201
|
Lee D, Shenoy S, Nigatu Y, Plotkin M. Id proteins regulate capillary repair and perivascular cell proliferation following ischemia-reperfusion injury. PLoS One 2014; 9:e88417. [PMID: 24516656 PMCID: PMC3917915 DOI: 10.1371/journal.pone.0088417] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/07/2014] [Indexed: 01/08/2023] Open
Abstract
Acute kidney injury (AKI) results in microvascular damage that if not normally repaired, may lead to fibrosis. The Id1 and 3 proteins have a critical role in promoting angiogenesis during development, tumor growth and wound repair by functioning as dominant negative regulators of bHLH transcription factors. The goal of this study was to determine if Id proteins regulate microvascular repair and remodeling and if increased Id1 expression results in decreased capillary loss following AKI. The effect of changes in Id expression in vivo was examined using Id1−/−, Id3RFP/+ (Id1/Id3 KO) and Tek (Tie2)-rtTA, TRE-lacz/TRE Id1 (TRE Id1) mice with doxycycline inducible endothelial Id1 and β-galactosidase expression. Id1 and 3 were co-localized in endothelial cells in normal adult kidneys and protein levels were increased at day 3 following ischemia-reperfusion injury (IRI) and contralateral nephrectomy. Id1/Id3 KO mice had decreased baseline capillary density and pericyte coverage and increased tubular damage following IRI but decreased interstitial cell proliferation and fibrosis compared with WT littermates. No compensatory increase in kidney size occurred in KO mice resulting in increased creatinine compared with WT and TRE Id1 mice. TRE Id1 mice had no capillary rarefaction within 1 week following IRI in comparison with WT littermates. TRE Id1 mice had increased proliferation of PDGFRβ positive interstitial cells and medullary collagen deposition and developed capillary rarefaction and albuminuria at later time points. These differences were associated with increased Angiopoietin 1 (Ang1) and decreased Ang2 expression in TRE Id1 mice. Examination of gene expression in microvascular cells isolated from WT, Id1/Id3 KO and TRE Id1 mice showed increased Ang1 and αSMA in Id1 overexpressing cells and decreased pericyte markers in cells from KO mice. These results suggest that increased Id levels following AKI result in microvascular remodeling associated with increased fibrosis.
Collapse
Affiliation(s)
- David Lee
- Department of Medicine, Renal Research Division, New York Medical College, Valhalla, New York, United States of America
| | - Shantheri Shenoy
- Department of Medicine, Renal Research Division, New York Medical College, Valhalla, New York, United States of America
| | - Yezina Nigatu
- Department of Medicine, Renal Research Division, New York Medical College, Valhalla, New York, United States of America
| | - Matt Plotkin
- Department of Medicine, Renal Research Division, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
202
|
Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 2014; 14:77-91. [PMID: 24442143 DOI: 10.1038/nrc3638] [Citation(s) in RCA: 267] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life. ID genes are frequently deregulated in many types of human neoplasms, and they endow cancer cells with biological features that are hijacked from normal stem cells. The ability of ID proteins to function as central 'hubs' for the coordination of multiple cancer hallmarks has established these transcriptional regulators as therapeutic targets and biomarkers in specific types of human tumours.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology and Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 241, New York, 10065 New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| |
Collapse
|
203
|
Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med 2014; 19:1450-64. [PMID: 24202397 DOI: 10.1038/nm.3391] [Citation(s) in RCA: 590] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/04/2013] [Indexed: 02/07/2023]
Abstract
As the culprit behind most cancer-related deaths, metastasis is the ultimate challenge in our effort to fight cancer as a life-threatening disease. The explosive growth of metastasis research in the past decade has yielded an unprecedented wealth of information about the tumor-intrinsic and tumor-extrinsic mechanisms that dictate metastatic behaviors, the molecular and cellular basis underlying the distinct courses of metastatic progression in different cancers and what renders metastatic cancer refractory to available therapies. However, integration of such new knowledge into an improved, metastasis-oriented oncological drug development strategy is needed to thwart the development of metastatic disease at every stage of progression.
Collapse
Affiliation(s)
- Liling Wan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | |
Collapse
|
204
|
Rahme GJ, Israel MA. Id4 suppresses MMP2-mediated invasion of glioblastoma-derived cells by direct inactivation of Twist1 function. Oncogene 2014; 34:53-62. [DOI: 10.1038/onc.2013.531] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022]
|
205
|
Gene-environment interactions in severe intraventricular hemorrhage of preterm neonates. Pediatr Res 2014; 75:241-50. [PMID: 24192699 PMCID: PMC3946468 DOI: 10.1038/pr.2013.195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/06/2013] [Indexed: 12/20/2022]
Abstract
Intraventricular hemorrhage (IVH) of the preterm neonate is a complex developmental disorder, with contributions from both the environment and the genome. IVH, or hemorrhage into the germinal matrix of the developing brain with secondary periventricular infarction, occurs in that critical period of time before the 32nd to 33rd wk postconception and has been attributed to changes in cerebral blood flow to the immature germinal matrix microvasculature. Emerging data suggest that genes subserving coagulation, inflammatory, and vascular pathways and their interactions with environmental triggers may influence both the incidence and severity of cerebral injury and are the subject of this review. Polymorphisms in the Factor V Leiden gene are associated with the atypical timing of IVH, suggesting an as yet unknown environmental trigger. The methylenetetrahydrofolate reductase (MTHFR) variants render neonates more vulnerable to cerebral injury in the presence of perinatal hypoxia. The present study demonstrates that the MTHFR 677C>T polymorphism and low 5-min Apgar score additively increase the risk of IVH. Finally, review of published preclinical data suggests the stressors of delivery result in hemorrhage in the presence of mutations in collagen 4A1, a major structural protein of the developing cerebral vasculature. Maternal genetics and fetal environment may also play a role.
Collapse
|
206
|
Abstract
The family of inhibitor of differentiation (Id) proteins is a group of evolutionarily conserved molecules, which play important regulatory roles in organisms ranging from Drosophila to humans. Id proteins are small polypeptides harboring a helix-loop-helix (HLH) motif, which are best known to mediate dimerization with other basic HLH proteins, primarily E proteins. Because Id proteins do not possess the basic amino acids adjacent to the HLH motif necessary for DNA binding, Id proteins inhibit the function of E protein homodimers, as well as heterodimers between E proteins and tissue-specific bHLH proteins. However, Id proteins have also been shown to have E protein-independent functions. The Id genes are broadly but differentially expressed in a variety of cell types. Transcription of the Id genes is controlled by transcription factors such as C/EBPβ and Egr as well as by signaling pathways triggered by different stimuli, which include bone morphogenic proteins, cytokines, and ligands of T cell receptors. In general, Id proteins are capable of inhibiting the differentiation of progenitors of different cell types, promoting cell-cycle progression, delaying cellular senescence, and facilitating cell migration. These properties of Id proteins enable them to play significant roles in stem cell maintenance, vasculogenesis, tumorigenesis and metastasis, the development of the immune system, and energy metabolism. In this review, we intend to highlight the current understanding of the function of Id proteins and discuss gaps in our knowledge about the mechanisms whereby Id proteins exert their diverse effects in multiple cellular processes.
Collapse
Affiliation(s)
- Flora Ling
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Bin Kang
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiao-Hong Sun
- Immunobiology Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
207
|
DiVito KA, Simbulan-Rosenthal CM, Chen YS, Trabosh VA, Rosenthal DS. Id2, Id3 and Id4 overcome a Smad7-mediated block in tumorigenesis, generating TGF-β-independent melanoma. Carcinogenesis 2013; 35:951-8. [PMID: 24343358 DOI: 10.1093/carcin/bgt479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role for the inhibitors of differentiation (Ids) proteins in melanomagenesis has been poorly explored. In other cell types, Ids have been shown to contribute to cell proliferation, migration and angiogenesis and, along with a number of other genes, are direct downstream targets of the transforming growth factor (TGF)-β pathway. Expression of Smad7, which suppress TGF-β signaling, or synthetic TGF-β inhibitors, was shown to potently suppress melanomagenesis. We found that endogenous Id2, Id3 and Id4 expression was elevated in 1205Lu versus 1205Lu cells constitutively expressing Smad7, indicating Ids may play a role in melanomagenesis. Therefore, the effects of Tet-inducible expression of Id2, Id3 or Id4 along with Smad7 in TGF-β-dependent 1205Lu human melanoma cells were explored in vitro and in vivo. 1205Lu cells formed subcutaneous tumors in athymic mice, whereas cells expressing Smad7 failed to form tumors. However, 1205Lu cells expressing Smad7 along with doxycycline-induced Id2, Id3 or Id4 were able to overcome the potent tumorigenic block mediated by S7, to varying degrees. Conversely, Id small interfering RNA knockdown suppressed anchorage-independent growth of melanoma. Histology of tumors from 1205Lu cells expressing Smad7 + Id4 revealed an average of 31% necrosis, compared with 5.2% in tumors from 1205Lu with vector only. Downstream, Ids suppressed cyclin-dependent kinase inhibitors, and re-upregulated invasion and metastasis-related genes matrix metalloproteinase 2 (MMP2), MMP9, CXCR4 and osteopontin, shown previously to be downregulated in response to Smad7. This study shows that Id2, Id3 and Id4 are each able to overcome TGF-β dependence, and establish a role for Ids as key mediators of TGF-β melanomagenesis.
Collapse
Affiliation(s)
- Kyle A DiVito
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
208
|
Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, Galinsky I, Stone RM, Gray NS, D'Andrea AD, Parmar K. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther 2013; 12:2651-62. [PMID: 24130053 PMCID: PMC4089878 DOI: 10.1158/1535-7163.mct-13-0103-t] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of DNA binding 1 (ID1) transcription factor is essential for the proliferation and progression of many cancer types, including leukemia. However, the ID1 protein has not yet been therapeutically targeted in leukemia. ID1 is normally polyubiquitinated and degraded by the proteasome. Recently, it has been shown that USP1, a ubiquitin-specific protease, deubiquitinates ID1 and rescues it from proteasome degradation. Inhibition of USP1 therefore offers a new avenue to target ID1 in cancer. Here, using a ubiquitin-rhodamine-based high-throughput screening, we identified small-molecule inhibitors of USP1 and investigated their therapeutic potential for leukemia. These inhibitors blocked the deubiquitinating enzyme activity of USP1 in vitro in a dose-dependent manner with an IC50 in the high nanomolar range. USP1 inhibitors promoted the degradation of ID1 and, concurrently, inhibited the growth of leukemic cell lines in a dose-dependent manner. A known USP1 inhibitor, pimozide, also promoted ID1 degradation and inhibited growth of leukemic cells. In addition, the growth of primary acute myelogenous leukemia (AML) patient-derived leukemic cells was inhibited by a USP1 inhibitor. Collectively, these results indicate that the novel small-molecule inhibitors of USP1 promote ID1 degradation and are cytotoxic to leukemic cells. The identification of USP1 inhibitors therefore opens up a new approach for leukemia therapy.
Collapse
Affiliation(s)
- Helena Mistry
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Grace Hsieh
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sara J. Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Min Huang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Eunmi Park
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gregory D. Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Harvard Center for Neurodegeneration and Repair, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Alan D. D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
209
|
Mamber C, Kozareva DA, Kamphuis W, Hol EM. Shades of gray: The delineation of marker expression within the adult rodent subventricular zone. Prog Neurobiol 2013; 111:1-16. [DOI: 10.1016/j.pneurobio.2013.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 12/21/2022]
|
210
|
May AM, Frey AV, Bogatyreva L, Benkisser-Petersen M, Hauschke D, Lübbert M, Wäsch R, Werner M, Hasskarl J, Lassmann S. ID2 and ID3 protein expression mirrors granulopoietic maturation and discriminates between acute leukemia subtypes. Histochem Cell Biol 2013; 141:431-40. [PMID: 24292846 DOI: 10.1007/s00418-013-1169-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 01/21/2023]
Abstract
The inhibitors of DNA binding (ID) inhibit basic helix-loop-helix transcription factors and thereby guide cellular differentiation and proliferation. To elucidate the involvement of IDs in hematopoiesis and acute leukemias (AL), we analyzed ID2 and ID3 expression in hematopoiesis and leukemic blasts in bone marrow biopsies (BMB). BMB of healthy stem cell donors (n = 19) and BMB of patients with acute myeloid leukemia (AML) with myelodysplasia-related changes (AML-MD; n = 19), de novo AML (n = 20), B-acute lymphoblastic leukemia (B-ALL) (n = 23), T-ALL (n = 19), were immunohistochemically stained for ID2 and ID3 expression. The expression patterns were evaluated and quantified for each hematopoietic lineage and each leukemia subtype. In normal BMB, immature granulopoiesis showed weak ID2 and strong ID3 expression, which was lost during maturation (p < 0.001). Erythropoiesis remained negative for ID2/3 (p < 0.001). ID2/3 expression differed between immature granulopoiesis and leukemic blasts (p < 0.001). Moreover, differential ID2/3 expression was seen between AL subgroups: AML, especially AML-MD, had more ID2- (p < 0.001) and ID3-positive (p < 0.001) blasts than ALL. We show a comprehensive in situ picture of ID2/3 expression in hematopoiesis and AL. Morphologically, ID2/3 proteins seem to be involved in the granulopoietic maturation. Importantly, the distinct ID2/3 expression patterns in AL indicate a specific deregulation of ID2/3 in the various types of AL and may support subtyping of AL.
Collapse
Affiliation(s)
- Annette M May
- Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Dey J, Dubuc AM, Pedro KD, Thirstrup D, Mecham B, Northcott PA, Wu X, Shih D, Tapscott SJ, LeBlanc M, Taylor MD, Olson JM. MyoD is a tumor suppressor gene in medulloblastoma. Cancer Res 2013; 73:6828-37. [PMID: 24092238 DOI: 10.1158/0008-5472.can-13-0730-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While medulloblastoma, a pediatric tumor of the cerebellum, is characterized by aberrations in developmental pathways, the majority of genetic determinants remain unknown. An unbiased Sleeping Beauty transposon screen revealed MyoD as a putative medulloblastoma tumor suppressor. This was unexpected, as MyoD is a muscle differentiation factor and not previously known to be expressed in cerebellum or medulloblastoma. In response to deletion of one allele of MyoD, two other Sonic hedgehog-driven mouse medulloblastoma models showed accelerated tumor formation and death, confirming MyoD as a tumor suppressor in these models. In normal cerebellum, MyoD was expressed in the proliferating granule neuron progenitors that are thought to be precursors to medulloblastoma. Similar to some other tumor suppressors that are induced in cancer, MyoD was expressed in proliferating medulloblastoma cells in three mouse models and in human medulloblastoma cases. This suggests that although expression of MyoD in a proliferating tumor is insufficient to prevent tumor progression, its expression in the cerebellum hinders medulloblastoma genesis.
Collapse
Affiliation(s)
- Joyoti Dey
- Authors' Affiliations: Molecular and Cellular Biology Program, University of Washington; Clinical Research Division, Human Biology Division, and Public Health Sciences Division, Fred Hutchinson Cancer Research Center; Presage Biosciences; Sage Bionetworks; Seattle Children's Hospital, Seattle, Washington; Arthur and Sonia Labatt Brain Tumor Research Center and Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Icli B, Wara AKM, Moslehi J, Sun X, Plovie E, Cahill M, Marchini JF, Schissler A, Padera RF, Shi J, Cheng HW, Raghuram S, Arany Z, Liao R, Croce K, MacRae C, Feinberg MW. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res 2013; 113:1231-41. [PMID: 24047927 DOI: 10.1161/circresaha.113.301780] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE The rapid induction and orchestration of new blood vessels are critical for tissue repair in response to injury, such as myocardial infarction, and for physiological angiogenic responses, such as embryonic development and exercise. OBJECTIVE We aimed to identify and characterize microRNAs (miR) that regulate pathological and physiological angiogenesis. METHODS AND RESULTS We show that miR-26a regulates pathological and physiological angiogenesis by targeting endothelial cell (EC) bone morphogenic protein/SMAD1 signaling in vitro and in vivo. MiR-26a expression is increased in a model of acute myocardial infarction in mice and in human subjects with acute coronary syndromes. Ectopic expression of miR-26a markedly induced EC cycle arrest and inhibited EC migration, sprouting angiogenesis, and network tube formation in matrigel, whereas blockade of miR-26a had the opposite effects. Mechanistic studies demonstrate that miR-26a inhibits the bone morphogenic protein/SMAD1 signaling pathway in ECs by binding to the SMAD1 3'-untranslated region, an effect that decreased expression of Id1 and increased p21(WAF/CIP) and p27. In zebrafish, miR-26a overexpression inhibited formation of the caudal vein plexus, a bone morphogenic protein-responsive process, an effect rescued by ectopic SMAD1 expression. In mice, miR-26a overexpression inhibited EC SMAD1 expression and exercise-induced angiogenesis. Furthermore, systemic intravenous administration of an miR-26a inhibitor, locked nucleic acid-anti-miR-26a, increased SMAD1 expression and rapidly induced robust angiogenesis within 2 days, an effect associated with reduced myocardial infarct size and improved heart function. CONCLUSIONS These findings establish miR-26a as a regulator of bone morphogenic protein/SMAD1-mediated EC angiogenic responses, and that manipulating miR-26a expression could provide a new target for rapid angiogenic therapy in ischemic disease states.
Collapse
Affiliation(s)
- Basak Icli
- From the Cardiovascular Division, Departments of Medicine (B.I., A.K.M.W., J.M., X.S., E.P., M.C., J.F.M., A.S., J.S., H.-W.C., R.L., K.C., C.M., M.W.F.) and Pathology (R.F.P.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.R., Z.A.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
ALK1-Smad1/5 signaling pathway in fibrosis development: friend or foe? Cytokine Growth Factor Rev 2013; 24:523-37. [PMID: 24055043 DOI: 10.1016/j.cytogfr.2013.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/14/2013] [Indexed: 12/29/2022]
Abstract
Fibrosis is a common phenomenon associated with several pathologies, characterized by an excessive extracellular matrix deposition that leads to a progressive organ dysfunction. Thus fibrosis has a relevant role in chronic diseases affecting the kidney, the liver, lung, skin (scleroderma) and joints (arthritis), among others. The pathogenesis of fibrosis in different organs share numerous similarities, being one of them the presence of activated fibroblasts, denominated myofibroblast, which act as the main source of extracellular matrix proteins. Transforming growth factor beta-1 (TGF-β1) is a profibrotic cytokine that plays a pivotal role in fibrosis. The TGF-β1/ALK5/Smad3 signaling pathway has been studied in fibrosis extensively. However, an increasing number of studies involving the ALK1/Smad1 pathway in the fibrotic process exist. In this review we offer a perspective of the function of ALK1/Smad1 pathway in renal fibrosis, liver fibrosis, scleroderma and osteoarthritis, suggesting this pathway as a powerful therapeutical target. We also propose several strategies to modulate the activity of this pathway and its consequences in the fibrotic process.
Collapse
|
214
|
Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Res 2013; 23:1172-86. [PMID: 24018375 PMCID: PMC3790234 DOI: 10.1038/cr.2013.112] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/12/2013] [Accepted: 04/30/2013] [Indexed: 12/17/2022] Open
Abstract
Distinct families of multipotent heart progenitors play a central role in the generation of diverse cardiac, smooth muscle and endothelial cell lineages during mammalian cardiogenesis. The identification of precise paracrine signals that drive the cell-fate decision of these multipotent progenitors, and the development of novel approaches to deliver these signals in vivo, are critical steps towards unlocking their regenerative therapeutic potential. Herein, we have identified a family of human cardiac endothelial intermediates located in outflow tract of the early human fetal hearts (OFT-ECs), characterized by coexpression of Isl1 and CD144/vWF. By comparing angiocrine factors expressed by the human OFT-ECs and non-cardiac ECs, vascular endothelial growth factor (VEGF)-A was identified as the most abundantly expressed factor, and clonal assays documented its ability to drive endothelial specification of human embryonic stem cell (ESC)-derived Isl1+ progenitors in a VEGF receptor-dependent manner. Human Isl1-ECs (endothelial cells differentiated from hESC-derived ISL1+ progenitors) resemble OFT-ECs in terms of expression of the cardiac endothelial progenitor- and endocardial cell-specific genes, confirming their organ specificity. To determine whether VEGF-A might serve as an in vivo cell-fate switch for human ESC-derived Isl1-ECs, we established a novel approach using chemically modified mRNA as a platform for transient, yet highly efficient expression of paracrine factors in cardiovascular progenitors. Overexpression of VEGF-A promotes not only the endothelial specification but also engraftment, proliferation and survival (reduced apoptosis) of the human Isl1+ progenitors in vivo. The large-scale derivation of cardiac-specific human Isl1-ECs from human pluripotent stem cells, coupled with the ability to drive endothelial specification, engraftment, and survival following transplantation, suggest a novel strategy for vascular regeneration in the heart.
Collapse
|
215
|
Foo LC, Dougherty JD. Aldh1L1 is expressed by postnatal neural stem cells in vivo. Glia 2013; 61:1533-41. [PMID: 23836537 PMCID: PMC3777382 DOI: 10.1002/glia.22539] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/15/2013] [Indexed: 12/14/2022]
Abstract
The metabolic enzyme for folate, Aldh1L1, has been shown to be expressed robustly in astrocytes of the brain. It is now well accepted that astrocytes in certain regions of the adult brain also serve as neural stem cells. Here, we examined whether Aldh1L1 is also expressed in postnatal neural stem cells. In vitro, cells in neural stem cell culture conditions have robust Aldh1L1 promoter activity. In vivo, in the adult brain, astroctyes in neurogenic regions express Aldh1L1 in a pattern consistent with inclusion in neural stem cells, and analysis of Aldh1L1+ cell transcriptome profiles from neurogenic regions reveal a robust enrichment of known regulators of neurogenesis. Genetic fate mapping with Aldh1L1 BAC Cre animals reveals adult-born neuroblasts of the rostral migratory stream are derived from Aldh1L1 expressing cells, as are sporadic neurons in other regions of the brain. Combining these lines of evidence from transgenic animals, cell culture, transcriptome profiling, and fate mapping, we conclude that Aldh1L1 is also expressed in neural stem cells in the brain. These findings may influence the future design of experiments utilizing Aldh1L1 genetic tools, and also suggest existing Aldh1L1 bacTRAP mice may be of use for further experiments profiling neural stem cells in vivo.
Collapse
Affiliation(s)
- Lynette C Foo
- Institute of Molecular and Cell Biology, A*Star, Singapore
| | | |
Collapse
|
216
|
Colasante G, Simonet JC, Calogero R, Crispi S, Sessa A, Cho G, Golden JA, Broccoli V. ARX regulates cortical intermediate progenitor cell expansion and upper layer neuron formation through repression of Cdkn1c. ACTA ACUST UNITED AC 2013; 25:322-35. [PMID: 23968833 DOI: 10.1093/cercor/bht222] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations in the Aristaless-related homeobox (ARX) gene are found in a spectrum of epilepsy and X-linked intellectual disability disorders. During development Arx is expressed in pallial ventricular zone (VZ) progenitor cells where the excitatory projection neurons of the cortex are born. Arx(-/Y) mice were shown to have decreased proliferation in the cortical VZ resulting in smaller brains; however, the basis for this reduced proliferation was not established. To determine the role of ARX on cell cycle dynamics in cortical progenitor cells, we generated cerebral cortex-specific Arx mouse mutants (cKO). The loss of pallial Arx resulted in the reduction of cortical progenitor cells, particularly the proliferation of intermediate progenitor cells (IPCs) was affected. Later in development and postnatally cKO brains showed a reduction of upper layer but not deeper layer neurons consistent with the IPC defect. Transcriptional profile analysis of E14.5 Arx-ablated cortices compared with control revealed that CDKN1C, an inhibitor of cell cycle progression, is overexpressed in the cortical VZ and SVZ of Arx KOs throughout corticogenesis. We also identified ARX as a direct regulator of Cdkn1c transcription. Together these data support a model where ARX regulates the expansion of cortical progenitor cells through repression of Cdkn1c.
Collapse
Affiliation(s)
- Gaia Colasante
- Department of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Jacqueline C Simonet
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raffaele Calogero
- Bioinformatics and Genomics Unit, MBC Centro di Biotecnologie Molecolari, Turin, Italy
| | - Stefania Crispi
- Institute of Genetics and Byophisics "A. B. T" CNR, Naples 80131, Italy and
| | - Alessandro Sessa
- Department of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| | - Ginam Cho
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jeffrey A Golden
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vania Broccoli
- Department of Neuroscience, San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
217
|
Lewis TC, Prywes R. Serum regulation of Id1 expression by a BMP pathway and BMP responsive element. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:1147-59. [PMID: 23948603 DOI: 10.1016/j.bbagrm.2013.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 02/01/2023]
Abstract
Immediate early genes (IEGs) are expressed upon re-entry of quiescent cells into the cell cycle following serum stimulation. These genes are involved in growth control and differentiation and hence their expression is tightly controlled. Many IEGs are regulated through Serum Response Elements (SREs) in their promoters, which bind Serum Response Factor (SRF). However, many other IEGs do not have SREs in their promoters and their serum regulation is poorly understood. We have identified SRF-independent IEGs in SRF-depleted fibroblasts. One of these, Id1, was examined more closely. We mapped a serum responsive element in the Id1 promoter and find that it is identical to a BMP responsive element (BRE). The Id1 BRE is necessary and sufficient for the serum regulation of Id1. Inhibition of the BMP pathway by siRNA depletion of Smad 4, treatment with the BMP antagonist noggin, or the BMP receptor inhibitor dorsomorphin blocked serum induction of Id1. Further, BMP2 is sufficient to induce Id1 expression. Given reports that SRC inhibitors can block Id1 expression, we tested the SRC inhibitor, AZD0530, and found that it inhibits the serum activation of Id1. Surprisingly, this inhibition is independent of SRC or its family members. Rather, we show that AZD0530 directly inhibits the BMP type I receptors. Serum induction of the Id1 related gene Id3 also required the BMP pathway. Given these and other findings we conclude that the Id family of IEGs is regulated by BMPs in serum through similar BREs. This represents a second pathway for serum regulation of IEGs.
Collapse
Affiliation(s)
- Thera C Lewis
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
218
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
219
|
Mizeracka K, DeMaso CR, Cepko CL. Notch1 is required in newly postmitotic cells to inhibit the rod photoreceptor fate. Development 2013; 140:3188-97. [PMID: 23824579 DOI: 10.1242/dev.090696] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several models of cell fate determination can be invoked to explain how single retinal progenitor cells (RPCs) produce different cell types in a terminal division. To gain insight into this process, the effects of the removal of a cell fate regulator, Notch1, were studied in newly postmitotic cells using a conditional allele of Notch1 (N1-CKO) in mice. Almost all newly postmitotic N1-CKO cells became rod photoreceptors, whereas wild-type (WT) cells achieved a variety of fates. Single cell profiling of wild-type and N1-CKO retinal cells transitioning from progenitor to differentiated states revealed differential expression of inhibitor of DNA binding factors Id1 and Id3, as well as Notch-regulated ankyrin repeat protein (Nrarp). Misexpression of Id1 and Id3 was found to be sufficient to drive production of Müller glial cells and/or RPCs. Moreover, Id1 and Id3 were shown to partially rescue the production of bipolar and Müller glial cells in the absence of Notch1 in mitotic and newly postmitotic cells. Misexpression of Nrarp, a downstream target gene and inhibitor of the Notch signaling pathway, resulted in the overproduction of rod photoreceptors at the expense of Müller glial cells. These data demonstrate that cell fate decisions can be made in newly postmitotic retinal cells, and reveal some of the regulators downstream of Notch1 that influence the choice of rod and non-rod fates. Taken together, our results begin to address how different signals downstream from a common pathway lead to different fate outcomes.
Collapse
|
220
|
Snyder AD, Dulin-Smith AN, Houston RH, Durban AN, Brisbin BJ, Oostra TD, Marshall JT, Kahwash BM, Pierson CR. Expression pattern of id proteins in medulloblastoma. Pathol Oncol Res 2013; 19:437-46. [PMID: 23397264 PMCID: PMC3826575 DOI: 10.1007/s12253-012-9599-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/21/2012] [Indexed: 01/01/2023]
Abstract
Inhibitor of DNA binding or inhibitor of differentiation (Id) proteins are up regulated in a variety of neoplasms, particularly in association with high-grade, poorly differentiated tumors, while differentiated tissues show little or no Id expression. The four Id genes are members of the helix-loop-helix (HLH) family of transcription factors and act as negative regulators of transcription by binding to and sequestering HLH complexes. We tested the hypothesis that Id proteins are overexpressed in medulloblastoma by performing immunohistochemistry using a medulloblastoma tissue microarray with 45 unique medulloblastoma and 11 normal control cerebella, and antibodies specific for Id1, Id2, Id3, and Id4. A semi-quantitative staining score that took staining intensity and the proportion of immunoreactive cells into account was used. Id1 was not detected in normal cerebella or in medulloblastoma cells, but 78 % of tumors showed strong Id1 expression in endothelial nuclei of tumor vessels. Id2 expression was scant in normal cerebella and increased in medulloblastoma (median staining score: 4). Id3 expression was noted in some neurons of the developing cerebellar cortex, but it was markedly up regulated in medulloblastoma (median staining score: 12) and in tumor endothelial cells. Id4 was not expressed in normal cerebella or in tumor cells. Id2 or Id3 overexpression drove proliferation in medulloblastoma cell lines by altering the expression of critical cell cycle regulatory proteins in favor of cell proliferation. This study shows that Id1 expression in endothelial cells may contribute to angiogenic processes and that increased expression of Id2 and Id3 in medulloblastoma is potentially involved in tumor cell proliferation and survival.
Collapse
Affiliation(s)
- Andrew D. Snyder
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | - Ronald H. Houston
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ashley N. Durban
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Bethany J. Brisbin
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA, The Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tyler D. Oostra
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA, The Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jordan T. Marshall
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Basil M. Kahwash
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Christopher R. Pierson
- The Research Institute, Nationwide Children’s Hospital, Columbus, OH, USA, Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, USA, The Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, USA, Department of Laboratory Medicine, Anatomic Pathology, J0359, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA
| |
Collapse
|
221
|
Sharma P, Knowell AE, Chinaranagari S, Komaragiri S, Nagappan P, Patel D, Havrda MC, Chaudhary J. Id4 deficiency attenuates prostate development and promotes PIN-like lesions by regulating androgen receptor activity and expression of NKX3.1 and PTEN. Mol Cancer 2013; 12:67. [PMID: 23786676 PMCID: PMC3694449 DOI: 10.1186/1476-4598-12-67] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022] Open
Abstract
Background Inhibitor of differentiation 4 (Id4), a member of the helix-loop-helix family of transcriptional regulators has emerged as a tumor suppressor in prostate cancer. Id4 is expressed in the normal prostate where its expression is also regulated by androgens. In this study we investigated the effect of loss of Id4 (Id4-/-) on adult prostate morphology. Methods Histological analysis was performed on prostates from 6-8 weeks old Id4-/-, Id4+/- and Id4+/+ mice. Expression of Id1, Sox9, Myc, androgen receptor, Akt, p-Akt, Pten and Nkx3.1 was investigated by immunohistochemistry. Androgen receptor binding on NKX3.1 promoter was studied by chromatin immuno-precipitation. Id4 was either over-expressed or silenced in prostate cancer cell lines DU145 and LNCaP respectively followed by analysis of PTEN, NKX3.1 and Sox9 expression. Results Id4-/- mice had smaller prostates with fewer tubules, smaller tubule diameters and subtle mPIN like lesions. Levels of androgen receptor were similar between wild type and Id4-/- prostate. Decreased NKX3.1 expression was in part due to decreased androgen receptor binding on NKX3.1 promoter in Id4-/- mice. The increase in the expression of Myc, Sox9, Id1, Ki67 and decrease in the expression of PTEN, Akt and phospho-AKT was associated with subtle mPIN like lesions in Id4-/- prostates. Finally, prostate cancer cell line models in which Id4 was either silenced or over-expressed confirmed that Id4 regulates NKX3.1, Sox9 and PTEN. Conclusions Our results suggest that loss of Id4 attenuates normal prostate development and promotes hyperplasia/dysplasia with subtle mPIN like lesions characterized by gain of Myc and Id1 and loss of Nkx3.1 and Pten expression. One of the mechanisms by which Id4 may regulate normal prostate development is through regulating androgen receptor binding to respective response elements such as those on NKX3.1 promoter. In spite of these complex alterations, large neoplastic lesions in Id4-/- prostates were not observed suggesting the possibility of mechanisms/pathways such as loss of Akt that could restrain the formation of significant pre-cancerous lesions.
Collapse
|
222
|
Su Y, Gao L, Teng L, Wang Y, Cui J, Peng S, Fu S. Id1 enhances human ovarian cancer endothelial progenitor cell angiogenesis via PI3K/Akt and NF-κB/MMP-2 signaling pathways. J Transl Med 2013; 11:132. [PMID: 23714001 PMCID: PMC3687679 DOI: 10.1186/1479-5876-11-132] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) contribute to tumor angiogenesis and growth. We previously reported that over-expression of an inhibitor of DNA binding/differentiation 1 (Id1) in EPCs can enhance EPC proliferation, migration, and adhesion. In this study, we investigated the role of Id1 in EPC angiogenesis in patients with ovarian cancer and the underlying signaling pathway. METHODS Circulating EPCs from 22 patients with ovarian cancer and 15 healthy control subjects were cultured. Id1 and matrix metalloproteinase-2 (MMP-2) expression were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blot. EPC angiogenesis was detected by tube formation assays. Double-stranded DNA containing the interference sequences was synthesized according to the structure of a pGCSIL-GFP viral vector and then inserted into a linearized vector. Positive clones were identified as lentiviral vectors that expressed human Id1 short hairpin RNA (shRNA). RESULTS Id1 and MMP-2 expression were increased in EPCs freshly isolated from ovarian cancer patients compared to those obtained from healthy subjects. shRNA-mediated Id1 down-regulation substantially reduced EPC angiogenesis and MMP-2 expression. Importantly, transfection of EPCs with Id1 in vitro induced phosphorylation of Akt (p-Akt) via phosphoinositide 3-kinase and increased the expression of MMP-2 via NF-κB. Blockage of both pathways by specific inhibitors (LY294002 and PDTC, respectively) abrogated Id1-enhanced EPC angiogenesis. CONCLUSIONS Id1 can enhance EPC angiogenesis in ovarian cancer, which is mainly mediated by the PI3K/Akt and NF-κB/MMP-2 signaling pathways. Id1 and its downstream effectors are potential targets for treatment of ovarian cancer because of their contribution to angiogenesis.
Collapse
Affiliation(s)
- Yajuan Su
- Department of clinical laboratory, the affiliated tumor hospital, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | |
Collapse
|
223
|
Identification and characterization of poorly differentiated invasive carcinomas in a mouse model of pancreatic neuroendocrine tumorigenesis. PLoS One 2013; 8:e64472. [PMID: 23691228 PMCID: PMC3653861 DOI: 10.1371/journal.pone.0064472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a relatively rare but clinically challenging tumor type. In particular, high grade, poorly-differentiated PanNETs have the worst patient prognosis, and the underlying mechanisms of disease are poorly understood. In this study we have identified and characterized a previously undescribed class of poorly differentiated PanNETs in the RIP1-Tag2 mouse model. We found that while the majority of tumors in the RIP1-Tag2 model are well-differentiated insulinomas, a subset of tumors had lost multiple markers of beta-cell differentiation and were highly invasive, leading us to term them poorly differentiated invasive carcinomas (PDICs). In addition, we found that these tumors exhibited a high mitotic index, resembling poorly differentiated (PD)-PanNETs in human patients. Interestingly, we identified expression of Id1, an inhibitor of DNA binding gene, and a regulator of differentiation, specifically in PDIC tumor cells by histological analysis. The identification of PDICs in this mouse model provides a unique opportunity to study the pathology and molecular characteristics of PD-PanNETs.
Collapse
|
224
|
de la Puente P, Muz B, Azab F, Azab AK. Cell trafficking of endothelial progenitor cells in tumor progression. Clin Cancer Res 2013; 19:3360-8. [PMID: 23665736 DOI: 10.1158/1078-0432.ccr-13-0462] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blood vessel formation plays an essential role in many physiologic and pathologic processes, including normal tissue growth and healing, as well as tumor progression. Endothelial progenitor cells (EPC) are a subtype of stem cells with high proliferative potential that are capable of differentiating into mature endothelial cells, thus contributing to neovascularization in tumors. In response to tumor-secreted cytokines, EPCs mobilize from the bone marrow to the peripheral blood, home to the tumor site, and differentiate to mature endothelial cells and secrete proangiogenic factors to facilitate vascularization of tumors. In this review, we summarize the expression of surface markers, cytokines, receptors, adhesion molecules, proteases, and cell signaling mechanisms involved in the different steps (mobilization, homing, and differentiation) of EPC trafficking from the bone marrow to the tumor site. Understanding the biologic mechanisms of EPC cell trafficking opens a window for new therapeutic targets in cancer.
Collapse
Affiliation(s)
- Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri 63108, USA
| | | | | | | |
Collapse
|
225
|
Gao L, Utsumi T, Tashiro K, Liu B, Zhang D, Swenson ES, Iwakiri Y. Reticulon 4B (Nogo-B) facilitates hepatocyte proliferation and liver regeneration in mice. Hepatology 2013; 57:1992-2003. [PMID: 23299899 PMCID: PMC3628958 DOI: 10.1002/hep.26235] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 11/28/2012] [Indexed: 12/20/2022]
Abstract
UNLABELLED Nogo-B, also known as reticulon 4B, promotes liver fibrosis and cirrhosis by facilitating the transforming growth factor β (TGF-β) signaling pathway in activated hepatic stellate cells. The aim of this study was to determine the role of Nogo-B in hepatocyte proliferation and liver regeneration. Partial hepatectomy (PHx, 70% resection) was performed in male wild-type (WT) and Nogo-A/B knockout mice (referred to as Nogo-B KO mice). Remnant livers were isolated 2 hours, 5 hours, and 1, 2, 3, 7, and 14 days after PHx. Hepatocyte proliferation was assessed by Ki67 labeling index. Quantitative real-time polymerase chain reaction was performed for genes known to be involved in liver regeneration. Hepatocytes isolated from WT and Nogo-B KO mice were used to examine the role of Nogo-B in interleukin-6 (IL-6), hepatocyte growth factor (HGF), epidermal growth factor (EGF), and TGF-β signaling. Nogo-B protein levels increased in the regenerating livers in a time-dependent manner after PHx. Specifically, Nogo-B expression in hepatocytes gradually spread from the periportal toward the central areas by 7 days after PHx, but receded notably by 14 days. Nogo-B facilitated IL-6/signal transducer and activator of transcription 3 signaling, increased HGF-induced but not EGF-induced hepatocyte proliferation, and tended to reduce TGF-β1-induced suppression of hepatocyte proliferation in cultured hepatocytes. Lack of Nogo-B significantly induced TGF-β1 and inhibitor of DNA binding expression 1 day after PHx and IL-6 and EGF expression 2 days after PHx. Lack of Nogo-B delayed hepatocyte proliferation but did not affect the liver-to-body ratio in the regenerative process. CONCLUSION Nogo-B expression in hepatocytes facilitates hepatocyte proliferation and liver regeneration.
Collapse
Affiliation(s)
- Lili Gao
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, U.S.A.,Department of Geriatric Gastroenterology, PLA General Hospital, Beijing, China
| | - Teruo Utsumi
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Keitaro Tashiro
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Bo Liu
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, U.S.A.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dahai Zhang
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
| | - E. Scott Swenson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, U.S.A
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, U.S.A.,Corresponding author: Yasuko Iwakiri, Ph.D., 1080 LMP, 333 Cedar Street, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520 U.S.A. , Phone #: 203-785-6204, Fax #: 203-785-7273
| |
Collapse
|
226
|
Oh SY, Kim H. Molecular culprits generating brain tumor stem cells. Brain Tumor Res Treat 2013; 1:9-15. [PMID: 24904883 PMCID: PMC4027113 DOI: 10.14791/btrt.2013.1.1.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/18/2022] Open
Abstract
Despite current advances in multimodality therapies, such as surgery, radiotherapy, and chemotherapy, the outcome for patients with high-grade glioma remains fatal. Understanding how glioma cells resist various therapies may provide opportunities for developing new therapies. Accumulating evidence suggests that the main obstacle for successfully treating high-grade glioma is the existence of brain tumor stem cells (BTSCs), which share a number of cellular properties with adult stem cells, such as self-renewal and multipotent differentiation capabilities. Owing to their resistance to standard therapy coupled with their infiltrative nature, BTSCs are a primary cause of tumor recurrence post-therapy. Therefore, BTSCs are thought to be the main glioma cells representing a novel therapeutic target and should be eliminated to obtain successful treatment outcomes.
Collapse
Affiliation(s)
- Se-Yeong Oh
- School of Life Science and Biotechnology, Korea University, Seoul, Korea
| | - Hyunggee Kim
- School of Life Science and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
227
|
Eklund L, Bry M, Alitalo K. Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol Oncol 2013; 7:259-82. [PMID: 23522958 PMCID: PMC5528409 DOI: 10.1016/j.molonc.2013.02.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood vessels (angiogenesis) is required for the growth of most tumors. The tumor microenvironment also induces lymphangiogenic factors that promote metastatic spread. Anti-angiogenic therapy targets the mechanisms behind the growth of the tumor vasculature. During the past two decades, several strategies targeting blood and lymphatic vessels in tumors have been developed. The blocking of vascular endothelial growth factor (VEGF)/VEGF receptor-2 (VEGFR-2) signaling has proven effective for inhibition of tumor angiogenesis and growth, and inhibitors of VEGF-C/VEGFR-3 involved in lymphangiogenesis have recently entered clinical trials. However, thus far anti-angiogenic treatments have been less effective in humans than predicted on the basis of pre-clinical tests in mice. Intrinsic and induced resistance against anti-angiogenesis occurs in patients, and thus far the clinical benefit of the treatments has been limited to modest improvements in overall survival in selected tumor types. Our current knowledge of tumor angiogenesis is based mainly on experiments performed in tumor-transplanted mice, and it has become evident that these models are not representative of human cancer. For an improved understanding, angiogenesis research needs models that better recapitulate the multistep tumorigenesis of human cancers, from the initial genetic insults in single cells to malignant progression in a proper tissue environment. To improve anti-angiogenic therapies in cancer patients, it is necessary to identify additional molecular targets important for tumor angiogenesis, and to get mechanistic insight into their interactions for eventual combinatorial targeting. The recent development of techniques for manipulating the mammalian genome in a precise and predictable manner has opened up new possibilities for the generation of more reliable models of human cancer that are essential for the testing of new therapeutic strategies. In addition, new imaging modalities that permit visualization of the entire mouse tumor vasculature down to the resolution of single capillaries have been developed in pre-clinical models and will likely benefit clinical imaging.
Collapse
Affiliation(s)
- Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P.O.B. 5000, 90014 University of Oulu, Finland.
| | | | | |
Collapse
|
228
|
Cubillo E, Diaz-Lopez A, Cuevas EP, Moreno-Bueno G, Peinado H, Montes A, Santos V, Portillo F, Cano A. E47 and Id1 interplay in epithelial-mesenchymal transition. PLoS One 2013; 8:e59948. [PMID: 23555842 PMCID: PMC3608585 DOI: 10.1371/journal.pone.0059948] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/19/2013] [Indexed: 01/05/2023] Open
Abstract
E12/E47 proteins (encoded by E2A gene) are members of the class I basic helix-loop-helix (bHLH) transcription factors (also known as E proteins). E47 has been described as repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). We reported previously that EMT mediated by E47 in MDCK cells occurs with a concomitant overexpression of Id1 and Id3 proteins. Id proteins belong to class V of HLH factors that lack the basic domain; they dimerise with E proteins and prevent their DNA interaction, thus, acting as dominant negative of E proteins. Here, we show that E47 interacts with Id1 in E47 overexpressing MDCK cells that underwent a full EMT as well as in mesenchymal breast carcinoma and melanoma cell lines. By conducting chromatin immunoprecipitation assays we demonstrate that E47 binds directly to the endogenous E-cadherin promoter of mesenchymal MDCK-E47 cells in a complex devoid of Id1. Importantly, our data suggest that both E47 and Id1 are required to maintain the mesenchymal phenotype of MDCK-E47 cells. These data support the collaboration between E47 and Id1 in the maintenance of EMT by mechanisms independent of the dominant negative action of Id1 on E47 binding to E-cadherin promoter. Finally, the analysis of several N0 breast tumour series indicates that the expression of E47 and ID1 is significantly associated with the basal-like phenotype supporting the biological significance of the present findings.
Collapse
Affiliation(s)
- Eva Cubillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Antonio Diaz-Lopez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Eva P. Cuevas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
- MD Anderson Cancer Center Madrid, Madrid, Spain
| | - Hector Peinado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Amalia Montes
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Francisco Portillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), IdiPAZ, Madrid, Spain
- * E-mail:
| |
Collapse
|
229
|
Han J, Xiao Z, Chen L, Chen B, Li X, Han S, Zhao Y, Dai J. Maintenance of the self-renewal properties of neural progenitor cells cultured in three-dimensional collagen scaffolds by the REDD1-mTOR signal pathway. Biomaterials 2013; 34:1921-8. [DOI: 10.1016/j.biomaterials.2012.11.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/29/2012] [Indexed: 01/28/2023]
|
230
|
Tsunedomi R, Iizuka N, Harada S, Oka M. Susceptibility of hepatoma-derived cells to histone deacetylase inhibitors is associated with ID2 expression. Int J Oncol 2013; 42:1159-66. [PMID: 23403953 PMCID: PMC3622658 DOI: 10.3892/ijo.2013.1811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/05/2012] [Indexed: 12/28/2022] Open
Abstract
Downregulation of inhibitor of DNA binding 2 (ID2) is associated with poor prognosis in cases of hepatocellular carcinoma (HCC). Therefore, to search for effective antitumor drugs for the treatment of HCC exhibiting poor prognostic indicators, we used two HCC-derived cell lines (HuH-7 and HLE) to alter ID2 levels. Specifically, ID2 expression was knocked down in HuH-7 cells via transfection with ID2-specific small interfering RNAs and separately ID2 was overexpressed in HLE cells via an ID2 expression plasmid vector. To assess the effect of antitumor drugs, MTS assay was performed. Annexin V staining was used to evaluate apoptosis and real-time RT-PCR was used to measure mRNA levels. ID2 knockdown cells were more susceptible to histone deacethylase (HDAC) inhibitors including sodium butyrate (NaB), sodium 4-phenyl-butyrate, tricostatin A, suberoylanilide hydroxamic acid, MS-275, apicidin and HC-toxin. Conversely, cells that overexpressed ID2 were less susceptible than control cells to HDAC inhibitors. NaB-induced apoptosis was inversely correlated with ID2 expression. Expression of the anti-apoptotic mRNA BCL2 was induced by NaB in control cells, but this induction of BCL2 was inhibited by ID2 knockdown and strengthened by ID2 overexpression. Expression of another anti-apoptotic mRNA, BCL2L1, was decreased by NaB administration and then partially recovered. However, in ID2 knockdown cells, BCL2L1 levels did not recover from NaB-induced suppression. ID2 affected the susceptibility of two HCC-derived cell lines to an HDAC inhibitor by regulating the expression of anti-apoptotic genes. Therefore, HDAC inhibitors may be effective for the treatment of HCC for which the prognosis is poor based on ID2 downregulation and ID2 could serve as a marker that is predictive of the clinical response to HDAC inhibitors.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
231
|
Zhao Y, Ling F, Wang HC, Sun XH. Chronic TLR signaling impairs the long-term repopulating potential of hematopoietic stem cells of wild type but not Id1 deficient mice. PLoS One 2013; 8:e55552. [PMID: 23383338 PMCID: PMC3562238 DOI: 10.1371/journal.pone.0055552] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/23/2012] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) maintain life-long blood supply but are inevitably exposed to various inflammatory stimuli, which have been shown to be harmful for HSC integrity but the mediators of the deleterious effects have not been fully identified. Here, we show that daily injection of mice with 1 µg of LPS for 30 days triggers a storm of inflammatory cytokines. LPS injection also stimulated the transcription of the Id1 gene in HSCs in vivo but not in vitro, suggesting an indirect effect. To determine the effects of LPS treatment on HSC function and to evaluate the significance of Id1 expression, we assess the repopulating potential of wild type and Id1 deficient mice, which were subjected to a 30 day regimen of LPS treatment. We found that LPS caused dramatic reduction in the long-term but not short-term repopulating activity of wild type but not Id1 deficient HSC. This treatment also led to increases in HSC counts, decreases in BrdU-label retention and disturbance of quiescence detected by Ki67 staining in wild type but not Id1 deficient mice. Together, it appears that Id1, at least in part, plays a role in LPS-induced damage of HSC integrity.
Collapse
Affiliation(s)
- Ying Zhao
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Flora Ling
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Hong-Cheng Wang
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Xiao-Hong Sun
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
232
|
Castañon E, Bosch-Barrera J, López I, Collado V, Moreno M, López-Picazo JM, Arbea L, Lozano MD, Calvo A, Gil-Bazo I. Id1 and Id3 co-expression correlates with clinical outcome in stage III-N2 non-small cell lung cancer patients treated with definitive chemoradiotherapy. J Transl Med 2013; 11:13. [PMID: 23311395 PMCID: PMC3567999 DOI: 10.1186/1479-5876-11-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Inhibitor of DNA binding 1 (Id1) and 3 (Id3) genes have been related with the inhibition of cell differentiation, cell growth promotion and tumor metastasis. Recently, Id1 has been identified as an independent prognostic factor in patients with lung adenocarcinoma, regardless of the stage. Furthermore, Id1 may confer resistance to treatment (both, radiotherapy and chemotherapy). Methods We have studied, using monoclonal antibodies for immunohistochemistry, the Id1 and Id3 tumor epithelial expression in 17 patients with stage III-N2 non-small cell lung cancer (NSCLC) treated with definitive chemoradiotherapy. Results Id1 expression is observed in 82.4% of the tumors, whereas Id3 expression is present in 41.2% of the samples. Interestingly, Id1 and Id3 expression are mutually correlated (R = 0.579, p = 0.015). In a subgroup analysis of patients with the most locally advanced disease (T4N2 stage), co-expression of Id1 and Id3 showed to be related with a worse overall survival (45 vs 6 months, p = 0.002). A trend towards significance for a worse progression free survival (30 vs 1 months, p = 0.219) and a lower response rate to the treatment (RR = 50% vs 87.5%, p = 0.07) were also observed. Conclusions A correlation between Id1 and Id3 protein expression is observed. Id1 and Id3 co-expression seems associated with a poor clinical outcome in patients with locally advanced NSCLC treated with definitive chemoradiotherapy.
Collapse
Affiliation(s)
- Eduardo Castañon
- Department of Oncology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev Rep 2012; 8:813-29. [PMID: 22628111 PMCID: PMC3412081 DOI: 10.1007/s12015-012-9381-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
Collapse
|
234
|
Niola F, Zhao X, Singh D, Sullivan R, Castano A, Verrico A, Zoppoli P, Friedmann-Morvinski D, Sulman E, Barrett L, Zhuang Y, Verma I, Benezra R, Aldape K, Iavarone A, Lasorella A. Mesenchymal high-grade glioma is maintained by the ID-RAP1 axis. J Clin Invest 2012; 123:405-17. [PMID: 23241957 DOI: 10.1172/jci63811] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 10/11/2012] [Indexed: 01/10/2023] Open
Abstract
High-grade gliomas (HGGs) are incurable brain tumors that are characterized by the presence of glioma-initiating cells (GICs). GICs are essential to tumor aggressiveness and retain the capacity for self-renewal and multilineage differentiation as long as they reside in the perivascular niche. ID proteins are master regulators of stemness and anchorage to the extracellular niche microenvironment, suggesting that they may play a role in maintaining GICs. Here, we modeled the probable therapeutic impact of ID inactivation in HGG by selective ablation of Id in tumor cells and after tumor initiation in a new mouse model of human mesenchymal HGG. Deletion of 3 Id genes induced rapid release of GICs from the perivascular niche, followed by tumor regression. GIC displacement was mediated by derepression of Rap1gap and subsequent inhibition of RAP1, a master regulator of cell adhesion. We identified a signature module of 5 genes in the ID pathway, including RAP1GAP, which segregated 2 subgroups of glioma patients with markedly different clinical outcomes. The model-informed survival analysis together with genetic and functional studies establish that ID activity is required for the maintenance of mesenchymal HGG and suggest that pharmacological inactivation of ID proteins could serve as a therapeutic strategy.
Collapse
Affiliation(s)
- Francesco Niola
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Nio-Kobayashi J, Narayanan R, Giakoumelou S, Boswell L, Hogg K, Duncan WC. Expression and localization of inhibitor of differentiation (ID) proteins during tissue and vascular remodelling in the human corpus luteum. Mol Hum Reprod 2012; 19:82-92. [PMID: 23160862 DOI: 10.1093/molehr/gas052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Members of the transforming growth factor-β (TGF-β) superfamily are likely to have major roles in the regulation of tissue and vascular remodelling in the corpus luteum (CL). There are four inhibitor-of-differentiation (ID1-4) genes that are regulated by members of the TGF-β superfamily and are involved in the transcriptional regulation of cell growth and differentiation. We studied their expression, localization and regulation in dated human corpora lutea from across the luteal phase (n = 22) and after human chorionic gonadotrophin (hCG) administration in vivo (n = 5), and in luteinized granulosa cells (LGCs), using immunohistochemistry and quantitative RT-PCR. ID1-4 can be localized to multiple cell types in the CL across the luteal phase. Endothelial cell ID3 (P < 0.05) and ID4 (P < 0.05) immunostaining intensities peak at the time of angiogenesis but overall ID1 (P < 0.05) and ID3 (P < 0.05) expression peaks at the time of luteolysis, and luteal ID3 expression is inhibited by hCG in vivo (P < 0.01). In LGC cultures in vitro, hCG had no effect on ID1, down-regulated ID3 (P < 0.001), and up-regulated ID2 (P < 0.001) and ID4 (P < 0.01). Bone morphogenic proteins (BMPs) had no effect on ID4 expression but up-regulated ID1 (P < 0.01 to P < 0.005). BMP up-regulation of ID2 (P < 0.05) was additive to the hCG up-regulation of ID2 expression (P < 0.001), while BMP cancelled out the down regulative effect of hCG on ID3 regulation. As well as documenting regulation patterns specific for ID1, ID2, ID3 and ID4, we have shown that IDs are located and differentially regulated in the human CL, suggesting a role in the transcriptional regulation of luteal cells during tissue and vascular remodelling.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | |
Collapse
|
236
|
Eveno C, Pocard M. VEGF levels and the angiogenic potential of the microenvironment can affect surgical strategy for colorectal liver metastasis. Cell Adh Migr 2012; 6:569-73. [PMID: 23257830 DOI: 10.4161/cam.23247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypotheses emerging from basic research on colorectal liver metastases must be tested in clinical situations for the adaptation of current treatment strategies. Pre-metastatic niches have been shown to exist in human colorectal synchronous metastases, with the liver parenchyma adjacent to the synchronous liver metastases providing a favorable, angiogenic environment for metastatic tumor growth. The role of the VEGF signaling pathway in liver regeneration and tumor growth remains unclear, but the use of antiangiogenic agents in combination with surgical treatment is almost certainly beneficial.
Collapse
Affiliation(s)
- Clarisse Eveno
- INSERM U965 Angiogenesis and Translational Research; Paris-Diderot Paris 7 University, Hôpital Lariboisière, Paris, France
| | | |
Collapse
|
237
|
Abstract
INTRODUCTION MicroRNAs are small, noncoding RNAs that suppress gene expression by binding to the 3' untranslated region (UTR) and thereby repress translation or decrease messenger RNA stability. Inhibitor of differentiation 1 (ID1) is a putative stem-cell gene involved in invasion and angiogenesis. We previously showed that ID1 is regulated by Src kinases, overexpressed in human lung adenocarcinoma, and targeted by Src-dependent microRNAs. The current study focused on the association between miR-381 and ID1 in lung adenocarcinoma. METHODS An ID1 3'UTR-luciferase reporter assay was used to determine whether miR-381 directly targets ID1. Human lung cancer cell lines were stably transduced with a precursor of miR-381 to evaluate its role on ID1 expression and to investigate changes in cell migration and invasion. The Src tyrosine kinase inhibitors saracatinib and dasatinib were used to repress ID1 expression. MiR-381 expression was measured in 18 human lung adenocarcinomas and corresponding normal lung tissue by quantitative reverse-transcription polymerase chain reaction. RESULTS ID1 is a direct target of miR-381 as shown by 3'UTR luciferase reporter assays. MiR-381 expression was negatively correlated with ID1 expression in lung cancer cell lines. Ectopic expression of miR-381 reduced ID1 mRNA and protein levels, and significantly decreased cell migration and invasion. Furthermore, miR-381 was significantly downregulated in human lung adenocarcinomas, and low miR-381 expression levels correlated with poor prognosis. CONCLUSION These results suggest that downregulation of miR-381 and thus induction of its target ID1 may contribute to the metastatic potential of lung adenocarcinomas. Further studies to explore potential therapeutic strategies, including Src inhibitors, are ongoing.
Collapse
|
238
|
Chappuis V, Gamer L, Cox K, Lowery JW, Bosshardt DD, Rosen V. Periosteal BMP2 activity drives bone graft healing. Bone 2012; 51:800-9. [PMID: 22846673 DOI: 10.1016/j.bone.2012.07.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 02/09/2023]
Abstract
Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies.
Collapse
Affiliation(s)
- Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
239
|
OxLDL stimulates Id1 nucleocytoplasmic shuttling in endothelial cell angiogenesis via PI3K Pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1361-9. [DOI: 10.1016/j.bbalip.2012.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/26/2022]
|
240
|
Herriges JC, Yi L, Hines EA, Harvey JF, Xu G, Gray P, Ma Q, Sun X. Genome-scale study of transcription factor expression in the branching mouse lung. Dev Dyn 2012; 241:1432-53. [PMID: 22711520 PMCID: PMC3529173 DOI: 10.1002/dvdy.23823] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mammalian lung development consists of a series of precisely choreographed events that drive the progression from simple lung buds to the elaborately branched organ that fulfills the vital function of gas exchange. Strict transcriptional control is essential for lung development. Among the large number of transcription factors encoded in the mouse genome, only a small portion of them are known to be expressed and function in the developing lung. Thus a systematic investigation of transcription factors expressed in the lung is warranted. RESULTS To enrich for genes that may be responsible for regional growth and patterning, we performed a screen using RNA in situ hybridization to identify genes that show restricted expression patterns in the embryonic lung. We focused on the pseudoglandular stage during which the lung undergoes branching morphogenesis, a cardinal event of lung development. Using a genome-scale probe set that represents over 90% of the transcription factors encoded in the mouse genome, we identified 62 transcription factor genes with localized expression in the epithelium, mesenchyme, or both. Many of these genes have not been previously implicated in lung development. CONCLUSIONS Our findings provide new starting points for the elucidation of the transcriptional circuitry that controls lung development.
Collapse
Affiliation(s)
- John C. Herriges
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Lan Yi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Elizabeth A. Hines
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Julie F. Harvey
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Guoliang Xu
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China 200031
| | - Paul Gray
- Department of Anatomy and Neurobiology, Washington University, St. Louis, MO 63110
| | - Qiufu Ma
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
241
|
Sharma P, Patel D, Chaudhary J. Id1 and Id3 expression is associated with increasing grade of prostate cancer: Id3 preferentially regulates CDKN1B. Cancer Med 2012; 1:187-97. [PMID: 23342268 PMCID: PMC3544440 DOI: 10.1002/cam4.19] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/18/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022] Open
Abstract
As transcriptional regulators of basic helix-oop-helix (bHLH) transcription and non-bHLH factors, the inhibitor of differentiation (Id1, Id2, Id3, and Id4) proteins play a critical role in coordinated regulation of cell growth, differentiation, tumorigenesis, and angiogenesis. Id1 regulates prostate cancer (PCa) cell proliferation, apoptosis, and androgen independence, but its clinical significance in PCa remains controversial. Moreover, there is lack of evidence on the expression of Id2 and Id3 in PCa progression. In this study we investigated the expression of Id2 and Id3 and reevaluated the expression of Id1 in PCa. We show that increased Id1 and Id3 protein expression is strongly associated with increasing grade of PCa. At the molecular level, we report that silencing either Id1 or Id3 attenuates cell cycle. Although structurally and mechanistically similar, our results show that both these proteins are noncompensatory at least in PCa progression. Moreover, through gene silencing approaches we show that Id1 and Id3 primarily attenuates CDKN1A (p21) and CDKN1B (p27), respectively. We also demonstrate that silencing Id3 alone significantly attenuates proliferation of PCa cells as compared with Id1. We propose that increased Id1 and Id3 expression attenuates all three cyclin-dependent kinase inhibitors (CDKN2B, -1A, and -1B) resulting in a more aggressive PCa phenotype.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Biological Sciences, Centre for Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, Georgia, 30314, USA
| | | | | |
Collapse
|
242
|
Sharma P, Chinaranagari S, Patel D, Carey J, Chaudhary J. Epigenetic inactivation of inhibitor of differentiation 4 (Id4) correlates with prostate cancer. Cancer Med 2012; 1:176-86. [PMID: 23342267 PMCID: PMC3544455 DOI: 10.1002/cam4.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 02/06/2023] Open
Abstract
The inhibitor of DNA-binding (Id) proteins, Id1–4 are negative regulators of basic helix-loop-helix (bHLH) transcription factors. As key regulators of cell cycle and differentiation, expression of Id proteins are increasingly observed in many cancers and associated with aggressiveness of the disease. Of all the four Id proteins, the expression of Id1, Id2, and to a lesser extent, Id3 in prostate cancer and the underlying molecular mechanism is relatively well known. On the contrary, our previous results demonstrated that Id4 acts as a potential tumor suppressor in prostate cancer. In the present study, we extend these observations and demonstrate that Id4 is down-regulated in prostate cancer due to promoter hypermethylation. We used prostate cancer tissue microarrays to investigate Id4 expression. Methylation specific PCR on bisulfite treated DNA was used to determine methylation status of Id4 promoter in laser capture micro-dissected normal, stroma and prostate cancer regions. High Id4 expression was observed in the normal prostate epithelial cells. In prostate cancer, a stage-dependent decrease in Id4 expression was observed with majority of high grade cancers showing no Id4 expression. Furthermore, Id4 expression progressively decreased in prostate cancer cell line LNCaP and with no expression in androgen-insensitive LNCaP-C81 cell line. Conversely, Id4 promoter hypermethylation increased in LNCaP-C81 cells suggesting epigenetic silencing. In prostate cancer samples, loss of Id4 expression was also associated with promoter hypermethylation. Our results demonstrate loss of Id4 expression in prostate cancer due to promoter hypermethylation. The data strongly support the role of Id4 as a tumor suppressor.
Collapse
Affiliation(s)
- Pankaj Sharma
- Center For Cancer Research and Therapeutics Development, Clark Atlanta University, Atlanta, Georgia, USA
| | | | | | | | | |
Collapse
|
243
|
Son HJ, Kim JY, Rhee S, Seo SB. Identification of histone methyltransferase RE-IIBP target genes in leukemia cell line. Anim Cells Syst (Seoul) 2012. [DOI: 10.1080/19768354.2011.644045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
244
|
Chen X, Xiao F, Wang Y, Fang J, Ding K. Structure-activity relationship study of WSS25 derivatives with anti-angiogenesis effects. Glycoconj J 2012; 29:389-98. [DOI: 10.1007/s10719-012-9424-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 12/12/2022]
|
245
|
Wang C, Chen Q, Hamajima Y, Sun W, Zheng YQ, Hu XH, Ondrey FG, Lin JZ. Id2 regulates the proliferation of squamous cell carcinoma in vitro via the NF-κB/Cyclin D1 pathway. CHINESE JOURNAL OF CANCER 2012; 31:430-9. [PMID: 22835384 PMCID: PMC3777501 DOI: 10.5732/cjc.011.10454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Squamous cell carcinoma (SCC) is a significant cause of cancer morbidity and mortality worldwide, with an incidence of up to 166 cases per 100 000 population. It arises in the skin, upper aerodigestive tract, lung, and cervix and affects more than 200 000 Americans each year. We report here that a microarray experiment comparing 41 SCC and 13 normal tissue specimens showed that Id2, a gene that controls the cell cycle, was significantly up-regulated in SCC. Enforced expression of Id2 in vitro stimulated the proliferation of SCC cells and up-regulated the transcription of nuclear factor kappa B (NF-κB) and cyclin D1. Enhancement of the NF-κB activity with p65 significantly increased the cell proliferation and the transcription of cyclin D1, whereas inhibition of the NF-κB activity with I kappa B alpha mutant (IκBα M) and pyrroline dithiocarbamate (PDTC) abrogated cell proliferation and transcription of cyclin D1. Furthermore, a mutated NF-κB binding site in the cyclin D1 promoter fully abrogated the Id2-induced transcription of cyclin D1. Taken together, these data indicate that Id2 induces SCC tumor growth and proliferation through the NF-κB/cyclin D1 pathway.
Collapse
Affiliation(s)
- Chuan Wang
- The Cancer Center and Fujian Key Laboratory of Translational Cancer Medicine, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Tudoran O, Soritau O, Balacescu O, Balacescu L, Braicu C, Rus M, Gherman C, Virag P, Irimie F, Berindan-Neagoe I. Early transcriptional pattern of angiogenesis induced by EGCG treatment in cervical tumour cells. J Cell Mol Med 2012; 16:520-30. [PMID: 21609393 PMCID: PMC3822928 DOI: 10.1111/j.1582-4934.2011.01346.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The major green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) has been shown to exhibit antitumour activities in several tumour models. One of the possible mechanisms by which EGCG can inhibit cancer progression is through the modulation of angiogenesis signalling cascade. The tumour cells’ ability to tightly adhere to endothelium is a very important process in the metastatic process, because once disseminated into the bloodstream the tumour cells must re-establish adhesive connections to endothelium in order to extravasate into the target tissues. In this study, we investigated the anti-angiogenic effects of EGCG treatment (10 μM) on human cervical tumour cells (HeLa) by evaluating the changes in the expression pattern of 84 genes known to be involved in the angiogenesis process. Transcriptional analysis revealed 11 genes to be differentially expressed and was further validated by measuring the induced biological effects. Our results show that EGCG treatment not only leads to the down-regulation of genes involved in the stimulation of proliferation, adhesion and motility as well as invasion processes, but also to the up-regulation of several genes known to have antagonist effects. We observed reduced proliferation rates, adhesion and spreading ability as well as invasiveness of HeLa tumour cells upon treatment, which suggest that EGCG might be an important anti-angiogenic therapeutic approach in cervical cancers.
Collapse
Affiliation(s)
- Oana Tudoran
- 'I. Chiricuta Cancer Institute, Department of Functional Genomics and Experimental Pathology, Cluj-Napoca, Romania.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Benavente F, Pinto C, Parada M, Henríquez JP, Osses N. Bone morphogenetic protein 2 inhibits neurite outgrowth of motor neuron-like NSC-34 cells and up-regulates its type II receptor. J Neurochem 2012; 122:594-604. [PMID: 22612292 DOI: 10.1111/j.1471-4159.2012.07795.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bone morphogenetic proteins (BMPs) regulate several aspects of neuronal behavior. For instance, BMP-2 has the ability to modulate, either positively or negatively, the outgrowth of neuronal processes in diverse cell types. In Drosophila motor neurons, the BMP type II receptor (BMPRII) homolog wishful thinking plays crucial roles on neuromuscular synaptogenesis signaling through Smad-dependent and Smad-independent pathways. However, a role for BMP signaling at the vertebrate neuromuscular junction has not been addressed. Herein, we have analyzed the expression of BMPRII and the effect of BMP-2 during the morphological differentiation of motor neuron-like NSC-34 cells. Our data indicate that BMPRII is up-regulated and becomes accumulated in somas and growth cones upon motor neuronal differentiation. BMP-2 inhibits the differentiation of NSC-34 cells, an effect that correlates with activation of a Smad-dependent pathway, induction of the inhibitory Id1 transcription factor, and down-regulation of the neurogenic factor Mash1. BMP-2 also activates effectors of Smad-independent pathways. Remarkably, BMP-2 treatment significantly increases the expression of BMPRII. Our findings provide the first evidence to suggest a role for BMP pathways on the differentiation of motor neurons leading to successful assembly and/or regeneration of the vertebrate neuromuscular synapse.
Collapse
Affiliation(s)
- Francisca Benavente
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile
| | | | | | | | | |
Collapse
|
248
|
O'Brien CA, Kreso A, Ryan P, Hermans KG, Gibson L, Wang Y, Tsatsanis A, Gallinger S, Dick JE. ID1 and ID3 regulate the self-renewal capacity of human colon cancer-initiating cells through p21. Cancer Cell 2012; 21:777-92. [PMID: 22698403 DOI: 10.1016/j.ccr.2012.04.036] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 09/14/2011] [Accepted: 04/23/2012] [Indexed: 02/06/2023]
Abstract
There is increasing evidence that some cancers are hierarchically organized, sustained by a relatively rare population of cancer-initiating cells (C-ICs). Although the capacity to initiate tumors upon serial transplantation is a hallmark of all C-ICs, little is known about the genes that control this process. Here, we establish that ID1 and ID3 function together to govern colon cancer-initiating cell (CC-IC) self-renewal through cell-cycle restriction driven by the cell-cycle inhibitor p21. Regulation of p21 by ID1 and ID3 is a central mechanism preventing the accumulation of excess DNA damage and subsequent functional exhaustion of CC-ICs. Additionally, silencing of ID1 and ID3 increases sensitivity of CC-ICs to the chemotherapeutic agent oxaliplatin, linking tumor initiation function with chemotherapy resistance.
Collapse
Affiliation(s)
- Catherine A O'Brien
- Campbell Family Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 1L7, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Kim JH, Peacock MR, George SC, Hughes CCW. BMP9 induces EphrinB2 expression in endothelial cells through an Alk1-BMPRII/ActRII-ID1/ID3-dependent pathway: implications for hereditary hemorrhagic telangiectasia type II. Angiogenesis 2012; 15:497-509. [PMID: 22622516 DOI: 10.1007/s10456-012-9277-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 04/30/2012] [Indexed: 02/07/2023]
Abstract
ALK1 (ACVRL1) is a member of the TGFβ receptor family and is expressed predominantly by arterial endothelial cells (EC). Mutations in ACVRL1 are responsible for hereditary hemorrhagic telangiectasia type 2 (HHT2), a disease manifesting as fragile vessels, capillary overgrowth, and numerous arterio-venous malformations. Arterial EC also express EphrinB2, which has multiple roles in vascular development and angiogenesis and is known to be reduced in ACVRL1 knockout mice. Using an in vitro angiogenesis model we find that the Alk1 ligand BMP9 induces EphrinB2 in EC, and this is entirely dependent on expression of Alk1 and at least one of the co-receptors BMPRII or ActRII. BMP9 induces both ID1 and ID3, and both are necessary for full induction of EphrinB2. Loss of Alk1 or EphrinB2 results in increased arterial-venous anastomosis, while loss of Alk1 but not EphrinB2 results in increased VEGFR2 expression and enhanced capillary sprouting. Conversely, BMP9 blocks EC sprouting and this is dependent on Alk1, BMPRII/ActRII and ID1/ID3. Finally, notch signaling overcomes the loss of Alk1-restoring EphrinB2 expression in EC, and curbing excess sprouting. Thus, in an in vitro model of HHT2, loss of Alk1 blocks BMP9 signaling, resulting in reduced EphrinB2 expression, enhanced VEGFR2 expression, and misregulated EC sprouting and anastomosis.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/metabolism
- Animals
- Base Sequence
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- DNA Primers
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Ephrin-B2/genetics
- Ephrin-B2/metabolism
- Growth Differentiation Factor 2/physiology
- Inhibitor of Differentiation Proteins/metabolism
- Mice
- Mice, Knockout
- Microscopy, Confocal
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Receptors, Notch/metabolism
- Signal Transduction
- Telangiectasia, Hereditary Hemorrhagic/genetics
- Telangiectasia, Hereditary Hemorrhagic/metabolism
Collapse
Affiliation(s)
- Jai-Hyun Kim
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
250
|
BMP signaling in vascular diseases. FEBS Lett 2012; 586:1993-2002. [DOI: 10.1016/j.febslet.2012.04.030] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/24/2022]
|