PTCH1 are responsible for this autosomal dominant syndrome. In NBCCS patients, as in the general population, ultraviolet exposure is a major risk factor for BCC development. However these patients also develop BCCs in sun-protected areas of the skin, suggesting the existence of other mechanisms for BCC predisposition in NBCCS patients. As increasing evidence supports the idea that the stroma influences carcinoma development, we hypothesized that NBCCS fibroblasts could facilitate BCC occurence of the patients. WT (n = 3) and NBCCS fibroblasts bearing either nonsense (n = 3) or missense (n = 3) PTCH1 mutations were cultured in dermal equivalents made of a collagen matrix and their transcriptomes were compared by whole genome microarray analyses. Strikingly, NBCCS fibroblasts over-expressed mRNAs encoding pro-tumoral factors such as Matrix Metalloproteinases 1 and 3 and tenascin C. They also over-expressed mRNA of pro-proliferative diffusible factors such as fibroblast growth factor 7 and the stromal cell-derived factor 1 alpha, known for its expression in carcinoma associated fibroblasts. These data indicate that the PTCH1+/− genotype of healthy NBCCS fibroblasts results in phenotypic traits highly reminiscent of those of BCC associated fibroblasts, a clue to the yet mysterious proneness to non photo-exposed BCCs in NBCCS patients.
Collapse
|
241
|
Wahl J, Debatin KM, Beltinger C. Tumorstammzellen: Grundlagen, klinische Implikationen und Kontroversen. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s15035-008-0132-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
242
|
A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers. EMBO J 2009; 28:663-76. [PMID: 19214186 PMCID: PMC2647769 DOI: 10.1038/emboj.2009.16] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 01/09/2009] [Indexed: 01/05/2023] Open
Abstract
How cell numbers are determined is not understood. Hedgehog-Gli activity is involved in precursor cell proliferation and stem cell self-renewal, and its deregulation sustains the growth of many human tumours. However, it is not known whether GLI1, the final mediator of Hh signals, controls stem cell numbers, and how its activity is restricted to curtail tumourigenesis. Here we have altered the levels of GLI1 and p53, the major tumour suppressor, in multiple systems. We show that GLI1 expression in Nestin+ neural progenitors increases precursor and clonogenic stem cell numbers in vivo and in vitro. In contrast, p53 inhibits GLI1-driven neural stem cell self-renewal, tumour growth and proliferation. Mechanistically, p53 inhibits the activity, nuclear localisation and levels of GLI1 and in turn, GLI1 represses p53, establishing an inhibitory loop. We also find that p53 regulates the phosphorylation of a novel N' truncated putative activator isoform of GLI1 in human cells. The balance of GLI1 and p53 functions, thus, determines cell numbers, and prevalence of p53 restricts GLI1-driven stem cell expansion and tumourigenesis.
Collapse
|
243
|
Bhattacharya R, Kwon J, Ali B, Wang E, Patra S, Shridhar V, Mukherjee P. Role of hedgehog signaling in ovarian cancer. Clin Cancer Res 2009; 14:7659-66. [PMID: 19047091 DOI: 10.1158/1078-0432.ccr-08-1414] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE In humans, several distinctive cancers result from mutations that aberrantly activate hedgehog (HH) signal transduction. Here, we investigate the role of HH signaling in ovarian cancer. EXPERIMENTAL DESIGN We assessed the expression of different components of hedghehog pathway in primary tumor samples and cell lines. We used specific hedghehog pathway blocker to study the effect on clonal growth and proliferation of ovarian cancer cell both in vitro and in vivo. RESULTS We show that the up-regulation of several HH pathway components is a common feature of primary ovarian tumors and cell lines. However, expression of PATCHED1 (PTCH1), a direct transcriptional target of the HH pathway, is down-regulated in ovarian cancer in direct contrast to the expression observed in other adult solid tumors. Cyclopamine, a specific HH pathway inhibitor, inhibits the proliferation and clonal growth of ovarian tumor cells in vitro and arrests ovarian tumor growth in vivo. Expression of BMI-1, a polycomb gene, is down-regulated in ovarian cancer cells following cyclopamine treatment. Overexpression of PTCH1 phenocopied the effects of cyclopamine; it down-regulated BMI-1 and reduced clonal growth in ovarian cancer cell lines. Furthermore, knocking down BMI-1 using small interfering RNA also inhibited the clonal growth of all the ovarian cancer cell lines tested. CONCLUSIONS In brief, the constitutive low-level expression of PTCH1 contributes to proliferation and clonal growth of ovarian cancer cells by an aberrant HH signal. Because the HH pathway can be inhibited by specific inhibitors, these findings point toward possible new treatments to inhibit ovarian cancer growth.
Collapse
Affiliation(s)
- Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
244
|
Yoon JW, Gilbertson R, Iannaccone S, Iannaccone P, Walterhouse D. Defining a role for Sonic hedgehog pathway activation in desmoplastic medulloblastoma by identifying GLI1 target genes. Int J Cancer 2009; 124:109-19. [PMID: 18924150 DOI: 10.1002/ijc.23929] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A subgroup of medulloblastomas shows constitutive activation of the Sonic hedgehog pathway with expression of GLI1. We identified the subset of GLI1 transforming target genes specifically expressed in medulloblastomas by comparing GLI1 targets in RK3E cells transformed by GLI1 with the gene expression profile of Sonic hedgehog signature medulloblastomas. We identified 1,823 genes whose expression was altered more than 2-fold in 2 independent RK3E + GLI1 cell lines. We identified 25 whose expression was altered similarly in medulloblastomas expressing GLI1. We identified potential GLI binding elements in the regulatory regions of 10 of these genes, confirmed that GLI1 binds the regulatory regions and activates transcription of select genes, and showed that GLI1 directly represses transcription of Krox-20. We identified upregulation of CXCR4, a chemokine receptor that plays roles in the proliferation and migration of granule cell neuron precursors during development, supporting the concept that reinitiation of developmental programs may contribute to medulloblastoma tumorigenesis. In addition, the targets suggest a pathway through which GLI1 may ultimately affect medulloblastoma cell proliferation, survival and genomic stability by converging on p53, SGK1, MGMT and NTRK2. We identify a p53 mutation in RK3E + GLI1 cells, suggesting that p53 mutations may sometimes shift the balance toward dysregulated tumor cell survival.
Collapse
Affiliation(s)
- Joon Won Yoon
- Developmental Biology Program, Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
245
|
Abstract
Despite intense study, the role of the immune system in detecting (immunosurveillance), controlling and remodeling (immunoediting) neoplasia remains elusive. We present here a comparative view of the complex interactions between neoplasia and the host immune system. We provide evidence, in the amphibian Xenopus laevis, consistent with an evolutionarily conserved and crucial role of the immune system in controlling neoplasia, which involves a striking variety of anti-tumoral immune effectors including conventional CTLs, classical MHC class Ia unrestricted CTLs (CCU-CTLs) that interact with nonclassical MHC class Ib molecules, CD8 NKT-like cells and NK cells. We also review the tumors found in X. laevis with an emphasis on thymic lymphoid tumors and a rare ovarian dysgerminoma. Finally, we consider the use of X. laevis for in vivo study of tumorigenesis. Given our current knowledge, the experimental systems already established in X. laevis, and the rapid accumulation of genetic resources for the sister species Silurana (Xenopus) tropicalis, it is our conviction that these species provide an ideal alternative to the murine system for studying tumorigenesis and tumor immunity.
Collapse
Affiliation(s)
- Ana Goyos
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
246
|
Affiliation(s)
- T Meyer
- Institute of Medical Microbiology Virology and Hygiene, University Hospital Hamburg-Eppendorf, University of Hamburg, Martinistrasse 52, Hamburg, Germany
| |
Collapse
|
247
|
Wang Y, Imitola J, Rasmussen S, O'Connor KC, Khoury SJ. Paradoxical dysregulation of the neural stem cell pathway sonic hedgehog-Gli1 in autoimmune encephalomyelitis and multiple sclerosis. Ann Neurol 2008; 64:417-27. [PMID: 18991353 DOI: 10.1002/ana.21457] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Neurovascular niches have been proposed as critical components of the neural stem cell (NSC) response to acute central nervous system injury; however, it is unclear whether these potential reparative niches remain functional during chronic injury. Here, we asked how central nervous system inflammatory injury regulates the intrinsic properties of NSCs and their niches. METHODS We investigated the sonic hedgehog (Shh)-Gli1 pathway, an important signaling pathway for NSCs, in experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS), and its regulation by inflammatory cytokines. RESULTS We show that Shh is markedly upregulated by reactive and perivascular astroglia in areas of injury in MS lesions and during EAE. Astroglia outside the subventricular zone niche can support NSC differentiation toward neurons and oligodendrocytes, and Shh is a critical mediator of this effect. Shh induces differential upregulation of the transcription factor Gli1, which mediates Shh-induced NSC differentiation. However, despite the increase in Shh and the fact that Gli1 was initially increased during early inflammation of EAE and active lesions of MS, Gli1 was significantly decreased in spinal cord oligodendrocyte precursor cells after onset of EAE, and in chronic active and inactive lesions from MS brain. The Th1 cytokine interferon-gamma was unique in inducing Shh expression in astroglia and NSCs, while paradoxically suppressing Gli1 expression in NSCs and inhibiting Shh-mediated NSC differentiation. INTERPRETATION Our data suggest that endogenous repair potential during chronic injury appears to be limited by inflammation-induced alterations in intrinsic NSC molecular pathways such as Gli1.
Collapse
Affiliation(s)
- Yue Wang
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
248
|
Singh S, Tokhunts R, Baubet V, Goetz JA, Huang ZJ, Schilling NS, Black KE, MacKenzie TA, Dahmane N, Robbins DJ. Sonic hedgehog mutations identified in holoprosencephaly patients can act in a dominant negative manner. Hum Genet 2008; 125:95-103. [PMID: 19057928 DOI: 10.1007/s00439-008-0599-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Sonic hedgehog (SHH) plays an important instructional role in vertebrate development, as exemplified by the numerous developmental disorders that occur when the SHH pathway is disrupted. Mutations in the SHH gene are the most common cause of sporadic and inherited holoprosencephaly (HPE), a developmental disorder that is characterized by defective prosencephalon development. SHH HPE mutations provide a unique opportunity to better understand SHH biogenesis and signaling, and to decipher its role in the development of HPE. Here, we analyzed a panel of SHH HPE missense mutations that encode changes in the amino-terminal active domain of SHH. Our results show that SHH HPE mutations affect SHH biogenesis and signaling at multiple steps, which broadly results in low levels of protein expression, defective processing of SHH into its active form and protein with reduced activity. Additionally, we found that some inactive SHH proteins were able to modulate the activity of wt SHH in a dominant negative manner, both in vitro and in vivo. These findings show for the first time the susceptibility of SHH driven developmental processes to perturbations by low-activity forms of SHH. In conclusion, we demonstrate that SHH mutations found in HPE patients affect distinct steps of SHH biogenesis to attenuate SHH activity to different levels, and suggest that these variable levels of SHH activity might contribute to some of the phenotypic variation found in HPE patients.
Collapse
Affiliation(s)
- Samer Singh
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
PTCH mutations in basal cell carcinomas from azathioprine-treated organ transplant recipients. Br J Cancer 2008; 99:1276-84. [PMID: 18854826 PMCID: PMC2570526 DOI: 10.1038/sj.bjc.6604665] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The immunosuppressant azathioprine is used to prevent graft rejection after organ transplantation. To investigate whether azathioprine-associated mutagenesis contributes to the high incidence of skin tumours in organ transplant recipients (OTRs), we analysed PTCH gene mutations in 60 basal cell carcinomas (BCC); 39 from OTRs receiving azathioprine and 21 from individuals never exposed to azathioprine. PTCH was mutated in 55% of all tumours, independent of azathioprine treatment. In both the azathioprine and non-azathioprine groups, transitions at dipyrimidine sequences, considered to indicate mutation by ultraviolet-B radiation, occurred frequently in tumours from chronically sun-exposed skin. In BCC from non-sun-exposed skin of azathioprine-treated patients, there was an over-representation of unusual G:C to A:T transitions at non-dipyrimidine sites. These were exclusive to the azathioprine-exposed group and all in the same TGTC sequence context at different positions within PTCH. Meta-analysis of 247 BCCs from published studies indicated that these mutations are rare in sporadic BCC and had never previously been reported in this specific sequence context. This study of post-transplant BCC provides the first indication that azathioprine exposure may be associated with PTCH mutations, particularly in tumours from non-sun-exposed skin.
Collapse
|
250
|
Hu D, Marcucio RS. Unique organization of the frontonasal ectodermal zone in birds and mammals. Dev Biol 2008; 325:200-10. [PMID: 19013147 DOI: 10.1016/j.ydbio.2008.10.026] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
The faces of birds and mammals exhibit remarkable morphologic diversity, but how variation arises is not well-understood. We have previously demonstrated that a region of facial ectoderm, which we named the frontonasal ectodermal zone (FEZ), regulates proximo-distal extension and dorso-ventral polarity of the upper jaw in birds. In this work, we examined the equivalent ectoderm in murine embryos and determined that the FEZ is conserved in mice. However, our results revealed that fundamental differences in the organization and constituents of the FEZ in mice and chicks may underlie the distinct growth characteristics that distinguish mammalian and avian embryos during the earliest stages of development. Finally, current models suggest that neural crest cells regulate size and shape of the upper jaw, and that signaling by Bone morphogenetic proteins (Bmps) within avian neural crest helps direct this process. Here we show that Bmp expression patterns in neural crest cells are regulated in part by signals from the FEZ. The results of our work reconcile how a conserved signaling center that patterns growth of developing face may generate morphologic diversity among different animals. Subtle changes in the organization of gene expression patterns in the FEZ could underlie morphologic variation observed among and within species, and at extremes, variation could produce disease phenotypes.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, CA, USA
| | | |
Collapse
|