201
|
Shamsi M, Sedaghatkish A, Dejam M, Saghafian M, Mohammadi M, Sanati-Nezhad A. Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Deliv 2018; 25:846-861. [PMID: 29589479 PMCID: PMC7011950 DOI: 10.1080/10717544.2018.1455764] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intraperitoneal (IP) chemotherapy has revived hopes during the past few years for the management of peritoneal disseminations of digestive and gynecological cancers. Nevertheless, a poor drug penetration is one key drawback of IP chemotherapy since peritoneal neoplasms are notoriously resistant to drug penetration. Recent preclinical studies have focused on targeting the aberrant tumor microenvironment to improve intratumoral drug transport. However, tumor stroma targeting therapies have limited therapeutic windows and show variable outcomes across different cohort of patients. Therefore, the development of new strategies for improving the efficacy of IP chemotherapy is a certain need. In this work, we propose a new magnetically assisted strategy to elevate drug penetration into peritoneal tumor nodules and improve IP chemotherapy. A computational model was developed to assess the feasibility and predictability of the proposed active drug delivery method. The key tumor pathophysiology, including a spatially heterogeneous construct of leaky vasculature, nonfunctional lymphatics, and dense extracellular matrix (ECM), was reconstructed in silico. The transport of intraperitoneally injected magnetic nanoparticles (MNPs) inside tumors was simulated and compared with the transport of free cytotoxic agents. Our results on magnetically assisted delivery showed an order of magnitude increase in the final intratumoral concentration of drug-coated MNPs with respect to free cytotoxic agents. The intermediate MNPs with the radius range of 200-300 nm yield optimal magnetic drug targeting (MDT) performance in 5-10 mm tumors while the MDT performance remains essentially the same over a large particle radius range of 100-500 nm for a 1 mm radius small tumor. The success of MDT in larger tumors (5-10 mm in radius) was found to be markedly dependent on the choice of magnet strength and tumor-magnet distance while these two parameters were less of a concern in small tumors. We also validated in silico results against experimental results related to tumor interstitial hypertension, conventional IP chemoperfusion, and magnetically actuated movement of MNPs in excised tissue.
Collapse
Affiliation(s)
- Milad Shamsi
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada.,c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Amir Sedaghatkish
- c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Morteza Dejam
- d Department of Petroleum Engineering, College of Engineering and Applied Science , University of Wyoming , Laramie , WY , USA
| | - Mohsen Saghafian
- c Department of Mechanical Engineering , Isfahan University of Technology , Isfahan , Iran
| | - Mehdi Mohammadi
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada
| | - Amir Sanati-Nezhad
- a Department of Mechanical and Manufacturing Engineering, BioMEMS and Bioinspired Microfluidic Laboratory , University of Calgary , Calgary , AB , Canada.,b Center for BioEngineering Research and Education , University of Calgary , Calgary , AB , Canada
| |
Collapse
|
202
|
Shi NQ, Li Y, Zhang Y, Li ZQ, Qi XR. Deepened cellular/subcellular interface penetration and enhanced antitumor efficacy of cyclic peptidic ligand-decorated accelerating active targeted nanomedicines. Int J Nanomedicine 2018; 13:5537-5559. [PMID: 30271146 PMCID: PMC6154709 DOI: 10.2147/ijn.s172556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Acceleration and improvement of penetration across cell-membrane interfaces of active targeted nanotherapeutics into tumor cells would improve tumor-therapy efficacy by overcoming the issue of poor drug penetration. Cell-penetrating peptides, especially synthetic polyarginine, have shown promise in facilitating cargo delivery. However, it is unknown whether polyarginine can work to overcome the membrane interface in an inserted pattern for cyclic peptide ligand-mediated active targeting drug delivery. Here, we conducted a study to test the hypothesis that tandem-insert nona-arginine (tiR9) can act as an accelerating component for intracellular internalization, enhance cellular penetration, and promote antitumor efficacy of active targeted cyclic asparagine–glycine–arginine (cNGR)-decorated nanoliposomes. Methods Polyarginine was coupled with the polyethylene glycol (PEG) chain and the cNGR moiety, yielding a cNGR–tiR9–PEG2,000–distearoylphosphatidylethanolamine conjugate. Results The accelerating active targeted liposome (Lip) nanocarrier (cNGR-tiR9-Lip–doxorubicin [Dox]) constructed in this study held suitable physiochemical features, such as appropriate particle size of ~150 nm and sustained-release profiles. Subsequently, tiR9 was shown to enhance cellular drug delivery of Dox-loaded active targeted systems (cNGR-Lip-Dox) significantly. Layer-by-layer confocal microscopy indicated that the tandem-insert polyarginine accelerated active targeted system entry into deeper intracellular regions based on observations at marginal and center locations. tiR9 enhanced the penetration depth of cNGR-Lip–coumarin 6 through subcellular membrane barriers and caused its specific accumulation in mitochondria, endoplasmic reticulum, and Golgi apparatus. It was also obvious that cNGR-tiR9-Lip-Dox induced enhanced apoptosis and activated caspase 3/7. Moreover, compared with cNGR-Lip-Dox, cNGR-tiR9-Lip-Dox induced a significantly higher antiproliferative effect and markedly suppressed tumor growth in HT1080-bearing nude mice. Conclusion This active tumor-targeting nanocarrier incorporating a tandem-insert polyarginine (tiR9) as an accelerating motif shows promise as an effective drug-delivery system to accelerate translocation of drugs across tumor-cell/subcellular membrane barriers to achieve improved specific tumor therapy.
Collapse
Affiliation(s)
- Nian-Qiu Shi
- School of Pharmacy, Jilin Medical University, Jilin, Jilin, 132013, China,
| | - Yan Li
- Immunology Department, Laboratory Medical College, Jilin Medical University, Jilin, Jilin, 132013, China
| | - Yong Zhang
- College of Life Science, Jilin University, Changchun, Jilin, 130012, China
| | - Zheng-Qiang Li
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, College of Life Science, Jilin University, Changchun, Jilin, 130012, China,
| | - Xian-Rong Qi
- Department of Pharmaceutics, School of Pharmaceutical Science, Peking University, Beijing, 100191, China
| |
Collapse
|
203
|
Ghinea N. Vascular Endothelial FSH Receptor, a Target of Interest for Cancer Therapy. Endocrinology 2018; 159:3268-3274. [PMID: 30113652 DOI: 10.1210/en.2018-00466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/30/2018] [Indexed: 11/19/2022]
Abstract
Improved molecular understanding of tumor microenvironment has resulted in the identification of various cancer cell targets for diagnostic and therapeutic interventions, including the receptor for the FSH, a glycoprotein hormone responsible for growth, maturation, and function of human reproductive system. The expression and localization of the FSH receptor (FSHR)-protein were associated with the tumor epithelial cells and/or with the peripheral tumor blood vessels. The available evidence indicates that in ovarian cancer, prostate cancer, and breast cancer, the tumor epithelial FSHR promotes proliferation, migration, and invasion of cancer cells. The vascular endothelial FSHR, detected in 11 types of solid tumors and 11 types of sarcomas, is involved in receptor-mediated transendothelial transport of FSH, tumor angiogenesis, and vascular remodeling. In contrast to intratumor vessels, which are abnormal and disorganized, the FSHR-positive blood microvessels are arranged in a hierarchical pattern: arterioles-capillaries-venules. The FSHR-positive blood vessels make connections between the intratumor vessels and the general blood circulation of patients. In this mini-review, I summarize these studies and discuss the rationale for developing a strategy for cancer therapy based on FSHR expressed on the luminal endothelial cell surface of blood vessels located in the peritumoral area rather than endothelial markers expressed in the core of tumors. Because FSHR is a common marker of peritumoral vessels, therapeutic agents coupled to anti-FSHR humanized antibodies should in principle be applicable to a wide range of tumor types.
Collapse
Affiliation(s)
- Nicolae Ghinea
- Inserm-Tumor Angiogenesis Team, Translational Research Department, Curie Institute, Paris, France
| |
Collapse
|
204
|
Counterbalance: modulation of VEGF/VEGFR activities by TNFSF15. Signal Transduct Target Ther 2018; 3:21. [PMID: 30101034 PMCID: PMC6085396 DOI: 10.1038/s41392-018-0023-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 01/11/2023] Open
Abstract
Vascular hyperpermeability occurs in angiogenesis and several pathobiological conditions, producing elevated interstitial fluid pressure and lymphangiogenesis. How these closely related events are modulated is a fundamentally important question regarding the maintenance of vascular homeostasis and treatment of disease conditions such as cancer, stroke, and myocardial infarction. Signals mediated by vascular endothelial growth factor receptors, noticeably VEGFR-1, −2, and −3, are centrally involved in the promotion of both blood vessel and lymphatic vessel growth. These signaling pathways are counterbalanced or, in the case of VEGFR3, augmented by signals induced by tumor necrosis factor superfamily-15 (TNFSF15). TNFSF15 can simultaneously downregulate membrane-bound VEGFR1 and upregulate soluble VEGFR1, thus changing VEGF/VEGFR1 signals from pro-angiogenic to anti-angiogenic. In addition, TNFSF15 inhibits VEGF-induced VEGFR2 phosphorylation, thereby curbing VEGFR2-mediated enhancement of vascular permeability. Third, and perhaps more interestingly, TNFSF15 is capable of stimulating VEGFR3 gene expression in lymphatic endothelial cells, thus augmenting VEGF-C/D-VEGFR3-facilitated lymphangiogenesis. We discuss the intertwining relationship between the actions of TNFSF15 and VEGF in this review. The ability of tumor necrosis factor superfamily-15 (TNFSF15) protein to balance the actions of vascular endothelial growth factors (VEGFs) highlights new therapeutic strategies for the treatment of diseases that disrupt the circulatory system. Gui-Li Yang at the Tianjin Neurological Institute and Lu-Yuan Li at Nankai University describe the mechanisms through which TNFSF15 inhibits blood vessel growth mediated by VEGF receptor-1 (VEGFR1) and counterbalances the increase in vascular permeability mediated by VEGFR2. Interestingly, TNFSF15 enhances the effects of VEGFR3 on the formation of lymphatic vessels by promoting VEGFR3 gene expression in lymphatic endothelial cells. Further research will determine whether TNFSF15′s unique capacity to regulate the properties of both blood and lymph vessels can be harnessed to improve the treatment of conditions such as cancer, stroke, myocardial infarction and lymphoedema.
Collapse
|
205
|
Yu Y, Cui J. Present and future of cancer immunotherapy: A tumor microenvironmental perspective. Oncol Lett 2018; 16:4105-4113. [PMID: 30214551 DOI: 10.3892/ol.2018.9219] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Modulation of the tumor microenvironment is becoming an increasingly popular research topic in the field of immunotherapy, and studies regarding immune checkpoint blockades and cancer immunotherapy have pushed cancer immunotherapy to a climax. Simultaneously, the manipulation of the immune regulatory pathway can create an effective immunotherapy strategy; however, the tumor microenvironment serves an important role in suppressing the antitumor immunity by its significant heterogeneity. A number of patients with cancer do not have a good response to monotherapy approaches; therefore, combination strategies are required to achieve optimal therapeutic benefits. Targeting the tumor microenvironment may provide a novel strategy for immunotherapy, break down the resistance of conventional cancer therapy and produce the foundation for personalized precision medicine. The present review summarized the research regarding cancer immunotherapy from the perspective of how the tumor microenvironment affects the immune response, with the aim of proposing a novel strategy for cancer immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Yu Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
206
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
207
|
Fan CH, Lee YH, Ho YJ, Wang CH, Kang ST, Yeh CK. Macrophages as Drug Delivery Carriers for Acoustic Phase-Change Droplets. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1468-1481. [PMID: 29685589 DOI: 10.1016/j.ultrasmedbio.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 05/19/2023]
Abstract
The major challenges in treating malignant tumors are transport of therapeutic agents to hypoxic regions and real-time assessment of successful drug release via medical imaging modalities. In this study, we propose the use of macrophages (RAW 264.7 cells) as carriers of drug-loaded phase-change droplets to penetrate ischemic or hypoxic regions within tumors. The droplets consist of perfluoropentane, lipid and the chemotherapeutic drug doxorubicin (DOX, DOX-droplets). The efficiency of DOX-droplet uptake, migration mobility and viability of DOX-droplet-loaded macrophages (DLMs) were measured using a transmembrane cell migration assay, the alamarBlue assay and flow cytometric analysis, respectively. Our results indicate the feasibility of utilizing macrophages as DOX-droplet carriers (DOX payload of DOX-droplets: 459.3 ± 35.8 µg/mL, efficiency of cell uptake DOX-droplets: 88.8 ± 3.5%). The migration mobility (total number of migrated microphages) of DLMs decreased to 32.3% compared with that of healthy macrophages, but the DLMs provided contrast-enhanced ultrasound imaging (1.7-fold enhancement) and anti-tumor effect (70.9% cell viability) after acoustic droplet vaporization, suggesting the potential theranostic applications of DLMs. Future work will assess the tumor penetration ability of DLMs, mechanical effect of droplet vaporization on in vivo anti-tumor therapy and the release of the carried drug by ultrasound-triggered vaporization.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsuan Lee
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Hsin Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shih-Tsung Kang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
208
|
Affiliation(s)
- Parthiv Kant Chaudhuri
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- University Scholars Programme, National University of Singapore, Singapore 138593, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Level 9, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
209
|
El Alaoui-Lasmaili K, Faivre B. Antiangiogenic therapy: Markers of response, "normalization" and resistance. Crit Rev Oncol Hematol 2018; 128:118-129. [PMID: 29958627 DOI: 10.1016/j.critrevonc.2018.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023] Open
Abstract
Currently in cancer treatment, one premise is to use antiangiogenic therapies in association with chemotherapy or radiotherapy to augment their efficacy by benefiting from the vascular "normalization" induced by antiangiogenic therapy. This concept defines the time during which the tumor blood vessels adopt normal-like morphology and functionality, i.e. the blood vessels become more mature, the perfusion augments and hypoxia decreases. To date, there is such a diversity of treatment protocols where the type of antiangiogenic to adopt, its dose and duration of administration are different, that knowing when and how to treat is problematic. In this review, we analyzed thoroughly preclinical and clinical studies that use antiangiogenic treatments to benefit from the "normalization" and showed that the effects depend on the type of antiangiogenic administrated (anti-VEGF, anti-VEGFR, Multi-Kinase Inhibitor) and on the duration of treatment. Finally, biomarkers of "normalization" and resistance that could be used in the clinic are presented.
Collapse
Affiliation(s)
| | - Béatrice Faivre
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, Faculté de Pharmacie, Nancy, France.
| |
Collapse
|
210
|
Gkretsi V, Stylianopoulos T. Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Front Oncol 2018; 8:145. [PMID: 29780748 PMCID: PMC5945811 DOI: 10.3389/fonc.2018.00145] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/20/2018] [Indexed: 01/27/2023] Open
Abstract
Metastasis is a multistep process in which tumor extracellular matrix (ECM) and cancer cell cytoskeleton interactions are pivotal. ECM is connected, through integrins, to the cell’s adhesome at cell–ECM adhesion sites and through them to the actin cytoskeleton and various downstream signaling pathways that enable the cell to respond to external stimuli in a coordinated manner. Cues from cell-adhesion proteins are fundamental for defining the invasive potential of cancer cells, and many of these proteins have been proposed as potent targets for inhibiting cancer cell invasion and thus, metastasis. In addition, ECM accumulation is quite frequent within the tumor microenvironment leading in many cases to an intense fibrotic response, known as desmoplasia, and tumor stiffening. Stiffening is not only required for the tumor to be able to displace the host tissue and grow in size but also contributes to cell–ECM interactions and can promote cancer cell invasion to surrounding tissues. Here, we review the role of cell adhesion and matrix stiffness in cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Department of Life Sciences, Biomedical Sciences Program, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
211
|
Golombek SK, May JN, Theek B, Appold L, Drude N, Kiessling F, Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130:17-38. [PMID: 30009886 PMCID: PMC6130746 DOI: 10.1016/j.addr.2018.07.007] [Citation(s) in RCA: 783] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
The tumor accumulation of nanomedicines relies on the enhanced permeability and retention (EPR) effect. In the last 5-10 years, it has been increasingly recognized that there is a large inter- and intra-individual heterogeneity in EPR-mediated tumor targeting, explaining the heterogeneous outcomes of clinical trials in which nanomedicine formulations have been evaluated. To address this heterogeneity, as in other areas of oncology drug development, we have to move away from a one-size-fits-all tumor targeting approach, towards methods that can be employed to individualize and improve nanomedicine treatments. To this end, efforts have to be invested in better understanding the nature, the complexity and the heterogeneity of the EPR effect, and in establishing systems and strategies to enhance, combine, bypass and image EPR-based tumor targeting. In the present manuscript, we summarize key studies in which these strategies are explored, and we discuss how these approaches can be employed to enhance patient responses.
Collapse
Affiliation(s)
- Susanne K Golombek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Jan-Niklas May
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Lia Appold
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
212
|
Abstract
Solid stress, distinct from both tissue stiffness and fluid pressure, is a mechanical stress that is often elevated in both murine and human tumors. The importance of solid stress in tumor biology has been recognized in initial studies: solid stress promotes tumor progression and lowers the efficacy of anticancer therapies by compressing blood vessels and contributing to hypoxia. However, robust, reproducible, and objective methods that go beyond demonstration and bulk measurements have not yet been established. We have developed three new techniques to rigorously measure and map solid stress in both human and murine tumors that are able to account for heterogeneity in the tumor microenvironment. We describe here these methods and their independent advantages: 2D spatial mapping of solid stress (planar-cut method), sensitive estimation of solid stress in small tumors (slicing method), and in situ solid-stress quantification (needle-biopsy method). Furthermore, the preservation of tissue morphology and structure allows for subsequent histological analyses in matched tumor sections, facilitating quantitative correlations between solid stress and markers of interest. The three procedures each require ∼2 h of experimental time per tumor. The required skill sets include basic experience in tumor resection and/or biopsy (in mice or humans), as well as in intravital imaging (e.g., ultrasonography).
Collapse
|
213
|
Stylianopoulos T, Munn LL, Jain RK. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 2018; 4:292-319. [PMID: 29606314 PMCID: PMC5930008 DOI: 10.1016/j.trecan.2018.02.005] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
Physical forces have a crucial role in tumor progression and cancer treatment. The application of principles of engineering and physical sciences to oncology has provided powerful insights into the mechanisms by which these forces affect tumor progression and confer resistance to delivery and efficacy of molecular, nano-, cellular, and immuno-medicines. Here, we discuss the mechanics of the solid and fluid components of a tumor, with a focus on how they impede the transport of therapeutic agents and create an abnormal tumor microenvironment (TME) that fuels tumor progression and treatment resistance. We also present strategies to reengineer the TME by normalizing the tumor vasculature and the extracellular matrix (ECM) to improve cancer treatment. Finally, we summarize various mathematical models that have provided insights into the physical barriers to cancer treatment and revealed new strategies to overcome these barriers.
Collapse
Affiliation(s)
- Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus.
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
214
|
Comparison of lymphatic vessel density and expression of VEGF-C and VEGF-D lymphangiogenic factors in Warthin's tumours and oncocytic adenomas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162:47-53. [DOI: 10.5507/bp.2017.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/25/2017] [Indexed: 11/23/2022] Open
|
215
|
Flattened microvessel independently predicts poor prognosis of patients with non-small cell lung cancer. Oncotarget 2018; 8:30092-30099. [PMID: 28404911 PMCID: PMC5444728 DOI: 10.18632/oncotarget.15617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/27/2017] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis plays an essential role in improving tumor progression, whereas, its value in prognosis predicting remains controversial, especially in non-small cell lung cancer (NSCLC). Most recently, microvessel pattern has been raised as a novel prognosis factor. In this study, flattened microvessel, evaluated by tumor microvessel aspect ratio (TMAR), was conducted as a prognostic factor in NSCLC patients. A total of 100 patients with NSCLC were retrospectively reviewed. Microvessel in tumor was visualized by immunochemistry staining and then TMAR was determined. The prognostic role of TMAR was evaluated by univariate and multivariate analysis. Most of intratumor microvessels were flattened with a median TMAR of 3.65 (range, 2.43 - 6.28). Patients were stratified into high TMAR group (TMAR ≥ 3.6) and low TMAR group (TMAR < 3.6). Compared with subpopulation with low TMAR, high TMAR had significantly high risk of cancer-related death (univariate analysis: HR = 5.06, 95% CI: 2.44-10.47, p<0.001; multivariate analysis: HR = 4.53, 95% CI: 1.70-12.06, p=0.002). In conclusion, the results of our study demonstrate that flattened microvessel in tumor tissue is a promising prognosis predictor of NSCLC patients.
Collapse
|
216
|
Santi A, Kugeratski FG, Zanivan S. Cancer Associated Fibroblasts: The Architects of Stroma Remodeling. Proteomics 2018; 18:e1700167. [PMID: 29280568 PMCID: PMC5900985 DOI: 10.1002/pmic.201700167] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/15/2017] [Indexed: 12/24/2022]
Abstract
Fibroblasts have exceptional phenotypic plasticity and capability to secrete vast amount of soluble factors, extracellular matrix components and extracellular vesicles. While in physiological conditions this makes fibroblasts master regulators of tissue homeostasis and healing of injured tissues, in solid tumors cancer associated fibroblasts (CAFs) co-evolve with the disease, and alter the biochemical and physical structure of the tumor microenvironment, as well as the behavior of the surrounding stromal and cancer cells. Thus CAFs are fundamental regulators of tumor progression and influence response to therapeutic treatments. Increasing efforts are devoted to better understand the biology of CAFs to bring insights to develop complementary strategies to target this cell type in cancer. Here we highlight components of the tumor microenvironment that play key roles in cancer progression and invasion, and provide an extensive overview of past and emerging understanding of CAF biology as well as the contribution that MS-based proteomics has made to this field.
Collapse
Affiliation(s)
- Alice Santi
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Sara Zanivan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
217
|
Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling Stress: The Mechanics of Cancer Progression and Aggression. Front Cell Dev Biol 2018. [PMID: 29541636 PMCID: PMC5835517 DOI: 10.3389/fcell.2018.00017] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as well as through alterations to the material properties of the surrounding extracellular matrix (ECM). Consequently, tumor cells are exposed to a number of different mechanical inputs including cell–cell and cell-ECM tension, compression stress, interstitial fluid pressure and shear stress. Oncogenes engage signaling pathways that are activated in response to mechanical stress, thereby reworking the cell's intrinsic response to exogenous mechanical stimuli, enhancing intracellular tension via elevated actomyosin contraction, and influencing ECM stiffness and tissue morphology. In addition to altering their intracellular tension and remodeling the microenvironment, cells actively respond to these mechanical perturbations phenotypically through modification of gene expression. Herein, we present a description of the physical changes that promote tumor progression and aggression, discuss their interrelationship and highlight emerging therapeutic strategies to alleviate the mechanical stresses driving cancer to malignancy.
Collapse
Affiliation(s)
- Josette M Northcott
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Ivory S Dean
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Janna K Mouw
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, United States.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
218
|
Rofstad EK, Huang R, Galappathi K, Andersen LMK, Wegner CS, Hauge A, Gaustad JV, Simonsen TG. Functional intratumoral lymphatics in patient-derived xenograft models of squamous cell carcinoma of the uterine cervix: implications for lymph node metastasis. Oncotarget 2018; 7:56986-56997. [PMID: 27486768 PMCID: PMC5302967 DOI: 10.18632/oncotarget.10931] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
Studies of cell line-derived human tumor xenografts have suggested that the lymphatics seen in immunohistochemical preparations from non-peripheral regions of tumors are nonfunctional. In this investigation, lymphangiogenesis, hemangiogenesis, and lymph node metastasis were studied in patient-derived xenograft (PDX) models of carcinoma of the uterine cervix. Lymph vessel density (LVD) and blood vessel density (BVD) were measured in immunohistochemical preparations. The expression of angiogenesis-related genes was investigated by quantitative PCR. Lymphatic functionality was assessed with the ferritin assay, and tumor interstitial fluid pressure (IFP) was measured with a Millar catheter. The PDX models mirrored the angiogenesis and aggressiveness of the donor patients' tumors, and two highly aggressive models developed functional lymphatics within the tumor mass. Tumors with functional intratumoral lymphatics showed low IFP, high LVD, high BVD, high expression of a large number of angiogenesis-related genes, and high incidence of lymph node metastases. LVD correlated with BVD, and lymph node metastasis was associated with high LVD and high BVD. Nine angiogenesis-related genes associated with the development of functional intratumoral lymhatics were identified. High expression of these genes, high LVD, and high BVD may be important biomarkers for poor outcome in cervix carcinoma.
Collapse
Affiliation(s)
- Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kanthi Galappathi
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
219
|
Leung CS, Yeung TL, Yip KP, Wong KK, Ho SY, Mangala LS, Sood AK, Lopez-Berestein G, Sheng J, Wong ST, Birrer MJ, Mok SC. Cancer-associated fibroblasts regulate endothelial adhesion protein LPP to promote ovarian cancer chemoresistance. J Clin Invest 2018; 128:589-606. [PMID: 29251630 PMCID: PMC5785271 DOI: 10.1172/jci95200] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanism by which cancer-associated fibroblasts (CAFs) confer chemoresistance in ovarian cancer is poorly understood. The purpose of the present study was to evaluate the roles of CAFs in modulating tumor vasculature, chemoresistance, and disease progression. Here, we found that CAFs upregulated the lipoma-preferred partner (LPP) gene in microvascular endothelial cells (MECs) and that LPP expression levels in intratumoral MECs correlated with survival and chemoresistance in patients with ovarian cancer. Mechanistically, LPP increased focal adhesion and stress fiber formation to promote endothelial cell motility and permeability. siRNA-mediated LPP silencing in ovarian tumor-bearing mice improved paclitaxel delivery to cancer cells by decreasing intratumoral microvessel leakiness. Further studies showed that CAFs regulate endothelial LPP via a calcium-dependent signaling pathway involving microfibrillar-associated protein 5 (MFAP5), focal adhesion kinase (FAK), ERK, and LPP. Thus, our findings suggest that targeting endothelial LPP enhances the efficacy of chemotherapy in ovarian cancer. Our data highlight the importance of CAF-endothelial cell crosstalk signaling in cancer chemoresistance and demonstrate the improved efficacy of using LPP-targeting siRNA in combination with cytotoxic drugs.
Collapse
Affiliation(s)
- Cecilia S. Leung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Tsz-Lun Yeung
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Samuel Y. Ho
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lingegowda S. Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology
- The Center for RNA Interference and Non-Coding RNAs, and
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology
- The Center for RNA Interference and Non-Coding RNAs, and
| | - Gabriel Lopez-Berestein
- Department of Cancer Biology
- The Center for RNA Interference and Non-Coding RNAs, and
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianting Sheng
- Department of Systems Medicine and Bioengineering, and
- NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Houston, Texas, USA
| | - Stephen T.C. Wong
- Department of Systems Medicine and Bioengineering, and
- NCI Center for Modeling Cancer Development, Houston Methodist Research Institute, Houston, Texas, USA
| | - Michael J. Birrer
- Comprehensive Cancer Center, Division of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samuel C. Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
220
|
Khandekar MJ, Jain R. Smooth sailing for immunotherapy for unresectable stage III non-small cell lung cancer: the PACIFIC study. Transl Cancer Res 2018; 7:S16-S20. [PMID: 30175050 DOI: 10.21037/tcr.2017.12.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Melin J Khandekar
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rakesh Jain
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
221
|
Li M, Chen H, Diao L, Zhang Y, Xia C, Yang F. Caveolin-1 and VEGF-C promote Lymph Node Metastasis in the Absence of Intratumoral Lymphangiogenesis in Non-small Cell Lung Cancer. TUMORI JOURNAL 2018; 96:734-43. [DOI: 10.1177/030089161009600516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aims and background Caveolin-1 is a key component of membrane caveolae which plays an important role in cell transformation, cell migration, metastasis and angiogenesis. The mechanism of caveolin-1 and VEGF-C in lymphatic metastasis of non-small cell lung cancer (NSCLC) is still unclear. This study aimed to define the caveolin-1 and VEGF-C expression and lymph vessel density in NSCLC and look for correlations with clinicopathological features in NSCLC. Methods Caveolin-1, VEGF-C, and D2–40 protein expression were assessed by immunohistochemistry in a tissue microarray constructed from 70 NSCLCs and 12 normal lungs. Results Caveolin-1 expression was detected in 31 of 70 (44.3%) NSCLCs, which was significantly lower than its expression in normal lungs (9 of 12, 75%; P = 0.049). Expression of VEGF-C was detected in 49 of 70 (70%) NSCLCs and 4 of 12 (33.3%) normal lungs (P = 0.022). Both caveolin-1 and VEGF-C expression were correlated with lymph node metastasis of NSCLC (P = 0.001; P = 0.028). Moreover, caveolin-1 expression was correlated with tumor stage, histological type, and differentiation grade (P = 0.012; P = 0.038; P = 0.002). VEGF-C expression was correlated only with histological type (P = 0.020). There was no correlation between intratumoral lymph vessel density and any clinicopathological parameters including lymph node status. Furthermore, there was no correlation between caveolin-1 expression, VEGF-C expression, and lymph vessel density. Conclusions These findings indicated a reduction of caveolin-1 expression in NSCLC and suggested that caveolin-1 as well as VEGF-C might be involved in lymph node metastasis of NSCLC. The role of caveolin-1 in lymphatic metastasis and intratumoral lymphangiogenesis in NSCLC needs further study. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
- Minhua Li
- Department of Pathology, School of Basic Medicine Science, Wuhan University, Wuhan
- Department of Pathology, Shaoxing People's Hospital & The First Affiliated Hospital of Shaoxing University, Shaoxing
| | - Honglei Chen
- Department of Pathology, School of Basic Medicine Science, Wuhan University, Wuhan
| | - Luming Diao
- Department of Pathology, School of Basic Medicine Science, Wuhan University, Wuhan
| | - Yuxia Zhang
- Department of Pathology, School of Basic Medicine Science, Wuhan University, Wuhan
| | - Cong Xia
- Medical school, Jianghan University, Wuhan, China
| | - Fei Yang
- Department of Pathology, School of Basic Medicine Science, Wuhan University, Wuhan
| |
Collapse
|
222
|
Schaaf MB, Garg AD, Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis 2018; 9:115. [PMID: 29371595 PMCID: PMC5833710 DOI: 10.1038/s41419-017-0061-0] [Citation(s) in RCA: 414] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022]
Abstract
It is now well established that cancer cells co-exist within a complex environment with stromal cells and depend for their growth and dissemination on tight and plastic interactions with components of the tumor microenvironment (TME). Cancer cells incite the formation of new blood and lymphatic vessels from preexisting vessels to cope with their high nutrient/oxygen demand and favor tumor outgrowth. Research over the past decades has highlighted the crucial role played by tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T-cell-mediated immunosurveillance, which are the main hallmarks of cancers. The structurally and functionally aberrant tumor vasculature contributes to the protumorigenic and immunosuppressive TME by maintaining a cancer cell’s permissive environment characterized by hypoxia, acidosis, and high interstitial pressure, while simultaneously generating a physical barrier to T cells' infiltration. Recent research moreover has shown that blood endothelial cells forming the tumor vessels can actively suppress the recruitment, adhesion, and activity of T cells. Likewise, during tumorigenesis the lymphatic vasculature undergoes dramatic remodeling that facilitates metastatic spreading of cancer cells and immunosuppression. Beyond carcinogenesis, the erratic tumor vasculature has been recently implicated in mechanisms of therapy resistance, including those limiting the efficacy of clinically approved immunotherapies, such as immune checkpoint blockers and adoptive T-cell transfer. In this review, we discuss emerging evidence highlighting the major role played by tumor-associated blood and lymphatic vasculature in thwarting immunosurveillance mechanisms and antitumor immunity. Moreover, we also discuss novel therapeutic approaches targeting the tumor vasculature and their potential to help overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium.
| |
Collapse
|
223
|
Mermod M, Hiou-Feige A, Bovay E, Roh V, Sponarova J, Bongiovanni M, Vermeer DW, Lee JH, Petrova TV, Rivals JP, Monnier Y, Tolstonog GV, Simon C. Mouse model of postsurgical primary tumor recurrence and regional lymph node metastasis progression in HPV-related head and neck cancer. Int J Cancer 2018; 142:2518-2528. [PMID: 29313973 DOI: 10.1002/ijc.31240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/07/2017] [Indexed: 01/24/2023]
Abstract
HPV-positive head and neck squamous cell carcinoma (HNSCC) is increasingly frequent. Management is particularly debated in the case of postsurgical high-risk features, that is, positive surgical margins and extracapsular spread (ECS). In this increasingly complex emerging framework of HNSCC treatment, representative preclinical models are needed to support future clinical trials and advances in personalized medicine. Here, we present an immunocompetent mouse model based on the implantation of mouse tonsil epithelial HPV16-E6/E7-expressing cancer cells into the submental region of the floor-of-the-mouth. Primary tumors were found to replicate the patterns of human HNSCC local invasion and lymphatic dissemination. To study disease progression after surgery, tumors were removed likely leaving behind residual disease. Surgical resection of tumors was followed by a high rate of local recurrences (>90%) within the first 2-3 weeks. While only 50% of mice had lymph node metastases (LNM) at time of primary tumor excision, all mice with recurrent tumors showed evidence of LNM. To study the consecutive steps of LNM progression and distant metastasis development, LNs from tumor-bearing mice were transplanted into naïve recipient mice. Using this approach, transplanted LNs were found to recapitulate all stages and relevant histological features of regional metastasis progression, including ECS and metastatic spread to the lungs. Altogether, we have developed an immunocompetent HPV-positive HNSCC mouse model of postsurgical local recurrence and regional and distant metastasis progression suitable for preclinical studies.
Collapse
Affiliation(s)
- Maxime Mermod
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Agnès Hiou-Feige
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Esther Bovay
- Department of Fundamental Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Vincent Roh
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Jana Sponarova
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Massimo Bongiovanni
- Service of Clinical Pathology, Institute of Pathology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Daniel W Vermeer
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD
| | - John H Lee
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD
| | - Tatiana V Petrova
- Department of Fundamental Oncology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Jean-Paul Rivals
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Yan Monnier
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Genrich V Tolstonog
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Christian Simon
- Department of Otolaryngology - Head and Neck Surgery, CHUV, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
224
|
Zhu Y, Wen L, Shao S, Tan Y, Meng T, Yang X, Liu Y, Liu X, Yuan H, Hu F. Inhibition of tumor-promoting stroma to enforce subsequently targeting AT 1R on tumor cells by pathological inspired micelles. Biomaterials 2018; 161:33-46. [PMID: 29421561 DOI: 10.1016/j.biomaterials.2018.01.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/14/2018] [Indexed: 02/07/2023]
Abstract
Cancer associated fibroblasts (CAFs) are the most abundant, genetically stable stroma cells and localize near blood vessels within "finger-like" collagen-rich stroma, which lead to restrained drug transport in dense stroma instead of tumor cells inside tumor mass, especially for targeting micelles. Meanwhile, the bioactive cytokines secreted by stroma cells result in microenvironment mediated drug resistance (TMDR). Hence, a biologically inspired Telmisartan (Tel) grafting glycolipid micelles (Tel-CSOSA) are constructed, which can sequentially target angiotensin II type I receptor (AT1R) overexpressed on both CAFs and tumor cells. More Tel-CSOSA are demonstrated to specifically accumulate in tumor site compared to CSOSA. In addition, the retention of Tel-CSOSA is primarily prolonged around tumor vessel in virtue of CAFs targeting and the stroma barrier. In contrast, the elimination of "finger-like" ECM resulting from CAFs apoptosis by Tel-CSOSA/DOX contributes to a more uniform and deeper penetration post-administration, which can enforce subsequently tumor cells targeting. Meanwhile, cytokines are decreased along with CAFs apoptosis so that tumor cells are more vulnerable to chemotherapeutics. Collectively, this strategy of sequentially targeting CAFs and tumor cells could synergistically increase antitumor therapy with reversed TMDR.
Collapse
Affiliation(s)
- Yun Zhu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, 316021, People's Republic of China
| | - Lijuan Wen
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Shihong Shao
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, 316021, People's Republic of China
| | - Yanan Tan
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, 316021, People's Republic of China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xiqin Yang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Yupeng Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Xuan Liu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China
| | - Fuqiang Hu
- Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan, 316021, People's Republic of China; College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
225
|
Lara GG, Cipreste MF, Andrade GF, Silva WMD, Sousa EMBD. Response of Fibroblasts MRC-5 to Flufenamic Acid-Grafted MCM-41 Nanoparticles. Bioengineering (Basel) 2018; 5:bioengineering5010004. [PMID: 29315235 PMCID: PMC5874870 DOI: 10.3390/bioengineering5010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Recently, flufenamic acid (FFA) was discovered among fenamates as a free radical scavenger and gap junction blocker; however, its effects have only been studied in cancer cells. Normal cells in the surroundings of a tumor also respond to radiation, although they are not hit by it directly. This phenomenon is known as the bystander effect, where response molecules pass from tumor cells to normal ones, through communication channels called gap junctions. The use of the enhanced permeability and retention effect, through which drug-loaded nanoparticles smaller than 200 nm may accumulate around a tumor, can prevent the local side effect upon controlled release of the drug. The present work, aimed at functionalizing MCM-41 (Mobil Composition of Matter No. 41) silica nanoparticles with FFA and determining its biocompatibility with human fibroblasts MRC-5 (Medical Research Council cell strain 5). MCM-41, was synthesized and characterized structurally and chemically, with multiple techniques. The biocompatibility assay was performed by Live/Dead technique, with calcein and propidium–iodide. MRC-5 cells were treated with FFA-grafted MCM-41 for 48 h, and 98% of cells remained viable, without signs of necrosis or morphological changes. The results show the feasibility of MCM-41 functionalization with FFA, and its potential protection of normal cells, in comparison to the role of FFA in cancerous ones.
Collapse
Affiliation(s)
- Giovanna Gomes Lara
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| | - Marcelo Fernandes Cipreste
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| | - Gracielle Ferreira Andrade
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| | - Wellington Marcos da Silva
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| | - Edésia Martins Barros de Sousa
- Centro de Desenvolvimento da Tecnologia Nuclear-CDTN-Avenida Presidente Antônio Carlos, 6.627-Campus UFMG, Belo Horizonte CEP 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
226
|
Aragon-Sanabria V, Kim GB, Dong C. From Cancer Immunoediting to New Strategies in Cancer Immunotherapy: The Roles of Immune Cells and Mechanics in Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:113-138. [PMID: 30368751 DOI: 10.1007/978-3-319-95294-9_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For the last three decades, the concept of immunoediting has evolved to characterize our increasing understanding of the interactions between cells from the immune system and cancer development. Elucidating the role of immune cells in the progression of cancer has been very challenging due to their dual role; the immune system can either suppress tumor formation by killing cancer cells, or it can also promote tumor growth. Revealing how immune cells are hampered by the tumor microenvironment and how they aid tumor progression has signaled strategies to reverse these effects and control cancer cell growth; this has been the advent of immunotherapy design. More recently, the role of physical forces in the process of immunoediting has been highlighted by multiple studies focusing on understanding how force changes in the stiffness of the extracellular matrix and fluid flow shear stress contribute to tumor development. Using models in vitro that incorporate biomechanical components, it has been shown that these physical aspects are not only important during the formation and growth of primary tumors, but in the metastatic process as well. In this way, we have also gained insight into the interactions occurring within the vascular system, which are highly affected by the dynamics of physical collisions between cells and by shear forces. Here, we review the concept of cancer immunoediting with an emphasis on biomechanics and conclude with a summary on current immunotherapies and potential new strategies.
Collapse
Affiliation(s)
- Virginia Aragon-Sanabria
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA, USA
| | - Gloria B Kim
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, State College, PA, USA.
| |
Collapse
|
227
|
Extracellular Matrix Stiffness Exists in a Feedback Loop that Drives Tumor Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1092:57-67. [PMID: 30368748 DOI: 10.1007/978-3-319-95294-9_4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells communicate constantly with their surrounding extracellular matrix (ECM) to maintain homeostasis, using both mechanical and chemical signals. In cancer, abnormal signaling leads to stiffening of the ECM. A stiff microenvironment affects many aspects of the cell, including internal molecular signaling as well as behaviors such as motility and proliferation. Thus, cells and ECM interact in a feedback loop to drive matrix deposition and cross-linking, which alter the mechanical properties of the tissue. Stiffer tissue enhances the invasive potential of a tumor and decreases therapeutic efficacy. This chapter describes how specific molecular effects caused by an abnormally stiff tissue drive macroscopic changes that help determine disease outcome. A complete understanding may foster the generation of new cancer therapies.
Collapse
|
228
|
Zhang B, Hu Y, Pang Z. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery. Front Pharmacol 2017; 8:952. [PMID: 29311946 PMCID: PMC5744178 DOI: 10.3389/fphar.2017.00952] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
Nanomedicines including liposomes, micelles, and nanoparticles based on the enhanced permeability and retention (EPR) effect have become the mainstream for tumor treatment owing to their superiority over conventional anticancer agents. Advanced design of nanomedicine including active targeting nanomedicine, tumor-responsive nanomedicine, and optimization of physicochemical properties to enable highly effective delivery of nanomedicine to tumors has further improved their therapeutic benefits. However, these strategies still could not conquer the delivery barriers of a tumor microenvironment such as heterogeneous blood flow, dense extracellular matrix, abundant stroma cells, and high interstitial fluid pressure, which severely impaired vascular transport of nanomedicines, hindered their effective extravasation, and impeded their interstitial transport to realize uniform distribution inside tumors. Therefore, modulation of tumor microenvironment has now emerged as an important strategy to improve nanomedicine delivery to tumors. Here, we review the existing strategies and approaches for tumor microenvironment modulation to improve tumor perfusion for helping more nanomedicines to reach the tumor site, to facilitate nanomedicine extravasation for enhancing transvascular transport, and to improve interstitial transport for optimizing the distribution of nanomedicines. These strategies may provide an avenue for the development of new combination chemotherapeutic regimens and reassessment of previously suboptimal agents.
Collapse
Affiliation(s)
- Bo Zhang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, China
| |
Collapse
|
229
|
Burks H, Pashos N, Martin E, Mclachlan J, Bunnell B, Burow M. Endocrine disruptors and the tumor microenvironment: A new paradigm in breast cancer biology. Mol Cell Endocrinol 2017; 457:13-19. [PMID: 28012841 DOI: 10.1016/j.mce.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
Breast cancer is one of the most frequently diagnosed malignancies in women and is characterized by predominantly estrogen dependent growth. Endocrine disruptors (EDCs) have estrogenic properties which have been shown to increase breast cancer risk. While the direct effects of EDCs on breast cancer cell biology and tumor progression have been well studied, the roles for EDCs on tumor microenvironment composition, signaling and structure are incompletely defined. Estrogen targeting of tumor stromal cells can drive paracrine signaling to breast cancer cells regulating tumorigenesis and progression. Additionally, estrogen and estrogen receptor signaling has been shown to alter breast architecture and extracellular matrix component synthesis. Unsurprisingly, EDCs have been shown to induce structural changes in the mammary gland as well as increased collagen fibers in the tissue stroma. Previous work demonstrates that human mesenchymal stem cells (hMSC) are essential components of the tumor microenvironment and are direct targets of both estrogens and EDCs. Furthermore, estrogen-stem cell cross talk has been implicated in breast cancer progression and results in increased tumor cell proliferation, angiogenesis and invasion. This review aims to dissect the possible relationship and mechanisms between EDCs, the tumor microenvironment, and breast cancer progression.
Collapse
Affiliation(s)
- Hope Burks
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Nicholas Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Elizabeth Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - John Mclachlan
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Bruce Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Matthew Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
230
|
Nichols JW, Sakurai Y, Harashima H, Bae YH. Nano-sized drug carriers: Extravasation, intratumoral distribution, and their modeling. J Control Release 2017; 267:31-46. [DOI: 10.1016/j.jconrel.2017.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 01/02/2023]
|
231
|
Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Adv Healthc Mater 2017; 6. [PMID: 28990364 DOI: 10.1002/adhm.201700306] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/14/2017] [Indexed: 12/13/2022]
Abstract
In order to translate nanotechnology into medical practice, magnetic nanoparticles (MNPs) have been presented as a class of non-invasive nanomaterials for numerous biomedical applications. In particular, MNPs have opened a door for simultaneous diagnosis and brisk treatment of diseases in the form of theranostic agents. This review highlights the recent advances in preparation and utilization of MNPs from the synthesis and functionalization steps to the final design consideration in evading the body immune system for therapeutic and diagnostic applications with addressing the most recent examples of the literature in each section. This study provides a conceptual framework of a wide range of synthetic routes classified mainly as wet chemistry, state-of-the-art microfluidic reactors, and biogenic routes, along with the most popular coating materials to stabilize resultant MNPs. Additionally, key aspects of prolonging the half-life of MNPs via overcoming the sequential biological barriers are covered through unraveling the biophysical interactions at the bio-nano interface and giving a set of criteria to efficiently modulate MNPs' physicochemical properties. Furthermore, concepts of passive and active targeting for successful cell internalization, by respectively exploiting the unique properties of cancers and novel targeting ligands are described in detail. Finally, this study extensively covers the recent developments in magnetic drug targeting and hyperthermia as therapeutic applications of MNPs. In addition, multi-modal imaging via fusion of magnetic resonance imaging, and also innovative magnetic particle imaging with other imaging techniques for early diagnosis of diseases are extensively provided.
Collapse
Affiliation(s)
- Jalal Mosayebi
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Mehdi Kiyasatfar
- Department of Mechanical Engineering; Urmia University; Urmia 5756151818 Iran
| | - Sophie Laurent
- Laboratory of NMR and Molecular Imaging; University of Mons; Mons Belgium
| |
Collapse
|
232
|
Maritim S, Coman D, Huang Y, Rao JU, Walsh JJ, Hyder F. Mapping Extracellular pH of Gliomas in Presence of Superparamagnetic Nanoparticles: Towards Imaging the Distribution of Drug-Containing Nanoparticles and Their Curative Effect on the Tumor Microenvironment. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:3849373. [PMID: 29362558 PMCID: PMC5736903 DOI: 10.1155/2017/3849373] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
Since brain's microvasculature is compromised in gliomas, intravenous injection of tumor-targeting nanoparticles containing drugs (D-NPs) and superparamagnetic iron oxide (SPIO-NPs) can deliver high payloads of drugs while allowing MRI to track drug distribution. However, therapeutic effect of D-NPs remains poorly investigated because superparamagnetic fields generated by SPIO-NPs perturb conventional MRI readouts. Because extracellular pH (pHe) is a tumor hallmark, mapping pHe is critical. Brain pHe is measured by biosensor imaging of redundant deviation in shifts (BIRDS) with lanthanide agents, by detecting paramagnetically shifted resonances of nonexchangeable protons on the agent. To test the hypothesis that BIRDS-based pHe readout remains uncompromised by presence of SPIO-NPs, we mapped pHe in glioma-bearing rats before and after SPIO-NPs infusion. While SPIO-NPs accumulation in the tumor enhanced MRI contrast, the pHe inside and outside the MRI-defined tumor boundary remained unchanged after SPIO-NPs infusion, regardless of the tumor type (9L versus RG2) or agent injection method (renal ligation versus coinfusion with probenecid). These results demonstrate that we can simultaneously and noninvasively image the specific location and the healing efficacy of D-NPs, where MRI contrast from SPIO-NPs can track their distribution and BIRDS-based pHe can map their therapeutic impact.
Collapse
Affiliation(s)
- Samuel Maritim
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yuegao Huang
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jyotsna U. Rao
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - John J. Walsh
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Fahmeed Hyder
- Magnetic Resonance Research Center, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
233
|
Abstract
The principles of engineering and physics have been applied to oncology for nearly 50 years. Engineers and physical scientists have made contributions to all aspects of cancer biology, from quantitative understanding of tumour growth and progression to improved detection and treatment of cancer. Many early efforts focused on experimental and computational modelling of drug distribution, cell cycle kinetics and tumour growth dynamics. In the past decade, we have witnessed exponential growth at the interface of engineering, physics and oncology that has been fuelled by advances in fields including materials science, microfabrication, nanomedicine, microfluidics, imaging, and catalysed by new programmes at the National Institutes of Health (NIH), including the National Institute of Biomedical Imaging and Bioengineering (NIBIB), Physical Sciences in Oncology, and the National Cancer Institute (NCI) Alliance for Nanotechnology. Here, we review the advances made at the interface of engineering and physical sciences and oncology in four important areas: the physical microenvironment of the tumour and technological advances in drug delivery; cellular and molecular imaging; and microfluidics and microfabrication. We discussthe research advances, opportunities and challenges for integrating engineering and physical sciences with oncology to develop new methods to study, detect and treat cancer, and we also describe the future outlook for these emerging areas.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical Engineering, David H. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories of Tumour Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox 7, Boston, Massachusetts 02114, USA
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrated Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
234
|
Snipstad S, Berg S, Mørch Ý, Bjørkøy A, Sulheim E, Hansen R, Grimstad I, van Wamel A, Maaland AF, Torp SH, Davies CDL. Ultrasound Improves the Delivery and Therapeutic Effect of Nanoparticle-Stabilized Microbubbles in Breast Cancer Xenografts. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2651-2669. [PMID: 28781149 DOI: 10.1016/j.ultrasmedbio.2017.06.029] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 05/19/2023]
Abstract
Compared with conventional chemotherapy, encapsulation of drugs in nanoparticles can improve efficacy and reduce toxicity. However, delivery of nanoparticles is often insufficient and heterogeneous because of various biological barriers and uneven tumor perfusion. We investigated a unique multifunctional drug delivery system consisting of microbubbles stabilized by polymeric nanoparticles (NPMBs), enabling ultrasound-mediated drug delivery. The aim was to examine mechanisms of ultrasound-mediated delivery and to determine if increased tumor uptake had a therapeutic benefit. Cellular uptake and toxicity, circulation and biodistribution were characterized. After intravenous injection of NPMBs into mice, tumors were treated with ultrasound of various pressures and pulse lengths, and distribution of nanoparticles was imaged on tumor sections. No effects of low pressures were observed, whereas complete bubble destruction at higher pressures improved tumor uptake 2.3 times, without tissue damage. An enhanced therapeutic effect was illustrated in a promising proof-of-concept study, in which all tumors exhibited regression into complete remission.
Collapse
Affiliation(s)
- Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sigrid Berg
- SINTEF Technology and Society, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ýrr Mørch
- SINTEF Materials and Chemistry, Trondheim, Norway
| | - Astrid Bjørkøy
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Sulheim
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; SINTEF Materials and Chemistry, Trondheim, Norway
| | - Rune Hansen
- SINTEF Technology and Society, Trondheim, Norway; Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingeborg Grimstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Annemieke van Wamel
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Astri F Maaland
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sverre H Torp
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway; Department of Pathology, St. Olav's University Hospital, Trondheim, Norway
| | | |
Collapse
|
235
|
Millard M, Yakavets I, Zorin V, Kulmukhamedova A, Marchal S, Bezdetnaya L. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening. Int J Nanomedicine 2017; 12:7993-8007. [PMID: 29184400 PMCID: PMC5673046 DOI: 10.2147/ijn.s146927] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The increasing number of publications on the subject shows that nanomedicine is an attractive field for investigations aiming to considerably improve anticancer chemotherapy. Based on selective tumor targeting while sparing healthy tissue, carrier-mediated drug delivery has been expected to provide significant benefits to patients. However, despite reduced systemic toxicity, most nanodrugs approved for clinical use have been less effective than previously anticipated. The gap between experimental results and clinical outcomes demonstrates the necessity to perform comprehensive drug screening by using powerful preclinical models. In this context, in vitro three-dimensional models can provide key information on drug behavior inside the tumor tissue. The multicellular tumor spheroid (MCTS) model closely mimics a small avascular tumor with the presence of proliferative cells surrounding quiescent cells and a necrotic core. Oxygen, pH and nutrient gradients are similar to those of solid tumor. Furthermore, extracellular matrix (ECM) components and stromal cells can be embedded in the most sophisticated spheroid design. All these elements together with the physicochemical properties of nanoparticles (NPs) play a key role in drug transport, and therefore, the MCTS model is appropriate to assess the ability of NP to penetrate the tumor tissue. This review presents recent developments in MCTS models for a better comprehension of the interactions between NPs and tumor components that affect tumor drug delivery. MCTS is particularly suitable for the high-throughput screening of new nanodrugs.
Collapse
Affiliation(s)
- Marie Millard
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France.,Laboratory of Biophysics and Biotechnology
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology.,International Sakharov Environmental Institute, Belarusian State University, Minsk, Belarus
| | - Aigul Kulmukhamedova
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Radiology, Medical Company Sunkar, Almaty, Kazakhstan
| | - Sophie Marchal
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine.,Research Department, Institut de Cancérologie de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
236
|
Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2017; 156:217-237. [PMID: 29207323 DOI: 10.1016/j.biomaterials.2017.10.024] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/03/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
Despite rapid advancements in the field of nanotechnology, there is mounting frustration in the scientific community regarding the translational impact of nanomedicine. Modest therapeutic performance of FDA-approved nanomedicines combined with multiple disappointing clinical trials (such as phase III HEAT trial) have raised questions about the future of nanomedicine. Encouraging breakthroughs, however, have been made in the last few years towards the development of new classes of nanoparticles that can respond to tumor microenvironmental conditions and successfully deliver therapeutic agents to cancer cells. Concurrently, a great deal of effort has also been devoted to alter various parameters of tumor pathophysiology to pre-treat tumors before nanoparticles are administered. Such 'priming' treatments improve access of the systemically administered agents to the tumor and promote drug penetration into the deeper layers of tumor tissue. This review will highlight recent advances in cancer nanomedicine exploiting both nanoparticle design and tumor microenvironment modification; and provide a critical perspective on the future development of nanomedicine delivery in oncology.
Collapse
|
237
|
|
238
|
Askoxylakis V, Arvanitis CD, Wong CSF, Ferraro GB, Jain RK. Emerging strategies for delivering antiangiogenic therapies to primary and metastatic brain tumors. Adv Drug Deliv Rev 2017. [PMID: 28648712 DOI: 10.1016/j.addr.2017.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Five-year survival rates have not increased appreciably for patients with primary and metastatic brain tumors. Nearly 17,000 patients die from primary brain tumors, whereas approximately 200,000 cases are diagnosed with brain metastasis every year in the US alone. At the same time, with improved control of systemic disease, the incidence of brain metastasis is increasing. Thus, novel approaches for improving the treatment outcome for these uniformly fatal diseases are needed urgently. In the review, we summarize the challenges in the treatment of these diseases using antiangiogenic therapies alone or in combination with radio-, chemo- and immuno-therapies. We also discuss the emerging strategies to improve the treatment outcome using both pharmacological approaches to normalize the tumor microenvironment and physical approaches (e.g., focused ultrasound) to modulate the blood-tumor-barrier, along with limitations of each approach. Finally, we offer some new avenues of future research.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Costas D Arvanitis
- School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Christina S F Wong
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital (MGH), Harvard Medical School (HMS), Boston, MA, 02114, USA.
| |
Collapse
|
239
|
Passaro D, Di Tullio A, Abarrategi A, Rouault-Pierre K, Foster K, Ariza-McNaughton L, Montaner B, Chakravarty P, Bhaw L, Diana G, Lassailly F, Gribben J, Bonnet D. Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell 2017; 32:324-341.e6. [PMID: 28870739 PMCID: PMC5598545 DOI: 10.1016/j.ccell.2017.08.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/25/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
The biological and clinical behaviors of hematological malignancies can be influenced by the active crosstalk with an altered bone marrow (BM) microenvironment. In the present study, we provide a detailed picture of the BM vasculature in acute myeloid leukemia using intravital two-photon microscopy. We found several abnormalities in the vascular architecture and function in patient-derived xenografts (PDX), such as vascular leakiness and increased hypoxia. Transcriptomic analysis in endothelial cells identified nitric oxide (NO) as major mediator of this phenotype in PDX and in patient-derived biopsies. Moreover, induction chemotherapy failing to restore normal vasculature was associated with a poor prognosis. Inhibition of NO production reduced vascular permeability, preserved normal hematopoietic stem cell function, and improved treatment response in PDX.
Collapse
Affiliation(s)
- Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alessandro Di Tullio
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Katie Foster
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Beatriz Montaner
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatic Core Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Leena Bhaw
- Advanced Sequencing Unit, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Giovanni Diana
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - François Lassailly
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John Gribben
- Department of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
240
|
Ozcelikkale A, Moon HR, Linnes M, Han B. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1460. [PMID: 28198106 PMCID: PMC5555839 DOI: 10.1002/wnan.1460] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/14/2016] [Accepted: 12/17/2016] [Indexed: 12/16/2022]
Abstract
Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Linnes
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,
| |
Collapse
|
241
|
Xue SL, Lin SZ, Li B, Feng XQ. A nonlinear poroelastic theory of solid tumors with glycosaminoglycan swelling. J Theor Biol 2017; 433:49-56. [PMID: 28859927 DOI: 10.1016/j.jtbi.2017.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 08/26/2017] [Indexed: 12/18/2022]
Abstract
Mechanics plays a crucial role in the growth, development, and therapeutics of tumors. In this paper, a nonlinear poroelastic theory is established to describe the mechanical behaviors of solid tumors. The free-swollen state of a tumor is chosen as the reference state, which enables us to avoid pursuing a dry and stress-free state that is hard to achieve for living tissues. Our results reveal that the compression resistance of a tumor is primarily attributed to glycosaminoglycan (GAG) swelling, and the compactness of cell aggregates is found to affect tumor consolidation. Over-expressed GAGs and dense cell aggregates can stiffen the tumor, a remodeling mechanism that makes the tumor with higher elastic modulus than its surrounding host tissues. Glycosaminoglycan chains also influence the transient mechanical response of the tumor by modulating the tissue permeability. The theoretical results show good agreement with relevant experimental observations. This study may not only deepen our understanding of tumorigenesis but also provide cues for developing novel anticancer strategies.
Collapse
Affiliation(s)
- Shi-Lei Xue
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P R China
| | - Shao-Zhen Lin
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P R China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P R China.
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, P R China.
| |
Collapse
|
242
|
Iranmanesh F, Nazari MA. Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model. J Biomech Eng 2017; 139:2633189. [PMID: 28614573 DOI: 10.1115/1.4037038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Indexed: 11/08/2022]
Abstract
Tumor growth being a multistage process has been investigated from different aspects. In the present study, an attempt is made to represent a constitutive-structure-based model of avascular tumor growth in which the effects of tensile stresses caused by collagen fibers are considered. Collagen fibers as a source of anisotropy in the structure of tissue are taken into account using a continuous fiber distribution formulation. To this end, a finite element modeling is implemented in which a neo-Hookean hyperelastic material is assigned to the tumor and its surrounding host. The tumor is supplied with a growth term. The growth term includes the effect of parameters such as nutrient concentration on the tumor growth and the tumor's solid phase content in the formulation. Results of the study revealed that decrease of solid phase is indicative of decrease in growth rate and the final steady-state value of tumor's radius. Moreover, fiber distribution affects the final shape of the tumor, and it could be used to control the shape and geometry of the tumor in complex morphologies. Finally, the findings demonstrated that the exerted stresses on the tumor increase as time passes. Compression of tumor cells leads to the reduction of tumor growth rate until it gradually reaches an equilibrium radius. This finding is in accordance with experimental data. Hence, this formulation can be deployed to evaluate both the residual stresses induced by growth and the mechanical interactions with the host tissue.
Collapse
Affiliation(s)
- Faezeh Iranmanesh
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439955961, Iran e-mail:
| | - Mohammad Ali Nazari
- Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439955961, Iran e-mail:
| |
Collapse
|
243
|
Rukhlenko OS, Guria GT, Vorobiev AI. On the chemotherapeutic agents localization in tissue by means of snake venoms. Med Hypotheses 2017; 104:89-92. [PMID: 28673600 DOI: 10.1016/j.mehy.2017.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/25/2017] [Indexed: 11/26/2022]
Abstract
The efficiency of anti-tumour drug strongly depends on its dose. Higher drug doses and exposure times usually result in better treatment. It is why the implementation of high-dose treatment is always attractive. However, most of the drug delivery techniques meet essential limitations. In isolated regional perfusion a tumour can be exposed to high-dose therapeutic influence but the target organ may be isolated from the rest of circulatory system only for a relatively short period of time. During systemic injection of anti-tumour agents dose limitations are dictated by side toxicity danger. Viperidae venoms are known to cause local stagnation of blood flow and blood-tissue exchange processes in the place of snakebite. In present paper we suggest to use Viperidae snake venoms in addition to anti-tumour drugs for regional anti-cancer therapy. We suppose that Viperidae venoms will assist in drug localization. We state that their usage will help in high-dosage therapy implementation.
Collapse
Affiliation(s)
- Oleksii S Rukhlenko
- Systems Biology Ireland, University College Dublin, Ireland; Bogolyubov Institute for Theoretical Physics, NASU, Kyiv, Ukraine
| | - Georgy Th Guria
- National Research Center for Hematology, Moscow, Russia; Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | | |
Collapse
|
244
|
Hui TH, Tang YH, Yan Z, Yip TC, Fong HW, Cho WC, Ngan KC, Shum HC, Lin Y. Cadherin- and Rigidity-Dependent Growth of Lung Cancer Cells in a Partially Confined Microenvironment. ACS Biomater Sci Eng 2017; 4:446-455. [PMID: 33418735 DOI: 10.1021/acsbiomaterials.7b00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During tumor development, cancer cells constantly confront different types of extracellular barriers. However, fundamental questions like whether tumor cells will continue to grow against confinement or away from it and what key factors govern this process remain poorly understood. To address these issues, here we examined the growth dynamics of human lung epithelial carcinoma A549 cells partially confined in micrometer-sized cylindrical pores with precisely controlled wall stiffness. It was found that, after reaching confluency, the cell monolayer enclosed by a compliant wall was able to keep growing and pushing the boundary, eventually leading to a markedly enlarged pore. In contrast, a much reduced in-plane growth and elevated strain level among cells were observed when the confining wall becomes stiff. Furthermore, under such circumstance, cells switched their growth from within the monolayer to along the out-of-plane direction, resulting in cell stacking. We showed that these observations can be well explained by a simple model taking into account the deformability of the wall and the threshold stress for inhibiting cell growth. Interestingly, cadherins were found to play an important role in the proliferation and stress buildup within the cell monolayer by aggregating at cell-cell junctions. The stiff confinement led to an elevated expression level of cadherins. Furthermore, inhibition of N-cadherin resulted in a significantly suppressed cell growth under the same confining conditions.
Collapse
Affiliation(s)
- T H Hui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong second Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China
| | - Y H Tang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Z Yan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong second Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China
| | - T C Yip
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong SAR, China
| | - H W Fong
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong SAR, China
| | - W C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong SAR, China
| | - K C Ngan
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong SAR, China
| | - H C Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong second Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China
| | - Y Lin
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong second Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China
| |
Collapse
|
245
|
Abstract
The targeted delivery of therapeutics using antibodies or nanomaterials has improved the precision and safety of cancer therapy. However, the paucity and heterogeneity of identified molecular targets within tumours have resulted in poor and uneven distribution of targeted agents, thus compromising treatment outcomes. Here, we construct a cooperative targeting system in which synthetic and biological nanocomponents participate together in the tumour cell membrane-selective localization of synthetic receptor-lipid conjugates (SR-lipids) to amplify the subsequent targeting of therapeutics. The SR-lipids are first delivered selectively to tumour cell membranes in the perivascular region using fusogenic liposomes. By hitchhiking with extracellular vesicles secreted by the cells, the SR-lipids are transferred to neighbouring cells and further spread throughout the tumour tissues where the molecular targets are limited. We show that this tumour cell membrane-targeted delivery of SR-lipids leads to uniform distribution and enhanced phototherapeutic efficacy of the targeted photosensitizer. Tumour distribution of targeted therapies is intrinsically heterogeneous. Here, the authors develop a strategy to decorate entire tumour membranes with synthetic receptors for amplified targeting of therapeutics and show that such cooperative membrane-targeted phototherapy results in tumour regression in mice.
Collapse
|
246
|
DuFort CC, DelGiorno KE, Carlson MA, Osgood RJ, Zhao C, Huang Z, Thompson CB, Connor RJ, Thanos CD, Scott Brockenbrough J, Provenzano PP, Frost GI, Michael Shepard H, Hingorani SR. Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase. Biophys J 2017; 110:2106-19. [PMID: 27166818 DOI: 10.1016/j.bpj.2016.03.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/18/2022] Open
Abstract
Elevated interstitial fluid pressure can present a substantial barrier to drug delivery in solid tumors. This is particularly true of pancreatic ductal adenocarcinoma, a highly lethal disease characterized by a robust fibroinflammatory response, widespread vascular collapse, and hypoperfusion that together serve as primary mechanisms of treatment resistance. Free-fluid pressures, however, are relatively low in pancreatic ductal adenocarcinoma and cannot account for the vascular collapse. Indeed, we have shown that the overexpression and deposition in the interstitium of high-molecular-weight hyaluronan (HA) is principally responsible for generating pressures that can reach 100 mmHg through the creation of a large gel-fluid phase. By interrogating a variety of tissues, tumor types, and experimental model systems, we show that an HA-dependent fluid phase contributes substantially to pressures in many solid tumors and has been largely unappreciated heretofore. We investigated the relative contributions of both freely mobile fluid and gel fluid to interstitial fluid pressure by performing simultaneous, real-time fluid-pressure measurements with both the classical wick-in-needle method (to estimate free-fluid pressure) and a piezoelectric pressure catheter transducer (which is capable of capturing pressures associated with either phase). We demonstrate further that systemic treatment with pegylated recombinant hyaluronidase (PEGPH20) depletes interstitial HA and eliminates the gel-fluid phase. This significantly reduces interstitial pressures and leaves primarily free fluid behind, relieving the barrier to drug delivery. These findings argue that quantifying the contributions of free- and gel-fluid phases to hydraulically transmitted pressures in a given cancer will be essential to designing the most appropriate and effective strategies to overcome this important and frequently underestimated resistance mechanism.
Collapse
Affiliation(s)
- Christopher C DuFort
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kathleen E DelGiorno
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Markus A Carlson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Chunmei Zhao
- Halozyme Therapeutics, Inc., San Diego, California
| | | | | | | | | | - J Scott Brockenbrough
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paolo P Provenzano
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Sunil R Hingorani
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
247
|
Tao Z, Yang H, Shi Q, Fan Q, Wan L, Lu X. Targeted Delivery to Tumor-associated Pericytes via an Affibody with High Affinity for PDGFRβ Enhances the in vivo Antitumor Effects of Human TRAIL. Theranostics 2017; 7:2261-2276. [PMID: 28740549 PMCID: PMC5505058 DOI: 10.7150/thno.19091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/06/2017] [Indexed: 02/05/2023] Open
Abstract
Human tumor necrosis factor-related apoptosis-inducing ligand (hTRAIL) has exhibited superior in vitro cytotoxicity in a variety of tumor cells. However, hTRAIL showed a disappointing anticancer effect in clinical trials, although hTRAIL-based regimens were well tolerated. One important reason might be that hTRAIL was largely trapped by its decoy receptors, which are ubiquitously expressed on normal cells. Tumor-targeted delivery might improve the tumor uptake and thus enhance the antitumor effect of hTRAIL. Platelet-derived growth factor receptor β (PDGFRβ)-expressing pericytes are enriched in tumor tissues derived both from patients with colon cancer and from mice bearing colorectal tumor xenografts. A ZPDGFRβ affibody showed high affinity (nM) for PDGFRβ and was predominantly distributed on tumor-associated PDGFRβ-positive pericytes. Co-administration with the ZPDGFRβ affibody did not significantly enhance the antitumor effect of hTRAIL in mice bearing tumor xenografts. Fusion to the ZPDGFRβ affibody endows hTRAIL with PDGFRβ-binding ability but does not interfere with its death receptor binding and activation. The fused ZPDGFRβ affibody mediated PDGFRβ-dependent binding of hTRAIL to pericytes. In addition, hTRAIL bound on pericytes could kill tumor cells through juxtatropic activity or exhibit cytotoxicity in tumor cells after being released from pericytes. Intravenously injected hTRAIL fused to ZPDGFRβ affibody initially accumulated on tumor-associated pericytes and then diffused to the tumor parenchyma over time. Fusion to the ZPDGFRβ affibody increased the tumor uptake of hTRAIL, thus enhancing the antitumor effect of hTRAIL in mice bearing tumor xenografts. These results demonstrate that pericyte-targeted delivery mediated by a ZPDGFRβ affibody is an alternative strategy for tumor-targeted delivery of anticancer agents.
Collapse
Affiliation(s)
- Ze Tao
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
- Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Yang
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiuxiao Shi
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
- Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing Fan
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
- Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Wan
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Lu
- Key Lab of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
248
|
Design, synthesis and biological evaluation of new pyrazolyl-ureas and imidazopyrazolecarboxamides able to interfere with MAPK and PI3K upstream signaling involved in the angiogenesis. Eur J Med Chem 2017; 133:24-35. [DOI: 10.1016/j.ejmech.2017.03.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Accepted: 03/26/2017] [Indexed: 11/17/2022]
|
249
|
Francis DM, Thomas SN. Progress and opportunities for enhancing the delivery and efficacy of checkpoint inhibitors for cancer immunotherapy. Adv Drug Deliv Rev 2017; 114:33-42. [PMID: 28455187 PMCID: PMC5581991 DOI: 10.1016/j.addr.2017.04.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022]
Abstract
Despite the advent of immune checkpoint blockade for effective treatment of advanced malignancies, only a minority of patients responds to therapy and significant immune-related adverse events remain to be minimized. Innovations in engineered drug delivery systems and controlled release strategies can improve drug accumulation at and retention within target cells and tissues in order to enhance therapeutic efficacy while simultaneously reducing drug exposure in off target tissues to minimize the potential for treatment-associated toxicities. This review will outline basic principles of the immune physiology of checkpoint signaling, the existing knowledge of dose-efficacy relationships in checkpoint inhibition, the influence of administration route on treatment efficacy, as well as the resulting checkpoint inhibitor antibody biodistribution profiles amongst target versus systemic tissues. It will also highlight recent successes in the application of drug delivery principles and technologies towards augmenting checkpoint blockade therapy in cancer. Delivery strategies that have been developed for other therapeutic and immunotherapy applications with as-of-yet underexplored potential in checkpoint inhibition therapy will also be discussed.
Collapse
Affiliation(s)
- David M Francis
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States.
| |
Collapse
|
250
|
Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, Engelman JA, Dranoff G. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer 2017; 17:286-301. [PMID: 28338065 DOI: 10.1038/nrc.2017.17] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 25 years, research in cancer therapeutics has largely focused on two distinct lines of enquiry. In one approach, efforts to understand the underlying cell-autonomous, genetic drivers of tumorigenesis have led to the development of clinically important targeted agents that result in profound, but often not durable, tumour responses in genetically defined patient populations. In the second parallel approach, exploration of the mechanisms of protective tumour immunity has provided several therapeutic strategies - most notably the 'immune checkpoint' antibodies that reverse the negative regulators of T cell function - that accomplish durable clinical responses in subsets of patients with various tumour types. The integration of these potentially complementary research fields provides new opportunities to improve cancer treatments. Targeted and immune-based therapies have already transformed the standard-of-care for several malignancies. However, additional insights into the effects of targeted therapies, along with conventional chemotherapy and radiation therapy, on the induction of antitumour immunity will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in patients.
Collapse
Affiliation(s)
- Philip Gotwals
- Exploratory Immuno-Oncology, Novartis Institutes for BioMedical Research
| | - Scott Cameron
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research
| | - Daniela Cipolletta
- Exploratory Immuno-Oncology, Novartis Institutes for BioMedical Research
| | - Viviana Cremasco
- Exploratory Immuno-Oncology, Novartis Institutes for BioMedical Research
| | - Adam Crystal
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research
| | - Becker Hewes
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research
| | - Britta Mueller
- Exploratory Immuno-Oncology, Novartis Institutes for BioMedical Research
| | - Sonia Quaratino
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research
| | | | - Lilli Petruzzelli
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research
| | - Jeffrey A Engelman
- Oncology, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Glenn Dranoff
- Exploratory Immuno-Oncology, Novartis Institutes for BioMedical Research
| |
Collapse
|