201
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
202
|
Brolin E, Zelleroth S, Jonsson A, Hallberg M, Grönbladh A, Nyberg F. Chronic administration of morphine using mini-osmotic pumps affects spatial memory in the male rat. Pharmacol Biochem Behav 2018; 167:1-8. [DOI: 10.1016/j.pbb.2018.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 12/19/2017] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
|
203
|
Castonguay D, Dufort-Gervais J, Ménard C, Chatterjee M, Quirion R, Bontempi B, Schneider JS, Arnsten AFT, Nairn AC, Norris CM, Ferland G, Bézard E, Gaudreau P, Lombroso PJ, Brouillette J. The Tyrosine Phosphatase STEP Is Involved in Age-Related Memory Decline. Curr Biol 2018; 28:1079-1089.e4. [PMID: 29576474 DOI: 10.1016/j.cub.2018.02.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/27/2017] [Accepted: 02/19/2018] [Indexed: 01/22/2023]
Abstract
Cognitive disabilities that occur with age represent a growing and expensive health problem. Age-associated memory deficits are observed across many species, but the underlying molecular mechanisms remain to be fully identified. Here, we report elevations in the levels and activity of the striatal-enriched phosphatase (STEP) in the hippocampus of aged memory-impaired mice and rats, in aged rhesus monkeys, and in people diagnosed with amnestic mild cognitive impairment (aMCI). The accumulation of STEP with aging is related to dysfunction of the ubiquitin-proteasome system that normally leads to the degradation of STEP. Higher level of active STEP is linked to enhanced dephosphorylation of its substrates GluN2B and ERK1/2, CREB inactivation, and a decrease in total levels of GluN2B and brain-derived neurotrophic factor (BDNF). These molecular events are reversed in aged STEP knockout and heterozygous mice, which perform similarly to young control mice in the Morris water maze (MWM) and Y-maze tasks. In addition, administration of the STEP inhibitor TC-2153 to old rats significantly improved performance in a delayed alternation T-maze memory task. In contrast, viral-mediated STEP overexpression in the hippocampus is sufficient to induce memory impairment in the MWM and Y-maze tests, and these cognitive deficits are reversed by STEP inhibition. In old LOU/C/Jall rats, a model of healthy aging with preserved memory capacities, levels of STEP and GluN2B are stable, and phosphorylation of GluN2B and ERK1/2 is unaltered. Altogether, these data suggest that elevated levels of STEP that appear with advancing age in several species contribute to the cognitive declines associated with aging.
Collapse
Affiliation(s)
- David Castonguay
- Department of Pharmacology and Physiology, Université de Montréal, and Hôpital du Sacré-Coeur de Montréal Research Center, Montreal, QC, Canada
| | - Julien Dufort-Gervais
- Department of Pharmacology and Physiology, Université de Montréal, and Hôpital du Sacré-Coeur de Montréal Research Center, Montreal, QC, Canada
| | - Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Medecine, Université de Montréal, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC, Canada
| | - Manavi Chatterjee
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Rémi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Bruno Bontempi
- Université de Bordeaux, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher M Norris
- Department of Molecular and Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Guylaine Ferland
- Department of Nutrition, Université de Montréal, and Institut de Cardiologie de Montréal, Montreal, QC, Canada
| | - Erwan Bézard
- Université de Bordeaux, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pierrette Gaudreau
- Department of Medecine, Université de Montréal, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, QC, Canada
| | - Paul J Lombroso
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Jonathan Brouillette
- Department of Pharmacology and Physiology, Université de Montréal, and Hôpital du Sacré-Coeur de Montréal Research Center, Montreal, QC, Canada; Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
204
|
Abstract
The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JNK-interacting protein 1 (JIP1) scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDAR currents, increased NMDAR-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDAR-mediated synaptic plasticity and learning.SIGNIFICANCE STATEMENT The results of this study demonstrate that c-Jun N-terminal kinase (JNK) activation induced by the JNK-interacting protein 1 (JIP1) scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study identifies JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDAR-dependent synaptic plasticity and memory.
Collapse
|
205
|
Kim MK, Lee JS. Short-Term Plasticity and Long-Term Potentiation in Artificial Biosynapses with Diffusive Dynamics. ACS NANO 2018; 12:1680-1687. [PMID: 29357225 DOI: 10.1021/acsnano.7b08331] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of electronic devices possessing the functionality of biological synapses is a crucial step toward replicating the capabilities of the human brain. Of the various materials that have been used to realize artificial synapses, renewable natural materials have the advantages of being abundant, inexpensive, biodegradable, and ecologically benign. In this study, we report a biocompatible artificial synapse based on a matrix of the biopolymer ι-carrageenan (ι-car), which exploits Ag dynamics. This artificial synapse emulates the short-term plasticity (STP), paired-pulse facilitation (PPF), and transition from STP to long-term potentiation (LTP) of a biological synapse. The above-mentioned characteristics are realized by exploiting the similarities between the Ag dynamics in the ι-car matrix and the Ca2+ dynamics in a biological synapse. By demonstrating a method that uses biomaterials and Ag dynamics to emulate synaptic functions, this study confirms that ι-car has the potential for constructing neuromorphic systems that use biocompatible artificial synapses.
Collapse
Affiliation(s)
- Min-Kyu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , Pohang 37673, Korea
| | - Jang-Sik Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , Pohang 37673, Korea
- Department of Materials Science and Engineering, The University of Texas at Dallas , Richardson, Texas 75080, United States
| |
Collapse
|
206
|
Commins S. Efficiency: an underlying principle of learning? Rev Neurosci 2018; 29:183-197. [DOI: 10.1515/revneuro-2017-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/18/2017] [Indexed: 11/15/2022]
Abstract
AbstractLearning is essential. It allows animals to change circumstances, deal with new situations and adapt to environments. Here, we argue that learning, at behavioral and neural levels, involves efficiency, reflected in metabolic cost reductions. Behaviourally, although multiple solutions to a novel problem may be available, all solutions are not learnt – it is too costly. Furthermore, once a strategy has been selected, it is reinforced producing an efficiency that leads to a maximisation of performance and metabolic cost reductions. Learning can be represented in the brain through many mechanisms; however, if learning is truly efficient, then, all such mechanisms should also be accompanied by a reduction in measurable metabolic costs. By thinking about learning in terms of efficiency, not simply as a descriptive term but rather in terms of metabolic costs, it allows learning to be examined more carefully and provides predictions that can be easily tested (and indeed refuted).
Collapse
|
207
|
Rescue of Learning and Memory Deficits in the Human Nonsyndromic Intellectual Disability Cereblon Knock-Out Mouse Model by Targeting the AMP-Activated Protein Kinase-mTORC1 Translational Pathway. J Neurosci 2018; 38:2780-2795. [PMID: 29459374 DOI: 10.1523/jneurosci.0599-17.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 01/03/2018] [Accepted: 01/27/2018] [Indexed: 01/05/2023] Open
Abstract
A homozygous nonsense mutation in the cereblon (CRBN) gene results in autosomal recessive, nonsyndromic intellectual disability that is devoid of other phenotypic features, suggesting a critical role of CRBN in mediating learning and memory. In this study, we demonstrate that adult male Crbn knock-out (CrbnKO) mice exhibit deficits in hippocampal-dependent learning and memory tasks that are recapitulated by focal knock-out of Crbn in the adult dorsal hippocampus, with no changes in social or repetitive behavior. Cellular studies identify deficits in long-term potentiation at Schaffer collateral CA1 synapses. We further show that Crbn is robustly expressed in the mouse hippocampus and CrbnKO mice exhibit hyperphosphorylated levels of AMPKα (Thr172). Examination of processes downstream of AMP-activated protein kinase (AMPK) finds that CrbnKO mice have a selective impairment in mediators of the mTORC1 translation initiation pathway in parallel with lower protein levels of postsynaptic density glutamatergic proteins and higher levels of excitatory presynaptic markers in the hippocampus with no change in markers of the unfolded protein response or autophagy pathways. Acute pharmacological inhibition of AMPK activity in adult CrbnKO mice rescues learning and memory deficits and normalizes hippocampal mTORC1 activity and postsynaptic glutamatergic proteins without altering excitatory presynaptic markers. Thus, this study identifies that loss of Crbn results in learning, memory, and synaptic defects as a consequence of exaggerated AMPK activity, inhibition of mTORC1 signaling, and decreased glutamatergic synaptic proteins. Thus, CrbnKO mice serve as an ideal model of intellectual disability to further explore molecular mechanisms of learning and memory.SIGNIFICANCE STATEMENT Intellectual disability (ID) is one of the most common neurodevelopmental disorders. The cereblon (CRBN) gene has been linked to autosomal recessive, nonsyndromic ID, characterized by an intelligence quotient between 50 and 70 but devoid of other phenotypic features, making cereblon an ideal protein for the study of the fundamental aspects of learning and memory. Here, using the cereblon knock-out mouse model, we show that cereblon deficiency disrupts learning, memory, and synaptic function via AMP-activated protein kinase hyperactivity, downregulation of mTORC1, and dysregulation of excitatory synapses, with no changes in social or repetitive behaviors, consistent with findings in the human population. This establishes the cereblon knock-out mouse as a model of pure ID without the confounding behavioral phenotypes associated with other current models of ID.
Collapse
|
208
|
Hashimoto M, Hossain S, Katakura M, Mamun AA, Shido O. Docosahexaenoic Acid Helps to Lessen Extinction Memory in Rats. Molecules 2018; 23:molecules23020451. [PMID: 29463009 PMCID: PMC6017742 DOI: 10.3390/molecules23020451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 11/16/2022] Open
Abstract
Abstract: Memory extinction is referred to as a learning process in which a conditioned response (CR) progressively reduces over time as an animal learns to uncouple a response from a stimulus. Extinction occurs when the rat is placed into a context without shock after training. Docosahexaenoic acid (DHA, C22:6, n-3) is implicated in memory formation in mammalian brains. In a two-way active shuttle-avoidance apparatus, we examined whether DHA affects the extinction memory and the expression of brain cognition-related proteins, including gastrin-releasing peptide receptor (GRPR), brain-derived neurotrophic factor receptor (BDNFR) tyrosine kinase receptor B (TrKB), and N-methyl-d-aspartate receptor (NMDAR) subunits NR2A and NR2B. Also, the protein levels of GRP, BDNF, postsynaptic density protein-95 (PSD-95), and vesicular acetylcholine transporter (VAChT), and the antioxidative potentials, in terms of lipid peroxide (LPO) and reactive oxygen species (ROS), were examined in the hippocampus. During the acquisition phase, the rats received a conditioned stimulus (CS-tone) paired with an unconditioned stimulus (UCS foot shock) for three consecutive days (Sessions S1, S2, and S3, each consisting of 30-trials) after 12 weeks of oral administration of DHA. After a three-day interval, the rats were re-subjected to two extinction sessions (S4, S5), each comprising 30 trials of CS alone. During the acquisition training in S1, the shock-related avoidance frequency (acquisition memory) was significantly higher in the DHA-administered rats compared with the control rats. The avoidance frequency, however, decreased with successive acquisition trainings in sessions S2 and S3. When the rats were subjected to the extinction sessions after a break for consolidation, the conditioned response (CR) was also significantly higher in the DHA-administered rats. Interestingly, the freezing responses (frequency and time) also significantly decreased in the DHA-administered rats, thus suggesting that a higher coping capacity was present during fear stress in the DHA-administered rats. DHA treatments increased the mRNA levels of GRPR, BDNF receptor TrKB, and NMDAR subunit NR2B. DHA also increased the protein levels of GRP, BDNF, PSD-95, and VAChT, and the antioxidative potentials in the hippocampus. These results suggest the usefulness of DHA for treating stress disorders.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Shahdat Hossain
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
- Department of Biochemistry & Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| | - Masanori Katakura
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Abdullah Al Mamun
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Osamu Shido
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
209
|
Jiang Y, Lin MK, Jicha GA, Ding X, McIlwrath SL, Fardo DW, Broster LS, Schmitt FA, Kryscio R, Lipsky RH. Functional human GRIN2B promoter polymorphism and variation of mental processing speed in older adults. Aging (Albany NY) 2018; 9:1293-1306. [PMID: 28439047 PMCID: PMC5425128 DOI: 10.18632/aging.101228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
We investigated the role of a single nucleotide polymorphism rs3764030 (G>A) within the human GRIN2B promoter in mental processing speed in healthy, cognitively intact, older adults. In vitro DNA-binding and reporter gene assays of different allele combinations in transfected cells showed that the A allele was a gain-of-function variant associated with increasing GRIN2B mRNA levels. We tested the hypothesis that individuals with A allele will have better memory performance (i.e. faster reaction times) in older age. Twenty-eight older adults (ages 65-86) from a well-characterized longitudinal cohort were recruited and performed a modified delayed match-to-sample task. The rs3764030 polymorphism was genotyped and participants were grouped based on the presence of the A allele into GG and AA/AG. Carriers of the A allele maintained their speed of memory retrieval over age compared to GG carriers (p = 0.026 slope of the regression line between AA and AG versus GG groups). To validate the results, 12 older adults from the same cohort participated in a different version of the short-term memory task. Reaction times were significantly slower with age in older adults with G allele (p < 0.001). These findings support a role for rs3764030 in maintaining faster mental processing speed over aging.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Ming Kuan Lin
- Department of Molecular Neuroscience, the Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Xiuhua Ding
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Sabrina L McIlwrath
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Lucas S Broster
- Department of Behavioral Science, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Richard Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.,Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Robert H Lipsky
- Department of Molecular Neuroscience, the Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.,Department of Neurosciences, Inova Neuroscience Institute, Inova Health System, Falls Church, VA 22042, USA
| |
Collapse
|
210
|
The Mechanisms of Bushen-Yizhi Formula as a Therapeutic Agent against Alzheimer's Disease. Sci Rep 2018; 8:3104. [PMID: 29449587 PMCID: PMC5814461 DOI: 10.1038/s41598-018-21468-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022] Open
Abstract
Bushen-Yizhi prescription (BSYZ) has been an effective traditional Chinese medicine (TCM) prescription in treating Alzheimer’s disease (AD) for hundreds of years. However, the underlying mechanisms have not been fully elucidated yet. In this work, a systems pharmacology approach was developed to reveal the underlying molecular mechanisms of BSYZ in treating AD. First, we obtained 329 candidate compounds of BSYZ by in silico ADME/T filter analysis and 138 AD-related targets were predicted by our in-house WEGA algorithm via mapping predicted targets into AD-related proteins. In addition, we elucidated the mechanisms of BSYZ action on AD through multiple network analysis, including compound-target network analysis and target-function network analysis. Furthermore, several modules regulated by BSYZ were incorporated into AD-related pathways to uncover the therapeutic mechanisms of this prescription in AD treatment. Finally, further verification experiments also demonstrated the therapeutic effects of BSYZ on cognitive dysfunction in APP/PS1 mice, which was possibly via regulating amyloid-β metabolism and suppressing neuronal apoptosis. In conclusion, we provide an integrative systems pharmacology approach to illustrate the underlying therapeutic mechanisms of BSYZ formula action on AD.
Collapse
|
211
|
Neagoe I, Liu C, Stumpf A, Lu Y, He D, Francis R, Chen J, Reynen P, Alaoui-Ismaili MH, Fukui H. The GluN2B subunit represents a major functional determinant of NMDA receptors in human induced pluripotent stem cell-derived cortical neurons. Stem Cell Res 2018; 28:105-114. [PMID: 29454156 DOI: 10.1016/j.scr.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/08/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Abnormal signaling pathways mediated by N-methyl-d-aspartate receptors (NMDARs) have been implicated in the pathogenesis of various CNS disorders and have been long considered as promising points of therapeutic intervention. However, few efforts have been previously described concerning evaluation of therapeutic modulators of NMDARs and their downstream pathways in human neurons with endogenous expression of NMDARs. In the present study, we assessed expression, functionality, and subunit composition of endogenous NMDARs in human induced pluripotent stem cell (hiPSC)-derived cortical neurons (iCell Neurons and iCell GlutaNeurons). We initially confirmed the expected pharmacological response of iCell Neurons and iCell GlutaNeurons to NMDA by patch-clamp recordings. Subsequent pharmacological interrogation using GluN2 subunit-selective antagonists revealed the predominance of GluN2B in both iCell Neurons and iCell GlutaNeurons. This observation was also supported by qRT-PCR and Western blot analyses of GluN2 subunit expression as well as pharmacological experiments using positive allosteric modulators with distinct GluN2 subunit selectivity. We conclude that iCell Neurons and iCell GlutaNeurons express functional GluN2B-containing NMDARs and could serve as a valuable system for development and validation of GluN2B-modulating pharmaceutical agents.
Collapse
Affiliation(s)
- Ioana Neagoe
- Evotec AG, Essener Bogen 7, 22419 Hamburg, Germany
| | - Chang Liu
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Stumpf
- Institute for Neurophysiology, Goethe University, Theodor-Stern-Kai 7, Frankfurt 60590, Germany
| | - Yanmei Lu
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dongping He
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ross Francis
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jun Chen
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul Reynen
- Department of Biochemical and Cellular Pharmacology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
212
|
Kim H, Lee HE, Jung IH, Jeon SJ, Zhang J, Kwon Y, Jang DS, Ryu JH. The memory ameliorating effects of DHP1402, an herbal mixture, on cholinergic blockade-induced cognitive dysfunction in mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:38-46. [PMID: 28917975 DOI: 10.1016/j.jep.2017.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F Chow (Rhamnaceae) and the roots of Codonopsis lanceolata (Siedbold & Zucc.) Benth. & Hook. f ex Trautv. (Campanulaceae), contained in the DHP1402, have long been used for treating dementia or hypomnesia as folk medicine. AIM OF THE STUDY It has been reported that Z. jujuba var. spinosa and C. lanceolata are effective in improving cognitive function, but via different mechanisms. Therefore, in the present study, we evaluated the synergistic effects of Z. jujuba var. spinosa and C. lanceolata on scopolamine-induced memory impairment. MATERIALS AND METHODS Scopolamine, a cholinergic muscarinic receptor antagonist, was used to induce cognitive dysfunction. We employed several behavioral tasks to estimate the synergistic effect of the seeds of Z. jujuba var. spinosa and the roots of C. lanceolata. In addition, we introduced the Western blotting, the antagonism passive avoidance task to investigate a synergistic effect of an herbal formulation. RESULTS Synergistic effects of a combination of Z. jujuba var. spinosa and C. lanceolata at a 5:1 ratio [(w/w), DHP1402] were observed against cognitive dysfunction in the passive avoidance and Y-maze tasks. DHP1402 also ameliorated memory deficits in a dose-dependent manner in these behavioral tasks, as well as in the Morris water maze task. According to the Western blot results, the phosphorylation levels of protein kinase A (PKA), extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) in the hippocampus were also increased in a synergistic manner after the administration of DHP1402. In addition, we found that the effects of DHP1402 on cognitive function were mediated by N-methyl-D-aspartate (NMDA) receptor signalling, based on the antagonism studies. Furthermore, we found that DHP1402 has inhibitory activity against acetylcholinesterase (AChE). CONCLUSION DHP1402 attenuates cholinergic blockade-induced cognitive dysfunction through NMDA receptor modulation, PKA-ERK-CREB pathway activation, and AChE inhibition. Therefore, DHP1402 could be a candidate for alleviating cognitive dysfunction.
Collapse
Affiliation(s)
- Haneul Kim
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyung Eun Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In Ho Jung
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Se Jin Jeon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiabao Zhang
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yubeen Kwon
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
213
|
Zuo CL, Wang CM, Liu J, Shen T, Zhou JP, Hao XR, Pan YZ, Liu HC, Lian QQ, Lin H. Isoflurane anesthesia in aged mice and effects of A1 adenosine receptors on cognitive impairment. CNS Neurosci Ther 2018; 24:212-221. [PMID: 29345054 DOI: 10.1111/cns.12794] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022] Open
Abstract
AIMS Isoflurane may not only accelerate the process of Alzheimer's disease (AD), but increase the risk of incidence of postoperative cognitive dysfunction (POCD). However, the underlying mechanisms remain unknown. This study was designed to investigate whether isoflurane contributed to the POCD occurrence through A1 adenosine receptor (A1AR) in aged mice. METHODS We assessed cognitive function of mice with Morris water maze (MWM) and then measured expression level of two AD biomarkers (P-tau and Aβ) and a subtype of the NMDA receptor (NR2B) in aged wild-type (WT) and homozygous A1 adenosine receptor (A1AR) knockout (KO) mice at baseline and after they were exposed to isoflurane (1.4% for 2 hours). RESULTS For cognitive test, WT mice with isoflurane exposure performed worse than the WT mice without isoflurane exposure. However, A1AR KO mice with isoflurane exposure performed better than WT mice with isoflurane exposure. WT mice exposed to isoflurane had increased levels of Aβ and phosphorylated tau (P-tau). Levels of Aβ and P-tau were decreased in A1AR KO mice, whereas no differences were noted between KO mice with and without isoflurane exposure. NR2B expression was inversely related to that of P-tau, with no differences found between KO mice with and without isoflurane exposure. CONCLUSIONS We found an association between isoflurane exposure, impairment of spatial memory, decreasing level of NR2B, and increasing levels of A-beta and P-tau, presumably via the activation of the A1A receptor.
Collapse
Affiliation(s)
- Chun-Long Zuo
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chun-Man Wang
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin Liu
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiang-Ping Zhou
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin-Rui Hao
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Zhao Pan
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hua-Cheng Liu
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing-Quan Lian
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
214
|
Li Y. Synaptic Plasticity and Synchrony in the Anterior Cingulate Cortex Circuitry: A Neural Network Approach to Causality of Chronic Visceral Pain and Associated Cognitive Deficits. ADVANCES IN NEUROBIOLOGY 2018; 21:219-245. [PMID: 30334224 DOI: 10.1007/978-3-319-94593-4_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human brain imaging studies have demonstrated the importance of cortical neuronal networks in the perception of pain in patients with functional bowel disease such as irritable bowel syndrome (IBS).Studies have identified an enhanced response in the anterior cingulate cortex (ACC) to colorectal distension in viscerally hypersensitive (VH) rats. Electrophysiological recordings show long-lasting potentiation of local field potential (LFP) in the medial thalamus (MT)-ACC synapses in VH rats. Theta burst stimulation in the MT reliably induced long-term potentiation (LTP) in the MT-ACC pathway in normal rats, but was occluded in the VH state. Further, repeated tetanization of MT increased ACC neuronal activity and visceral pain responses of normal rats, mimicking VH rats. These data provide conclusive evidence that chronic visceral pain is associated with alterations of synaptic plasticity in the ACC circuitry. The ACC synaptic strengthening may engage signal transduction pathways that are in common with those activated by electrical stimulation, and serve as an attractive cellular model of functional visceral pain.Evidences have shown that most patients with IBS have psychiatric comorbidity. Using rat gambling task (RGT), we discovered an impairment of decision-making behavior in VH rats. Electrophysiological study showed a reduction of LTP in the basolateral amygdala (BLA)-ACC synapses in VH rats. Multiple-electrode array recordings of local field potential (LFP) in freely behaving rats revealed that chronic visceral pain led to disruption of ACC spike timing and BLA local theta oscillation. Finally, cross-correlation analysis revealed that VH was associated with suppressed synchronization of theta oscillation between the BLA and ACC, indicating reduced neuronal communications between these two regions. These data suggest that functional disturbances in BLA-ACC neural circuitry may be relevant causes for the deficits in decision-making in chronic pain state.The viscero-sensation is a faculty of perception that does not depend upon any outward sense, but acts to influence the elicited behavioral response. Clinically, vagus nerve stimulation (VNS) has shown several beneficial effects for mood enhancement. Our recent study characterized that VNS facilitates decision-making and unveiled several important roles for VNS in regulating LFP and spike phases, as well as enhancing spike-phase coherence between key brain areas involved in cognitive performance.It is conceivable that the visceral pain experience may be better explained as a biopsychosocial model of pain and reflected in a matrix of neuronal structures. Understanding of desynchrony in the ACC network and cognitive deficits is likely to provide exciting and powerful future treatment for chronic visceral pain related debilitating mood, anxiety, and cognitive disorders.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong. .,Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong. .,School of Veterinary Medicine, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
215
|
Karpinski RI, Kinase Kolb AM, Tetreault NA, Borowski TB. High intelligence: A risk factor for psychological and physiological overexcitabilities. INTELLIGENCE 2018. [DOI: 10.1016/j.intell.2017.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
216
|
Cdk5 Contributes to Huntington’s Disease Learning and Memory Deficits via Modulation of Brain Region-Specific Substrates. Mol Neurobiol 2017; 55:6250-6268. [DOI: 10.1007/s12035-017-0828-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 12/06/2017] [Indexed: 02/08/2023]
|
217
|
Lee A, Shen M, Qiu A. Psychiatric polygenic risk associates with cortical morphology and functional organization in aging. Transl Psychiatry 2017; 7:1276. [PMID: 29225336 PMCID: PMC5802582 DOI: 10.1038/s41398-017-0036-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/04/2017] [Accepted: 09/07/2017] [Indexed: 01/23/2023] Open
Abstract
Common brain abnormalities in cortical morphology and functional organization are observed in psychiatric disorders and aging, reflecting shared genetic influences. This preliminary study aimed to examine the contribution of a polygenetic risk for psychiatric disorders (PRScross) to aging brain and to identify molecular mechanisms through the use of multimodal brain images, genotypes, and transcriptome data. We showed age-related cortical thinning in bilateral inferior frontal cortex (IFC) and superior temporal gyrus and alterations in the functional connectivity between bilateral IFC and between right IFC and right inferior parietal lobe as a function of PRScross. Interestingly, the genes in PRScross, that contributed most to aging neurodegeneration, were expressed in the functioanlly connected cortical regions. Especially, genes identified through the genotype-functional connectivity association analysis were commonly expressed in both cortical regions and formed strong gene networks with biological processes related to neural plasticity and synaptogenesis, regulated by glutamatergic and GABAergic transmission, neurotrophin signaling, and metabolism. This study suggested integrating genotype and transcriptome with neuroimage data sheds new light on the mechanisms of aging brain.
Collapse
Affiliation(s)
- Annie Lee
- 0000 0001 2180 6431grid.4280.eDepartment of Biomedical Engineering, National University of Singapore, Singapore, 117576 Singapore
| | - Mojun Shen
- 0000 0004 0637 0221grid.185448.4Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, 117609 Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore. .,Singapore Institute for Clinical Sciences, The Agency for Science, Technology and Research, Singapore, 117609, Singapore. .,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
218
|
Ozdemir AC, Wynn GM, Vester A, Weitzmann MN, Neigh GN, Srinivasan S, Rudd MK. GNB3 overexpression causes obesity and metabolic syndrome. PLoS One 2017; 12:e0188763. [PMID: 29206867 PMCID: PMC5716578 DOI: 10.1371/journal.pone.0188763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/13/2017] [Indexed: 11/19/2022] Open
Abstract
The G-protein beta subunit 3 (GNB3) gene has been implicated in obesity risk; however, the molecular mechanism of GNB3-related disease is unknown. GNB3 duplication is responsible for a syndromic form of childhood obesity, and an activating DNA sequence variant (C825T) in GNB3 is also associated with obesity. To test the hypothesis that GNB3 overexpression causes obesity, we created bacterial artificial chromosome (BAC) transgenic mice that carry an extra copy of the human GNB3 risk allele. Here we show that GNB3-T/+ mice have increased adiposity, but not greater food intake or a defect in satiety. GNB3-T/+ mice have elevated fasting plasma glucose, insulin, and C-peptide, as well as glucose intolerance, indicating type 2 diabetes. Fasting plasma leptin, triglycerides, cholesterol and phospholipids are elevated, suggesting metabolic syndrome. Based on a battery of behavioral tests, GNB3-T/+ mice did not exhibit anxiety- or depressive-like phenotypes. GNB3-T/+ and wild-type animals have similar activity levels and heat production; however, GNB3-T/+ mice exhibit dysregulation of acute thermogenesis. Finally, Ucp1 expression is significantly lower in white adipose tissue (WAT) in GNB3-T/+ mice, suggestive of WAT remodeling that could lead to impaired cellular thermogenesis. Taken together, our study provides the first functional link between GNB3 and obesity, and presents insight into novel pathways that could be applied to combat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Alev Cagla Ozdemir
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Grace M. Wynn
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Aimee Vester
- Department of Environmental Health Sciences, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - M. Neale Weitzmann
- Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA, United States of America
- Atlanta VA Medical Center, Decatur, GA, United States of America
| | - Gretchen N. Neigh
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Shanthi Srinivasan
- Atlanta VA Medical Center, Decatur, GA, United States of America
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - M. Katharine Rudd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
- * E-mail:
| |
Collapse
|
219
|
Kim D, Cho J, Lee I, Jin Y, Kang H. Exercise Attenuates High-Fat Diet-induced Disease Progression in 3xTg-AD Mice. Med Sci Sports Exerc 2017; 49:676-686. [PMID: 27875496 DOI: 10.1249/mss.0000000000001166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Little is known regarding the therapeutic role of exercise against the risk of a high-fat diet (HFD) for Alzheimer's disease (AD) and AD-like cognitive deficits. This study aimed to investigate the therapeutic effect of treadmill running against HFD-induced progression in AD neuropathology and cognitive impairments in the triple-transgenic AD (3xTg-AD) mice. METHODS The 3xTg-AD mice were assigned to a chow diet (control, n = 10), an HFD (n = 10), or an HFD combined with exercise (HFD + EX, n = 10) group. Mice in the HFD were fed with a 60% fat diet for 20 wk. The HFD + EX mice were additionally subjected to treadmill running. RESULTS Compared with the control mice, the HFD mice had impaired brain insulin signaling, exacerbated AD neuropathology, defects in synaptic stability/plasticity, and apoptotic neuronal cell death in conjunction with exacerbated cognitive deficits in the affected brain regions, which were all significantly alleviated in the HFD + EX mice. CONCLUSION The current findings suggest that treadmill running protects against AD-like disease progression and cognitive deficits caused by an HFD in the 3xTg-AD mice.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Sport Science, Sungkyunkwan University, Suwon, REPUBLIC OF KOREA
| | | | | | | | | |
Collapse
|
220
|
Edwards D, Sommerhage F, Berry B, Nummer H, Raquet M, Clymer B, Stancescu M, Hickman JJ. Comparison of NMDA and AMPA Channel Expression and Function between Embryonic and Adult Neurons Utilizing Microelectrode Array Systems. ACS Biomater Sci Eng 2017; 3:3525-3533. [PMID: 29250595 PMCID: PMC5728088 DOI: 10.1021/acsbiomaterials.7b00596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022]
Abstract
![]()
Microelectrode
arrays (MEAs) are innovative tools used to perform
electrophysiological experiments for the study of electrical activity
and connectivity in populations of neurons from dissociated cultures.
Reliance upon neurons derived from embryonic tissue is a common limitation
of neuronal/MEA hybrid systems and perhaps of neuroscience research
in general, and the use of adult neurons could model fully functional
in vivo parameters more closely. Spontaneous network activity was
concurrently recorded from both embryonic and adult rat neurons cultured
on MEAs for up to 10 weeks in vitro to characterize the synaptic connections
between cell types. The cultures were exposed to synaptic transmission
antagonists against NMDA and AMPA channels, which revealed significantly
different receptor profiles of adult and embryonic networks in vitro.
In addition, both embryonic and adult neurons were evaluated for NMDA
and AMPA channel subunit expression over five weeks in vitro. The
results established that neurons derived from embryonic tissue did
not express mature synaptic channels for several weeks in vitro under
defined conditions. Consequently, the embryonic response to synaptic
antagonists was significantly different than that of neurons derived
from adult tissue sources. These results are especially significant
because most studies reported with embryonic hippocampal neurons do
not begin at two to four weeks in culture. In addition, the utilization
of MEAs in lieu of patch-clamp electrophysiology avoided a large-scale,
labor-intensive study. These results establish the utility of this
unique hybrid system derived from adult hippocampal tissue in combination
with MEAs and offer a more appropriate representation of in vivo function
for drug discovery. It has application for neuronal development and
regeneration as well as for investigations into neurodegenerative
disease, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Darin Edwards
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Frank Sommerhage
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Bonnie Berry
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Hanna Nummer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Martina Raquet
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Brad Clymer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| |
Collapse
|
221
|
Shinohara K, Hata T. Post-acquisition hippocampal blockade of the NMDA receptor subunit GluN2A but not GluN2B sustains spatial reference memory retention. Neurobiol Learn Mem 2017; 147:1-8. [PMID: 29127002 DOI: 10.1016/j.nlm.2017.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/09/2017] [Accepted: 11/01/2017] [Indexed: 02/03/2023]
Abstract
While it has been shown that the blockade of N-methyl-d-aspartate type glutamate receptors (NMDARs) impairs memory acquisition, recent studies have reported that the post-acquisition administration of NMDAR antagonists suppresses spatial memory decay. These findings suggest that NMDARs are important not only for the acquisition of new memories but also for the decay of previously acquired memories. The present study investigated the contributions of specific NMDAR subunits to spatial memory decay using NVP-AAM077 (NVP), an NMDAR antagonist that preferentially binds to GluN2A subunits, and the selective GluN2B blocker Ro 25-6981 (Ro). Following Morris water maze training (four trials/day for four days), NVP and/or Ro were subchronically infused into the rat hippocampus for five days. Seven days after training, NVP-treated rats and NVP/Ro-treated rats explored the target area significantly more than the control and Ro-treated rats. These results demonstrate that post-acquisition treatment with NVP, but not Ro, suppresses the forgetting of previously acquired spatial memories. The NVP-treated rats more persistently explored the target area in the second test, which was conducted one day after the first, while the NVP/Ro-treated rats did not, which suggest that Ro treatment downregulates memory retention. In conclusion, the present results indicate that the NMDAR GluN2A and GluN2B subunits contribute to spatial memory deterioration and maintenance, respectively.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Faculty of Psychology, Doshisha University, Kyotanabe, Japan; Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Toshimichi Hata
- Faculty of Psychology, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
222
|
Cai H, Wang Y, He J, Cai T, Wu J, Fang J, Zhang R, Guo Z, Guan L, Zhan Q, Lin L, Xiao Y, Pan H, Wang Q. Neuroprotective effects of bajijiasu against cognitive impairment induced by amyloid-β in APP/PS1 mice. Oncotarget 2017; 8:92621-92634. [PMID: 29190943 PMCID: PMC5696209 DOI: 10.18632/oncotarget.21515] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurological degenerative disease. The main clinical manifestations of AD include progressive cognitive impairment and alteration of personality. Senile plaques, neuroinflammation, and destruction of synapse structure stability are the main pathological features of AD. Bajijiasu(BJJS) is extracted from Morinda Officinalis, a Chinese herb. In this study, we explored the effect of BJJS on AD from many aspects in APPswe/PSEN1ΔE9 (APP/PS1) double transgenic mice. The Morris water maze and novel object recognition tests results showed that BJJS could significantly improve the learning and memory abilities in APP/PS1 mice. BJJS treatment increased the level of insulin degradation enzyme (IDE) and neprilysin (NEP) and decreased the level of β-site app cleaving enzyme 1(BACE1) in the brain of APP/PS1 mice. BJJS-treated APP/PS1 mice appeared to have reductions of Aβ deposition and senile plaques, and showed higher levels of neurotrophic factors in the brain. We also found that BJJS had an inhibitory function on neuroinflammation in APP/PS1 mice. In addition, the synapse structure relevant proteins were elevated in the brain of BJJS-treated APP/PS1 mice. The present results indicated that BJJS could attenuate cognitive impairment via ameliorating the AD-related pathological alterations in APP/PS1 mice. These findings suggest that BJJS may be a potential therapeutic strategy in Alzheimer's disease.
Collapse
Affiliation(s)
- Haobin Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yijie Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiayang He
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Tiantian Cai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jun Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiansong Fang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Rong Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhouke Guo
- Department of Neurology & Psychology, Shenzhen Hospital Affiliated to Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Li Guan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qinkai Zhan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Li Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Xiao
- Guangzhou Medical University, Guangzhou 510182, China
| | - Huafeng Pan
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
223
|
Taccola G, Sayenko D, Gad P, Gerasimenko Y, Edgerton VR. And yet it moves: Recovery of volitional control after spinal cord injury. Prog Neurobiol 2017; 160:64-81. [PMID: 29102670 PMCID: PMC5773077 DOI: 10.1016/j.pneurobio.2017.10.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/09/2017] [Accepted: 10/21/2017] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical neurophysiological and neurorehabilitation research has generated rather surprising levels of recovery of volitional sensory-motor function in persons with chronic motor paralysis following a spinal cord injury. The key factor in this recovery is largely activity-dependent plasticity of spinal and supraspinal networks. This key factor can be triggered by neuromodulation of these networks with electrical and pharmacological interventions. This review addresses some of the systems-level physiological mechanisms that might explain the effects of electrical modulation and how repetitive training facilitates the recovery of volitional motor control. In particular, we substantiate the hypotheses that: (1) in the majority of spinal lesions, a critical number and type of neurons in the region of the injury survive, but cannot conduct action potentials, and thus are electrically non-responsive; (2) these neuronal networks within the lesioned area can be neuromodulated to a transformed state of electrical competency; (3) these two factors enable the potential for extensive activity-dependent reorganization of neuronal networks in the spinal cord and brain, and (4) propriospinal networks play a critical role in driving this activity-dependent reorganization after injury. Real-time proprioceptive input to spinal networks provides the template for reorganization of spinal networks that play a leading role in the level of coordination of motor pools required to perform a given functional task. Repetitive exposure of multi-segmental sensory-motor networks to the dynamics of task-specific sensory input as occurs with repetitive training can functionally reshape spinal and supraspinal connectivity thus re-enabling one to perform complex motor tasks, even years post injury.
Collapse
Affiliation(s)
- G Taccola
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea 265, Trieste, Italy
| | - D Sayenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA
| | - P Gad
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA
| | - Y Gerasimenko
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Pavlov Institute of Physiology, St. Petersburg 199034, Russia
| | - V R Edgerton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 USA; Department of Neurobiology, University of California, Los Angeles, CA 90095 USA; Department of Neurosurgery, University of California, Los Angeles, CA 90095 USA; Brain Research Institute, University of California, Los Angeles, CA 90095 USA; The Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, 2007 NSW, Australia; Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
224
|
Laszczyk AM, Fox-Quick S, Vo HT, Nettles D, Pugh PC, Overstreet-Wadiche L, King GD. Klotho regulates postnatal neurogenesis and protects against age-related spatial memory loss. Neurobiol Aging 2017; 59:41-54. [PMID: 28837861 PMCID: PMC5612914 DOI: 10.1016/j.neurobiolaging.2017.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/22/2017] [Accepted: 07/21/2017] [Indexed: 12/29/2022]
Abstract
Although the absence of the age-regulating klotho protein causes klotho-deficient mice to rapidly develop cognitive impairment and increasing klotho enhances hippocampal-dependent memory, the cellular effects of klotho that mediate hippocampal-dependent memory function are unknown. Here, we show premature aging of the klotho-deficient hippocampal neurogenic niche as evidenced by reduced numbers of neural stem cells, decreased proliferation, and impaired maturation of immature neurons. Klotho-deficient neurospheres show reduced proliferation and size that is rescued by supplementation with shed klotho protein. Conversely, 6-month-old klotho-overexpressing mice exhibit increased numbers of neural stem cells, increased proliferation, and more immature neurons with enhanced dendritic arborization. Protection from normal age-related loss of object location memory with klotho overexpression and loss of spatial memory when klotho is reduced by even half suggests direct, local effects of the protein. Together, these data show that klotho is a novel regulator of postnatal neurogenesis affecting neural stem cell proliferation and maturation sufficient to impact hippocampal-dependent spatial memory function.
Collapse
Affiliation(s)
- Ann M Laszczyk
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie Fox-Quick
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hai T Vo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dailey Nettles
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Phyllis C Pugh
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Gwendalyn D King
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
225
|
Vivar C, van Praag H. Running Changes the Brain: the Long and the Short of It. Physiology (Bethesda) 2017; 32:410-424. [PMID: 29021361 PMCID: PMC6148340 DOI: 10.1152/physiol.00017.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Exercise is a simple intervention that profoundly benefits cognition. In rodents, running increases neurogenesis in the hippocampus, a brain area important for memory. We describe the dynamic changes in new neuron number and afferent connections throughout their maturation. We highlight the effects of exercise on the neurotransmitter systems involved, with a focus on the role of glutamate and acetylcholine in the initial development of new neurons in the adult brain.
Collapse
Affiliation(s)
- Carmen Vivar
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico; and
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
226
|
A single episode of high intensity sound inhibits long-term potentiation in the hippocampus of rats. Sci Rep 2017; 7:14094. [PMID: 29074877 PMCID: PMC5658367 DOI: 10.1038/s41598-017-14624-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/11/2017] [Indexed: 02/03/2023] Open
Abstract
Exposure to loud sounds has become increasingly common. The most common consequences of loud sound exposure are deafness and tinnitus, but emotional and cognitive problems are also associated with loud sound exposure. Loud sounds can activate the hipothalamic-pituitary-adrenal axis resulting in the secretion of corticosterone, which affects hippocampal synaptic plasticity. Previously we have shown that long-term exposure to short episodes of high intensity sound inhibited hippocampal long-term potentiation (LTP) without affecting spatial learning and memory. Here we aimed to study the impact of short term loud sound exposure on hippocampal synaptic plasticity and function. We found that a single minute of 110 dB sound inhibits hippocampal Schaffer-CA1 LTP for 24 hours. This effect did not occur with an 80-dB sound exposure, was not correlated with corticosterone secretion and was also observed in the perforant-dentate gyrus synapse. We found that despite the deficit in the LTP these animals presented normal spatial learning and memory and fear conditioning. We conclude that a single episode of high-intensity sound impairs hippocampal LTP, without impairing memory and learning. Our results show that the hippocampus is very responsive to loud sounds which can have a potential, but not yet identified, impact on its function.
Collapse
|
227
|
Li Y, Yu M, Zhao B, Wang Y, Zha Y, Li Z, Yu L, Yan L, Chen Z, Zhang W, Zeng X, He Z. Clonidine preconditioning improved cerebral ischemia-induced learning and memory deficits in rats via ERK1/2-CREB/ NF-κB-NR2B pathway. Eur J Pharmacol 2017; 818:167-173. [PMID: 29074416 DOI: 10.1016/j.ejphar.2017.10.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Clonidine, a classical α-2 adrenergic agonists, has been shown to antagonize brain damage caused by hypoxia, cerebral ischemia and excitotoxicity and reduce cerebral infarction volume in recent studies. We herein investigate the regulatory effect and possible underlying mechanism of clonidine on learning and memory in rats with cerebral ischemia. The cerebral ischemia rat model was established by right middle cerebral artery occlusion for 2h and reperfusion for 28 days. Drugs were administrated to the rats for consecutive 7 days intraperitoneally and once again on the day of surgery. The learning and memory in rats was assayed by Morris water maze. Moreover, protein expression levels of NMDAR2B (NR2B)/ phosphor - NR2B, ERK1/2/phosphor- ERK1/2, CREB/phosphor-CREB and NF-κB/phosphor-NF-κB in the cortex and hippocampus of the rats were assayed by western blotting. Our results demonstrated that clonidine treatment significantly abrogated the negative effect induced by cerebral ischemia on the learning and memory in the rats. In the Western blotting assay, clonidine treatment led to significant up-regulation of the expression level of NR2B and Phospho-NR2B in the hippocampus of the rats when compared with the cerebral ischemia group. Furthermore, clonidine also significantly decreased the protein expression levels of ERK1/2, Phospho-ERK1/2, CREB, Phospho-CREB and Phospho-NF-κB in the hippocampus of the rats when compared with the cerebral ischemia group. In conclusion, clonidine could improve the learning and memory ability of rats with cerebral ischemia, and NR2B, ERK1/2, CREB, NF-κB were involved in this effect.
Collapse
Affiliation(s)
- Yanli Li
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Min Yu
- The First Renmin Hospital of Yichang City, Yichang 443002, PR China
| | - Bo Zhao
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Yan Wang
- The First People's Hospital of Foshan City, Foshan 528000, PR China
| | - Yunhong Zha
- The First Renmin Hospital of Yichang City, Yichang 443002, PR China
| | - Zicheng Li
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Lingling Yu
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Lingling Yan
- Tianyou Affiliated Hospital,Wuhan University of Science and Technology, Wuhan 430070, PR China
| | - Zhangao Chen
- Wuhan Medtek, Biomedical Technology co., LTD, Wuhan 430064, PR China
| | - Wenjuan Zhang
- Medical School of China Three Gorges University, Yichang 443002, PR China
| | - Xiaoli Zeng
- Medical School of China Three Gorges University, Yichang 443002, PR China; Medical College of Hubei Three Gorges Polytechnic, Yichang 443002, PR China
| | - Zhi He
- Medical School of China Three Gorges University, Yichang 443002, PR China.
| |
Collapse
|
228
|
Morange M. Human germline editing: a historical perspective. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2017; 39:34. [PMID: 29038945 DOI: 10.1007/s40656-017-0161-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The development of the genome editing system called CRISPR-Cas9 has opened a huge debate on the possibility of modifying the human germline. But the types of changes that could and/or ought to be made have not been discussed. To cast some light on this debate, I will describe the story of the CRISPR-Cas9 system. Then, I will briefly review the projects for modification of the human species that were discussed by biologists throughout the twentieth century. Lastly, I will show that for plenty of reasons, both scientific and societal, germline modification is no longer a priority for our societies.
Collapse
Affiliation(s)
- Michel Morange
- Centre Cavaillès, République des Savoirs, Ecole normale superieure, 29 rue d'Ulm, 75230, Paris Cedex 05, France.
| |
Collapse
|
229
|
Jäderkvist Fegraeus K, Hirschberg I, Árnason T, Andersson L, Velie BD, Andersson LS, Lindgren G. To pace or not to pace: a pilot study of four- and five-gaited Icelandic horses homozygous for the DMRT3 'Gait Keeper' mutation. Anim Genet 2017; 48:694-697. [PMID: 29023800 DOI: 10.1111/age.12610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2017] [Indexed: 01/26/2023]
Abstract
The Icelandic horse is a breed known mainly for its ability to perform the ambling four-beat gait 'tölt' and the lateral two-beat gait pace. The natural ability of the breed to perform these alternative gaits is highly desired by breeders. Therefore, the discovery that a nonsense mutation (C>A) in the DMRT3 gene was the main genetic factor for horses' ability to perform gaits in addition to walk, trot and canter was of great interest. Although several studies have demonstrated that homozygosity for the DMRT3 mutation is important for the ability to pace, only about 70% of the homozygous mutant (AA) Icelandic horses are reported to pace. The aim of the study was to genetically compare four- and five-gaited (i.e. horses with and without the ability to pace) AA Icelandic horses by performing a genome-wide association (GWA) analysis. All horses (n = 55) were genotyped on the 670K Axiom Equine Genotyping Array, and a GWA analysis was performed using the genabel package in r. No SNP demonstrated genome-wide significance, implying that the ability to pace goes beyond the presence of a single gene variant. Despite its limitations, the current study provides additional information regarding the genetic complexity of pacing ability in horses. However, to fully understand the genetic differences between four- and five-gaited AA horses, additional studies with larger sample materials and consistent phenotyping are needed.
Collapse
Affiliation(s)
- K Jäderkvist Fegraeus
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - I Hirschberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - T Árnason
- IHBC AB, Knubbo, 74494, Morgongåva, Sweden
| | - L Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - B D Velie
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | | | - G Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| |
Collapse
|
230
|
Marszalek-Grabska M, Gibula-Bruzda E, Bodzon-Kulakowska A, Suder P, Gawel K, Talarek S, Listos J, Kedzierska E, Danysz W, Kotlinska JH. ADX-47273, a mGlu5 receptor positive allosteric modulator, attenuates deficits in cognitive flexibility induced by withdrawal from 'binge-like' ethanol exposure in rats. Behav Brain Res 2017; 338:9-16. [PMID: 29030082 DOI: 10.1016/j.bbr.2017.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/01/2017] [Accepted: 10/09/2017] [Indexed: 11/15/2022]
Abstract
Repeated exposure to and withdrawal from ethanol induces deficits in spatial reversal learning. Data indicate that metabotropic glutamate 5 (mGlu5) receptors are implicated in synaptic plasticity and learning and memory. These receptors functionally interact with N-methyl-d-aspartate (NMDA) receptors, and activation of one type results in the activation of the other. We examined whether (S)-(4-fluorophenyl)(3-(3-(4-fluorophenyl)-1,2,4-oxadiazol-5-yl)-piperidin-1-yl (ADX-47273), a positive allosteric modulator (PAM) of mGlu5 receptor, attenuates deficits in reversal learning induced by withdrawal (11-13days) from 'binge-like' ethanol input (5.0g/kg, i.g. for 5days) in the Barnes maze (a spatial learning) task in rats. We additionally examined the effects of ADX-47273 on the expression of the NMDA receptors subunit, GluN2B, in the hippocampus and prefrontal cortex, on the 13th day of ethanol withdrawal. Herein, withdrawal from repeated ethanol administration impaired reversal learning, but not the probe trial. Moreover, ADX-47273 (30mg/kg, i.p.) given prior to the first reversal learning trial for 3days in the Barnes maze, significantly enhanced performance in the ethanol-treated group. The 13th day of ethanol abstinence decreased the expression of the GluN2B subunit in the selected brain regions, but ADX-47273 administration increased it. In conclusion, positive allosteric modulation of mGlu5 receptors recovered spatial reversal learning impairment induced by withdrawal from 'binge-like' ethanol exposure. Such effect seems to be correlated with the mGlu5 receptors mediated potentiation of GluN2B-NMDA receptor mediated responses in the hippocampus and prefrontal cortex. Thus, our results emphasize the role of mGlu5 receptor PAM in the adaptive learning impaired by ethanol exposure.
Collapse
Affiliation(s)
| | - Ewa Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Anna Bodzon-Kulakowska
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Krakow, Poland
| | - Piotr Suder
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Krakow, Poland
| | - Kinga Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland; Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Ewa Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | | | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
231
|
Matsumoto Y, Niwa M, Mouri A, Noda Y, Fukushima T, Ozaki N, Nabeshima T. Adolescent stress leads to glutamatergic disturbance through dopaminergic abnormalities in the prefrontal cortex of genetically vulnerable mice. Psychopharmacology (Berl) 2017; 234:3055-3074. [PMID: 28756461 PMCID: PMC8034555 DOI: 10.1007/s00213-017-4704-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/04/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress during the adolescent period influences postnatal maturation and behavioral patterns in adulthood. Adolescent stress-induced molecular and functional changes in neurons are the key clinical features of psychiatric disorders including schizophrenia. OBJECTIVE In the present study, we exposed genetically vulnerable mice to isolation stress to examine the molecular changes in the glutamatergic system involving N-methyl-d-aspartate (NMDA) receptors via dopaminergic disturbance in the prefrontal cortex (PFc). RESULTS We report that late adolescent stress in combination with Disrupted-in-Schizophrenia 1 (DISC1) genetic risk elicited alterations in glutamatergic neurons in the PFc, such as increased expression of glutamate transporters, decreased extracellular levels of glutamate, decreased concentration of d-serine, and impaired activation of NMDA-Ca2+/calmodulin kinase II signaling. These changes resulted in behavioral deficits in locomotor activity, forced swim, social interaction, and novelty preference tests. The glutamatergic alterations in the PFc were prevented if the animals were treated with an atypical antipsychotic drug clozapine and a dopamine D1 agonist SKF81297, which suggests that the activation of dopaminergic neurons is involved in the regulation of the glutamatergic system. CONCLUSION Our results suggest that adolescent stress combined with dopaminergic abnormalities in the PFc of genetically vulnerable mice induces glutamatergic disturbances, which leads to behavioral deficits in the young adult stage.
Collapse
Affiliation(s)
- Yurie Matsumoto
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Minae Niwa
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan.
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Akihiro Mouri
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Science, Toyoake, 470-1192, Japan
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Japan
| | - Yukihiro Noda
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Japan
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, 468-8503, Japan
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Science, Toho University, Chiba, 274-8510, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, 466-8560, Japan
| | - Toshitaka Nabeshima
- Department of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503, Japan.
- Advanced Diagnostic System Research Laboratory, Fujita Health University, Graduate School of Health Science, Toyoake, 470-1192, Japan.
- NPO Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Japan.
- Aino University, Ibaragi, Osaka, 567-0012, Japan.
| |
Collapse
|
232
|
Ding S, Zhuge W, Yang J, Wen F, Xu Z, Wang X, Zhuge Q. Insulin Resistance Disrupts the Interaction Between AKT and the NMDA Receptor and the Inactivation of the CaMKIV/CREB Pathway in Minimal Hepatic Encephalopathy. Toxicol Sci 2017; 159:290-306. [PMID: 28505381 DOI: 10.1093/toxsci/kfx093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Hepatic cirrhosis-induced Minimal hepatic encephalopathy (MHE) has been characterized for cognitive dysfunction and central nervous system (CNS) insulin resistance (IR) has been acknowledged to be closely correlated with cognitive impairment while hepatic cirrhosis has been recognized to induce IR. Thus, this study aimed to investigate whether CNS IR occurred in MHE and induced MHE, as well as the underlying mechanism. We found IR in the MHE rats, an especially decreased level of the insulin receptor (InsR), and an increased serine phosphorylation of IRS1 in CNS. PI3K/AKT pathway signaling to the phosphorylation of N-Methyl-d-Aspartate receptors (NMDA receptors, NRs, NR1/NR2B) and downstream activation of the CaMKIV/CREB pathway and final production of neurotrophic factors were triggered by insulin, but impaired in the MHE rats. Additionally, CNS IR, memory impairment, the desensitization of the PI3K/AKT/NMDA receptor (NR)/CaMKIV/CREB pathway and decreased production of BDNF/NT3 in MHE rats were improved by rosiglitazone (RSG). These results suggested that IR, which induces the deficits in the insulin-mediated PI3K/AKT/NR/CaMKIV/CREB/neurotrophin pathway and subsequent memory decline, contributes to the pathogenesis of MHE.
Collapse
Affiliation(s)
- Saidan Ding
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory
| | | | - Jianjing Yang
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Fangfang Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disease Research, Department of Surgery Laboratory
| | - Zhu Xu
- Neurosurgery Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xuebao Wang
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Qichuan Zhuge
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| |
Collapse
|
233
|
Wang Q, Yin P, Yu B, Zhao Z, Richter-Levin G, Yu L, Cao X. Down-regulation of dorsal striatal αCaMKII causes striatum-related cognitive and synaptic disorders. Exp Neurol 2017; 298:112-121. [PMID: 28890075 DOI: 10.1016/j.expneurol.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/25/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Alpha calcium/calmodulin dependent protein kinase II (αCaMKII) is a serine/threonine protein kinase which is expressed abundantly in dorsal striatum and is highly involved in the corticostriatal synaptic plasticity. Nevertheless, it currently remains unclear whether and how αCaMKII plays a in the striatum-related neural disorders. To address the above issue, lentivirus-mediated short hairpin RNA (shRNA) was used to silence the expression of αCaMKII gene in the dorsal striatum of mice. As a consequence of down-regulation of dorsal striatal αCaMKII expression, we observed defective motor skill learning in accelerating rotarod and response learning in water cross maze. Furthermore, impaired corticostriatal basal transmission and long-term potentiation (LTP), which correlated with the deficits in dorsal striatum-related cognition, were also detected in the αCaMKII-shRNA mice. Consistent with the above results, αCaMKII-shRNA mice exhibited a remarkable decline in GluA1-Ser831 and GluA1-Ser845 phosphorylation levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), and a decline in the expression levels of N-methyl-d-aspartic acid receptor (NMDAR) subunits NR1, NR2A and NR2B. Taken together, αCaMKII down-regulation caused dorsal striatum-related cognitive disorders by inhibiting corticostriatal synaptic plasticity, which resulted from dysfunction of AMPARs and NMDARs. Our findings demonstrate for the first time an important role of αCaMKII in striatum-related neural disorders and provide further evidence for the proposition that corticostriatal LTP underlies aspects of dorsal striatum-related cognition.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China
| | - Pengcheng Yin
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China
| | - Bin Yu
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China
| | - Gal Richter-Levin
- "Sagol" Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | - Lu Yu
- Department of Chinese Internal Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, MOE & STCSM, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
234
|
Gulchina Y, Xu SJ, Snyder MA, Elefant F, Gao WJ. Epigenetic mechanisms underlying NMDA receptor hypofunction in the prefrontal cortex of juvenile animals in the MAM model for schizophrenia. J Neurochem 2017. [PMID: 28628228 DOI: 10.1111/jnc.14101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Schizophrenia (SCZ) is characterized not only by psychosis, but also by working memory and executive functioning deficiencies, processes that rely on the prefrontal cortex (PFC). Because these cognitive impairments emerge prior to psychosis onset, we investigated synaptic function during development in the neurodevelopmental methylazoxymethanol (MAM) model for SCZ. Specifically, we hypothesize that N-methyl-D-aspartate receptor (NMDAR) hypofunction is attributable to reductions in the NR2B subunit through aberrant epigenetic regulation of gene expression, resulting in deficient synaptic physiology and PFC-dependent cognitive dysfunction, a hallmark of SCZ. Using western blot and whole-cell patch-clamp electrophysiology, we found that the levels of synaptic NR2B protein are significantly decreased in juvenile MAM animals, and the function of NMDARs is substantially compromised. Both NMDA-mEPSCs and synaptic NMDA-eEPSCs are significantly reduced in prelimbic PFC (plPFC). This protein loss during the juvenile period is correlated with an aberrant increase in enrichment of the epigenetic transcriptional repressor RE1-silencing transcription factor (REST) and the repressive histone marker H3K27me3 at the Grin2b promoter, as assayed by ChIP-quantitative polymerase chain reaction. Glutamate hypofunction has been a prominent hypothesis in the understanding of SCZ pathology; however, little attention has been given to the NMDAR system in the developing PFC in models for SCZ. Our work is the first to confirm that NMDAR hypofunction is a feature of early postnatal development, with epigenetic hyper-repression of the Grin2b promoter being a contributing factor. The selective loss of NR2B protein and subsequent synaptic dysfunction weakens plPFC function during development and may underlie early cognitive impairments in SCZ models and patients. Read the Editorial Highlight for this article on page 264.
Collapse
Affiliation(s)
- Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Song-Jun Xu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Melissa A Snyder
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
235
|
Dysregulated Glycine Signaling Contributes to Increased Impulsivity during Protracted Alcohol Abstinence. J Neurosci 2017; 37:1853-1861. [PMID: 28202787 DOI: 10.1523/jneurosci.2466-16.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Persons with alcoholism who are abstinent exhibit persistent impairments in the capacity for response inhibition, and this form of impulsivity is significantly associated with heightened relapse risk. Brain-imaging studies implicate aberrant prefrontal cortical function in this behavioral pathology, although the underlying mechanisms are not understood. Here we present evidence that deficient activation of glycine and serine release in the ventral medial prefrontal cortex (vmPFC) contributes to increased motor impulsivity during protracted abstinence from long-term alcohol exposure. Levels of 12 neurotransmitters were monitored in the rat vmPFC during the performance of a challenging variant of the five-choice serial reaction time task (5-CSRTT) in which alcohol-exposed rats exhibit excessive premature responding. Following long-term ethanol exposure, rats showed blunted task-related recruitment of vmPFC glycine and serine release, and the loss of an inverse relationship between levels of these neurotransmitters and premature responding normally evident in alcohol-naive subjects. Intra-vmPFC administration of the glycine transport inhibitor ALX5407 prevented excessive premature responding by alcohol-exposed rats, and this was reliant on NMDA glycine site availability. Alcohol-exposed rats and controls did not differ in their premature responding and glycine and serine levels in vmPFC during the performance of the standard 5-CSRTT. Collectively, these findings provide novel insight into cortical neurochemical mechanisms contributing to increased impulsivity following long-term alcohol exposure and highlight the NMDA receptor coagonist site as a potential therapeutic target for increased impulsivity that may contribute to relapse risk.SIGNIFICANCE STATEMENT Persons with alcoholism demonstrate increased motor impulsivity during abstinence; however, the neuronal mechanisms underlying these behavioral effects remain unknown. Here, we took advantage of an animal model that shows deficiencies in inhibitory control following prolonged alcohol exposure to investigate the neurotransmitters that are potentially responsible for dysregulated motor impulsivity following long-term alcohol exposure. We found that increased motor impulsivity is associated with reduced recruitment of glycine and serine neurotransmitters in the ventromedial prefrontal cortex (vmPFC) cortex in rats following long-term alcohol exposure. Administration of glycine transport inhibitor ALX5407 in the vmPFC alleviated deficits in impulse control.
Collapse
|
236
|
Increasing the GluN2A/GluN2B Ratio in Neurons of the Mouse Basal and Lateral Amygdala Inhibits the Modification of an Existing Fear Memory Trace. J Neurosci 2017; 36:9490-504. [PMID: 27605622 DOI: 10.1523/jneurosci.1743-16.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Reconsolidation updating is a form of memory modification in which an existing memory can become destabilized upon retrieval and subsequently be modified via protein-synthesis-dependent reconsolidation. However, not all memories appear to destabilize upon retrieval and thus are not modifiable via reconsolidation updating approaches and the neurobiological basis for this remains poorly understood. Here, we report that auditory fear memories created with 10 tone-shock pairings are resistant to retrieval-dependent memory destabilization and are associated with an increase in the synaptic GluN2A/GluN2B ratio in neurons of the basal and lateral amygdala (BLA) compared with weaker fear memories created via one or three tone-shock pairings. To increase the GluN2A/GluN2B ratio after learning, we generated a line of mice that expresses an inducible and doxycycline-dependent GFP-GluN2A transgene specifically in α-CaMKII-positive neurons. Our findings indicate that increasing the GluN2A/GluN2B ratio in BLA α-CaMKII-positive neurons after a weak fear memory has consolidated inhibits retrieval-dependent memory destabilization and modification of the fear memory trace. This was associated with a reduction in retrieval-dependent AMPA receptor trafficking, as evidenced by a reduction in retrieval-dependent phosphorylation of GluR1 at serine-845. In addition, we determined that increasing the GluN2A/GluN2B ratio before fear learning significantly impaired long term memory consolidation, whereas short-term memory remained unaltered. An increase in the GluN2A/GluN2B ratio after fear learning had no influence on fear extinction or expression. Our results underscore the importance of NMDAR subunit composition for memory destabilization and suggest a mechanism for why some memories are resistant to modification. SIGNIFICANCE STATEMENT Memory modification using reconsolidation updating is being examined as one of the potential treatment approaches for attenuating maladaptive memories associated with emotional disorders. However, studies have shown that, whereas weak memories can be modified using reconsolidation updating, strong memories can be resistant to this approach. Therefore, treatments targeting the reconsolidation process are unlikely to be clinically effective unless methods are devised to enhance retrieval-dependent memory destabilization. Currently, little is known about the cellular and molecular events that influence the induction of reconsolidation updating. Here, we determined that an increase in the GluN2A/GluN2B ratio interferes with retrieval-dependent memory destabilization and inhibits the initiation of reconsolidation updating.
Collapse
|
237
|
Leon J, Moreno AJ, Garay BI, Chalkley RJ, Burlingame AL, Wang D, Dubal DB. Peripheral Elevation of a Klotho Fragment Enhances Brain Function and Resilience in Young, Aging, and α-Synuclein Transgenic Mice. Cell Rep 2017; 20:1360-1371. [PMID: 28793260 PMCID: PMC5816951 DOI: 10.1016/j.celrep.2017.07.024] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/28/2017] [Accepted: 07/12/2017] [Indexed: 01/24/2023] Open
Abstract
Cognitive dysfunction and decreased mobility from aging and neurodegenerative conditions, such as Parkinson and Alzheimer diseases, are major biomedical challenges in need of more effective therapies. Increasing brain resilience may represent a new treatment strategy. Klotho, a longevity factor, enhances cognition when genetically and broadly overexpressed in its full, wild-type form over the mouse lifespan. Whether acute klotho treatment can rapidly enhance cognitive and motor functions or induce resilience is a gap in our knowledge of its therapeutic potential. Here, we show that an α-klotho protein fragment (αKL-F), administered peripherally, surprisingly induced cognitive enhancement and neural resilience despite impermeability to the blood-brain barrier in young, aging, and transgenic α-synuclein mice. αKL-F treatment induced cleavage of the NMDAR subunit GluN2B and also enhanced NMDAR-dependent synaptic plasticity. GluN2B blockade abolished αKL-F-mediated effects. Peripheral αKL-F treatment is sufficient to induce neural enhancement and resilience in mice and may prove therapeutic in humans.
Collapse
Affiliation(s)
- Julio Leon
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arturo J Moreno
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bayardo I Garay
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert J Chalkley
- Department of Chemistry and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L Burlingame
- Department of Chemistry and Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dan Wang
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dena B Dubal
- Department of Neurology, Biomedical Sciences Graduate Program, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
238
|
Diamantopoulou A, Sun Z, Mukai J, Xu B, Fenelon K, Karayiorgou M, Gogos JA. Loss-of-function mutation in Mirta22/Emc10 rescues specific schizophrenia-related phenotypes in a mouse model of the 22q11.2 deletion. Proc Natl Acad Sci U S A 2017; 114:E6127-E6136. [PMID: 28696314 PMCID: PMC5544257 DOI: 10.1073/pnas.1615719114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identification of protective loss-of-function (LoF) mutations holds great promise for devising novel therapeutic interventions, although it faces challenges due to the scarcity of protective LoF alleles in the human genome. Exploiting the detailed mechanistic characterization of animal models of validated disease mutations offers an alternative. Here, we provide insights into protective-variant biology based on our characterization of a model of the 22q11.2 deletion, a strong genetic risk factor for schizophrenia (SCZ). Postnatal brain up-regulation of Mirta22/Emc10, an inhibitor of neuronal maturation, represents the major transcriptional effect of the 22q11.2-associated microRNA dysregulation. Here, we demonstrate that mice in which the Df(16)A deficiency is combined with a LoF Mirta22 allele show rescue of key SCZ-related deficits, namely prepulse inhibition decrease, working memory impairment, and social memory deficits, as well as synaptic and structural plasticity abnormalities in the prefrontal cortex. Additional analysis of homozygous Mirta22 knockout mice, in which no alteration is observed in the above-mentioned SCZ-related phenotypes, highlights the deleterious effects of Mirta22 up-regulation. Our results support a causal link between dysregulation of a miRNA target and SCZ-related deficits and provide key insights into beneficial LoF mutations and potential new treatments.
Collapse
Affiliation(s)
- Anastasia Diamantopoulou
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Ziyi Sun
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Bin Xu
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Karine Fenelon
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Maria Karayiorgou
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
239
|
Abstract
Adult hippocampal neurogenesis (AHN) occurs in humans and every other mammalian species examined. Evidence that AHN is stimulated by a variety of treatments and behaviors with anxiolytic properties has sparked interest in harnessing AHN to treat anxiety disorders. However, relatively little is known about the mechanisms through which AHN modulates fear and anxiety. In this review, we consider evidence that AHN modulates fear and anxiety by altering the processing of and memory for traumatic experiences. Based on studies of the role of AHN in Pavlovian fear conditioning, we conclude that AHN modulates the consequences of aversive experience by influencing 1) the efficiency of hippocampus-dependent memory acquisition; 2) generalization of hippocampal fear memories; 3) long-term retention of hippocampal aversive memories; and 4) the nonassociative effects of acute aversive experience. The preclinical literature suggests that stimulation of AHN is likely to have therapeutically relevant consequences, including reduced generalization and long-term retention of aversive memories. However, the literature also identifies four caveats that must be addressed if AHN-based therapies are to achieve therapeutic benefits without significant side effects.
Collapse
Affiliation(s)
- Michael R Drew
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| | - Kylie A Huckleberry
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
240
|
Strong KL, Epplin MP, Bacsa J, Butch CJ, Burger PB, Menaldino DS, Traynelis SF, Liotta DC. The Structure-Activity Relationship of a Tetrahydroisoquinoline Class of N-Methyl-d-Aspartate Receptor Modulators that Potentiates GluN2B-Containing N-Methyl-d-Aspartate Receptors. J Med Chem 2017; 60:5556-5585. [PMID: 28586221 DOI: 10.1021/acs.jmedchem.7b00239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have identified a series of positive allosteric NMDA receptor (NMDAR) modulators derived from a known class of GluN2C/D-selective tetrahydroisoquinoline analogues that includes CIQ. The prototypical compound of this series contains a single isopropoxy moiety in place of the two methoxy substituents present in CIQ. Modifications of this isopropoxy-containing scaffold led to the identification of analogues with enhanced activity at the GluN2B subunit. We identified molecules that potentiate the response of GluN2B/GluN2C/GluN2D, GluN2B/GluN2C, and GluN2C/GluN2D-containing NMDARs to maximally effective concentrations of agonist. Multiple compounds potentiate the response of NMDARs with submicromolar EC50 values. Analysis of enantiomeric pairs revealed that the S-(-) enantiomer is active at the GluN2B, GluN2C, and/or GluN2D subunits, whereas the R-(+) enantiomer is only active at GluN2C/D subunits. These results provide a starting point for the development of selective positive allosteric modulators for GluN2B-containing receptors.
Collapse
Affiliation(s)
- Katie L Strong
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew P Epplin
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher J Butch
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Earth-Life Science Institute, Tokyo Institute of Technology , Meguro-ku, Tokyo Japan
| | - Pieter B Burger
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David S Menaldino
- Department of Chemistry, Emory University , 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University , 1510 Clifton Road, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Pharmacology, Emory University , 1510 Clifton Road, Atlanta, Georgia 30322, United States
| |
Collapse
|
241
|
Yang Q, Zhu G, Liu D, Ju JG, Liao ZH, Xiao YX, Zhang Y, Chao N, Wang J, Li W, Luo JH, Li ST. Extrasynaptic NMDA receptor dependent long-term potentiation of hippocampal CA1 pyramidal neurons. Sci Rep 2017; 7:3045. [PMID: 28596523 PMCID: PMC5465207 DOI: 10.1038/s41598-017-03287-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/25/2017] [Indexed: 02/05/2023] Open
Abstract
In the adult mouse hippocampus, NMDA receptors (NMDARs) of CA1 neurons play an important role in the synaptic plasticity. The location of NMDARs can determine their roles in the induction of long-term potentiation (LTP). However, the extrasynaptic NMDARs (ES-NMDARs) dependent LTP haven’t been reported. Here, through the use of a 5-Hz stimulation and MK-801 (an irreversible antagonist of NMDARs) in the CA1 neurons of adult mice hippocampal slices, synaptic NMDARs were selectively inhibited and NMDAR-mediated excitatory postsynaptic currents were not recovered. We found that a robust LTP was induced by 3-train 100-Hz stimulation when the synaptic NMDARs and extrasynaptic NR2B containing NMDARs were blocked, but not in the any of the following conditions: blocking of all NMDARs (synaptic and extrasynaptic), blocking of the synaptic NMDARs, and blocking of the synaptic NMDARs and extrasynaptic NR2A-containing NMDARs. The results indicate that this LTP is ES-NMDARs dependent, and NR2B-containing ES-NMDARs modulates the threshold of LTP induction.
Collapse
Affiliation(s)
- Qian Yang
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Zhu
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dandan Liu
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jue-Gang Ju
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen-Hua Liao
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Xin Xiao
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Naijian Chao
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - JieJie Wang
- Department of Neurobiology, Key Laboratory of Medical, Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weidong Li
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Hong Luo
- Department of Neurobiology, Key Laboratory of Medical, Neurobiology (Ministry of Health of China), Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Sheng-Tian Li
- Key laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Key Laboratory of Psychotic Disorders, Institute of Social Cognitive and Behavioral Sciences, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
242
|
Chakraborty M, Chen LF, Fridel EE, Klein ME, Senft RA, Sarkar A, Jarvis ED. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches. Sci Rep 2017; 7:942. [PMID: 28432288 PMCID: PMC5430713 DOI: 10.1038/s41598-017-00519-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 03/03/2017] [Indexed: 01/04/2023] Open
Abstract
Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.
Collapse
Affiliation(s)
- Mukta Chakraborty
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Emma E Fridel
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Marguerita E Klein
- Neurotransgenic Laboratory, Department of Neurobiology, Duke University, Durham, NC, 27710, USA
| | - Rebecca A Senft
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA.,Department of Neurobiology, Harvard University, Cambridge, MA, 02138, USA
| | - Abhra Sarkar
- Department of Statistical Science, Duke University, Durham, NC, 27710, USA
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
243
|
Mikics E, Toth M, Biro L, Bruzsik B, Nagy B, Haller J. The role of GluN2B-containing NMDA receptors in short- and long-term fear recall. Physiol Behav 2017; 177:44-48. [PMID: 28400283 DOI: 10.1016/j.physbeh.2017.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/24/2017] [Accepted: 04/07/2017] [Indexed: 12/27/2022]
Abstract
N-methyl-d-aspartate (NMDA) receptors are crucial synaptic elements in long-term memory formation, including the associative learning of fearful events. Although NMDA blockers were consistently shown to inhibit fear memory acquisition and recall, the clinical use of general NMDA blockers is hampered by their side effects. Recent studies revealed significant heterogeneity in the distribution and neurophysiological characteristics of NMDA receptors with different GluN2 (NR2) subunit composition, which may have differential role in fear learning and recall. To investigate the specific role of NMDA receptor subpopulations with different GluN2 subunit compositions in the formation of lasting traumatic memories, we contrasted the effects of general NMDA receptor blockade with GluN2A-, GluN2B-, and GluN2C/D subunit selective antagonists (MK-801, PEAQX, Ro25-6981, PPDA, respectively). To investigate acute and lasting consequences, behavioral responses were investigated 1 and 28days after fear conditioning. We found that MK-801 (0.05 and 0.1mg/kg) decreased fear recall at both time points. GluN2B receptor subunit blockade produced highly similar effects, albeit efficacy was somewhat smaller 28days after fear conditioning. Unlike MK-801, Ro25-6981 (3 and 10mg/kg) did not affect locomotor activity in the open-field. In contrast, GluN2A and GluN2C/D blockers (6 and 20mg/kg PEAQX; 3 and 10mg/kg PPDA, respectively) had no effect on conditioned fear recall at any time point and dose. This sharp contrast between GluN2B- and other subunit-containing NMDA receptor function indicates that GluN2B receptor subunits are intimately involved in fear memory formation, and may provide a novel pharmacological target in post-traumatic stress disorder or other fear-related disorders.
Collapse
Affiliation(s)
- Eva Mikics
- Institute of Experimental Medicine, Department of Behavioral Neuroscience, P.O. Box 67, H-1450 Budapest, Hungary.
| | - Mate Toth
- Institute of Experimental Medicine, Department of Behavioral Neuroscience, P.O. Box 67, H-1450 Budapest, Hungary
| | - Laszlo Biro
- Institute of Experimental Medicine, Department of Behavioral Neuroscience, P.O. Box 67, H-1450 Budapest, Hungary
| | - Biborka Bruzsik
- Institute of Experimental Medicine, Department of Behavioral Neuroscience, P.O. Box 67, H-1450 Budapest, Hungary
| | - Boglarka Nagy
- Institute of Experimental Medicine, Department of Behavioral Neuroscience, P.O. Box 67, H-1450 Budapest, Hungary
| | - Jozsef Haller
- Institute of Experimental Medicine, Department of Behavioral Neuroscience, P.O. Box 67, H-1450 Budapest, Hungary
| |
Collapse
|
244
|
Qvist P, Rajkumar AP, Redrobe JP, Nyegaard M, Christensen JH, Mors O, Wegener G, Didriksen M, Børglum AD. Mice heterozygous for an inactivated allele of the schizophrenia associated Brd1 gene display selective cognitive deficits with translational relevance to schizophrenia. Neurobiol Learn Mem 2017; 141:44-52. [PMID: 28341151 DOI: 10.1016/j.nlm.2017.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Schizophrenia is a debilitating brain disorder characterized by disturbances of emotion, perception and cognition. Cognitive impairments predict functional outcome in schizophrenia and are detectable even in the prodromal stage of the disorder. However, our understanding of the underlying neurobiology is limited and procognitive treatments remain elusive. We recently demonstrated that mice heterozygous for an inactivated allele of the schizophrenia-associated Brd1 gene (Brd1+/- mice) display behaviors reminiscent of schizophrenia, including impaired social cognition and long-term memory. Here, we further characterize performance of these mice by following the preclinical guidelines recommended by the 'Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS)' and 'Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS)' initiatives to maximize translational value. Brd1+/- mice exhibit relational encoding deficits, compromised working and long term memory, as well as impaired executive cognitive functioning with cognitive behaviors relying on medial prefrontal cortex being particularly affected. Akin to patients with schizophrenia, the cognitive deficits displayed by Brd1+/- mice are not global, but selective. Our results underline the value of Brd1+/- mice as a promising tool for studying the neurobiology of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Per Qvist
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; H. Lundbeck A/S, Synaptic Transmission, Valby, Denmark
| | - Anto P Rajkumar
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | | | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark.
| |
Collapse
|
245
|
Missaire M, Fraize N, Joseph MA, Hamieh AM, Parmentier R, Marighetto A, Salin PA, Malleret G. Long-term effects of interference on short-term memory performance in the rat. PLoS One 2017; 12:e0173834. [PMID: 28288205 PMCID: PMC5348021 DOI: 10.1371/journal.pone.0173834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022] Open
Abstract
A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored more permanently in an intermediary form or memory between WM and long-term memory.
Collapse
Affiliation(s)
- Mégane Missaire
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France
| | - Nicolas Fraize
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France
| | - Mickaël Antoine Joseph
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France
| | - Al Mahdy Hamieh
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France
| | - Régis Parmentier
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Aline Marighetto
- Neurocentre Magendie, INSERM U1215, Université de Bordeaux, Bordeaux, France
| | - Paul Antoine Salin
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| | - Gaël Malleret
- Forgetting and Cortical Dynamics Team, Lyon Neuroscience Research Center (CRNL), University Lyon 1, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Lyon, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Lyon, France
| |
Collapse
|
246
|
Li YJ, Ping XJ, Qi C, Shen F, Sun LL, Sun XW, Ge FF, Xing GG, Cui CL. Re-exposure to morphine-associated context facilitated long-term potentiation in the vSUB-NAc glutamatergic pathway via GluN2B-containing receptor activation. Addict Biol 2017; 22:435-445. [PMID: 26692025 DOI: 10.1111/adb.12343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/29/2015] [Accepted: 11/04/2015] [Indexed: 12/28/2022]
Abstract
The glutamatergic projection from the ventral subiculum of the hippocampus (vSUB) to the nucleus accumbens (NAc) shell has been reported to play a key role in drug-related behavior. The GluN2B subunit of N-methyl-D-aspartate receptors (NMDARs) in the NAc can be selectively elevated after the retrieval of drug-conditioned memory. However, whether the increased GluN2B-containing NMDARs (GluN2B-NMDARs) are able to alter the synaptic plasticity of the vSUB-NAc glutamatergic pathway remains unclear. Here, we found that the long-term potentiation (LTP) in the vSUB-NAc pathway was facilitated and the GluN2B subunit protein level was elevated in synaptoneurosomes of the NAc shell, but not in the core, following morphine-induced conditioned place preference (CPP) expression in rats. The facilitated LTP was prevented by the GluN2B-NMDAR antagonist RO25-6981. Also, a neurochemical disconnection following microinjection of RO25-6981 into the NAc shell, plus microinfusion of GABA agonist baclofen and muscimol into the contralateral vSUB prevented the expression of morphine-induced CPP. These findings suggest that the retrieval of drug-associated memory potentiated synaptic plasticity in the vSUB-NAc pathway, which was dependent on GluN2B-NMDAR activation in the NAc shell. These findings provide a new explanation for the mechanisms that underlie the morphine-associated-context memory. The GluN2B-NMDARs may be regarded as a potential target for erasing morphine-related memory.
Collapse
Affiliation(s)
- Yi-Jing Li
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| | - Xing-Jie Ping
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| | - Chong Qi
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| | - Fang Shen
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| | - Lin-Lin Sun
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| | - Xiao-Wei Sun
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| | - Fei-Fei Ge
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| | - Guo-Gang Xing
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| | - Cai-Lian Cui
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology, School of Basic Medical Sciences; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education; Beijing China
- Key Laboratory for Neuroscience; Ministry of National Health and Family Planning Commission; Beijing China
| |
Collapse
|
247
|
Nguyen-Vu TB, Zhao GQ, Lahiri S, Kimpo RR, Lee H, Ganguli S, Shatz CJ, Raymond JL. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity. eLife 2017; 6. [PMID: 28234229 PMCID: PMC5386593 DOI: 10.7554/elife.20147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 02/02/2017] [Indexed: 11/19/2022] Open
Abstract
Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here, we show that the recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb−/−), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that the recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes. DOI:http://dx.doi.org/10.7554/eLife.20147.001 All animals can learn from their experiences. One of the main ideas for how learning occurs is that it involves changes in the strength of the connections between neurons, known as synapses. The ability of synapses to become stronger or weaker is referred to as synaptic plasticity. High levels of synaptic plasticity are generally thought to be good for learning, while low levels of synaptic plasticity make learning more difficult. Nevertheless, studies have also reported that high levels of synaptic plasticity can sometimes impair learning. To explain these mixed results, Nguyen-Vu, Zhao, Lahiri et al. studied mice that had been genetically modified to show greater synaptic plasticity than normal mice. The same individual mutant animals were sometimes less able to learn an eye-movement task than unmodified mice, and at other times better able to learn exactly the same task. The main factor that determined how well the mice could learn was what the mice had experienced shortly before they began the training. Nguyen-Vu et al. propose that some experiences change the strength of synapses so much that they temporarily prevent those synapses from undergoing any further changes. Animals with these “saturated” synapses will struggle to learn a new task, even if their brains are normally capable of high levels of synaptic plasticity. Notably, even normal activity appears to be able to put the synapses of the mutant mice into a saturated state, whereas this saturation would only occur in normal mice under a restricted set of circumstances. Consistent with this idea, Nguyen-Vu et al. showed that a specific type of pre-training that desaturates synapses improved the ability of the modified mice to learn the eye-movement task. Conversely, a different procedure that is known to saturate synapses impaired the learning ability of the unmodified mice. A future challenge is to test these predictions experimentally by measuring changes in synaptic plasticity directly, both in brain slices and in living animals. The results could ultimately help to develop treatments that improve the ability to learn and so could provide benefits to a wide range of individuals, including people who have suffered a brain injury or stroke. DOI:http://dx.doi.org/10.7554/eLife.20147.002
Collapse
Affiliation(s)
- Td Barbara Nguyen-Vu
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Molecular and Cellular Physiology, Stanford School of Medicine, Stanford, United States
| | - Grace Q Zhao
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Subhaneil Lahiri
- Department of Applied Physics, Stanford University, Stanford, United States
| | - Rhea R Kimpo
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Hanmi Lee
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| | - Surya Ganguli
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Applied Physics, Stanford University, Stanford, United States
| | - Carla J Shatz
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Jennifer L Raymond
- Department of Neurobiology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
248
|
Rammes G, Mattusch C, Wulff M, Seeser F, Kreuzer M, Zhu K, Deussing JM, Herms J, Parsons CG. Involvement of GluN2B subunit containing N-methyl-d-aspartate (NMDA) receptors in mediating the acute and chronic synaptotoxic effects of oligomeric amyloid-beta (Aβ) in murine models of Alzheimer's disease (AD). Neuropharmacology 2017; 123:100-115. [PMID: 28174113 DOI: 10.1016/j.neuropharm.2017.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/17/2017] [Accepted: 02/03/2017] [Indexed: 01/05/2023]
Abstract
To elucidate whether a permanent reduction of the GluN2B subunit affects the pathology of Alzheimer's disease (AD), we cross-bred mice heterozygous for GluN2B receptors in the forebrain (hetGluN2B) with a mouse model for AD carrying a mutated amyloid precursor protein with the Swedish and Arctic mutation (mAPP) resulting in a hetGluN2B/mAPP transgenic. By means of voltage-sensitive dye imaging (VSDI) in the di-synaptic hippocampal pathway and the recording of field excitatory postsynaptic potentials (fEPSPs), hippocampal slices of all genotypes (WT, hetGluN2B, mAPP and hetGluN2B/mAPP, age 9-18 months) were tested for spatiotemporal activity propagation and long-term potentiation (LTP) induction. CA1-LTP induced by high frequency stimulation (HFS; 100 Hz/1s) was not different in all genotypes. Aβ1-42 (50 nM)-application reduced potentiation of fEPSP in WT and hetGluN2B/mAPP mice, LTP in mAPP and hetGluN2B mice was not affected. For VSDI a fast depolarization signal was evoked in the granule cell layer and propagation was analysed in hippocampal CA3 and CA1 region before and after theta stimulation (100pulses/5 Hz). LTP was not significantly different between all genotypes. In mAPP mice θ-stim produced an epileptiform activity reflected in a pronounced prolongation of the FDS compared to the other genotypes. In slices of hetGluN2B/mAPP and GluN2B mice, however, these parameters were similar to WT mice indicating a reversal effect of the attenuated GluN2B expression. The induction of a hetGluN2B mutation in the mAPP reversed some pathophysiological changes on hippocampal LTP and provide further evidence for the involvement of the glutamatergic system in AD and emphasize the GluN2B subunit as a potential target for AD treatment.
Collapse
Affiliation(s)
- Gerhard Rammes
- Department of Anaesthesiology, Technische Universität München, Munich, Germany; Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| | - Corinna Mattusch
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Matthias Wulff
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Franziska Seeser
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Matthias Kreuzer
- Department of Anaesthesiology, Technische Universität München, Munich, Germany
| | - Kaichuan Zhu
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Chris G Parsons
- Non-Clinical Science, Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany
| |
Collapse
|
249
|
Differential effect of chronic stress on mouse hippocampal memory and affective behavior: Role of major ovarian hormones. Behav Brain Res 2017; 318:36-44. [DOI: 10.1016/j.bbr.2016.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/27/2016] [Accepted: 10/21/2016] [Indexed: 01/08/2023]
|
250
|
Márquez Loza A, Elias V, Wong CP, Ho E, Bermudez M, Magnusson KR. Effects of ibuprofen on cognition and NMDA receptor subunit expression across aging. Neuroscience 2017; 344:276-292. [PMID: 28057539 DOI: 10.1016/j.neuroscience.2016.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 11/28/2022]
Abstract
Age-related declines in long- and short-term memory show relationships to decreases in N-methyl-d-aspartate (NMDA) receptor expression, which may involve inflammation. This study was designed to determine effects of an anti-inflammatory drug, ibuprofen, on cognitive function and NMDA receptor expression across aging. Male C57BL/6 mice (ages 5, 14, 20, and 26months) were fed ibuprofen (375ppm) in NIH31 diet or diet alone for 6weeks prior to testing. Behavioral testing using the Morris water maze showed that older mice performed significantly worse than younger in spatial long-term memory, reversal, and short-term memory tasks. Ibuprofen enhanced overall performance in the short-term memory task, but this appeared to be more related to improved executive function than memory. Ibuprofen induced significant decreases over all ages in the mRNA densities for GluN2B subunit, all GluN1 splice variants, and GluN1-1 splice forms in the frontal cortex and in protein expression of GluN2A, GluN2B and GluN1 C2' cassettes in the hippocampus. GluN1-3 splice form mRNA and C2' cassette protein were significantly increased across ages in frontal lobes of ibuprofen-treated mice. Ibuprofen did not alter expression of pro-inflammatory cytokines IL-1β and TNFα, but did reduce the area of reactive astrocyte immunostaining in frontal cortex of aged mice. Enhancement in executive function showed a relationship to increased GluN1-3 mRNA and decreased gliosis. These findings suggest that inflammation may play a role in executive function declines in aged animals, but other effects of ibuprofen on NMDA receptors appeared to be unrelated to aging or inflammation.
Collapse
Affiliation(s)
- Alejandra Márquez Loza
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Valerie Elias
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Emily Ho
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Michelle Bermudez
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Kathy R Magnusson
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|