201
|
Uberti F, Lattuada D, Morsanuto V, Nava U, Bolis G, Vacca G, Squarzanti DF, Cisari C, Molinari C. Vitamin D protects human endothelial cells from oxidative stress through the autophagic and survival pathways. J Clin Endocrinol Metab 2014; 99:1367-74. [PMID: 24285680 DOI: 10.1210/jc.2013-2103] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Recently, vitamin D (VitD) has been recognized as increasingly importance in many cellular functions of several tissues and organs other than bone. In particular, VitD showed important beneficial effects in the cardiovascular system. Although the relationship among VitD, endothelium, and cardiovascular disease is well established, little is known about the antioxidant effect of VitD. OBJECTIVE Our objective was to study the intracellular pathways activated by VitD in cultured human umbilical vein endothelial cells undergoing oxidative stress. DESIGN Nitric oxide production, cell viability, reactive oxygen species, the mitochondrial permeability transition pore, membrane potential, and caspase-3 activity were measured during oxidative stress induced by administration of 200 μM hydrogen peroxide for 20 minutes. Experiments were repeated in the presence of specific vitamin D receptor ligand ZK191784. RESULTS Pretreatment with VitD alone or in combination with ZK191784 is able to reduce the apoptosis-related gene expression, involving both intrinsic and extrinsic pathways. At the same time, it has been shown the activation of pro-autophagic beclin 1 and the phosphorylation of ERK1/2 and Akt, indicating a modulation between apoptosis and autophagy. Moreover, VitD alone or in combination with ZK191784 is able to prevent the loss of mitochondrial potential and the consequent cytochrome C release and caspase activation. CONCLUSIONS The present study shows that VitD may prevent endothelial cell death through modulation of the interplay between apoptosis and autophagy. This effect is obtained by inhibiting superoxide anion generation, maintaining mitochondria function and cell viability, activating survival kinases, and inducing NO production.
Collapse
Affiliation(s)
- F Uberti
- Department of Obstetrics and Gynecology (F.U., D.L., V.M., U.N.), Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità (G.B.), Università degli Studi di Milano, 20122, Milan, Italy Dipartimento di Medicina Traslazionale (V.M., G.V., D.F.S., C.M.), Università degli Studi del Piemonte Orientale A. Avogadro, 28100 Novara, Italy; and Dipartimento di Scienze della Salute (C.C.), Università degli Studi del Piemonte Orientale A. Avogadro, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Tang Y, Li F, Tan B, Liu G, Kong X, Hardwidge PR, Yin Y. Enterotoxigenic Escherichia coli infection induces intestinal epithelial cell autophagy. Vet Microbiol 2014; 171:160-4. [PMID: 24742948 DOI: 10.1016/j.vetmic.2014.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/17/2014] [Accepted: 03/22/2014] [Indexed: 10/25/2022]
Abstract
The morbidity and mortality in piglets caused by enterotoxigenic Escherichia coli (ETEC) results in large economic losses to the swine industry, but the precise pathogenesis of ETEC-associated diseases remains unknown. Intestinal epithelial cell autophagy serves as a host defense against pathogens. We found that ETEC induced autophagy, as measured by both the increased punctae distribution of GFP-LC3 and the enhanced conversion of LC3-I to LC3-II. Inhibiting autophagy resulted in decreased survival of IPEC-1 cells infected with ETEC. ETEC triggered autophagy in IPEC-1 cells through a pathway involving the mammalian target of rapamycin (mTOR), the extracellular signal-regulated kinases 1/2 (ERK1/2), and the AMP-activated protein kinase (AMPK).
Collapse
Affiliation(s)
- Yulong Tang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China.
| | - Fengna Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China
| | - Bie Tan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China
| | - Gang Liu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China
| | - Xiangfeng Kong
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China
| | - Philip R Hardwidge
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
203
|
Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res 2014; 114:368-78. [PMID: 24436432 DOI: 10.1161/circresaha.113.300536] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac hypertrophy is a multifactorial disease characterized by multiple molecular alterations. One of these alterations is change in the activity of Akt, which plays a central role in regulating a variety of cellular processes ranging from cell survival to aging. Akt activation is mainly achieved by its binding to phosphatidylinositol (3,4,5)-triphosphate. This results in a conformational change that exposes the kinase domain of Akt for phosphorylation and activation by its upstream kinase, 3-phosphoinositide-dependent protein kinase 1, in the cell membrane. Recent studies have shown that sirtuin isoforms, silent information regulator (SIRT) 1, SIRT3, and SIRT6, play an essential role in the regulation of Akt activation. Although SIRT1 deacetylates Akt to promote phosphatidylinositol (3,4,5)-triphosphate binding and activation, SIRT3 controls reactive oxygen species-mediated Akt activation, and SIRT6 transcriptionally represses Akt at the level of chromatin. In the first part of this review, we discuss the mechanisms by which sirtuins regulate Akt activation and how they influence other post-translational modifications of Akt. In the latter part of the review, we summarize the implications of sirtuin-dependent regulation of Akt signaling in the control of major cellular processes such as cellular growth, angiogenesis, apoptosis, autophagy, and aging, which are involved in the initiation and progression of several diseases.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- From Center of Cardiac Cell Biology and Therapeutics, Committee on Molecular Medicine, University of Chicago, Chicago, IL
| | | | | |
Collapse
|
204
|
Ikeda S, Satoh K, Kikuchi N, Miyata S, Suzuki K, Omura J, Shimizu T, Kobayashi K, Kobayashi K, Fukumoto Y, Sakata Y, Shimokawa H. Crucial role of rho-kinase in pressure overload-induced right ventricular hypertrophy and dysfunction in mice. Arterioscler Thromb Vasc Biol 2014; 34:1260-71. [PMID: 24675663 DOI: 10.1161/atvbaha.114.303320] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Right ventricular (RV) failure is the leading cause of death in various cardiopulmonary diseases, including pulmonary hypertension. It is generally considered that the RV is vulnerable to pressure overload as compared with the left ventricle (LV). However, as compared with LV failure, the molecular mechanisms of RV failure are poorly understood, and hence therapeutic targets of the disorder remain to be elucidated. Thus, we aimed to identify molecular therapeutic targets for RV failure in a mouse model of pressure overload. APPROACH AND RESULTS To induce pressure overload to respective ventricles, we performed pulmonary artery constriction or transverse aortic constriction in mice. We first performed microarray analysis and found that the molecules related to RhoA/Rho-kinase and integrin pathways were significantly upregulated in the RV with pulmonary artery constriction compared with the LV with transverse aortic constriction. Then, we examined the responses of both ventricles to chronic pressure overload in vivo. We demonstrated that compared with transverse aortic constriction, pulmonary artery constriction caused greater extents of mortality, Rho-kinase expression (especially ROCK2 isoform), and oxidative stress in pressure-overloaded RV, reflecting the weakness of the RV in response to pressure overload. Furthermore, mice with myocardial-specific overexpression of dominant-negative Rho-kinase showed resistance to pressure overload-induced hypertrophy and dysfunction associated with reduced oxidative stress. Finally, dominant-negative Rho-kinase mice showed a significantly improved long-term survival in both pulmonary artery constriction and transverse aortic constriction as compared with littermate controls. CONCLUSION These results indicate that the Rho-kinase pathway plays a crucial role in RV hypertrophy and dysfunction, suggesting that the pathway is a novel therapeutic target of RV failure in humans.
Collapse
Affiliation(s)
- Shohei Ikeda
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Kota Suzuki
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Junichi Omura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Toru Shimizu
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Kenta Kobayashi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Kazuto Kobayashi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Yoshihiro Fukumoto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Yasuhiko Sakata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.I., K.S., N.K., S.M., K.S., J.O., T.S., Y.F., Y.S., H.S.); and Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima, Japan (Ke. Kobayashi, Ka. Kobayashi).
| |
Collapse
|
205
|
Lin G, Andrejeva G, Wong Te Fong AC, Hill DK, Orton MR, Parkes HG, Koh DM, Robinson SP, Leach MO, Eykyn TR, Chung YL. Reduced Warburg effect in cancer cells undergoing autophagy: steady- state 1H-MRS and real-time hyperpolarized 13C-MRS studies. PLoS One 2014; 9:e92645. [PMID: 24667972 PMCID: PMC3965444 DOI: 10.1371/journal.pone.0092645] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
Abstract
Autophagy is a highly regulated, energy dependent cellular process where proteins, organelles and cytoplasm are sequestered in autophagosomes and digested to sustain cellular homeostasis. We hypothesized that during autophagy induced in cancer cells by i) starvation through serum and amino acid deprivation or ii) treatment with PI-103, a class I PI3K/mTOR inhibitor, glycolytic metabolism would be affected, reducing flux to lactate, and that this effect may be reversible. We probed metabolism during autophagy in colorectal HT29 and HCT116 Bax knock-out cells using hyperpolarized (13)C-magnetic resonance spectroscopy (MRS) and steady-state (1)H-MRS. 24 hr PI103-treatment or starvation caused significant reduction in the apparent forward rate constant (k(PL)) for pyruvate to lactate exchange compared with controls in HT29 (100 μM PI-103: 82%, p = 0.05) and HCT116 Bax-ko cells (10 μM PI-103: 53%, p = 0.05; 20 μM PI-103: 42%, p<0.0001; starvation: 52%, p<0.001), associated with reduced lactate excretion and intracellular lactate in all cases, and unchanged lactate dehydrogenase (LDH) activity and increased NAD+/NADH ratio following PI103 treatment or decreased LDH activity and unchanged NAD+/NADH ratio following starvation. After 48 hr recovery from PI103 treatment, k(PL) remained below control levels in HT29 cells (74%, p = 0.02), and increased above treated values, but remained below 24 hr vehicle-treated control levels in HCT116 Bax-ko cells (65%, p = 0.004) both were accompanied by sustained reduction in lactate excretion, recovery of NAD+/NADH ratio and intracellular lactate. Following recovery from starvation, k(PL) was significantly higher than 24 hr vehicle-treated controls (140%, p = 0.05), associated with increased LDH activity and total cellular NAD(H). Changes in k(PL) and cellular and excreted lactate provided measureable indicators of the major metabolic processes accompanying starvation- and drug-induced autophagy. The changes are reversible, returning towards and exceeding control values on cellular recovery, which potentially identifies resistance. k(PL) (hyperpolarized (13)C-MRS) and lactate ((1)H-MRS) provide useful biomarkers for the autophagic process, enabling non-invasive monitoring of the Warburg effect.
Collapse
Affiliation(s)
- Gigin Lin
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gabriela Andrejeva
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Anne-Christine Wong Te Fong
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Deborah K. Hill
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Matthew R. Orton
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Harry G. Parkes
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Dow-Mu Koh
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Simon P. Robinson
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Martin O. Leach
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| | - Thomas R. Eykyn
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
- Division of Imaging Sciences and Biomedical Engineering, King′s College London, The Rayne Institute, St Thomas Hospital, London, United Kingdom
| | - Yuen-Li Chung
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom
| |
Collapse
|
206
|
Bloemberg D, McDonald E, Dulay D, Quadrilatero J. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats. Acta Physiol (Oxf) 2014; 210:381-91. [PMID: 24119246 DOI: 10.1111/apha.12178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/10/2013] [Accepted: 09/27/2013] [Indexed: 12/11/2022]
Abstract
AIM Autophagy is a subcellular degradation mechanism important for muscle maintenance. Hypertension induces well-characterized pathological changes to the heart and is associated with impaired function and increased apoptotic signalling in skeletal muscle. We examined whether essential hypertension affects several autophagy markers in skeletal and cardiac muscle. METHODS Immunoblotting and qRT-PCR were used to measure autophagy-related proteins/mRNA in multiple skeletal muscles as well as left ventricle (LV) of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). RESULTS Skeletal muscles of hypertensive rats had decreased (P < 0.01) cross-sectional area of type I fibres (e.g. soleus WKY: 2952.9 ± 64.4 μm(2) vs. SHR: 2579.9 ± 85.8 μm(2)) and a fibre redistribution towards a 'fast' phenotype. Immunoblot analysis revealed that some SHR skeletal muscles displayed a decreased LC3II/I ratio (P < 0.05), but none showed differences in p62 protein. LC3 and LAMP2 mRNA levels were increased approx. 2-3-fold in all skeletal muscles (P < 0.05), while cathepsin activity, cathepsin L mRNA and Atg7 protein were increased 16-17% (P < 0.01), 2-3-fold (P < 0.05) and 29-49% (P < 0.01), respectively, in fast muscles of hypertensive animals. Finally, protein levels of BAG3, a marker of chaperone-assisted selective autophagy, were 18-25% lower (P < 0.05) in SHR skeletal muscles. In the LV of SHR, LC3I and p62 protein were elevated 34% (P < 0.05) and 47% (P < 0.01), respectively. Furthermore, p62 mRNA was 68% higher (P < 0.05), while LAMP2 mRNA was 45% lower (P < 0.05), in SHR cardiac muscle. There was no difference in Beclin1, Atg7, Bnip3 or BAG3 protein in the LV between strains. CONCLUSION These results suggest that autophagy is altered in skeletal and cardiac muscle during hypertension.
Collapse
Affiliation(s)
- D. Bloemberg
- Department of Kinesiology; University of Waterloo; Waterloo ON Canada
| | - E. McDonald
- Department of Kinesiology; University of Waterloo; Waterloo ON Canada
| | - D. Dulay
- Department of Kinesiology; University of Waterloo; Waterloo ON Canada
| | - J. Quadrilatero
- Department of Kinesiology; University of Waterloo; Waterloo ON Canada
| |
Collapse
|
207
|
Yuan Y, Zhao J, Yan S, Wang D, Zhang S, Yun F, Zhao H, Sun L, Liu G, Ding X, Liu L, Li Y. Autophagy: a potential novel mechanistic contributor to atrial fibrillation. Int J Cardiol 2014; 172:492-4. [PMID: 24485634 DOI: 10.1016/j.ijcard.2014.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Yue Yuan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jing Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Sen Yan
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Dingyu Wang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Song Zhang
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Fengxiang Yun
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Hongwei Zhao
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Li Sun
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Guangzhong Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xue Ding
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Lei Liu
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue Li
- Department of Cardiology, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China; Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
208
|
Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 2013; 45:173-95. [PMID: 23600686 DOI: 10.3109/03602532.2012.754460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A plethora of studies have demonstrated the expression of cytochrome P450 (CYP) and soluble epoxide hydrolase (sEH) enzymes in the heart and other cardiovascular tissues. In addition, the expression of these enzymes is altered during several cardiovascular diseases (CVDs), including cardiac hypertrophy (CH). The alteration in CYP and sEH expression results in derailed CYP-mediated arachidonic acid (AA) metabolism. In animal models of CH, it has been reported that there is an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and a decrease in epoxyeicosatrienoic acids (EETs). Further, inhibiting 20-HETE production by CYP ω-hydroxylase inhibitors and increasing EET stability by sEH inhibitors have been proven to protect against CH as well as other CVDs. Therefore, CYP-mediated AA metabolites 20-HETE and EETs are potential key players in the pathogenesis of CH. Some studies have investigated the molecular mechanisms by which these metabolites mediate their effects on cardiomyocytes and vasculature leading to pathological CH. Activation of several intracellular signaling cascades, such as nuclear factor of activated T cells, nuclear factor kappa B, mitogen-activated protein kinases, Rho-kinases, Gp130/signal transducer and activator of transcription, extracellular matrix degradation, apoptotic cascades, inflammatory cytokines, and oxidative stress, has been linked to the pathogenesis of CH. In this review, we discuss how 20-HETE and EETs can affect these signaling pathways to result in, or protect from, CH, respectively. However, further understanding of these metabolites and their effects on intracellular cascades will be required to assess their potential translation to therapeutic approaches for the prevention and/or treatment of CH and heart failure.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Center for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
209
|
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [PMID: 23702245 PMCID: PMC3729625 DOI: 10.1016/j.freeradbiomed.2013.05.014] [Citation(s) in RCA: 441] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| |
Collapse
|
210
|
Mellor KM, Bell JR, Ritchie RH, Delbridge LMD. Myocardial insulin resistance, metabolic stress and autophagy in diabetes. Clin Exp Pharmacol Physiol 2013; 40:56-61. [PMID: 22804725 DOI: 10.1111/j.1440-1681.2012.05738.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/19/2023]
Abstract
Clinical studies in humans strongly support a link between insulin resistance and non-ischaemic heart failure. The occurrence of a specific insulin-resistant cardiomyopathy, independent of vascular abnormalities, is now recognized. The progression of cardiac pathology linked with insulin resistance is poorly understood. Cardiac insulin resistance is characterized by reduced availability of sarcolemmal Glut-4 transporters and consequent lower glucose uptake. A shift away from glycolysis towards fatty acid oxidation for ATP supply is apparent and is associated with myocardial oxidative stress. Reliance of cardiomyocyte excitation-contraction coupling on glycolytically derived ATP supply potentially renders cardiac function vulnerable to the metabolic remodelling adaptations observed in diabetes development. Findings from Glut-4-knockout mice demonstrate that cardiomyocytes with extreme glucose uptake deficiency exhibit cardiac hypertrophy and marked excitation-contraction coupling abnormalities characterized by reduced sarcolemmal Ca(2+) influx and sarcoplasmic reticulum Ca(2+) uptake. The 'milder' phenotype fructose-fed mouse model of type 2 diabetes does not show evidence of cardiac hypertrophy, but cardiomyocyte loss linked with autophagic activation is evident. Fructose feeding induces a marked reduction in intracellular Ca(2+) availability with myofilament adaptation to preserve contractile function in this setting. The cardiac metabolic adaptations of two load-independent models of diabetes, namely the Glut-4-deficient mouse and the fructose-fed mouse are contrasted. The role of autophagy in diabetic cardiopathology is evaluated and anomalies of type 1 versus type 2 diabetic autophagic responses are highlighted.
Collapse
Affiliation(s)
- Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
211
|
HIV-1 gp120 induces autophagy in cardiomyocytes via the NMDA receptor. Int J Cardiol 2013; 167:2517-23. [DOI: 10.1016/j.ijcard.2012.06.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/09/2012] [Indexed: 02/07/2023]
|
212
|
Thomas RL, Gustafsson AB. Mitochondrial autophagy--an essential quality control mechanism for myocardial homeostasis. Circ J 2013; 77:2449-54. [PMID: 23985961 DOI: 10.1253/circj.cj-13-0835] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Efficient and functional mitochondrial networks are essential for myocardial contraction and cardiomyocyte survival. Mitochondrial autophagy (mitophagy) refers to selective sequestration of mitochondria by autophagosomes, which subsequently deliver them to lysosomes for destruction. This process is essential for myocardial homeostasis and adaptation to stress. Elimination of damaged mitochondria protects against cell death, as well as stimulates mitochondrial biogenesis. Mitophagy is a tightly controlled and highly selective process. It is modulated by mitochondrial fission and fusion proteins, BCL-2 family proteins, and the PINK1/Parkin pathway. Recent studies have provided evidence that miRNAs can regulate mitophagy by controlling the expression of essential proteins involved in the process. Disruption of autophagy leads to rapid accumulation of dysfunctional mitochondria, and diseases associated with impaired autophagy produce severe cardiomyopathies. Thus, autophagy and mitophagy pathways hold promise as new therapeutic targets for clinical cardiac care.
Collapse
Affiliation(s)
- Robert L Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego
| | | |
Collapse
|
213
|
Xiao M, Li L, Hu Q, Ma L, Liu L, Chu W, Zhang H. Rapamycin reduces burn wound progression by enhancing autophagy in deep second-degree burn in rats. Wound Repair Regen 2013; 21:852-9. [PMID: 23980869 DOI: 10.1111/wrr.12090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 06/25/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Mengjing Xiao
- Department of Burn and Plastic Surgery; Burn Institute, First Affiliated Hospital of General Hospital of PLA; Beijing China
| | - Ligen Li
- Department of Burn and Plastic Surgery; Burn Institute, First Affiliated Hospital of General Hospital of PLA; Beijing China
| | - Quan Hu
- Department of Burn and Plastic Surgery; Burn Institute, First Affiliated Hospital of General Hospital of PLA; Beijing China
| | - Li Ma
- Department of Burn and Plastic Surgery; Burn Institute, First Affiliated Hospital of General Hospital of PLA; Beijing China
| | - Lingying Liu
- Department of Burn and Plastic Surgery; Burn Institute, First Affiliated Hospital of General Hospital of PLA; Beijing China
| | - Wanli Chu
- Department of Burn and Plastic Surgery; Burn Institute, First Affiliated Hospital of General Hospital of PLA; Beijing China
| | - Haijun Zhang
- Department of Burn and Plastic Surgery; Burn Institute, First Affiliated Hospital of General Hospital of PLA; Beijing China
| |
Collapse
|
214
|
Cheng Y, Ren X, Hait WN, Yang JM. Therapeutic targeting of autophagy in disease: biology and pharmacology. Pharmacol Rev 2013; 65:1162-97. [PMID: 23943849 DOI: 10.1124/pr.112.007120] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a process of self-digestion of the cytoplasm and organelles through which cellular components are recycled for reuse or energy production, is an evolutionarily conserved response to metabolic stress found in eukaryotes from yeast to mammals. It is noteworthy that autophagy is also associated with various pathophysiologic conditions in which this cellular process plays either a cytoprotective or cytopathic role in response to a variety of stresses such as metabolic, inflammatory, neurodegenerative, and therapeutic stress. It is now generally believed that modulating the activity of autophagy through targeting specific regulatory molecules in the autophagy machinery may impact disease processes, thus autophagy may represent a new pharmacologic target for drug development and therapeutic intervention of various human disorders. Induction or inhibition of autophagy using small molecule compounds has shown promise in the treatment of diseases such as cancer. Depending on context, induction or suppression of autophagy may exert therapeutic effects via promoting either cell survival or death, two major events targeted by therapies for various disorders. A better understanding of the biology of autophagy and the pharmacology of autophagy modulators has the potential for facilitating the development of autophagy-based therapeutic interventions for several human diseases.
Collapse
Affiliation(s)
- Yan Cheng
- Department of Pharmacology and Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine and Milton S Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
215
|
Zaouali MA, Boncompagni E, Reiter RJ, Bejaoui M, Freitas I, Pantazi E, Folch-Puy E, Abdennebi HB, Garcia-Gil FA, Roselló-Catafau J. AMPK involvement in endoplasmic reticulum stress and autophagy modulation after fatty liver graft preservation: a role for melatonin and trimetazidine cocktail. J Pineal Res 2013; 55:65-78. [PMID: 23551302 DOI: 10.1111/jpi.12051] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/22/2013] [Indexed: 12/11/2022]
Abstract
Ischemia/reperfusion injury (IRI) associated with liver transplantation plays an important role in the induction of graft injury. Prolonged cold storage remains a risk factor for liver graft outcome, especially when steatosis is present. Steatotic livers exhibit exacerbated endoplasmic reticulum (ER) stress that occurs in response to cold IRI. In addition, a defective liver autophagy correlates well with liver damage. Here, we evaluated the combined effect of melatonin and trimetazidine as additives to IGL-1 solution in the modulation of ER stress and autophagy in steatotic liver grafts through activation of AMPK. Steatotic livers were preserved for 24 hr (4°C) in UW or IGL-1 solutions with or without MEL + TMZ and subjected to 2-hr reperfusion (37°C). We assessed hepatic injury (ALT and AST) and function (bile production). We evaluated ER stress (GRP78, PERK, and CHOP) and autophagy (beclin-1, ATG7, LC3B, and P62). Steatotic livers preserved in IGL-1 + MEL + TMZ showed lower injury and better function as compared to those preserved in IGL-1 alone. IGL-1 + MEL + TMZ induced a significant decrease in GRP78, pPERK, and CHOP activation after reperfusion. This was consistent with a major activation of autophagic parameters (beclin-1, ATG7, and LC3B) and AMPK phosphorylation. The inhibition of AMPK induced an increase in ER stress and a significant reduction in autophagy. These data confirm the close relationship between AMPK activation and ER stress and autophagy after cold IRI. The addition of melatonin and TMZ to IGL-1 solution improved steatotic liver graft preservation through AMPK activation, which reduces ER stress and increases autophagy.
Collapse
Affiliation(s)
- Mohamed Amine Zaouali
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas, IDIBAPS-Ciberehd, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Lane DJR, Huang MLH, Ting S, Sivagurunathan S, Richardson DR. Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia. Biochem J 2013; 453:321-36. [PMID: 23849057 DOI: 10.1042/bj20130079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
FRDA (Friedreich's ataxia) is a debilitating mitochondrial disorder leading to neural and cardiac degeneration, which is caused by a mutation in the frataxin gene that leads to decreased frataxin expression. The most common cause of death in FRDA patients is heart failure, although it is not known how the deficiency in frataxin potentiates the observed cardiomyopathy. The major proposed biochemical mechanisms for disease pathogenesis and the origins of heart failure in FRDA involve metabolic perturbations caused by decreased frataxin expression. Additionally, recent data suggest that low frataxin expression in heart muscle of conditional frataxin knockout mice activates an integrated stress response that contributes to and/or exacerbates cardiac hypertrophy and the loss of cardiomyocytes. The elucidation of these potential mechanisms will lead to a more comprehensive understanding of the pathogenesis of FRDA, and will contribute to the development of better treatments and therapeutics.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, Blackburn Building, D06, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
217
|
Dunlop JL, Vandal AC, de Zoysa JR, Gabriel RS, Haloob IA, Hood CJ, Matheson PJ, McGregor DOR, Rabindranath KS, Semple DJ, Marshall MR. Rationale and design of the Sodium Lowering In Dialysate (SoLID) trial: a randomised controlled trial of low versus standard dialysate sodium concentration during hemodialysis for regression of left ventricular mass. BMC Nephrol 2013; 14:149. [PMID: 23855560 PMCID: PMC3720185 DOI: 10.1186/1471-2369-14-149] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/08/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The current literature recognises that left ventricular hypertrophy makes a key contribution to the high rate of premature cardiovascular mortality in dialysis patients. Determining how we might intervene to ameliorate left ventricular hypertrophy in dialysis populations has become a research priority. Reducing sodium exposure through lower dialysate sodium may be a promising intervention in this regard. However there is clinical equipoise around this intervention because the benefit has not yet been demonstrated in a robust prospective clinical trial, and several observational studies have suggested sodium lowering interventions may be deleterious in some dialysis patients. METHODS/DESIGN The Sodium Lowering in Dialysate (SoLID) study is funded by the Health Research Council of New Zealand. It is a multi-centre, prospective, randomised, single-blind (outcomes assessor), controlled parallel assignment 3-year clinical trial. The SoLID study is designed to study what impact low dialysate sodium has upon cardiovascular risk in dialysis patients. The study intends to enrol 118 home hemodialysis patients from 6 sites in New Zealand over 24 months and follow up each participant over 12 months. Key exclusion criteria are: patients who dialyse more frequently than 3.5 times per week, pre-dialysis serum sodium of <135 mM, and maintenance hemodiafiltration. In addition, some medical conditions, treatments or participation in other dialysis trials, which contraindicate the SoLID study intervention or confound its effects, will be exclusion criteria. The intervention and control groups will be dialysed using dialysate sodium 135 mM and 140 mM respectively, for 12 months. The primary outcome measure is left ventricular mass index, as measured by cardiac magnetic resonance imaging, after 12 months of intervention. Eleven or more secondary outcomes will be studied in an attempt to better understand the physiologic and clinical mechanisms by which lower dialysate sodium alters the primary end point. DISCUSSION The SoLID study is designed to clarify the effect of low dialysate sodium upon the cardiovascular outcomes of dialysis patients. The study results will provide much needed information about the efficacy of a cost effective, economically sustainable solution to a condition which is curtailing the lives of so many dialysis patients. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry number: ACTRN12611000975998.
Collapse
Affiliation(s)
- Joanna Leigh Dunlop
- South Auckland Clinical School, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 93311, Otahuhu, Auckland 1640, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Abstract
Autophagy is an evolutionarily conserved intracellular mechanism for degradation of long-lived proteins and organelles. Accumulating lines of evidence indicate that autophagy is deeply involved in the development of cardiac disease. Autophagy is upregulated in almost all cardiac pathological states, exerting both protective and detrimental functions. Whether autophagy activation is an adaptive or maladaptive mechanism during cardiac stress seems to depend upon the pathological context in which it is upregulated, the extent of its activation, and the signaling mechanisms promoting its enhancement. Pharmacological modulation of autophagy may therefore represent a potential therapeutic strategy to limit myocardial damage during cardiac stress. Several pharmacological agents that are able to modulate autophagy have been identified, such as mammalian target of rapamycin inhibitors, adenosine monophosphate-dependent kinase modulators, sirtuin activators, myo-inositol-1,4,5-triphosphate and calcium-lowering agents, and lysosome inhibitors. Although few of these modulators of autophagy have been directly tested during cardiac stress, many of them seem to have high potential to be efficient in the treatment of cardiac disease. We will discuss the potential usefulness of different pharmacological activators and inhibitors of autophagy in the treatment of cardiac diseases.
Collapse
|
219
|
Faria A, Costa D, Criado B, Albuquerque A, Escórcio C. Left ventricular function influenced by MMP3gene 5A/6A polymorphism (rs3025058): a gated-SPECT study. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2013. [DOI: 10.1080/21681163.2013.769748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
220
|
Smuder AJ, Kavazis AN, Min K, Powers SK. Doxorubicin-induced markers of myocardial autophagic signaling in sedentary and exercise trained animals. J Appl Physiol (1985) 2013; 115:176-85. [PMID: 23703114 DOI: 10.1152/japplphysiol.00924.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) is an effective antitumor agent used in cancer treatment. However, its clinical use is limited due to cardiotoxicity. Indeed, the side effects of DOX are irreversible and include the development of cardiomyopathy and ultimately congestive heart failure. Although many studies have investigated the events leading to DOX-induced cardiotoxicity, the mechanisms responsible for DOX-induced cardiotoxicity remain unknown. In general, evidence suggests that DOX-induced cardiotoxicity is associated with an increased generation of reactive oxygen species and oxidative damage, leading to the activation of cellular proteolytic systems. In this regard, the autophagy/lysosomal proteolytic system is a constitutively active catabolic process that is responsible for the degradation of both organelles and cytosolic proteins. We tested the hypothesis that systemic DOX administration results in altered cardiac gene and protein expression of mediators of the autophagy/lysosomal system. Our results support this hypothesis, as DOX treatment increased both the mRNA and protein levels of numerous key autophagy genes. Because exercise training has been shown to be cardioprotective against DOX-induced damage, we also determined whether exercise training before DOX administration alters the expression of important components of the autophagy/lysosomal system in cardiac muscle. Our findings show that exercise training inhibits DOX-induced cardiac increases in autophagy signaling. Collectively, our results reveal that DOX administration promotes activation of the autophagy/lysosomal system pathway in the heart, and that endurance exercise training can be a cardioprotective intervention against myocardial DOX-induced toxicity.
Collapse
Affiliation(s)
- Ashley J Smuder
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|
221
|
Sun M, Ouzounian M, de Couto G, Chen M, Yan R, Fukuoka M, Li G, Moon M, Liu Y, Gramolini A, Wells GJ, Liu PP. Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J Am Heart Assoc 2013; 2:e000191. [PMID: 23608608 PMCID: PMC3647266 DOI: 10.1161/jaha.113.000191] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Autophagy is critical in the maintenance of cellular protein quality control, the final step of which involves the fusion of autophagosomes with lysosomes. Cathepsin-L (CTSL) is a key member of the lysosomal protease family that is expressed in the murine and human heart, and it may play an important role in protein turnover. We hypothesized that CTSL is important in regulating protein processing in the heart, particularly under pathological stress. METHODS AND RESULTS Phenylephrine-induced cardiac hypertrophy in vitro was more pronounced in CTSL-deficient neonatal cardiomyocytes than in in controls. This was accompanied by a significant accumulation of autophagosomes, increased levels of ubiquitin-conjugated protein, as well as impaired protein degradation and decreased cell viability. These effects were partially rescued with CTSL1 replacement via adeno-associated virus-mediated gene transfer. In the in vivo murine model of aortic banding (AB), a deficiency in CTSL markedly exacerbated cardiac hypertrophy, worsened cardiac function, and increased mortality. Ctsl(-/-) AB mice demonstrated significantly decreased lysosomal activity and increased sarcomere-associated protein aggregation. Homeostasis of the endoplasmic reticulum was also altered by CTSL deficiency, with increases in Bip and GRP94 proteins, accompanied by increased ubiquitin-proteasome system activity and higher levels of ubiquitinated proteins in response to AB. These changes ultimately led to a decrease in cellular ATP production, enhanced oxidative stress, and increased cellular apoptosis. CONCLUSIONS Lysosomal CTSL attenuates cardiac hypertrophy and preserves cardiac function through facilitation of autophagy and proteasomal protein processing.
Collapse
Affiliation(s)
- Mei Sun
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Maral Ouzounian
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Geoffrey de Couto
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Manyin Chen
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Ran Yan
- McMaster University Medical School, Hamilton, Ontario, Canada (R.Y.)
| | - Masahiro Fukuoka
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Guohua Li
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Mark Moon
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Youan Liu
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
| | - Anthony Gramolini
- Department of Physiology, University of Toronto and University Health Network, Toronto, Ontario, Canada (A.G.)
| | - George J. Wells
- Department of Epidemiology and Statistics, University of Ottawa Heart Institute, Ottawa, Ontario, Canada (G.J.W.)
| | - Peter P. Liu
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada (M.S., M.O., G.C., M.C., M.F., G.L., M.M., Y.L., P.P.L.)
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada (P.P.L.)
- Correspondence to: Peter P. Liu, MD, University of Ottawa Heart Institute, Ottawa, Ontario, Canada. E‐mail:
| |
Collapse
|
222
|
Liao LZ, Chen YL, Lu LH, Zhao YH, Guo HL, Wu WK. Polysaccharide from Fuzi Likely Protects Against Starvation-Induced Cytotoxicity in H9c2 Cells by Increasing Autophagy Through Activation of the AMPK/mTOR Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:353-67. [DOI: 10.1142/s0192415x13500262] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is increasing evidence that starvation induces autophagy, which may be protective during starvation, in an AMPK-dependent manner. Polysaccharides from Fuzi (FPS) reportedly have protective effects on nutrition-limited livers. The present study was designed to determine whether FPS protected H9c2 cells against starvation-induced cytotoxicity using an AMPK/mTOR-dependent mechanism. H9c2 cells were incubated in serum and glucose starvation media for 12 hours to establish a cell injury model. 3-Methyladenine (3MA, an autophagy inhibitor) was used to identify the exact role of autophagy in starvation. Cells were incubated with different FPS concentrations, and the cell injury levels, autophagy activity and AMPK/mTOR phosphorylation were measured. Adenine 9-β-D-arabinofuranoside (Ara-A, an AMPK inhibitor) and 5-amino-4-imidazole-carboxamide riboside (AICAR, an AMPK activator) were used to identify whether the AMPK/mTOR pathway was involved in FPS-mediated cardioprotection. We demonstrated that starvation decreased cell viability in a time-dependent manner, and 3MA-induced autophagy inhibition aggravated the reduced cell viability. FPS treatment attenuated the cell viability decrement and the starvation-induced decline in the mitochondrial membrane potential (MMP), and autophagy; also, the AMPK/mTOR pathways were activated during treatment. Ara-A treatment abolished the protective effect of FPS, while AICAR treatment had a similar effect to FPS. We conclude that autophagy attenuates starvation-induced cardiomyocyte death, and FPS increases autophagy activity to protect against starvation-induced cytotoxicity in H9c2 cells, likely through AMPK/mTOR pathway activation.
Collapse
Affiliation(s)
- Li-Zhen Liao
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Yan-Ling Chen
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Li-He Lu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Yong-Hua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese, Medicine Macau University of Science and Technology, Macao 999078, Macao SAR, P. R. China
| | - Hua-Lei Guo
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P. R. China
| | - Wei-Kang Wu
- Department of Pathophysiology, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P. R. China
| |
Collapse
|
223
|
Mellor KM, Reichelt ME, Delbridge LM. Autophagic predisposition in the insulin resistant diabetic heart. Life Sci 2013; 92:616-20. [DOI: 10.1016/j.lfs.2012.03.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/21/2012] [Accepted: 03/24/2012] [Indexed: 01/30/2023]
|
224
|
Tian XF, Cui MX, Yang SW, Zhou YJ, Hu DAY. Cell death, dysglycemia and myocardial infarction. Biomed Rep 2013; 1:341-346. [PMID: 24648945 DOI: 10.3892/br.2013.67] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023] Open
Abstract
Dysglycemia (hyper- and hypoglycemia) has been associated with higher mortality among patients suffering from myocardial infarction (MI). Moreover, dysglycemia may induce cell death. Cell death (necrosis, apoptosis and autophagy) is a ubiquitous process that characterizes the course of several diseases, including MI, and occurs in diverse forms varying in mechanism, pattern and consequence. Therefore, cell death is a potential pathway through which dysglycemia affects the outcome of MI and it is essential to regulate myocardial cell death in the treatment of patients with MI caused by dysglycemia. In this review, we summarized the mechanisms of MI at the cellular level and the regulatory effects of dysglycemia on myocardial cell death. The ability to modulate myocardial cell death may be a promising target of new treatments aimed at limiting MI caused by dysglycemia. However, further research is required to elucidate the mechanisms underlying cell death regulation in MI caused by dysglycemia.
Collapse
Affiliation(s)
- Xiao-Fang Tian
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000
| | - Ming-Xia Cui
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000
| | - Shi-Wei Yang
- 12th Ward, Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing 100029
| | - Yu-Jie Zhou
- 12th Ward, Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing 100029
| | - DA-Yi Hu
- Department of Cardiology, People's Hospital Affiliated to Peking University, Beijing 100044, P.R. China
| |
Collapse
|
225
|
Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, Al-Owain M, Koelker S, Koerner C, Hoffmann GF, Wijburg FA, Hoedt AET, Rogers C, Manchester D, Miyata R, Hayashi M, Said E, Soler D, Kroisel PM, Windpassinger C, Filloux FM, Al-Kaabi S, Hertecant J, Del Campo M, Buk S, Bodi I, Goebel HH, Sewry CA, Abbs S, Mohammed S, Josifova D, Gautel M, Jungbluth H. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 2013; 45:83-7. [PMID: 23222957 PMCID: PMC4012842 DOI: 10.1038/ng.2497] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 11/15/2012] [Indexed: 01/07/2023]
Abstract
Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 affected individuals. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homolog of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies showed a severe block in autophagosomal clearance in muscle and fibroblasts from individuals with mutant EPG5, resulting in the accumulation of autophagic cargo in autophagosomes. These findings position Vici syndrome as a paradigm of human multisystem disorders associated with defective autophagy and suggest a fundamental role of the autophagy pathway in the immune system and the anatomical and functional formation of organs such as the brain and heart.
Collapse
Affiliation(s)
- Thomas Cullup
- DNA Laboratory, Guy’s and St. Thomas’ Serco Pathology, Guy’s Hospital, London, UK
| | - Ay L. Kho
- Randall Division of Cell and Molecular Biophysics, King’s College, London, UK
- Cardiovascular Division, King’s College London BHF Centre of Research Excellence, London, UK
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesu Children’s Hospital, Istituto di Ricovero e Cure a Carattere Scientifico, Rome, Italy
- Laboratory of Molecular Medicine, Bambino Gesu Children’s Hospital, Istituto di Ricovero e Cure a Carattere Scientifico, Rome, Italy
| | - Birgit Brandmeier
- Randall Division of Cell and Molecular Biophysics, King’s College, London, UK
- Cardiovascular Division, King’s College London BHF Centre of Research Excellence, London, UK
| | - Frances Smith
- DNA Laboratory, Guy’s and St. Thomas’ Serco Pathology, Guy’s Hospital, London, UK
| | - Zoe Urry
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, Guy’s Hospital, London, UK
| | - Michael A. Simpson
- Division of Genetics and Molecular Medicine, King’s College London School of Medicine, Guy’s Hospital, London, UK
| | - Shu Yau
- DNA Laboratory, Guy’s and St. Thomas’ Serco Pathology, Guy’s Hospital, London, UK
| | - Enrico Bertini
- Laboratory of Molecular Medicine, Bambino Gesu Children’s Hospital, Istituto di Ricovero e Cure a Carattere Scientifico, Rome, Italy
| | - Verity McClelland
- Department of Paediatric Neurology, Evelina Children’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Mohammed Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Alfaisal University, Riyadh, Saudi Arabia
| | - Stefan Koelker
- Division of Inherited Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| | - Christian Koerner
- Division of Inherited Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| | - Georg F. Hoffmann
- Division of Inherited Metabolic Diseases, University Children’s Hospital, Heidelberg, Germany
| | - Frits A. Wijburg
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Amber E. ten Hoedt
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | - David Manchester
- Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Children’s Hospital Colorado, Aurora, CO, USA
| | - Rie Miyata
- Department of Pediatrics, Tokyo Kita Shakai Hoken Hospital, Tokyo, Japan
| | - Masaharu Hayashi
- Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Elizabeth Said
- Section of Medical Genetics, Mater dei Hospital, Msida, Malta
- Department of Anatomy & Cell Biology, University of Malta, Msida, Malta
| | - Doriette Soler
- Department of Paediatrics, Mater dei Hospital, Msida, Malta
| | - Peter M. Kroisel
- Institute of Human Genetics, Medical University of Graz, Austria
| | | | - Francis M. Filloux
- University of Utah School of Medicine, Division of Pediatric Neurology, Salt Lake City, UT, USA
| | | | | | | | - Stefan Buk
- Department of Clinical Neuropathology, Academic Neuroscience Centre, King’s College Hospital, London, UK
| | - Istvan Bodi
- Department of Clinical Neuropathology, Academic Neuroscience Centre, King’s College Hospital, London, UK
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Johannes Gutenberg University Medical Centre, Mainz, Germany
| | - Caroline A. Sewry
- Dubowitz Neuromuscular Centre, Institute of Child Health, University College, London, UK
| | - Stephen Abbs
- DNA Laboratory, Guy’s and St. Thomas’ Serco Pathology, Guy’s Hospital, London, UK
| | | | | | - Mathias Gautel
- Randall Division of Cell and Molecular Biophysics, King’s College, London, UK
- Cardiovascular Division, King’s College London BHF Centre of Research Excellence, London, UK
| | - Heinz Jungbluth
- Laboratory of Molecular Medicine, Bambino Gesu Children’s Hospital, Istituto di Ricovero e Cure a Carattere Scientifico, Rome, Italy
- Clinical Neuroscience Division, IOP, King’s College, London, UK
| |
Collapse
|
226
|
Histological and ultrastructural abnormalities in murine desmoglein 2-mutant hearts. Cell Tissue Res 2012; 348:249-59. [PMID: 22293975 DOI: 10.1007/s00441-011-1322-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 12/21/2022]
Abstract
Mice carrying a deletion of the adhesive extracellular domain of the desmosomal cadherin desmoglein 2 develop an arrhythmogenic right ventricular cardiomyopathylike phenotype with ventricular dilation, fibrosis and arrhythmia. To unravel the sequence of myocardial alterations and to identify potential pathomechanisms, histological analyses were performed on mutant hearts from the juvenile to the adult state, i.e., between 2 and 13 weeks. At an age of 2 weeks 30% of mutants presented lesions,which were visible as white plaques on the heart surface or in the septum. From 4 weeks onwards, all mutants displayed a cardiac phenotype. Dying cardiomyocytes with calcification were found in lesions of all ages. But lesions of young mutant animals contained high amounts of CD45+ immune cells and little collagen fibers, whereas lesions of the older animals were collagen-rich and harbored only a small but still significantly increased number of CD45+ cells. Electron microscopy further showed that distinct desmosomes cannot be distinguished in intercalated discs of mutant hearts. Widening of the intercellular cleft and even complete dissociation of intercalated discs were often observed close to lesions. Disturbed sarcomer structure, altered Z-discs, multiple autophagic vacuoles and swollen mitochondria were other prominent pathological features. Taken together, the following scenario is suggested: mutant desmoglein 2 cannot fully support the increased mechanical requirements placed on intercalated disc adhesion during postnatal heart development, resulting in compromised adhesion and cell stress. This induces cardiomyocyte death, aseptic inflammation and fibrotic replacement. The acute stage of scar formation is followed by permanent impairment of the cardiac function.
Collapse
|
227
|
Kandadi MR, Yu X, Frankel AE, Ren J. Cardiac-specific catalase overexpression rescues anthrax lethal toxin-induced cardiac contractile dysfunction: role of oxidative stress and autophagy. BMC Med 2012; 10:134. [PMID: 23134810 PMCID: PMC3520786 DOI: 10.1186/1741-7015-10-134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 11/07/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Lethal and edema toxins secreted by Bacillus anthracis during anthrax infection were found to incite serious cardiovascular complications. However, the underlying mechanisms in anthrax lethal toxin-induced cardiac anomalies remain unknown. This study was designed to evaluate the impact of antioxidant enzyme catalase in anthrax lethal toxin-induced cardiomyocyte contractile dysfunction. METHODS Wild type (WT) and cardiac-specific catalase overexpression mice were challenged with lethal toxin (2 μg/g, intraperotineally (i.p.)). Cardiomyocyte contractile and intracellular Ca(2+) properties were assessed 18 h later using an IonOptix edge-detection system. Proteasome function was assessed using chymotrypsin-like and caspase-like activities. GFP-LC3 puncta and Western blot analysis were used to evaluate autophagy and protein ubiquitination. RESULTS Lethal toxin exposure suppressed cardiomyocyte contractile function (suppressed peak shortening, maximal velocity of shortening/re-lengthening, prolonged duration of shortening/re-lengthening, and impaired intracellular Ca(2+) handling), the effects of which were alleviated by catalase. In addition, lethal toxin triggered autophagy, mitochondrial and ubiquitin-proteasome defects, the effects of which were mitigated by catalase. Pretreatment of cardiomyocytes from catalase mice with the autophagy inducer rapamycin significantly attenuated or ablated catalase-offered protection against lethal toxin-induced cardiomyocyte dysfunction. On the other hand, the autophagy inhibitor 3-MA ablated or significantly attenuated lethal toxin-induced cardiomyocyte contractile anomalies. CONCLUSIONS Our results suggest that catalase is protective against anthrax lethal toxin-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, possibly through regulation of autophagy and mitochondrial function.
Collapse
Affiliation(s)
- Machender R Kandadi
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | | | |
Collapse
|
228
|
Segar JL, Volk KA, Lipman MHB, Scholz TD. Thyroid hormone is required for growth adaptation to pressure load in the ovine fetal heart. Exp Physiol 2012; 98:722-33. [PMID: 23104936 DOI: 10.1113/expphysiol.2012.069435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thyroid hormone exerts broad effects on the adult heart, but little is known regarding the role of thyroid hormone in the regulation of cardiac growth early in development and in response to pathophysiological conditions. To address this issue, we determined the effects of fetal thyroidectomy on cardiac growth and growth-related gene expression in control and pulmonary-artery-banded fetal sheep. Fetal thyroidectomy (THX) and/or placement of a restrictive pulmonary artery band (PAB) were performed at 126 ± 1 days of gestation (term, 145 days). Four groups of animals [n = 5-6 in each group; (i) control; (ii) fetal THX; (iii) fetal PAB; and (iv) fetal PAB + THX] were monitored for 1 week prior to being killed. Fetal heart rate was significantly lower in the two THX groups compared with the non-THX groups, while mean arterial blood pressure was similar among groups. Combined left and right ventricle free wall + septum weight, expressed per kilogram of fetal weight, was significantly increased in PAB (6.27 ± 0.85 g kg(-1)) compared with control animals (4.72 ± 0.12 g kg(-1)). Thyroidectomy significantly attenuated the increase in cardiac mass associated with PAB (4.94 ± 0.13 g kg(-1)), while THX alone had no detectable effect on heart mass (4.95 ± 0.27 g kg(-1)). The percentage of binucleated cardiomyocytes was significantly decreased in THX and PAB +THX groups (∼16%) compared with the non-THX groups (∼27%). No differences in levels of activated Akt, extracellular signal-regulated kinase or c-Jun N-terminal kinase were detected among the groups. Markers of cellular proliferation but not apoptosis or expression of growth-related genes were lower in the THX and THX+ PAB groups relative to thyroid-intact animals. These findings suggest that in the late-gestation fetal heart, thyroid hormone has important cellular growth functions in both physiological and pathophysiological states. Specifically, thyroid hormone is required for adaptive fetal cardiac growth in response to pressure overload.
Collapse
Affiliation(s)
- Jeffrey L Segar
- Department of Pediatrics, University of Iowa Carver College of Medicine, University of Iowa Children's Hospital, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
229
|
Hill JA. Hypertrophic reprogramming of the left ventricle: translation to the ECG. J Electrocardiol 2012; 45:624-9. [PMID: 22999493 DOI: 10.1016/j.jelectrocard.2012.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Indexed: 01/16/2023]
Abstract
Hypertrophic growth of the heart occurs in many clinical scenarios, and it confers substantially increased risk of untoward sequelae. Among them, transition to ventricular dilation, wall thinning, contractile dysfunction, and a clinical syndrome of heart failure are paramount. Left ventricular hypertrophy (LVH) is typically diagnosed by either electrocardiography or echocardiography. However, these two means of assessing hypertrophic transformation of the left ventricle can sometimes disagree. At one level, this may not be surprising as the two methodologies are based on entirely divergent signals: electrical potential between two places on the surface of the skin and ultrasound energy reflected from the ventricle itself. Echocardiography is an effective means of assessing ventricular mass, which is a cardinal feature of LVH. Importantly, however, LVH is characterized by a wide range of remodeling events beyond simple increases in muscle mass. Electrocardiographic changes in LVH are reflective of the electrophysiological aspects of hypertrophic transformation. Here, I present an overview of the complex biology of left ventricular hypertrophy with an eye toward enhancing our understanding of its ECG manifestations.
Collapse
Affiliation(s)
- Joseph A Hill
- Department of Internal Medicine, Cardiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| |
Collapse
|
230
|
Kume S, Uzu T, Maegawa H, Koya D. Autophagy: a novel therapeutic target for kidney diseases. Clin Exp Nephrol 2012; 16:827-32. [PMID: 22971965 DOI: 10.1007/s10157-012-0695-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/29/2012] [Indexed: 02/06/2023]
Abstract
Autophagy meaning 'self-eating' in Greek, is a large-scale mechanism of intracellular degradation that seeks to maintain homeostasis in cells of all eukaryotes, from yeast to humans. Over the past several decades, autophagy research has actively proceeded both at home and abroad. As a result, studies have reported the physiological role of autophagy in different organs of mammals and of the role that impairment of its activation plays in the development of age-related diseases, abnormal glucose-lipid metabolism, and neurodegenerative disorders. Currently, new therapies targeting the regulation of activation of autophagy are anticipated, and research is continuing. In recent years, the role of autophagy in the kidneys has gradually been elucidated, and reports are indicating an association between autophagy and the development of various kidney diseases. This paper reviews the molecular mechanisms regulating autophagy and discusses new findings from autophagy research on the kidney and issues that have yet to be resolved.
Collapse
Affiliation(s)
- Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Ōtsu, Shiga 520-2192, Japan.
| | | | | | | |
Collapse
|
231
|
Abstract
Heart failure is a major health problem in developed countries and a growing one in developing countries. Cardiac remodeling in heart failure affects myocardial mechanics, which requires comprehensive evaluation in three dimensions. The novel technique of 3D wall motion tracking applies speckle tracking technology to full volume, 3D echocardiographic datasets. Quantification of conventional and novel left ventricular (LV) parameters including volumes, ejection fraction, global and regional 3D strain, endocardial area strain, twist, and dyssynchrony, and identification of the site of latest mechanical activation are feasible on the basis of a single acquisition of a full-volume dataset. Clinical applications of 3D wall motion tracking include the assessment of global and regional LV performance in ischemic and nonischemic heart diseases, evaluation of mechanics in cardiomyopathies and congenital heart disease, potential selection of patients for cardiac resynchronization therapy and prediction of their response, and detection of subclinical cardiac dysfunction in diseases with likelihood of progression to heart failure. Technological advances with improvement in spatial and temporal resolution of this novel imaging modality are expected. Although 3D wall motion tracking is still in its infancy, this method has begun to provide new insights into LV mechanics and has already found clinical applications. Future developments in 3D assessment of right ventricular and myocardial layer-specific mechanics are awaited.
Collapse
Affiliation(s)
- Yiu-fai Cheung
- Division of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China.
| |
Collapse
|
232
|
Costa R, Morrison A, Wang J, Manithody C, Li J, Rezaie AR. Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart. J Thromb Haemost 2012; 10:1736-44. [PMID: 22738025 PMCID: PMC3433592 DOI: 10.1111/j.1538-7836.2012.04833.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Modulation of energy substrate metabolism may constitute a novel therapeutic intervention against ischemia/reperfusion (I/R) injury. AMP-activated protein kinase (AMPK) has emerged as a key regulator of favorable metabolic signaling pathways in response to myocardial ischemia. Recently, we demonstrated that activated protein C (APC) is cardioprotective against ischemia/reperfusion (I/R) injury by augmenting AMPK signaling. OBJECTIVES The objective of this study was to determine whether the APC modulation of substrate metabolism contributes to its cardioprotective effect against I/R injury. METHODS An ex vivo working mouse heart perfusion system was used to characterize the effect of wild-type APC and its signaling-proficient mutant, APC-2Cys (which has dramatically reduced anticoagulant activity), on glucose transport in the ischemic heart. RESULTS Both APC and APC-2Cys (0.2 μg g(-1)) augment the ischemic stress-induced translocation of the glucose transporter (GLUT4) to the myocardial cell membrane, leading to increased glucose uptake and glucose oxidation in the ischemic heart (P < 0.05 vs. vehicle). Both APC derivatives increased the autophagic flux in the heart following I/R. The activity of APC-2Cys in modulating these metabolic pathways was significantly higher than APC during I/R (P < 0.05). Intriguingly, APC-2Cys, but not wild-type APC, attenuated the I/R-initiated fatty acid oxidation by 80% (P < 0.01 vs. vehicle). CONCLUSIONS APC exerts a cardioprotective effect against I/R injury by preferentially enhancing the oxidation of glucose over fatty acids as energy substrates in the ischemic heart. Given its significantly higher beneficial metabolic modulatory effect, APC-2Cys may be developed as a potential therapeutic drug for treating ischemic heart disease without risk of bleeding.
Collapse
Affiliation(s)
- Robert Costa
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY
| | - Alex Morrison
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY
| | - Jingying Wang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY
| | - Chandrashekhara Manithody
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO
| | - Ji Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY
| | - Alireza R Rezaie
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO
| |
Collapse
|
233
|
Papa AL, Dumont L, Vandroux D, Millot N. Titanate nanotubes: towards a novel and safer nanovector for cardiomyocytes*. Nanotoxicology 2012; 7:1131-42. [DOI: 10.3109/17435390.2012.710661] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
234
|
Dimitrakis P, Romay-Ogando MI, Timolati F, Suter TM, Zuppinger C. Effects of doxorubicin cancer therapy on autophagy and the ubiquitin-proteasome system in long-term cultured adult rat cardiomyocytes. Cell Tissue Res 2012; 350:361-72. [PMID: 22864983 DOI: 10.1007/s00441-012-1475-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 06/25/2012] [Indexed: 01/24/2023]
Abstract
The clinical use of anthracyclines in cancer therapy is limited by dose-dependent cardiotoxicity that involves cardiomyocyte injury and death. We have tested the hypothesis that anthracyclines affect protein degradation pathways in adult cardiomyocytes. To this aim, we assessed the effects of doxorubicin (Doxo) on apoptosis, autophagy and the proteasome/ubiquitin system in long-term cultured adult rat cardiomyocytes. Accumulation of poly-ubiquitinated proteins, increase of cathepsin-D-positive lysosomes and myofibrillar degradation were observed in Doxo-treated cardiomyocytes. Chymotrypsin-like activity of the proteasome was initially increased and then inhibited by Doxo over a time-course of 48 h. Proteasome 20S proteins were down-regulated by higher doses of Doxo. The expression of MURF-1, an ubiquitin-ligase specifically targeting myofibrillar proteins, was suppressed by Doxo at all concentrations measured. Microtubule-associated protein 1 light chain 3B (LC3)-positive punctae and both LC3-I and -II proteins were induced by Doxo in a dose-dependent manner, as confirmed by using lentiviral expression of green fluorescence protein bound to LC3 and live imaging. The lysosomotropic drug chloroquine led to autophagosome accumulation, which increased with concomitant Doxo treatment indicating enhanced autophagic flux. We conclude that Doxo causes a downregulation of the protein degradation machinery of cardiomyocytes with a resulting accumulation of poly-ubiquitinated proteins and autophagosomes. Although autophagy is initially stimulated as a compensatory response to cytotoxic stress, it is followed by apoptosis and necrosis at higher doses and longer exposure times. This mechanism might contribute to the late cardiotoxicity of anthracyclines by accelerated aging of the postmitotic adult cardiomyocytes and to the susceptibility of the aging heart to anthracycline cancer therapy.
Collapse
Affiliation(s)
- Polychronis Dimitrakis
- Cardiology, Swiss Cardiovascular Center Bern, Bern University Hospital and University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
235
|
Bildirici I, Longtine MS, Chen B, Nelson DM. Survival by self-destruction: a role for autophagy in the placenta? Placenta 2012; 33:591-8. [PMID: 22652048 PMCID: PMC3389146 DOI: 10.1016/j.placenta.2012.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 12/20/2022]
Abstract
Autophagy is a burgeoning area of research from yeast to humans. Although previously described as a death pathway, autophagy is now considered an important survival phenomenon in response to environmental stressors to which most organs are exposed. Despite an ever expanding literature in non-placental cells, studies of autophagy in the placenta are lagging. We review the regulation of autophagy, summarize available placental studies of autophagy, and highlight potential areas for future research. We believe that such studies will yield novel insights into how placentas protect the survival of the species by "self-eating".
Collapse
Affiliation(s)
- I Bildirici
- Department of Obstetrics and Gynecology, Acibadem University School of Medicine, Istanbul, Turkey.
| | | | | | | |
Collapse
|
236
|
Tucci P. Caloric restriction: is mammalian life extension linked to p53? Aging (Albany NY) 2012; 4:525-34. [PMID: 22983298 PMCID: PMC3461340 DOI: 10.18632/aging.100481] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 12/21/2022]
Abstract
Caloric restriction, that is limiting food intake, is recognized in mammals as the best characterized and most reproducible strategy for extending lifespan, retarding physiological aging and delaying the onset of age-associated diseases. The aim of this mini review is to argue that p53 is the connection in the abilities of both the Sirt-1 pathway and the TOR pathway to impact on longevity of cells and organisms. This novel, lifespan regulating function of p53 may be evolutionarily more ancient than its relatively recent role in apoptosis and tumour suppression, and is likely to provide many new insights into lifespan modulation.
Collapse
Affiliation(s)
- Paola Tucci
- Medical Research Council, Toxicology Unit, Leicester University, Leicester LE1 9HN, UK.
| |
Collapse
|
237
|
Crawford PA, Schaffer JE. Metabolic stress in the myocardium: adaptations of gene expression. J Mol Cell Cardiol 2012; 55:130-8. [PMID: 22728216 DOI: 10.1016/j.yjmcc.2012.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/05/2012] [Accepted: 06/13/2012] [Indexed: 12/28/2022]
Abstract
The heart is one of the highest ATP consuming organs in mammalian organisms. Its metabolic function has evolved a remarkable degree of efficiency to meet high demand and plasticity in response to varying changes in energy substrate supply. Given the high flux of energy substrates and the centrality of their appropriate use for optimal cardiac function, it is not surprising that the heart has intricate signaling mechanisms through which it responds to metabolic stress. This review focuses on the changes in gene expression in myocardial and vascular tissues during metabolic stress that affect mRNAs and subsequent protein synthesis with an eye toward understanding the manner in which these changes effect adaptive and maladaptive responses of the heart. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Peter A Crawford
- Diabetic Cardiovascular Disease Center, Cardiovascular Division, Washington University School of Medicine, USA.
| | | |
Collapse
|
238
|
Marsh SA, Powell PC, Dell'italia LJ, Chatham JC. Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart. Life Sci 2012; 92:648-56. [PMID: 22728715 DOI: 10.1016/j.lfs.2012.06.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/09/2012] [Accepted: 06/06/2012] [Indexed: 01/03/2023]
Abstract
AIMS Increased O-linked attachment of β-N-acetylglucosamine (O-GlcNAc) to proteins has been implicated in the adverse effects of diabetes on the heart, although this has typically been based on models of severe hyperglycemia. Diabetes has also been associated with dysregulation of autophagy, a critical cell survival process; however, little is known regarding autophagy in the diabetic heart or whether this is influenced by O-GlcNAcylation or hemodynamic stress. MAIN METHODS Young male rats were assigned to control (12% kcal fat/19% protein/69% carbohydrate), high fat diet (60/19/21%) and type 2 diabetic (high fat diet+low dose streptozotocin) groups for 8 weeks, followed by sham or pressure overload surgeries; animals were sacrificed 8 weeks after surgery. KEY FINDINGS A modest increase in arterial pressure resulted in no significant effects on cardiac function in control or high fat groups, while diabetic hearts exhibited contractile dysfunction and increased apoptosis and scar formation. Immunoprecipitation studies revealed, for the first time, that Beclin-1, which plays a critical early role in autophagy, and the anti-apoptotic Bcl-2, are targets for O-GlcNAcylation. Interestingly, we also found that cardiomyocytes isolated from type 2 diabetic db/db mice exhibited a blunted autophagic response and this was at least partially reversed by inhibiting glucose entry into the hexosamine biosynthesis pathway, which regulates O-GlcNAc synthesis. We also found that acutely augmenting O-GlcNAc levels in non-diabetic cardiomyocytes mimicked the effects of diabetes by blunting autophagic signaling. SIGNIFICANCE These data suggest that O-GlcNAc-mediated inhibition of autophagy may contribute to the abnormal response of diabetic hearts to hemodynamic stress.
Collapse
Affiliation(s)
- Susan A Marsh
- Program in Nutrition and Exercise Physiology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | | | | | | |
Collapse
|
239
|
Cardiac remodeling and apoptosis before and after restoration of euthyroidism in Graves’ thyrotoxicosis. Egypt Heart J 2012. [DOI: 10.1016/j.ehj.2012.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
240
|
Pan L, Li Y, Jia L, Qin Y, Qi G, Cheng J, Qi Y, Li H, Du J. Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation. PLoS One 2012; 7:e35315. [PMID: 22558139 PMCID: PMC3340377 DOI: 10.1371/journal.pone.0035315] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/13/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cathepsin S (Cat S) is overexpressed in human atherosclerotic and aneurysmal tissues and may contributes to degradation of extracellular matrix, especially elastin, in inflammatory diseases. We aimed to define the role of Cat S in cardiac inflammation and fibrosis induced by angiotensin II (Ang II) in mice. METHODS AND RESULTS Cat S-knockout (Cat S(-/-)) and littermate wild-type (WT) C57BL/6J mice were infused continuously with Ang II (750 ng/kg/min) or saline for 7 days. Cat S(-/-) mice showed severe cardiac fibrosis, including elevated expression of collagen I and α-smooth muscle actin (α-SMA), as compared with WT mice. Moreover, macrophage infiltration and expression of inflammatory cytokines (tumor necrosis factor α, transforming growth factor β and interleukin 1β) were significantly greater in Cat S(-/-) than WT hearts. These Ang II-induced effects in Cat S(-/-) mouse hearts was associated with abnormal accumulation of autophagosomes and reduced clearance of damaged mitochondria, which led to increased levels of reactive oxygen species (ROS) and activation of nuclear factor-kappa B (NF-κB) in macrophages. CONCLUSION Cat S in lysosomes is essential for mitophagy processing in macrophages, deficiency in Cat S can increase damaged mitochondria and elevate ROS levels and NF-κB activity in hypertensive mice, so it regulates cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Lili Pan
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yulin Li
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Lixin Jia
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yanwen Qin
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Guanming Qi
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Jizhong Cheng
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yongfen Qi
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Huihua Li
- Department of Pathology, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|
241
|
Abstract
Universal lower dialysate [Na+] is often advocated as a means of improving the dire cardiovascular plight of our dialysis patients. However, there is evidence associating lower dialysate [Na+] and increased morbidity and mortality especially in frailer patients, probably as a result of more frequent intra-dialytic hypotension. In this editorial, we summarize arguments for and against lower dialysate [Na+], and provide recommendations around selecting the most appropriate dialysate [Na+] for specific clinical subsets that may benefit from manipulation of salt and water balance. The lack of overall clarity on relative benefits and risks of lower dialysate [Na+] does not support the case for empirical "across the board" change, and experimental testing in clinical trials is required to determine safe and effective use.
Collapse
|
242
|
Guo R, Hu N, Kandadi MR, Ren J. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts. Autophagy 2012; 8:593-608. [PMID: 22441020 PMCID: PMC3405837 DOI: 10.4161/auto.18997] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic drinking leads to myocardial contractile dysfunction where ethanol metabolism plays an essential role. Acetaldehyde, the main ethanol metabolite, mediates alcohol-induced cell injury although the underlying mechanism is still elusive. This study was designed to examine the mechanism involved in accelerated ethanol metabolism-induced cardiac defect with a focus on autophagy. Wild-type FVB and cardiac-specific overexpression of alcohol dehydrogenase mice were placed on a 4% nutrition-balanced alcohol diet for 8 weeks. Myocardial histology, immunohistochemistry, autophagy markers and signal molecules were examined. Expression of micro RNA miR-30a, a potential target of Beclin 1, was evaluated by real-time PCR. Chronic alcohol intake led to cardiac acetaldehyde accumulation, hypertrophy and overt autophagosome accumulation (LC3-II and Atg7), the effect of which was accentuated by ADH. Signaling molecules governing autophagy initiation including class III PtdIns3K, phosphorylation of mTOR and p70S6K were enhanced and dampened, respectively, following alcohol intake. These alcohol-induced signaling responses were augmented by ADH. ADH accentuated or unmasked alcohol-induced downregulation of Bcl-2, Bcl-xL and MiR-30a. Interestingly, ADH aggravated alcohol-induced p62 accumulation. Autophagy inhibition using 3-MA abolished alcohol-induced cardiomyocyte contractile anomalies. Moreover, acetaldehyde led to cardiomyocyte contractile dysfunction and autophagy induction, which was ablated by 3-MA. Ethanol or acetaldehyde increased GFP-LC3 puncta in H9c2 cells, the effect of which was ablated by 3-MA but unaffected by lysosomal inhibition using bafilomycin A(1), E64D and pepstatin A. In summary, these data suggested that facilitated acetaldehyde production via ADH following alcohol intake triggered cardiac autophagosome formation along with impaired lysosomal degradation, en route to myocardial defect.
Collapse
Affiliation(s)
- Rui Guo
- Center for Cardiovascular Research and Alternative Medicine; University of Wyoming College of Health Sciences; Laramie, WY USA
| | - Nan Hu
- Center for Cardiovascular Research and Alternative Medicine; University of Wyoming College of Health Sciences; Laramie, WY USA
| | - Machender R. Kandadi
- Center for Cardiovascular Research and Alternative Medicine; University of Wyoming College of Health Sciences; Laramie, WY USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine; University of Wyoming College of Health Sciences; Laramie, WY USA
| |
Collapse
|
243
|
|
244
|
Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ Res 2012; 110:174-89. [PMID: 22223213 DOI: 10.1161/circresaha.111.243212] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous inflammatory cytokines have been implicated in the pathogenesis of cardiovascular diseases. Monocyte chemoattractant protein (MCP)-1/CCL2 is expressed by mainly inflammatory cells and stromal cells such as endothelial cells, and its expression is upregulated after proinflammatory stimuli and tissue injury. MCP-1 can function as a traditional chemotactic cytokine and also regulates gene transcription. The recently discovered novel zinc-finger protein, called MCPIP (MCP-1-induced protein), initiates a series of signaling events that causes oxidative and endoplasmic reticulum (ER) stress, leading to autophagy that can result in cell death or differentiation, depending on the cellular context. After a brief review of the basic processes involved in inflammation, ER stress, and autophagy, the recently elucidated role of MCP-1 and MCPIP in inflammatory diseases is reviewed. MCPIP was found to be able to control inflammatory response by inhibition of nuclear factor-κB activation through its deubiquitinase activity or by degradation of mRNA encoding a set of inflammatory cytokines through its RNase activity. The potential inclusion of such a novel deubiquitinase in the emerging anti-inflammatory strategies for the treatment of inflammation-related diseases such as cardiovascular diseases and type 2 diabetes is briefly discussed.
Collapse
Affiliation(s)
- Pappachan E Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
| | | |
Collapse
|
245
|
Eguchi M, Kim YH, Kang KW, Shim CY, Jang Y, Dorval T, Kim KJ, Sweeney G. Ischemia-reperfusion injury leads to distinct temporal cardiac remodeling in normal versus diabetic mice. PLoS One 2012; 7:e30450. [PMID: 22347376 PMCID: PMC3275560 DOI: 10.1371/journal.pone.0030450] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/16/2011] [Indexed: 11/25/2022] Open
Abstract
Diabetes is associated with higher incidence of myocardial infarction (MI) and increased propensity for subsequent events post-MI. Here we conducted a temporal analysis of the influence of diabetes on cardiac dysfunction and remodeling after ischemia reperfusion (IR) injury in mice. Diabetes was induced using streptozotocin and IR performed by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for up to 42 days. We first evaluated changes in cardiac function using echocardiography after 24 hours reperfusion and observed IR injury significantly decreased the systolic function, such as ejection fraction, fractional shortening and end systolic left ventricular volume (LVESV) in both control and diabetic mice. The longitudinal systolic and diastolic strain rate were altered after IR, but there were no significant differences between diabetic mice and controls. However, a reduced ability to metabolize glucose was observed in the diabetic animals as determined by PET-CT scanning using 2-deoxy-2-(18F)fluoro-D-glucose. Interestingly, after 24 hours reperfusion diabetic mice showed a reduced infarct size and less apoptosis indicated by TUNEL analysis in heart sections. This may be explained by increased levels of autophagy detected in diabetic mice hearts. Similar increases in IR-induced macrophage infiltration detected by CD68 staining indicated no change in inflammation between control and diabetic mice. Over time, control mice subjected to IR developed mild left ventricular dilation whereas diabetic mice exhibited a decrease in both end diastolic left ventricular volume and LVESV with a decreased intraventricular space and thicker left ventricular wall, indicating concentric hypertrophy. This was associated with marked increases in fibrosis, indicted by Masson trichrome staining, of heart sections in diabetic IR group. In summary, we demonstrate that diabetes principally influences distinct IR-induced chronic changes in cardiac function and remodeling, while a smaller infarct size and elevated levels of autophagy with similar cardiac function are observed in acute phase.
Collapse
Affiliation(s)
- Megumi Eguchi
- Institut Pasteur Korea, Seoul, South Korea
- Department of Biology, York University, Toronto, Canada
| | - Young Hwa Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Chi Young Shim
- Cardiology Division, Yonsei University College of Medicine, Seoul, South Korea
| | - Yangsoo Jang
- Cardiology Division, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Kwang Joon Kim
- Division of Endocrinology, Yonsei University College of Medicine, Seoul, South Korea
| | - Gary Sweeney
- Institut Pasteur Korea, Seoul, South Korea
- Department of Biology, York University, Toronto, Canada
- * E-mail:
| |
Collapse
|
246
|
Baek KH, Park J, Shin I. Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 2012; 41:3245-63. [PMID: 22293658 DOI: 10.1039/c2cs15328a] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy or self-eating is a complicated cellular process that is involved in protein and organelle digestion occurring via a lysosome-dependent pathway. This process is of great importance in maintaining normal cellular homeostasis. However, disruption of autophagy is closely associated with various human diseases such as cancer, neurodegenerative disorders, heart disease and pathogen infection. Therefore, small molecules that modulate autophagy can be employed to dissect this complex process and ultimately could have high potential for the treatment of a variety of diseases. This critical review discusses general aspects of autophagy, autophagy-associated diseases and autophagy regulators for biological research and therapeutic applications (207 references).
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | |
Collapse
|
247
|
Abstract
Cell death is an integral part of the life of an organism being necessary for the maintenance of organs and tissues. If, however, cell death is allowed to proceed unrestricted, tissue damage and degenerative disease may ensue. Until recently, three morphologically distinct types of cell death were recognized, apoptosis (type I), autophagy (type II) and necrosis (type III). Apoptosis is a highly regulated, genetically determined mechanism designed to dismantle cells systematically (e.g. cells that are no longer functionally viable), via protease (caspase) action, and maintain homeostasis. Autophagy is responsible for the degradation of cytoplasmic material, e.g. proteins and organelles, through autophagosome formation and subsequent proteolytic degradation by lysosomes, and is normally considered in the context of survival although it is sometimes associated with cell death. Necrosis was formerly considered to be an accidental, unregulated form of cell death resulting from excessive stress, although it has been suggested that this is an over-simplistic view as necrosis may under certain circumstances involve the mobilization of specific transduction mechanisms. Indeed, recently, an alternative death pathway, termed necroptosis, was delineated and proposed as a form of ‘programmed necrosis’. Identified with the aid of specific inhibitors called necrostatins, necroptosis shares characteristics with both necrosis and apoptosis. Necroptosis involves Fas/tumour necrosis factor-α death domain receptor activation and inhibition of receptor-interacting protein I kinase, and it has been suggested that it may contribute to the development of neurological and myocardial diseases. Significantly, necrostatin-like drugs have been mooted as possible future therapeutic agents for the treatment of degenerative conditions.
Collapse
Affiliation(s)
- Christopher C T Smith
- The Hatter Cardiovascular Institute, University College London Hospital and Medical School, London, UK
| | | |
Collapse
|
248
|
Przyklenk K, Dong Y, Undyala VV, Whittaker P. Autophagy as a therapeutic target for ischaemia /reperfusion injury? Concepts, controversies, and challenges. Cardiovasc Res 2012; 94:197-205. [PMID: 22215722 DOI: 10.1093/cvr/cvr358] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is the tightly orchestrated cellular 'housekeeping' process responsible for the degradation and disposal of damaged and dysfunctional organelles and protein aggregates. In addition to its established basal role in the maintenance of normal cellular phenotype and function, there is growing interest in the concept that targeted modulation of autophagy under conditions of stress (most notably, ischaemia/reperfusion) may represent an adaptive mechanism and render the myocardium resistant to ischaemia/reperfusion injury. Our aims in this review are to: (i) provide a balanced overview of the emerging hypothesis that perturbation of autophagy may serve as a novel, intriguing, and powerful cardioprotective treatment strategy and (ii) summarize the controversies and challenges in exploiting autophagy as a therapeutic target for ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- Karin Przyklenk
- Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
249
|
Abstract
Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules, which are then recycled back into the cytosol. In this respect, autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle. Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions. Current research clearly shows that autophagy fulfills numerous functions in vital biological processes. It is implicated in development, differentiation, innate and adaptive immunity, ageing and cell death. In addition, accumulating evidence demonstrates interesting links between autophagy and several human diseases and tumor development. Therefore, autophagy seems to be an important player in the life and death of cells and organisms. Despite the mounting knowledge about autophagy, the mechanisms through which the autophagic machinery regulates these diverse processes are not entirely understood. In this review, we give a comprehensive overview of the autophagic signaling pathway, its role in general cellular processes and its connection to cell death. In addition, we present a brief overview of the possible contribution of defective autophagic signaling to disease.
Collapse
Affiliation(s)
- Ellen Wirawan
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Tom Vanden Berghe
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Saskia Lippens
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Patrizia Agostinis
- KULeuven, Laboratory for Cell Death and Therapy, Department for Molecular and Cell Biology, O&N I Herestraat 49, B-3000 Leuven, Belgium
| | - Peter Vandenabeele
- VIB, Department for Molecular Biomedical Research, Unit for Molecular Signaling and Cell Death, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium
- Department of Biomedical Molecular Biology, Unit for Molecular Signaling and Cell Death, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| |
Collapse
|
250
|
Zhu B, Xu F, Li J, Shuai J, Li X, Fang W. Porcine circovirus type 2 explores the autophagic machinery for replication in PK-15 cells. Virus Res 2011; 163:476-85. [PMID: 22134092 DOI: 10.1016/j.virusres.2011.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/14/2011] [Accepted: 11/14/2011] [Indexed: 12/17/2022]
Abstract
Porcine circovirus type 2 (PCV2), an important pathogen of pigs, causes lymphoid depletion in infected tissues most probably by inducing apoptosis although the precise pathogenesis of PCV2-associated diseases remains unknown. We speculate whether autophagy, another cellular response to stress or infections by bacterial or viral pathogens, is involved in PCV2 infection. Here, we provide the first evidence that PCV2 could trigger autophagosome formation and enhance autophagic flux in PK-15 cells, most likely by its capsid protein. Using activators or inhibitors including siRNA targeting atg5, autophagy was found to enhance viral replication and capsid protein expression. These results suggest that PCV2 might employ the autophagy machinery to enhance its replication in host cells, thus raising the possibility of targeting autophagic pathway as a potential antiviral strategy against PCV2 infection.
Collapse
Affiliation(s)
- Binglin Zhu
- Zhejiang University, Institute of Preventive Veterinary Medicine and Zhejiang Province Key Laboratory of Preventive Veterinary Medicine, 388 Yuhangtang Road, Hangzhou 310058, PR China
| | | | | | | | | | | |
Collapse
|