201
|
Turishcheva E, Vildanova M, Onishchenko G, Smirnova E. The Role of Endoplasmic Reticulum Stress in Differentiation of Cells of Mesenchymal Origin. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:916-931. [PMID: 36180988 PMCID: PMC9483250 DOI: 10.1134/s000629792209005x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 05/23/2023]
Abstract
Endoplasmic reticulum (ER) is a multifunctional membrane-enclosed organelle. One of the major ER functions is cotranslational transport and processing of secretory, lysosomal, and transmembrane proteins. Impaired protein processing caused by disturbances in the ER homeostasis results in the ER stress. Restoration of normal ER functioning requires activation of an adaptive mechanism involving cell response to misfolded proteins, the so-called unfolded protein response (UPR). Besides controlling protein folding, UPR plays a key role in other physiological processes, in particular, differentiation of cells of connective, muscle, epithelial, and neural tissues. Cell differentiation is induced by the physiological levels of ER stress, while excessive ER stress suppresses differentiation and can result in cell death. So far, it remains unknown whether UPR activation induces cell differentiation or if UPR is initiated by the upregulated synthesis of secretory proteins during cell differentiation. Cell differentiation is an important stage in the development of multicellular organisms and is tightly controlled. Suppression or excessive activation of this process can lead to the development of various pathologies in an organism. In particular, impairments in the differentiation of connective tissue cells can result in the development of fibrosis, obesity, and osteoporosis. Recently, special attention has been paid to fibrosis as one of the major complications of COVID-19. Therefore, studying the role of UPR in the activation of cell differentiation is of both theoretical and practical interest, as it might result in the identification of molecular targets for selective regulation of cell differentiation stages and as well as the potential to modulate the mechanisms involved in the development of various pathological states.
Collapse
Affiliation(s)
| | - Mariya Vildanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Galina Onishchenko
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
202
|
Grey MJ, De Luca H, Ward DV, Kreulen IA, Bugda Gwilt K, Foley SE, Thiagarajah JR, McCormick BA, Turner JR, Lencer WI. The epithelial-specific ER stress sensor ERN2/IRE1β enables host-microbiota crosstalk to affect colon goblet cell development. J Clin Invest 2022; 132:e153519. [PMID: 35727638 PMCID: PMC9435652 DOI: 10.1172/jci153519] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial cells lining mucosal surfaces of the gastrointestinal and respiratory tracts uniquely express ERN2/IRE1β, a paralogue of the most evolutionarily conserved endoplasmic reticulum stress sensor, ERN1/IRE1α. How ERN2 functions at the host-environment interface and why a second paralogue evolved remain incompletely understood. Using conventionally raised and germ-free Ern2-/- mice, we found that ERN2 was required for microbiota-induced goblet cell maturation and mucus barrier assembly in the colon. This occurred only after colonization of the alimentary tract with normal gut microflora, which induced Ern2 expression. ERN2 acted by splicing Xbp1 mRNA to expand ER function and prevent ER stress in goblet cells. Although ERN1 can also splice Xbp1 mRNA, it did not act redundantly to ERN2 in this context. By regulating assembly of the colon mucus layer, ERN2 further shaped the composition of the gut microbiota. Mice lacking Ern2 had a dysbiotic microbial community that failed to induce goblet cell development and increased susceptibility to colitis when transferred into germ-free WT mice. These results show that ERN2 evolved at mucosal surfaces to mediate crosstalk between gut microbes and the colonic epithelium required for normal homeostasis and host defense.
Collapse
Affiliation(s)
- Michael J. Grey
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Heidi De Luca
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Irini A.M. Kreulen
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Sage E. Foley
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jay R. Thiagarajah
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, and
- Program in Microbiome Dynamics, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jerrold R. Turner
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I. Lencer
- Division of Gastroenterology and Nutrition, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Digestive Disease Center, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
203
|
Sidak-Loftis LC, Rosche KL, Pence N, Ujczo JK, Hurtado J, Fisk EA, Goodman AG, Noh SM, Peters JW, Shaw DK. The Unfolded-Protein Response Triggers the Arthropod Immune Deficiency Pathway. mBio 2022; 13:e0070322. [PMID: 35862781 PMCID: PMC9426425 DOI: 10.1128/mbio.00703-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens. The molecular events preceding activation remain undefined. Here, we show that the unfolded-protein response (UPR) initiates the IMD network. The endoplasmic reticulum (ER) stress receptor IRE1α is phosphorylated in response to tick-borne bacteria but does not splice the mRNA encoding XBP1. Instead, through protein modeling and reciprocal pulldowns, we show that Ixodes IRE1α complexes with TRAF2. Disrupting IRE1α-TRAF2 signaling blocks IMD pathway activation and diminishes the production of reactive oxygen species. Through in vitro, in vivo, and ex vivo techniques, we demonstrate that the UPR-IMD pathway circuitry limits the Lyme disease-causing spirochete Borrelia burgdorferi and the rickettsial agents Anaplasma phagocytophilum and A. marginale (anaplasmosis). Altogether, our study uncovers a novel linkage between the UPR and the IMD pathway in arthropods. IMPORTANCE The ability of an arthropod to harbor and transmit pathogens is termed "vector competency." Many factors influence vector competency, including how arthropod immune processes respond to the microbe. Divergences in innate immunity between arthropods are increasingly being reported. For instance, although ticks lack genes encoding key upstream molecules of the immune deficiency (IMD) pathway, it is still functional and restricts causative agents of Lyme disease (Borrelia burgdorferi) and anaplasmosis (Anaplasma phagocytophilum). How the IMD pathway is activated in ticks without classically defined pathway initiators is not known. Here, we found that a cellular stress response network, the unfolded-protein response (UPR), functions upstream to induce the IMD pathway and restrict transmissible pathogens. Collectively, this explains how the IMD pathway can be activated in the absence of canonical pathway initiators. Given that the UPR is highly conserved, UPR-initiated immunity may be a fundamental principle impacting vector competency across arthropods.
Collapse
Affiliation(s)
- Lindsay C. Sidak-Loftis
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Kristin L. Rosche
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Jessica K. Ujczo
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - Joanna Hurtado
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Elis A. Fisk
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Susan M. Noh
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, Washington, USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Dana K. Shaw
- Program in Vector-borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
204
|
Pathway engineering facilitates efficient protein expression in Pichia pastoris. Appl Microbiol Biotechnol 2022; 106:5893-5912. [PMID: 36040488 DOI: 10.1007/s00253-022-12139-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Pichia pastoris has been recognized as an important platform for the production of various heterologous proteins in recent years. The strong promoter AOX1, induced by methanol, with the help of the α-pre-pro signal sequence, can lead to a high expression level of extracellular protein. However, this combination was not always efficient, as protein secretion in P. pastoris involves numerous procedures mediated by several cellular proteins, including folding assisted by endoplasmic reticulum (ER) molecular chaperones, degradation through ubiquitination, and an efficient vesicular transport system. Efficient protein expression requires the cooperation of various intracellular pathways. This article summarizes the process of protein secretion, modification, and transportation in P. pastoris. In addition, the roles played by the key proteins in these processes and the corresponding co-expression effects are also listed. It is expected to lay the foundation for the industrial protein production of P. pastoris. KEY POINTS: • Mechanisms of chaperones in protein folding and their co-expression effects are summarized. • Protein glycosylation modifications are comprehensively reviewed. • Current dilemmas in the overall protein secretion pathway of Pichia pastoris and corresponding solutions are demonstrated.
Collapse
|
205
|
Ryan KC, Laboy JT, Norman KR. Deregulation of Mitochondrial Calcium Handling Due to Presenilin Loss Disrupts Redox Homeostasis and Promotes Neuronal Dysfunction. Antioxidants (Basel) 2022; 11:antiox11091642. [PMID: 36139715 PMCID: PMC9495597 DOI: 10.3390/antiox11091642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are major contributors to the pathophysiology of neurodegenerative diseases, including Alzheimer’s disease (AD). However, the mechanisms driving mitochondrial dysfunction and oxidative stress are unclear. Familial AD (fAD) is an early onset form of AD caused primarily by mutations in the presenilin-encoding genes. Previously, using Caenorhabditis elegans as a model system to study presenilin function, we found that loss of C. elegans presenilin orthologue SEL-12 results in elevated mitochondrial and cytosolic calcium levels. Here, we provide evidence that elevated neuronal mitochondrial generated reactive oxygen species (ROS) and subsequent neurodegeneration in sel-12 mutants are a consequence of the increase of mitochondrial calcium levels and not cytosolic calcium levels. We also identify mTORC1 signaling as a critical factor in sustaining high ROS in sel-12 mutants in part through its repression of the ROS scavenging system SKN-1/Nrf. Our study reveals that SEL-12/presenilin loss disrupts neuronal ROS homeostasis by increasing mitochondrial ROS generation and elevating mTORC1 signaling, which exacerbates this imbalance by suppressing SKN-1/Nrf antioxidant activity.
Collapse
|
206
|
Bhattacharya S, Horowitz BB, Zhang J, Li X, Zhang H, Giese GE, Holdorf AD, Walhout AJ. A metabolic regulatory network for the Caenorhabditis elegans intestine. iScience 2022; 25:104688. [PMID: 35847555 PMCID: PMC9283940 DOI: 10.1016/j.isci.2022.104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
Metabolic perturbations can affect gene expression, for instance to rewire metabolism. While numerous efforts have measured gene expression in response to individual metabolic perturbations, methods that determine all metabolic perturbations that affect the expression for a given gene or set of genes have not been available. Here, we use a gene-centered approach to derive a first-pass metabolic regulatory network for Caenorhabditis elegans by performing RNAi of more than 1,400 metabolic genes with a set of 19 promoter reporter strains that express a fluorescent protein in the animal's intestine. We find that metabolic perturbations generally increase promoter activity, which contrasts with transcription factor (TF) RNAi, which tends to repress promoter activity. We identify several TFs that modulate promoter activity in response to perturbations of the electron transport chain and explore complex genetic interactions among metabolic pathways. This work provides a blueprint for a systems-level understanding of how metabolism affects gene expression.
Collapse
Affiliation(s)
- Sushila Bhattacharya
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Brent B. Horowitz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jingyan Zhang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xuhang Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hefei Zhang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gabrielle E. Giese
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Amy D. Holdorf
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Albertha J.M. Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
207
|
Zhong Y, Yan W, Ruan J, Fang M, Yu C, Du S, Rai G, Tao D, Henderson MJ, Fang S. XBP1 variant 1 promotes mitosis of cancer cells involving upregulation of the polyglutamylase TTLL6. Hum Mol Genet 2022; 31:2639-2654. [PMID: 35333353 PMCID: PMC9396943 DOI: 10.1093/hmg/ddac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/15/2022] Open
Abstract
XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1β. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.
Collapse
Affiliation(s)
- Yongwang Zhong
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenjing Yan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingjing Ruan
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pulmonary Medicine, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Mike Fang
- Population and Quantitative Health Sciences Department, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Changjun Yu
- Department of General surgery, Anhui Medical University First Affiliated Hospital, Hefei, Anhui 230032, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Shengyun Fang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, UM Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
208
|
Ligustilide Improves Cognitive Impairment via Regulating the SIRT1/IRE1α/XBP1s/CHOP Pathway in Vascular Dementia Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6664990. [PMID: 36017237 PMCID: PMC9398841 DOI: 10.1155/2022/6664990] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 11/24/2022]
Abstract
Vascular dementia (VaD), the second cause of dementia, is caused by chronic cerebral hypoperfusion, producing progressive damage to cerebral cortex, hippocampus, and white matter. Ligustilide (LIG), one of the main active ingredients of Angelica sinensis, exerts the neuroprotective effect on neurodegenerative diseases. However, the mechanism remains unclear. An in vivo model of bilateral common carotid artery occlusion and in vitro model of oxygen glucose deprivation (OGD) were employed in this study. LIG (20 or 40 mg/kg/day) was intragastrically administered to the VaD rats for four weeks. The results of the Morris water maze test demonstrated that LIG effectively ameliorated learning and memory deficiency in VaD rats. LIG obviously relieved neuronal oxidative stress damage by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) and decreasing the level of malondialdehyde (MDA) in VaD rats. Nissl staining showed that LIG increased the number of the Nissl body in VaD rats. After LIG administration, the apoptotic-related protein, Bax, was decreased and Bcl-2 was increased in the hippocampus of VaD rats. Moreover, the expressions of sirtuin 1 (SIRT1) and protein disulfide isomerase (PDI) were decreased, binding immunoglobulin protein (BIP) and phospho-inositol-requiring enzyme-1α (P-IRE1α), X-box binding protein 1 (XBP1s), and C/EBP-homologous protein (CHOP) were increased in VaD rats. After LIG treatment, these changes were reversed. The immunofluorescence results further showed that LIG upregulated the expression of SIRT1 and downregulated the expression of P-IRE1α in VaD rats. In addition, in vitro experiment showed that EX-527 (SIRT1 inhibitor) partly abolished the inhibitory effect of LIG on the IRE1α/XBP1s/CHOP pathway. In conclusion, these studies indicated that LIG could improve cognitive impairment by regulating the SIRT1/IRE1α/XBP1s/CHOP pathway in VaD rats.
Collapse
|
209
|
Walter F, D’Orsi B, Jagannathan A, Dussmann H, Prehn JHM. BOK controls ER proteostasis and physiological ER stress responses in neurons. Front Cell Dev Biol 2022; 10:915065. [PMID: 36060797 PMCID: PMC9434404 DOI: 10.3389/fcell.2022.915065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The Bcl-2 family proteins BAK and BAX control the crucial step of pore formation in the mitochondrial outer membrane during intrinsic apoptosis. Bcl-2-related ovarian killer (BOK) is a Bcl-2 family protein with a high sequence similarity to BAK and BAX. However, intrinsic apoptosis can proceed in the absence of BOK. Unlike BAK and BAX, BOK is primarily located on the endoplasmic reticulum (ER) and Golgi membranes, suggesting a role for BOK in regulating ER homeostasis. In this study, we report that BOK is required for a full ER stress response. Employing previously characterized fluorescent protein-based ER stress reporter cell systems, we show that BOK-deficient cells have an attenuated response to ER stress in all three signaling branches of the unfolded protein response. Fluo-4-based confocal Ca2+ imaging revealed that disruption of ER proteostasis in BOK-deficient cells was not linked to altered ER Ca2+ levels. Fluorescence recovery after photobleaching (FRAP) experiments using GRP78/BiP-eGFP demonstrated that GRP78 motility was significantly lower in BOK-deficient cells. This implied that less intraluminal GRP78 was freely available and more of the ER chaperone bound to unfolded proteins. Collectively, these experiments suggest a new role for BOK in the protection of ER proteostasis and cellular responses to ER stress.
Collapse
Affiliation(s)
- Franziska Walter
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Beatrice D’Orsi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
| | - Anagha Jagannathan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- *Correspondence: Jochen H. M. Prehn,
| |
Collapse
|
210
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
211
|
Restoring TRAILR2/DR5-Mediated Activation of Apoptosis upon Endoplasmic Reticulum Stress as a Therapeutic Strategy in Cancer. Int J Mol Sci 2022; 23:ijms23168987. [PMID: 36012252 PMCID: PMC9409255 DOI: 10.3390/ijms23168987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The uncontrolled proliferation of malignant cells in growing tumors results in the generation of different stressors in the tumor microenvironment, such as nutrient shortage, hypoxia and acidosis, among others, that disrupt endoplasmic reticulum (ER) homeostasis and may lead to ER stress. As a response to ER stress, both normal and tumor cells launch a set of signaling pathways known as the unfolded protein response (UPR) to restore ER proteostasis and maintain cell viability and function. However, under sustained ER stress, an apoptotic cell death process can be induced and this has been the subject of different review articles, although the role of the TRAIL-R2/DR5-activated extrinsic pathway of apoptosis has not yet been thoroughly summarized. In this Review, we provide an updated overview of the molecular mechanisms regulating cell fate decisions in tumor cells undergoing ER stress and discuss the role of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand receptor 2 (TRAIL-R2/DR5) in the final outcome of UPR signaling. Particularly, we focus on the mechanisms controlling cellular FLICE-like inhibitory protein (FLIP) levels in tumor cells undergoing ER stress, which may represent a potential target for therapeutic intervention in cancer.
Collapse
|
212
|
Effect of Dietary 4-Phenylbuthyric Acid Supplementation on Acute Heat-Stress-Induced Hyperthermia in Broiler Chickens. Animals (Basel) 2022; 12:ani12162056. [PMID: 36009646 PMCID: PMC9404993 DOI: 10.3390/ani12162056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Heat stress (HS) induces endoplasmic reticulum (ER) stress and disrupts the ER and cellular homeostasis. A recent study showed that ER stress was induced in broiler chickens under severe and acute HS; however, it was unclear how the alleviation of ER stress affects the physiological state of broiler chickens. Therefore, this study aimed to investigate the ameliorative effects of an ER stress alleviator, 4-phenylbutyric acid (4-PBA), which is a chemical chaperone that reduces ER stress, on the body temperature response, energy metabolic state, and cellular ER stress in HS-exposed birds. 4-PBA supplementation did not negatively affect the growth rate. In addition, 4-PBA suppressed the HS-induced ER stress response in skeletal muscle. Surprisingly, 4-PBA significantly decreased body temperature elevation in HS birds. The present study showed that the ER stress, alleviated by 4-PBA, might contribute to the induction of heat tolerance in broiler chickens. Abstract Hot, humid weather causes heat stress (HS) in broiler chickens, which can lead to high mortality. A recent study found that HS causes endoplasmic reticulum (ER) stress. However, the possible involvement of ER stress in HS-induced physiological alterations in broiler chickens is unclear. This study aimed to evaluate the effect of the dietary supplementation of 4-phenylbutyric acid (4-PBA), an alleviator of ER stress, in acute HS-exposed young broiler chickens. Twenty-eight 14-day-old male broiler chickens (ROSS 308) were divided into two groups and fed either a control diet or a diet containing 4-PBA (5.25 g per kg of diet feed) for 10 days. At 24 days old, each group of chickens was kept in thermoneutral (24 ± 0.5 °C) or acute HS (36 ± 0.5 °C) conditions for 2 h. The results showed that thermoneutral birds supplemented with 4-PBA exhibited no negative effects in terms of broiler body weight gain and tissue weight compared to non-supplemental birds. HS increased body temperature in both the control and 4-PBA groups, but the elevation was significantly lower in the 4-PBA group than in the control group. The plasma non-esterified fatty acid concentration was significantly increased by HS treatment in non-supplemental groups, while the increase was partially attenuated in the 4-PBA group. Moreover, 4-PBA prevented HS-induced gene elevation of the ER stress markers GRP78 and GRP94 in the skeletal muscle. These findings suggest that the 4-PBA effect may be specific to the skeletal muscle in HS-exposed birds and that 4-PBA supplementation attenuated HS-induced muscle ER stress, which could be associated with a supplementation of the body temperature elevation and lipolysis.
Collapse
|
213
|
Wei M, Nurjanah U, Herkilini A, Huang C, Li Y, Miyagishi M, Wu S, Kasim V. Unspliced XBP1 contributes to cholesterol biosynthesis and tumorigenesis by stabilizing SREBP2 in hepatocellular carcinoma. Cell Mol Life Sci 2022; 79:472. [PMID: 35933495 PMCID: PMC11073046 DOI: 10.1007/s00018-022-04504-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 11/03/2022]
Abstract
Cholesterol biosynthesis plays a critical role in rapidly proliferating tumor cells. X-box binding protein 1 (XBP1), which was first characterized as a basic leucine zipper-type transcription factor, exists in an unspliced (XBP1-u) and spliced (XBP1-s) form. Recent studies showed that unspliced XBP1 (XBP1-u) has unique biological functions independent from XBP1-s and could promote tumorigenesis; however, whether it is involved in tumor metabolic reprogramming remains unknown. Herein, we found that XBP1-u promotes tumor growth by enhancing cholesterol biosynthesis in hepatocellular carcinoma (HCC) cells. Specifically, XBP1-u colocalizes with sterol regulatory element-binding protein 2 (SREBP2) and inhibits its ubiquitination/proteasomal degradation. The ensuing stabilization of SREBP2 activates the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a rate-limiting enzyme in cholesterol biosynthesis. We subsequently show that the XBP1-u/SREBP2/HMGCR axis is crucial for enhancing cholesterol biosynthesis and lipid accumulation as well as tumorigenesis in HCC cells. Taken together, these findings reveal a novel function of XBP1-u in promoting tumorigenesis through increased cholesterol biosynthesis in hepatocarcinoma cells. Hence, XBP1-u might be a potential target for anti-tumor therapeutic strategies that focus on cholesterol metabolism in HCC.
Collapse
Affiliation(s)
- Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Uli Nurjanah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Arin Herkilini
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Can Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanjun Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Makoto Miyagishi
- Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba, Chongqing, 400044, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
214
|
Ben Othmène Y, Monceaux K, Belhadef A, Karoui A, Ben Salem I, Boussabbeh M, Abid-Essefi S, Lemaire C. Triazole fungicide tebuconazole induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103919. [PMID: 35753672 DOI: 10.1016/j.etap.2022.103919] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/12/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Tebuconazole (TEB) is a common triazole fungicide that has been widely applied in the treatment of fungal diseases. It is reported that TEB could exert harmful effects on mammals' health. However, the molecular mechanism involved in TEB toxicity remain undefined. Our study aimed to investigate the mechanisms of TEB-induced toxicity in intestinal cells. We found that TEB stimulates apoptosis through the mitochondrial pathway. Additionally, TEB triggers endoplasmic reticulum (ER) stress as demonstrated by the activation of the three arms of unfolded protein response (UPR). The incubation with the chemical chaperone 4-phenylbutyrate (4-PBA) alleviated ER stress and reduced TEB-induced apoptosis, suggesting that ER stress plays an important role in mediating TEB-induced toxicity. Furthermore, inhibition of ROS by N-acetylcysteine (NAC) inhibited TEB-induced ER stress and apoptosis. Taken together, these findings suggest that TEB exerts its toxic effects in HCT116 cells by inducing apoptosis through ROS-mediated ER stress and mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Yosra Ben Othmène
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia
| | - Kevin Monceaux
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Anissa Belhadef
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Ahmed Karoui
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296 Châtenay-Malabry, France
| | - Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia; University of Sousse, Faculty of Medicine of Sousse, 4000, Tunisia
| | - Manel Boussabbeh
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dentistry, Rue Avicenne, 5019 Monastir, Tunisia.
| | - Christophe Lemaire
- Université Paris-Saclay, Inserm, UMR-S 1180, 92296 Châtenay-Malabry, France; Université Paris-Saclay, UVSQ, Inserm, UMR-S 1180, 92296 Châtenay-Malabry, France
| |
Collapse
|
215
|
Dogan SA, Giacchin G, Zito E, Viscomi C. Redox Signaling and Stress in Inherited Myopathies. Antioxid Redox Signal 2022; 37:301-323. [PMID: 35081731 DOI: 10.1089/ars.2021.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Reactive oxygen species (ROS) are highly reactive compounds that behave like a double-edged sword; they damage cellular structures and act as second messengers in signal transduction. Mitochondria and endoplasmic reticulum (ER) are interconnected organelles with a central role in ROS production, detoxification, and oxidative stress response. Skeletal muscle is the most abundant tissue in mammals and one of the most metabolically active ones and thus relies mainly on oxidative phosphorylation (OxPhos) to synthesize adenosine triphosphate. The impairment of OxPhos leads to myopathy and increased ROS production, thus affecting both redox poise and signaling. In addition, ROS enter the ER and trigger ER stress and its maladaptive response, which also lead to a myopathic phenotype with mitochondrial involvement. Here, we review the role of ROS signaling in myopathies due to either mitochondrial or ER dysfunction. Recent Advances: Relevant advances have been evolving over the last 10 years on the intricate ROS-dependent pathways that act as modifiers of the disease course in several myopathies. To this end, pathways related to mitochondrial biogenesis, satellite cell differentiation, and ER stress have been studied extensively in myopathies. Critical Issues: The analysis of the chemistry and the exact quantitation, as well as the localization of ROS, are still challenging due to the intrinsic labile nature of ROS and the technical limitations of their sensors. Future Directions: The mechanistic studies of the pathogenesis of mitochondrial and ER-related myopathies offer a unique possibility to discover novel ROS-dependent pathways. Antioxid. Redox Signal. 37, 301-323.
Collapse
Affiliation(s)
- Sukru Anil Dogan
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Giacomo Giacchin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.,Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
216
|
XAF1 drives apoptotic switch of endoplasmic reticulum stress response through destabilization of GRP78 and CHIP. Cell Death Dis 2022; 13:655. [PMID: 35902580 PMCID: PMC9334361 DOI: 10.1038/s41419-022-05112-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
X-linked inhibitor of apoptosis-associated factor-1 (XAF1) is a stress-inducible tumor suppressor that is commonly inactivated in many human cancers. Despite accumulating evidence for the pro-apoptotic role for XAF1 under various stressful conditions, its involvement in endoplasmic reticulum (ER) stress response remains undefined. Here, we report that XAF1 increases cell sensitivity to ER stress and acts as a molecular switch in unfolded protein response (UPR)-mediated cell-fate decisions favoring apoptosis over adaptive autophagy. Mechanistically, XAF1 interacts with and destabilizes ER stress sensor GRP78 through the assembly of zinc finger protein 313 (ZNF313)-mediated destruction complex. Moreover, XAF1 expression is activated through PERK-Nrf2 signaling and destabilizes C-terminus of Hsc70-interacting protein (CHIP) ubiquitin E3 ligase, thereby blocking CHIP-mediated K63-linked ubiquitination and subsequent phosphorylation of inositol-required enzyme-1α (IRE1α) that is involved in in the adaptive ER stress response. In tumor xenograft assays, XAF1-/- tumors display substantially lower regression compared to XAF1+/+ tumors in response to cytotoxic dose of ER stress inducer. XAF1 and GRP78 expression show an inverse correlation in human cancer cell lines and primary breast carcinomas. Collectively this study uncovers an important role for XAF1 as a linchpin to govern the sensitivity to ER stress and the outcomes of UPR signaling, illuminating the mechanistic consequence of XAF1 inactivation in tumorigenesis.
Collapse
|
217
|
Peng J, Qin C, Ramatchandirin B, Pearah A, Guo S, Hussain M, Yu L, Wondisford FE, He L. Activation of the canonical ER Stress IRE1-XBP1 Pathway by Insulin Regulates Glucose and Lipid Metabolism. J Biol Chem 2022; 298:102283. [PMID: 35863429 PMCID: PMC9396404 DOI: 10.1016/j.jbc.2022.102283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/18/2022] Open
Abstract
Knockout of the transcription factor X-box binding protein (XBP1) is known to decrease liver glucose production and lipogenesis. However, whether insulin can regulate gluconeogenesis and lipogenesis through XBP1 and how insulin activates the inositol-requiring enzyme-XBP1 ER stress pathway remains unexplored. Here, we report that in the fed state, insulin-activated kinase AKT directly phosphorylates inositol-requiring enzyme 1 at S724, which in turn mediates the splicing of XBP1u mRNA, thus favoring the generation of the spliced form, XBP1s, in the liver of mice. Subsequently, XBP1s stimulate the expression of lipogenic genes and upregulates liver lipogenesis as previously reported. Intriguingly, we find that fasting leads to an increase in XBP1u along with a drastic decrease in XBP1s in the liver of mice, and XBP1u, not XBP1s, significantly increases PKA-stimulated CRE reporter activity in cultured hepatocytes. Furthermore, we demonstrate that overexpression of XBP1u significantly increases cAMP-stimulated expression of rate-limiting gluconeogenic genes, G6pc and Pck1, and glucose production in primary hepatocytes. Reexpression of XBP1u in the liver of mice with XBP1 depletion significantly increases fasting blood glucose levels and gluconeogenic gene expression. These data support an important role of XBP1u in upregulating gluconeogenesis in the fasted state. Taken together, we reveal that insulin signaling via AKT controls the expression of XBP1 isoforms and that XBP1u and XBP1s function in different nutritional states to regulate liver gluconeogenesis and lipogenesis, respectively.
Collapse
Affiliation(s)
- Jinghua Peng
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Caolitao Qin
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | - Alexia Pearah
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shaodong Guo
- Department of Nutrition, Texas A&M University, TX 77843
| | - Mehboob Hussain
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Liqing Yu
- Division of Metabolism, Endocrinology and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Ling He
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Departments of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
218
|
Src Family Kinases: A Potential Therapeutic Target for Acute Kidney Injury. Biomolecules 2022; 12:biom12070984. [PMID: 35883540 PMCID: PMC9312434 DOI: 10.3390/biom12070984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Src family kinases (SFKs) are non-receptor tyrosine kinases and play a key role in regulating signal transduction. The mechanism of SFKs in various tumors has been widely studied, and there are more and more studies on its role in the kidney. Acute kidney injury (AKI) is a disease with complex pathogenesis, including oxidative stress (OS), inflammation, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. In addition, fibrosis has a significant impact on the progression of AKI to developing chronic kidney disease (CKD). The mortality rate of this disease is very high, and there is no effective treatment drug at present. In recent years, some studies have found that SFKs, especially Src, Fyn, and Lyn, are involved in the pathogenesis of AKI. In this paper, the structure, function, and role of SFKs in AKI are discussed. SFKs play a crucial role in the occurrence and development of AKI, making them promising molecular targets for the treatment of AKI.
Collapse
|
219
|
Carreras-Sureda A, Kroemer G, Cardenas JC, Hetz C. Balancing energy and protein homeostasis at ER-mitochondria contact sites. Sci Signal 2022; 15:eabm7524. [DOI: 10.1126/scisignal.abm7524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The endoplasmic reticulum (ER) is the largest organelle of the cell and participates in multiple essential functions, including the production of secretory proteins, lipid synthesis, and calcium storage. Sustaining proteostasis requires an intimate coupling with energy production. Mitochondrial respiration evolved to be functionally connected to ER physiology through a physical interface between both organelles known as mitochondria-associated membranes. This quasi-synaptic structure acts as a signaling hub that tunes the function of both organelles in a bidirectional manner and controls proteostasis, cell death pathways, and mitochondrial bioenergetics. Here, we discuss the main signaling mechanisms governing interorganellar communication and their putative role in diseases including cancer and neurodegeneration.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, 1, rue Michel-Servet, 1211 Geneva, Switzerland
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Julio Cesar Cardenas
- Center for Integrative Biology, Mayor University, 7510041 Santiago, Chile
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claudio Hetz
- Center for Geroscience, Brain Health, and Metabolism, 70086 Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, 70086 Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, 70086 Santiago, Chile
| |
Collapse
|
220
|
Amici DR, Ansel DJ, Metz KA, Smith RS, Phoumyvong CM, Gayatri S, Chamera T, Edwards SL, O’Hara BP, Srivastava S, Brockway S, Takagishi SR, Cho BK, Goo YA, Kelleher NL, Ben-Sahra I, Foltz DR, Li J, Mendillo ML. C16orf72/HAPSTR1 is a molecular rheostat in an integrated network of stress response pathways. Proc Natl Acad Sci U S A 2022; 119:e2111262119. [PMID: 35776542 PMCID: PMC9271168 DOI: 10.1073/pnas.2111262119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 05/05/2022] [Indexed: 12/21/2022] Open
Abstract
All cells contain specialized signaling pathways that enable adaptation to specific molecular stressors. Yet, whether these pathways are centrally regulated in complex physiological stress states remains unclear. Using genome-scale fitness screening data, we quantified the stress phenotype of 739 cancer cell lines, each representing a unique combination of intrinsic tumor stresses. Integrating dependency and stress perturbation transcriptomic data, we illuminated a network of genes with vital functions spanning diverse stress contexts. Analyses for central regulators of this network nominated C16orf72/HAPSTR1, an evolutionarily ancient gene critical for the fitness of cells reliant on multiple stress response pathways. We found that HAPSTR1 plays a pleiotropic role in cellular stress signaling, functioning to titrate various specialized cell-autonomous and paracrine stress response programs. This function, while dispensable to unstressed cells and nematodes, is essential for resilience in the presence of stressors ranging from DNA damage to starvation and proteotoxicity. Mechanistically, diverse stresses induce HAPSTR1, which encodes a protein expressed as two equally abundant isoforms. Perfectly conserved residues in a domain shared between HAPSTR1 isoforms mediate oligomerization and binding to the ubiquitin ligase HUWE1. We show that HUWE1 is a required cofactor for HAPSTR1 to control stress signaling and that, in turn, HUWE1 feeds back to ubiquitinate and destabilize HAPSTR1. Altogether, we propose that HAPSTR1 is a central rheostat in a network of pathways responsible for cellular adaptability, the modulation of which may have broad utility in human disease.
Collapse
Affiliation(s)
- David R. Amici
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Daniel J. Ansel
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Kyle A. Metz
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Roger S. Smith
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Claire M. Phoumyvong
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Sitaram Gayatri
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Tomasz Chamera
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Stacey L. Edwards
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Brendan P. O’Hara
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Shashank Srivastava
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Sonia Brockway
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Seesha R. Takagishi
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Byoung-Kyu Cho
- Northwestern Proteomics Center of Excellence Core Facility, Northwestern University, Evanston, IL 60208
| | - Young Ah Goo
- Northwestern Proteomics Center of Excellence Core Facility, Northwestern University, Evanston, IL 60208
| | - Neil L. Kelleher
- Northwestern Proteomics Center of Excellence Core Facility, Northwestern University, Evanston, IL 60208
| | - Issam Ben-Sahra
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Daniel R. Foltz
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| | - Jian Li
- Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Marc L. Mendillo
- Simpson Querrey Center for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60610
| |
Collapse
|
221
|
Herrema H, Guan D, Choi JW, Feng X, Salazar Hernandez MA, Faruk F, Auen T, Boudett E, Tao R, Chun H, Ozcan U. FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metab 2022; 34:1004-1022.e8. [PMID: 35793654 DOI: 10.1016/j.cmet.2022.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/21/2021] [Accepted: 06/11/2022] [Indexed: 12/12/2022]
Abstract
Chronic endoplasmic reticulum (ER) stress and sustained activation of unfolded protein response (UPR) signaling contribute to the development of type 2 diabetes in obesity. UPR signaling is a complex signaling pathway, which is still being explored in many different cellular processes. Here, we demonstrate that FK506-binding protein 11 (FKBP11), which is transcriptionally regulated by XBP1s, is severely reduced in the livers of obese mice. Restoring hepatic FKBP11 expression in obese mice initiates an atypical UPR signaling pathway marked by rewiring of PERK signaling toward NRF2, away from the eIF2α-ATF4 axis of the UPR. This alteration in UPR signaling establishes glucose homeostasis without changing hepatic ER stress, food consumption, or body weight. We conclude that ER stress during obesity can be beneficially rewired to promote glucose homeostasis. These findings may uncover possible new avenues in the development of novel approaches to treat diseases marked by ER stress.
Collapse
Affiliation(s)
- Hilde Herrema
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| | - Dongxian Guan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Jae Won Choi
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Xudong Feng
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | | | - Farhana Faruk
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Thomas Auen
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Eliza Boudett
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Rongya Tao
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Hyonho Chun
- Department of Mathematics and Statistics, Boston University, Boston, MA 02130, USA
| | - Umut Ozcan
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02130, USA.
| |
Collapse
|
222
|
De Masi R, Orlando S. GANAB and N-Glycans Substrates Are Relevant in Human Physiology, Polycystic Pathology and Multiple Sclerosis: A Review. Int J Mol Sci 2022; 23:7373. [PMID: 35806376 PMCID: PMC9266668 DOI: 10.3390/ijms23137373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Glycans are one of the four fundamental macromolecular components of living matter, and they are highly regulated in the cell. Their functions are metabolic, structural and modulatory. In particular, ER resident N-glycans participate with the Glc3Man9GlcNAc2 highly conserved sequence, in protein folding process, where the physiological balance between glycosylation/deglycosylation on the innermost glucose residue takes place, according GANAB/UGGT concentration ratio. However, under abnormal conditions, the cell adapts to the glucose availability by adopting an aerobic or anaerobic regimen of glycolysis, or to external stimuli through internal or external recognition patterns, so it responds to pathogenic noxa with unfolded protein response (UPR). UPR can affect Multiple Sclerosis (MS) and several neurological and metabolic diseases via the BiP stress sensor, resulting in ATF6, PERK and IRE1 activation. Furthermore, the abnormal GANAB expression has been observed in MS, systemic lupus erythematous, male germinal epithelium and predisposed highly replicating cells of the kidney tubules and bile ducts. The latter is the case of Polycystic Liver Disease (PCLD) and Polycystic Kidney Disease (PCKD), where genetically induced GANAB loss affects polycystin-1 (PC1) and polycystin-2 (PC2), resulting in altered protein quality control and cyst formation phenomenon. Our topics resume the role of glycans in cell physiology, highlighting the N-glycans one, as a substrate of GANAB, which is an emerging key molecule in MS and other human pathologies.
Collapse
Affiliation(s)
- Roberto De Masi
- Complex Operative Unit of Neurology, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy;
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| | - Stefania Orlando
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, “F. Ferrari” Hospital, Casarano, 73042 Lecce, Italy
| |
Collapse
|
223
|
Li M, Liu S, Tan L, Luo Y, Gao Z, Liu J, Wu Y, Fan W, DeSaeger S, Song S. Fumonisin B 1 induced intestinal epithelial barrier damage through endoplasmic reticulum stress triggered by the ceramide synthase 2 depletion. Food Chem Toxicol 2022; 166:113263. [PMID: 35777715 DOI: 10.1016/j.fct.2022.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Fumonisin B1 (FB1) contamination in feed is of great concern nowadays. The intestine would be the first line when FB1-contaminated food or feed was ingested. However, the intestinal toxicity and mechanism of FB1 have rarely been studied. In this study, we found that FB1 inhibited cell viability, and promoted the severe release of lactate dehydrogenase. Meantime, FB1 destroyed the intestinal physical barrier by reducing the expressions of tight junctions. And FB1 induced excessive production of cytokines like tumor necrosis factor-α, resulting in damage to the intestinal immunological barrier. Furthermore, we observed that FB1 preferentially inhibited the expressions of ceramide synthase 2 (CerS2) and upregulated the expression of endoplasmic reticulum (ER) stress markers. The siRNA-mediated knockdown of CerS2 and CerS2 overexpression proved that CerS2 depletion induced by FB1 triggered ER stress, which then destructed the intestinal barrier. FB1-induced intestinal impairment could be restored by CerS2 over-expression or 4-Phenylbutyric acid (ER stress inhibitor). Overall, our findings demonstrated intestinal toxicity and potential mechanism of FB1, and the intestinal impairment risk posed by FB1 must be taken seriously.
Collapse
Affiliation(s)
- Mengcong Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Sarah DeSaeger
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
224
|
Gómez-Puerta S, Ferrero R, Hochstoeger T, Zubiri I, Chao J, Aragón T, Voigt F. Live imaging of the co-translational recruitment of XBP1 mRNA to the ER and its processing by diffuse, non-polarized IRE1α. eLife 2022; 11:e75580. [PMID: 35730412 PMCID: PMC9217131 DOI: 10.7554/elife.75580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Endoplasmic reticulum (ER) to nucleus homeostatic signaling, known as the unfolded protein response (UPR), relies on the non-canonical splicing of XBP1 mRNA. The molecular switch that initiates splicing is the oligomerization of the ER stress sensor and UPR endonuclease IRE1α (inositol-requiring enzyme 1 alpha). While IRE1α can form large clusters that have been proposed to function as XBP1 processing centers on the ER, the actual oligomeric state of active IRE1α complexes as well as the targeting mechanism that recruits XBP1 to IRE1α oligomers remains unknown. Here, we have developed a single-molecule imaging approach to monitor the recruitment of individual XBP1 transcripts to the ER surface. Using this methodology, we confirmed that stable ER association of unspliced XBP1 mRNA is established through HR2 (hydrophobic region 2)-dependent targeting and relies on active translation. In addition, we show that IRE1α-catalyzed splicing mobilizes XBP1 mRNA from the ER membrane in response to ER stress. Surprisingly, we find that XBP1 transcripts are not recruited into large IRE1α clusters, which are only observed upon overexpression of fluorescently tagged IRE1α during ER stress. Our findings support a model where ribosome-engaged, immobilized XBP1 mRNA is processed by small IRE1α assemblies that could be dynamically recruited for processing of mRNA transcripts on the ER.
Collapse
Affiliation(s)
- Silvia Gómez-Puerta
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of NavarraPamplonaSpain
| | - Roberto Ferrero
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of NavarraPamplonaSpain
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Ivan Zubiri
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of NavarraPamplonaSpain
| | - Jeffrey Chao
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of NavarraPamplonaSpain
| | - Franka Voigt
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
225
|
Ribeiro CMP, Hull-Ryde EA. Functional role of the ER stress transducer IRE1α in CF airway epithelial inflammation. Curr Opin Pharmacol 2022; 65:102258. [PMID: 35749907 DOI: 10.1016/j.coph.2022.102258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Excessive and chronic airway inflammation associated with increased morbidity and mortality is a hallmark of cystic fibrosis (CF) airway disease. Previous studies underscored the role of endoplasmic reticulum (ER) signaling in CF airway inflammatory responses. In this review we discuss 1) how airway inflammation induces ER stress-triggered activation of the unfolded protein response and 2) the functional importance of the ER stress transducer inositol requiring enzyme 1α (IRE1α) in CF airway epithelial inflammatory responses. We also briefly review the current understanding of IRE1α activation and the development of small molecules aimed at modulating IRE1α kinase and RNase activities. Inhibition of IRE1α kinase and RNase may be considered as a novel therapeutic strategy to ameliorate the robust inflammatory status of CF airways.
Collapse
Affiliation(s)
- Carla M P Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Medicine, University of North Carolina, Chapel Hill, NC, 27599-7248, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599-7248, USA.
| | - Emily A Hull-Ryde
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, NC, 27599-7248, USA
| |
Collapse
|
226
|
Chattopadhyay A, Guan P, Majumder S, Kaw K, Zhou Z, Zhang C, Prakash SK, Kaw A, Buja LM, Kwartler CS, Milewicz DM. Preventing Cholesterol-Induced Perk (Protein Kinase RNA-Like Endoplasmic Reticulum Kinase) Signaling in Smooth Muscle Cells Blocks Atherosclerotic Plaque Formation. Arterioscler Thromb Vasc Biol 2022; 42:1005-1022. [PMID: 35708026 PMCID: PMC9311463 DOI: 10.1161/atvbaha.121.317451] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vascular smooth muscle cells (SMCs) undergo complex phenotypic modulation with atherosclerotic plaque formation in hyperlipidemic mice, which is characterized by de-differentiation and heterogeneous increases in the expression of macrophage, fibroblast, osteogenic, and stem cell markers. An increase of cellular cholesterol in SMCs triggers similar phenotypic changes in vitro with exposure to free cholesterol due to cholesterol entering the endoplasmic reticulum, triggering endoplasmic reticulum stress and activating Perk (protein kinase RNA-like endoplasmic reticulum kinase) signaling.
Collapse
Affiliation(s)
- Abhijnan Chattopadhyay
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., A.K., C.S.K., D.M.M.)
| | - Pujun Guan
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., A.K., C.S.K., D.M.M.).,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth, Houston (P.G.)
| | - Suravi Majumder
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., A.K., C.S.K., D.M.M.)
| | - Kaveeta Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., A.K., C.S.K., D.M.M.)
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., A.K., C.S.K., D.M.M.)
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (C.Z.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (C.Z.)
| | | | - Anita Kaw
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., A.K., C.S.K., D.M.M.)
| | - L Maximillian Buja
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston (L.M.B.)
| | - Callie S Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., A.K., C.S.K., D.M.M.)
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School The University of Texas Health Science Center at Houston (A.C., P.G., S.M., K.K., Z.Z., A.K., C.S.K., D.M.M.)
| |
Collapse
|
227
|
Lõhelaid H, Anttila JE, Liew HK, Tseng KY, Teppo J, Stratoulias V, Airavaara M. UPR Responsive Genes Manf and Xbp1 in Stroke. Front Cell Neurosci 2022; 16:900725. [PMID: 35783104 PMCID: PMC9240287 DOI: 10.3389/fncel.2022.900725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a devastating medical condition with no treatment to hasten recovery. Its abrupt nature results in cataclysmic changes in the affected tissues. Resident cells fail to cope with the cellular stress resulting in massive cell death, which cannot be endogenously repaired. A potential strategy to improve stroke outcomes is to boost endogenous pro-survival pathways. The unfolded protein response (UPR), an evolutionarily conserved stress response, provides a promising opportunity to ameliorate the survival of stressed cells. Recent studies from us and others have pointed toward mesencephalic astrocyte-derived neurotrophic factor (MANF) being a UPR responsive gene with an active role in maintaining proteostasis. Its pro-survival effects have been demonstrated in several disease models such as diabetes, neurodegeneration, and stroke. MANF has an ER-signal peptide and an ER-retention signal; it is secreted by ER calcium depletion and exits cells upon cell death. Although its functions remain elusive, conducted experiments suggest that the endogenous MANF in the ER lumen and exogenously administered MANF protein have different mechanisms of action. Here, we will revisit recent and older bodies of literature aiming to delineate the expression profile of MANF. We will focus on its neuroprotective roles in regulating neurogenesis and inflammation upon post-stroke administration. At the same time, we will investigate commonalities and differences with another UPR responsive gene, X-box binding protein 1 (XBP1), which has recently been associated with MANF’s function. This will be the first systematic comparison of these two UPR responsive genes aiming at revealing previously uncovered associations between them. Overall, understanding the mode of action of these UPR responsive genes could provide novel approaches to promote cell survival.
Collapse
Affiliation(s)
- Helike Lõhelaid
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- *Correspondence: Helike Lõhelaid,
| | - Jenni E. Anttila
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaakko Teppo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Mikko Airavaara
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Mikko Airavaara,
| |
Collapse
|
228
|
Varlamova EG, Goltyaev MV, Simakin AV, Gudkov SV, Turovsky EA. Comparative Analysis of the Cytotoxic Effect of a Complex of Selenium Nanoparticles Doped with Sorafenib, "Naked" Selenium Nanoparticles, and Sorafenib on Human Hepatocyte Carcinoma HepG2 Cells. Int J Mol Sci 2022; 23:6641. [PMID: 35743086 PMCID: PMC9223423 DOI: 10.3390/ijms23126641] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the use of sorafenib as one of the most effective drugs for the treatment of liver cancer, its significant limitations remain-poor solubility, the need to use high doses with the ensuing complications on healthy tissues and organs, and the formation of cell resistance to the drug. At the same time, there is more and more convincing evidence of the anticancer effect of selenium-containing compounds and nanoparticles. The aim of this work was to develop a selenium-sorafenib nanocomplex and study the molecular mechanisms of its anticancer effect on human hepatocyte carcinoma cells, where nanoselenium is not only a sorafenib transporter, but also an active compound. We have created a selenium-sorafenib nanocomplex based on selenium nanoparticles with size 100 nm. Using vitality tests, fluorescence microscopy, and PCR analysis, it was possible to show that selenium nanoparticles, both by themselves and doped with sorafenib, have a pronounced pro-apoptotic effect on HepG2 cells with an efficiency many times greater than that of sorafenib (So). "Naked" selenium nanoparticles (SeNPs) and the selenium-sorafenib nanocomplex (SeSo), already after 24 h of exposure, lead to the induction of the early stages of apoptosis with the transition to the later stages with an increase in the incubation time up to 48 h. At the same time, sorafenib, at the studied concentrations, began to exert a proapoptotic effect only after 48 h. Under the action of SeNPs and SeSo, both classical pathways of apoptosis induction and ER-stress-dependent pathways involving Ca2+ ions are activated. Thus, sorafenib did not cause the generation of Ca2+ signals by HepG2 cells, while SeNPs and SeSo led to the activation of the Ca2+ signaling system of cells. At the same time, the selenium-sorafenib nanocomplex turned out to be more effective in activating the Ca2+ signaling system of cells, inducing apoptosis and ER stress by an average of 20-25% compared to "naked" selenium nanoparticles. Our data on the mechanisms of action and the created nanocomplex are promising as a platform for the creation of highly selective and effective drugs with targeted delivery to tumors.
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Mikhail V. Goltyaev
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Aleksander V. Simakin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia; (A.V.S.); (S.V.G.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia; (A.V.S.); (S.V.G.)
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| |
Collapse
|
229
|
De Backer J, Van Breusegem F, De Clercq I. Proteolytic Activation of Plant Membrane-Bound Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:927746. [PMID: 35774815 PMCID: PMC9237531 DOI: 10.3389/fpls.2022.927746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/23/2022] [Indexed: 06/03/2023]
Abstract
Due to the presence of a transmembrane domain, the subcellular mobility plan of membrane-bound or membrane-tethered transcription factors (MB-TFs) differs from that of their cytosolic counterparts. The MB-TFs are mostly locked in (sub)cellular membranes, until they are released by a proteolytic cleavage event or when the transmembrane domain (TMD) is omitted from the transcript due to alternative splicing. Here, we review the current knowledge on the proteolytic activation mechanisms of MB-TFs in plants, with a particular focus on regulated intramembrane proteolysis (RIP), and discuss the analogy with the proteolytic cleavage of MB-TFs in animal systems. We present a comprehensive inventory of all known and predicted MB-TFs in the model plant Arabidopsis thaliana and examine their experimentally determined or anticipated subcellular localizations and membrane topologies. We predict proteolytically activated MB-TFs by the mapping of protease recognition sequences and structural features that facilitate RIP in and around the TMD, based on data from metazoan intramembrane proteases. Finally, the MB-TF functions in plant responses to environmental stresses and in plant development are considered and novel functions for still uncharacterized MB-TFs are forecasted by means of a regulatory network-based approach.
Collapse
Affiliation(s)
- Jonas De Backer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Vlaams Instituut voor Biotechnologie (VIB)-Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
230
|
Nguyen LC, Renner DM, Silva D, Yang D, Parenti N, Medina KM, Nicolaescu V, Gula H, Drayman N, Valdespino A, Mohamed A, Dann C, Wannemo K, Robinson-Mailman L, Gonzalez A, Stock L, Cao M, Qiao Z, Moellering RE, Tay S, Randall G, Beers MF, Rosner MR, Oakes SA, Weiss SR. SARS-CoV-2 diverges from other betacoronaviruses in only partially activating the IRE1α/XBP1 ER stress pathway in human lung-derived cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.12.30.474519. [PMID: 35821981 PMCID: PMC9275661 DOI: 10.1101/2021.12.30.474519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.
Collapse
Affiliation(s)
- Long C. Nguyen
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - David M. Renner
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Diane Silva
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Nicholas Parenti
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kaeri M. Medina
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nir Drayman
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Christopher Dann
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Kristin Wannemo
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | | | - Alan Gonzalez
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Letícia Stock
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Mengrui Cao
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Zeyu Qiao
- Department of Chemistry, University of Chicago, Chicago, IL 60637, U.S.A
| | | | - Savas Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, U.S.A
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL 60637, U.S.A
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Michael F. Beers
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, U.S.A
| | - Scott A. Oakes
- Department of Pathology, University of Chicago, Chicago, IL 60637, U.S.A
| | - Susan R. Weiss
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
231
|
Li X, Li J, Zhu D, Zhang N, Hao X, Zhang W, Zhang Q, Liu Y, Wu X, Tian Y. Protein disulfide isomerase PDI-6 regulates Wnt secretion to coordinate inter-tissue UPR mt activation and lifespan extension in C. elegans. Cell Rep 2022; 39:110931. [PMID: 35675782 DOI: 10.1016/j.celrep.2022.110931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/02/2022] [Accepted: 05/18/2022] [Indexed: 11/15/2022] Open
Abstract
Coordination of inter-tissue stress signaling is essential for organismal fitness. Neuronal mitochondrial perturbations activate the mitochondrial unfolded-protein response (UPRmt) in the intestine via the mitokine Wnt signaling in Caenorhabditis elegans. Here, we found that the protein disulfide isomerase PDI-6 coordinates inter-tissue UPRmt signaling via regulating the Wnt ligand EGL-20. PDI-6 is expressed in the endoplasmic reticulum (ER) and interacts with EGL-20 through disulfide bonds that are essential for EGL-20 stability and secretion. pdi-6 deficiency results in misfolded EGL-20, which leads to its degradation via ER-associated protein degradation (ERAD) machinery. Expression of PDI-6 declines drastically with aging, and animals with pdi-6 deficiency have decreased lifespan. Overexpression of PDI-6 is sufficient to maintain Wnt/EGL-20 protein levels during aging, activating the UPRmt, and significantly extending lifespan in a Wnt- and UPRmt-dependent manner. Our study reveals that protein disulfide isomerase facilitates Wnt secretion to coordinate the inter-tissue UPRmt signaling and organismal aging.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ning Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Xusheng Hao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Wenfeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangli Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100093, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
232
|
Guttman O, Le Thomas A, Marsters S, Lawrence DA, Gutgesell L, Zuazo-Gaztelu I, Harnoss JM, Haag SM, Murthy A, Strasser G, Modrusan Z, Wu T, Mellman I, Ashkenazi A. Antigen-derived peptides engage the ER stress sensor IRE1α to curb dendritic cell cross-presentation. J Biophys Biochem Cytol 2022; 221:213173. [PMID: 35446348 PMCID: PMC9036094 DOI: 10.1083/jcb.202111068] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) promote adaptive immunity by cross-presenting antigen-based epitopes to CD8+ T cells. DCs process internalized protein antigens into peptides that enter the endoplasmic reticulum (ER), bind to major histocompatibility type I (MHC-I) protein complexes, and are transported to the cell surface for cross-presentation. DCs can exhibit activation of the ER stress sensor IRE1α without ER stress, but the underlying mechanism remains obscure. Here, we show that antigen-derived hydrophobic peptides can directly engage ER-resident IRE1α, masquerading as unfolded proteins. IRE1α activation depletes MHC-I heavy-chain mRNAs through regulated IRE1α-dependent decay (RIDD), curtailing antigen cross-presentation. In tumor-bearing mice, IRE1α disruption increased MHC-I expression on tumor-infiltrating DCs and enhanced recruitment and activation of CD8+ T cells. Moreover, IRE1α inhibition synergized with anti–PD-L1 antibody treatment to cause tumor regression. Our findings identify an unexpected cell-biological mechanism of antigen-driven IRE1α activation in DCs, revealing translational potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Ofer Guttman
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Adrien Le Thomas
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Scot Marsters
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - David A Lawrence
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Lauren Gutgesell
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | | | | | - Simone M Haag
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Aditya Murthy
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | | | - Zora Modrusan
- Departments of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA
| | - Thomas Wu
- Departments of Oncology Bioinformatics, Genentech, South San Francisco, CA
| | - Ira Mellman
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| | - Avi Ashkenazi
- Departments of Cancer Immunology, Genentech, South San Francisco, CA
| |
Collapse
|
233
|
Wei W, Li Y, Wang C, Gao S, Zhao Y, Yang Z, Wang H, Gao Z, Jiang Y, He Y, Zhao L, Gao H, Yao X, Hu Y. Diterpenoid Vinigrol specifically activates ATF4/DDIT3-mediated PERK arm of unfolded protein response to drive non-apoptotic death of breast cancer cells. Pharmacol Res 2022; 182:106285. [PMID: 35662627 DOI: 10.1016/j.phrs.2022.106285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022]
Abstract
Vinigrol is a natural diterpenoid with unprecedented chemical structure, driving great efforts into its total synthesis in the past decades. Despite anti-hypertension and anti-clot ever reported, comprehensive investigations on bioactions and molecular mechanisms of Vinigrol are entirely missing. Here we firstly carried out a complete functional prediction of Vinigrol using a transcriptome-based strategy coupled with multiple bioinformatic analyses and identified "anti-cancer" as the most prominent biofunction ahead of anti-hypertension and anti-depression/psychosis. Broad cytotoxicity was subsequently confirmed on multiple cancer types. Further mechanistic investigation on several breast cancer cells revealed that its anti-cancer effect was mainly through activating PERK/eIF2α arm of unfolded protein response (UPR) and subsequent non-apoptotic cell death independent of caspase activities. The other two branches of UPR, IRE1α and ATF6, were functionally irrelevant to Vinigrol-induced cell death. Using CRISPR/Cas9-based gene activation, repression, and knockout systems, we identified the essential contribution of ATF4 and DDIT3, not ATF6, to the death process. This study unraveled a broad anti-cancer function of Vinigrol and its underlying targets and regulatory mechanisms. It paved the way for further inspection on the structure-efficacy relationship of the whole compound family, making them a novel cluster of PERK-specific stress activators for experimental and clinical uses.
Collapse
Affiliation(s)
- Wencheng Wei
- Harbin Institute of Technology, Harbin 150000, China; Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yunfei Li
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Chuanxi Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Sanxing Gao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yan Zhao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Zhenyu Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Hao Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Ziying Gao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yanxiang Jiang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Yuan He
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China
| | - Li Zhao
- Department of Head and Neck Surgical Oncology, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100000, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yuhui Hu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China; Department of pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, China.
| |
Collapse
|
234
|
Emerging roles of endoplasmic reticulum proteostasis in brain development. Cells Dev 2022; 170:203781. [DOI: 10.1016/j.cdev.2022.203781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
|
235
|
Gerber JL, Köhler S, Peschek J. Eukaryotic tRNA splicing - one goal, two strategies, many players. Biol Chem 2022; 403:765-778. [PMID: 35621519 DOI: 10.1515/hsz-2021-0402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 05/10/2022] [Indexed: 12/28/2022]
Abstract
Transfer RNAs (tRNAs) are transcribed as precursor molecules that undergo several maturation steps before becoming functional for protein synthesis. One such processing mechanism is the enzyme-catalysed splicing of intron-containing pre-tRNAs. Eukaryotic tRNA splicing is an essential process since intron-containing tRNAs cannot fulfil their canonical function at the ribosome. Splicing of pre-tRNAs occurs in two steps: The introns are first excised by a tRNA-splicing endonuclease and the exons are subsequently sealed by an RNA ligase. An intriguing complexity has emerged from newly identified tRNA splicing factors and their interplay with other RNA processing pathways during the past few years. This review summarises our current understanding of eukaryotic tRNA splicing and the underlying enzyme machinery. We highlight recent structural advances and how they have shaped our mechanistic understanding of tRNA splicing in eukaryotic cells. A special focus lies on biochemically distinct strategies for exon-exon ligation in fungi versus metazoans.
Collapse
Affiliation(s)
- Janina L Gerber
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Sandra Köhler
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| | - Jirka Peschek
- Biochemistry Center (BZH), Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
236
|
IRE1α Inhibitors as a Promising Therapeutic Strategy in Blood Malignancies. Cancers (Basel) 2022; 14:cancers14102526. [PMID: 35626128 PMCID: PMC9139960 DOI: 10.3390/cancers14102526] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
Synthesis, folding, and structural maturation of proteins occur in the endoplasmic reticulum (ER). Accumulation of misfolded or unfolded proteins in the ER lumen contributes to the induction of ER stress and activation of the unfolded protein response (UPR) signaling pathway. Under ER stress, the UPR tries to maintain cellular homeostasis through different pathways, including the inositol-requiring enzyme 1 alpha (IRE1α)-dependent ones. IRE1α is located in an ER membrane, and it is evolutionarily the oldest UPR sensor. Activation of IRE1α via ER stress triggers the formation of the spliced form of XBP1 (XBP1s), which has been linked to a pro-survival effect in cancer cells. The role of IRE1α is critical for blood cancer cells, and it was found that the levels of IRE1α and XBP1s are elevated in various hematological malignancies. This review paper is focused on summarizing the latest knowledge about the role of IRE1α and on the assessment of the potential utility of IRE1α inhibitors in blood cancers.
Collapse
|
237
|
Hernández-Elvira M, Sunnerhagen P. Post-transcriptional regulation during stress. FEMS Yeast Res 2022; 22:6585650. [PMID: 35561747 PMCID: PMC9246287 DOI: 10.1093/femsyr/foac025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.
Collapse
Affiliation(s)
- Mariana Hernández-Elvira
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
238
|
Kanehara K, Cho Y, Yu CY. A lipid viewpoint on the plant endoplasmic reticulum stress response. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2835-2847. [PMID: 35560195 DOI: 10.1093/jxb/erac063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Organisms, including humans, seem to be constantly exposed to various changes, which often have undesirable effects, referred to as stress. To keep up with these changes, eukaryotic cells may have evolved a number of relevant cellular processes, such as the endoplasmic reticulum (ER) stress response. Owing to presumably intimate links between human diseases and the ER function, the ER stress response has been extensively investigated in various organisms for a few decades. Based on these studies, we now have a picture of the molecular mechanisms of the ER stress response, one of which, the unfolded protein response (UPR), is highly conserved among yeasts, mammals, higher plants, and green algae. In this review, we attempt to highlight the plant UPR from the perspective of lipids, especially membrane phospholipids. Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) are the most abundant membrane phospholipids in eukaryotic cells. The ratio of PtdCho to PtdEtn and the unsaturation of fatty acyl tails in both phospholipids may be critical factors for the UPR, but the pathways responsible for PtdCho and PtdEtn biosynthesis are distinct in animals and plants. We discuss the plant UPR in comparison with the system in yeasts and animals in the context of membrane phospholipids.
Collapse
Affiliation(s)
- Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yueh Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
239
|
Rangwala AM, Mingione VR, Georghiou G, Seeliger MA. Kinases on Double Duty: A Review of UniProtKB Annotated Bifunctionality within the Kinome. Biomolecules 2022; 12:biom12050685. [PMID: 35625613 PMCID: PMC9138534 DOI: 10.3390/biom12050685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
Phosphorylation facilitates the regulation of all fundamental biological processes, which has triggered extensive research of protein kinases and their roles in human health and disease. In addition to their phosphotransferase activity, certain kinases have evolved to adopt additional catalytic functions, while others have completely lost all catalytic activity. We searched the Universal Protein Resource Knowledgebase (UniProtKB) database for bifunctional protein kinases and focused on kinases that are critical for bacterial and human cellular homeostasis. These kinases engage in diverse functional roles, ranging from environmental sensing and metabolic regulation to immune-host defense and cell cycle control. Herein, we describe their dual catalytic activities and how they contribute to disease pathogenesis.
Collapse
|
240
|
Camacho J, de Conti A, Pogribny IP, Sprando RL, Hunt PR. Assessment of the effects of organic vs. inorganic arsenic and mercury in Caenorhabditis elegans. Curr Res Toxicol 2022; 3:100071. [PMID: 35602005 PMCID: PMC9118485 DOI: 10.1016/j.crtox.2022.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Exposures to mercury and arsenic are known to pose significant threats to human health. Effects specific to organic vs. inorganic forms of these toxic elements are less understood however, especially for organic dimethylarsinic acid (DMA), which has recently been detected in pups of rodent dams orally exposed to inorganic sodium (meta)arsenite (NaAsO2). Caenorhabditis elegans is a small animal alternative toxicity model. To fill data gaps on the effects of DMA relative to NaAsO2, C. elegans were exposed to these two compounds alongside more thoroughly researched inorganic mercury chloride (HgCl2) and organic methylmercury chloride (meHgCl). For timing of developmental milestone acquisition in C. elegans, meHgCl was 2 to 4-fold more toxic than HgCl2, and NaAsO2 was 20-fold more toxic than DMA, ranking the four compounds meHgCl > HgCl2 > NaAsO2 ≫ DMA for developmental toxicity. Methylmercury induced significant decreases in population locomotor activity levels in developing C. elegans. DMA was also associated with developmental hypoactivity, but at >100-fold higher concentrations than meHgCl. Transcriptional alterations in native genes were observed in wild type C. elegans adults exposed to concentrations equitoxic for developmental delay in juveniles. Both forms of arsenic induced genes involved in immune defense and oxidative stress response, while the two mercury species induced proportionally more genes involved in transcriptional regulation. A transgenic bioreporter for activation of conserved proteosome specific unfolded protein response was strongly activated by NaAsO2, but not DMA at tested concentrations. HgCl2 and meHgCl had opposite effects on a bioreporter for unfolded protein response in the endoplasmic reticulum. Presented experiments indicating low toxicity for DMA in C. elegans are consistent with human epidemiologic data correlating higher arsenic methylation capacity with resistance to arsenic toxicity. This work contributes to the understanding of the accuracy and fit-for-use categories for C. elegans toxicity screening and its usefulness to prioritize compounds of concern for further testing.
Collapse
Key Words
- Alternative Toxicity Model
- Arsenic
- DEGs, Differentially Expressed Genes
- DMA, dimethylarsinic acid
- ER, endoplasmic reticulum
- EXT, extinction (a measure of optical density)
- GO, gene ontology
- HgCl2, mercury(ii) chloride
- Inorganic
- L1, first larval stage C. elegans
- LD50, the median lethal dose per kilogram of body weight
- LOEL, lowest observed effect level
- Mercury
- NOEL, no observed effect level
- NaAsO2, sodium (meta)arsenite
- Organic
- OxStrR, Oxidative Stress Response
- Predictive Toxicology
- TOF, time of flight (a measure of size)
- UPR, Unfolded Protein Response
- iAs, inorganic arsenic
- meHgCl, methylmercury chloride
Collapse
Affiliation(s)
- Jessica Camacho
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Aline de Conti
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Igor P. Pogribny
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Robert L. Sprando
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Piper Reid Hunt
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| |
Collapse
|
241
|
Papaioannou A, Centonze F, Metais A, Maurel M, Negroni L, Gonzalez-Quiroz M, Mahdizadeh SJ, Svensson G, Zare E, Blondel A, Koong AC, Hetz C, Pedeux R, Tremblay ML, Eriksson LA, Chevet E. Stress-induced tyrosine phosphorylation of RtcB modulates IRE1 activity and signaling outputs. Life Sci Alliance 2022; 5:e202201379. [PMID: 35193953 PMCID: PMC8899846 DOI: 10.26508/lsa.202201379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/18/2022] Open
Abstract
ER stress is mediated by three sensors and the most evolutionary conserved IRE1α signals through its cytosolic kinase and endoribonuclease (RNase) activities. IRE1α RNase activity can either catalyze the initial step of XBP1 mRNA unconventional splicing or degrade a number of RNAs through regulated IRE1-dependent decay. Until now, the biochemical and biological outputs of IRE1α RNase activity have been well documented; however, the precise mechanisms controlling whether IRE1α signaling is adaptive or pro-death (terminal) remain unclear. We investigated those mechanisms and hypothesized that XBP1 mRNA splicing and regulated IRE1-dependent decay activity could be co-regulated by the IRE1α RNase regulatory network. We identified that RtcB, the tRNA ligase responsible for XBP1 mRNA splicing, is tyrosine-phosphorylated by c-Abl and dephosphorylated by PTP1B. Moreover, we show that the phosphorylation of RtcB at Y306 perturbs RtcB interaction with IRE1α, thereby attenuating XBP1 mRNA splicing. Our results demonstrate that the IRE1α RNase regulatory network is dynamically fine-tuned by tyrosine kinases and phosphatases upon various stresses and that the extent of RtcB tyrosine phosphorylation determines cell adaptive or death outputs.
Collapse
Affiliation(s)
- Alexandra Papaioannou
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Federica Centonze
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Alice Metais
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Marion Maurel
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Luc Negroni
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Matías Gonzalez-Quiroz
- INSERM U1242, University of Rennes, Rennes, France
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | | | - Gabriella Svensson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Ensieh Zare
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Alice Blondel
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Rémy Pedeux
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| | - Michel L Tremblay
- Goodman Cancer Research Centre, McGill University, Montreal, Canada
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France
- Centre Eugène Marquis, Rennes, France
| |
Collapse
|
242
|
Liu Q, Tang Q, Jing X, Zhang J, Xia Y, Yan J, Xu Y, Li J, Li Y, He J, Mo L. Mesencephalic astrocyte-derived neurotrophic factor protects against paracetamol -induced liver injury by inhibiting PERK-ATF4-CHOP signaling pathway. Biochem Biophys Res Commun 2022; 602:163-169. [PMID: 35278889 DOI: 10.1016/j.bbrc.2022.02.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Paracetamol (APAP), an over-the-counter drug, is normally safe within the therapeutic dose range but can cause irreversible liver damage after an overdose. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress protein and plays a crucial role in metabolic disease. However, the role of MANF in APAP-induced acute hepatotoxicity is still unknown. We used hepatocyte-specific MANF-knockout mice and hepatocyte-specific MANF transgenic mice to investigate the role of hepatocyte-derived MANF in APAP-induced acute liver injury. MANF deficiency was associated with a decreased expression of detoxification enzymes, aggravated glutathione depletion and apoptosis in hepatocytes. Mechanistically, MANF knockout significantly increased PERK-eIF2α-ATF4-CHOP signaling pathway. Blockade of PERK abolished MANF deficiency-over-induced hepatotoxicity after APAP administration. Conversely, hepatocyte-specific MANF overexpression attenuated APAP-induced hepatotoxicity by downregulating the PERK-eIF2α-ATF4-CHOP signaling pathway. Thus, hepatocyte-derived MANF may play a protective role in APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Xiandan Jing
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Xia
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jiamin Yan
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Xu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jiahui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu, China
| | - Li Mo
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
243
|
Li Y, Huang S, Wang J, Dai J, Cai J, Yan S, Huang Z, He S, Wang P, Liu J, Liu Y. Phosphorylation at Ser 724 of the ER stress sensor IRE1α governs its activation state and limits ER stress-induced hepatosteatosis. J Biol Chem 2022; 298:101997. [PMID: 35500653 PMCID: PMC9144033 DOI: 10.1016/j.jbc.2022.101997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022] Open
Abstract
Inositol-requiring enzyme 1 (IRE1) is an evolutionarily conserved sensor of endoplasmic reticulum (ER) stress and mediates a key branch of the unfolded protein response in eukaryotic cells. It is an ER-resident transmembrane protein that possesses Ser/Thr protein kinase and endoribonuclease (RNase) activities in its cytoplasmic region. IRE1 is activated through dimerization/oligomerization and autophosphorylation at multiple sites, acting through its RNase activity to restore the functional capacity of the ER. However, it remains poorly defined in vivo how the autophosphorylation events of endogenous IRE1 govern its dynamic activation and functional output. Here, we generated a mouse model harboring a S724A knock-in mutation (Ern1S724A/S724A) and investigated the importance of phosphorylation at Ser724 within the kinase activation loop of murine IRE1α. We found that in mouse embryonic fibroblast cells and in primary hepatocytes, S724A mutation resulted in markedly reduced IRE1α autophosphorylation in parallel with blunted activation of its RNase activity to catalyze X-box binding protein 1 (Xbp1) mRNA splicing. Furthermore, ablation of IRE1α phosphorylation at Ser724 exacerbated ER stress–induced hepatic steatosis in tunicamycin-treated Ern1S724A/S724A mice. This was accompanied by significantly decreased hepatic production of spliced XBP1 protein but increased CCAAT-enhancer–binding protein homologous protein (CHOP) level, along with suppressed expression of key metabolic regulators of fatty acid β-oxidation and lipid secretion. These results demonstrate a critical role of phosphorylation at Ser724 of IRE1α in dynamically controlling its kinase activity, and thus its autophosphorylation state, which is coupled to activation of its RNase activity in counteracting hepatic steatosis under ER stress conditions.
Collapse
Affiliation(s)
- Yang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Frontier Science Center for Immunology and Metabolism; and the Institute for Advanced Studies; Wuhan University, Wuhan, China
| | - Shijia Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Frontier Science Center for Immunology and Metabolism; and the Institute for Advanced Studies; Wuhan University, Wuhan, China
| | - Jingsi Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Frontier Science Center for Immunology and Metabolism; and the Institute for Advanced Studies; Wuhan University, Wuhan, China
| | - Jianli Dai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, China
| | - Jie Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Frontier Science Center for Immunology and Metabolism; and the Institute for Advanced Studies; Wuhan University, Wuhan, China
| | - Shuai Yan
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhiliang Huang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shengqi He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Frontier Science Center for Immunology and Metabolism; and the Institute for Advanced Studies; Wuhan University, Wuhan, China
| | - Ping Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jianmiao Liu
- Cellular Signaling Laboratory, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; Frontier Science Center for Immunology and Metabolism; and the Institute for Advanced Studies; Wuhan University, Wuhan, China.
| |
Collapse
|
244
|
Abstract
Emerging resistance to artemisinin (ART) has become a challenge for reducing worldwide malaria mortality and morbidity. The C580Y mutation in Plasmodium falciparum Kelch13 has been identified as the major determinant for ART resistance in the background of other mutations, which include the T38I mutation in autophagy-related protein PfATG18. Increased endoplasmic reticulum phosphatidylinositol-3-phosphate (ER-PI3P) vesiculation, unfolded protein response (UPR), and oxidative stress are the proteostasis mechanisms proposed to cause ART resistance. While UPR and PI3P are known to stimulate autophagy in higher organisms to clear misfolded proteins, participation of the parasite autophagy machinery in these mechanisms of ART resistance has not yet been experimentally demonstrated. Our study establishes that ART-induced ER stress leads to increased expression of P. falciparum autophagy proteins through induction of the UPR. Furthermore, the ART-resistant K13C580Y isolate shows higher basal expression levels of autophagy proteins than those of its isogenic counterpart, and this magnifies under starvation conditions. The copresence of PfK13 with PfATG18 and PI3P on parasite hemoglobin-trafficking vesicles demonstrate interactions between the autophagy and hemoglobin endocytosis pathways proposed to be involved in ART resistance. Analysis of PfK13 mutations in 2,517 field isolates, revealing an impressive >85% coassociation between PfK13 C580Y and PfATG18 T38I, together with our experimental studies with an ART-resistant P. falciparum strain establishes that parasite autophagy underpins various mechanisms of ART resistance and is a starting point to further explore this pathway for developing antimalarials.
Collapse
|
245
|
Abstract
Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.
Collapse
Affiliation(s)
- Jie Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
246
|
Spirocyclic dimer SpiD7 activates the unfolded protein response to selectively inhibit growth and induce apoptosis of cancer cells. J Biol Chem 2022; 298:101890. [PMID: 35378132 PMCID: PMC9062249 DOI: 10.1016/j.jbc.2022.101890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
The unfolded protein response (UPR) is an adaptation mechanism activated to resolve transient accumulation of unfolded/misfolded proteins in the endoplasmic reticulum. Failure to resolve the transient accumulation of such proteins results in UPR-mediated programmed cell death. Loss of tumor suppressor gene or oncogene addiction in cancer cells can result in sustained higher basal UPR levels; however, it is not clear if these higher basal UPR levels in cancer cells can be exploited as a therapeutic strategy. We hypothesized that covalent modification of surface-exposed cysteine (SEC) residues could simulate unfolded/misfolded proteins to activate the UPR, and that higher basal UPR levels in cancer cells would provide the necessary therapeutic window. To test this hypothesis, here we synthesized analogs that can covalently modify multiple SEC residues and evaluated them as UPR activators. We identified a spirocyclic dimer, SpiD7, and evaluated its effects on UPR activation signals, that is, XBP1 splicing, phosphorylation of eIF2α, and a decrease in ATF 6 levels, in normal and cancer cells, which were further confirmed by RNA-Seq analyses. We found that SpiD7 selectively induced caspase-mediated apoptosis in cancer cells, whereas normal cells exhibited robust XBP1 splicing, indicating adaptation to stress. Furthermore, SpiD7 inhibited the growth of high-grade serous carcinoma cell lines ~3-15-fold more potently than immortalized fallopian tube epithelial (paired normal control) cells and reduced clonogenic growth of high-grade serous carcinoma cell lines. Our results suggest that induction of the UPR by covalent modification of SEC residues represents a cancer cell vulnerability and can be exploited to discover novel therapeutics.
Collapse
|
247
|
Zhang Y, Wang Y, Zhao G, Tanner EJ, Adli M, Matei D. FOXK2 promotes ovarian cancer stemness by regulating the unfolded protein response pathway. J Clin Invest 2022; 132:151591. [PMID: 35349489 PMCID: PMC9106354 DOI: 10.1172/jci151591] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the regulatory programs enabling cancer stem cells (CSCs) to self-renew and drive tumorigenicity could identify new treatments. Through comparative chromatin-state and gene expression analyses in ovarian CSCs versus non-CSCs, we identified FOXK2 as a highly expressed stemness-specific transcription factor in ovarian cancer. Its genetic depletion diminished stemness features and reduced tumor initiation capacity. Our mechanistic studies highlight that FOXK2 directly regulated IRE1α (encoded by ERN1) expression, a key sensor for the unfolded protein response (UPR). Chromatin immunoprecipitation and sequencing revealed that FOXK2 bound to an intronic regulatory element of ERN1. Blocking FOXK2 from binding to this enhancer by using a catalytically inactive CRISPR/Cas9 (dCas9) diminished IRE1α transcription. At the molecular level, FOXK2-driven upregulation of IRE1α led to alternative XBP1 splicing and activation of stemness pathways, while genetic or pharmacological blockade of this sensor of the UPR inhibited ovarian CSCs. Collectively, these data establish what we believe is a new function for FOXK2 as a key transcriptional regulator of CSCs and a mediator of the UPR, providing insight into potentially targetable new pathways in CSCs.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology
- Driskill Graduate Training Program in Life Sciences, and
| | - Yinu Wang
- Department of Obstetrics and Gynecology
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology
- Driskill Graduate Training Program in Life Sciences, and
| | - Edward J. Tanner
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Jesse Brown VA Medical Center, Chicago, Illinois, USA
| |
Collapse
|
248
|
Regulation of the Homeostatic Unfolded Protein Response in Diabetic Nephropathy. Pharmaceuticals (Basel) 2022; 15:ph15040401. [PMID: 35455399 PMCID: PMC9030951 DOI: 10.3390/ph15040401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of scientific evidence indicates that protein homeostasis, also designated as proteostasis, is causatively linked to chronic diabetic nephropathy (DN). Experimental studies have demonstrated that the insulin signaling in podocytes maintain the homeostatic unfolded protein response (UPR). Insulin signaling via the insulin receptor non-canonically activates the spliced X-box binding protein-1 (sXBP1), a highly conserved endoplasmic reticulum (ER) transcription factor, which regulates the expression of genes that control proteostasis. Defective insulin signaling in mouse models of diabetes or the genetic disruption of the insulin signaling pathway in podocytes propagates hyperglycemia induced maladaptive UPR and DN. Insulin resistance in podocytes specifically promotes activating transcription factor 6 (ATF6) dependent pathogenic UPR. Akin to insulin, recent studies have identified that the cytoprotective effect of anticoagulant serine protease-activated protein C (aPC) in DN is mediated by sXBP1. In mouse models of DN, treatment with chemical chaperones that improve protein folding provides an additional benefit on top of currently used ACE inhibitors. Understanding the molecular mechanisms that transmute renal cell specific adaptive responses and that deteriorate renal function in diabetes will enable researchers to develop new therapeutic regimens for DN. Within this review, we focus on the current understanding of homeostatic mechanisms by which UPR is regulated in DN.
Collapse
|
249
|
Cairrão F, Santos CC, Le Thomas A, Marsters S, Ashkenazi A, Domingos PM. Pumilio protects Xbp1 mRNA from regulated Ire1-dependent decay. Nat Commun 2022; 13:1587. [PMID: 35332141 PMCID: PMC8948244 DOI: 10.1038/s41467-022-29105-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
The unfolded protein response (UPR) maintains homeostasis of the endoplasmic reticulum (ER). Residing in the ER membrane, the UPR mediator Ire1 deploys its cytoplasmic kinase-endoribonuclease domain to activate the key UPR transcription factor Xbp1 through non-conventional splicing of Xbp1 mRNA. Ire1 also degrades diverse ER-targeted mRNAs through regulated Ire1-dependent decay (RIDD), but how it spares Xbp1 mRNA from this decay is unknown. Here, we identify binding sites for the RNA-binding protein Pumilio in the 3'UTR Drosophila Xbp1. In the developing Drosophila eye, Pumilio binds both the Xbp1unspliced and Xbp1spliced mRNAs, but only Xbp1spliced is stabilized by Pumilio. Furthermore, Pumilio displays Ire1 kinase-dependent phosphorylation during ER stress, which is required for its stabilization of Xbp1spliced. hIRE1 can phosphorylate Pumilio directly, and phosphorylated Pumilio protects Xbp1spliced mRNA against RIDD. Thus, Ire1-mediated phosphorylation enables Pumilio to shield Xbp1spliced from RIDD. These results uncover an unexpected regulatory link between an RNA-binding protein and the UPR.
Collapse
Affiliation(s)
- Fátima Cairrão
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Cristiana C Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Adrien Le Thomas
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Scot Marsters
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Avi Ashkenazi
- Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
250
|
Dutta N, Garcia G, Higuchi-Sanabria R. Hijacking Cellular Stress Responses to Promote Lifespan. FRONTIERS IN AGING 2022; 3:860404. [PMID: 35821861 PMCID: PMC9261414 DOI: 10.3389/fragi.2022.860404] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023]
Abstract
Organisms are constantly exposed to stress both from the external environment and internally within the cell. To maintain cellular homeostasis under different environmental and physiological conditions, cell have adapted various stress response signaling pathways, such as the heat shock response (HSR), unfolded protein responses of the mitochondria (UPRMT), and the unfolded protein response of the endoplasmic reticulum (UPRER). As cells grow older, all cellular stress responses have been shown to deteriorate, which is a major cause for the physiological consequences of aging and the development of numerous age-associated diseases. In contrast, elevated stress responses are often associated with lifespan extension and amelioration of degenerative diseases in different model organisms, including C. elegans. Activating cellular stress response pathways could be considered as an effective intervention to alleviate the burden of aging by restoring function of essential damage-clearing machinery, including the ubiquitin-proteosome system, chaperones, and autophagy. Here, we provide an overview of newly emerging concepts of these stress response pathways in healthy aging and longevity with a focus on the model organism, C. elegans.
Collapse
|