201
|
Incorporation of root C and fertilizer N into the food web of an arable field: Variations with functional group and energy channel. FOOD WEBS 2016. [DOI: 10.1016/j.fooweb.2016.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
202
|
|
203
|
Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev 2016; 41:109-130. [DOI: 10.1093/femsre/fuw040] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 12/13/2022] Open
|
204
|
Proteomics progresses in microbial physiology and clinical antimicrobial therapy. Eur J Clin Microbiol Infect Dis 2016; 36:403-413. [PMID: 27812806 PMCID: PMC5309286 DOI: 10.1007/s10096-016-2816-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/16/2016] [Indexed: 02/05/2023]
Abstract
Clinical microbial identification plays an important role in optimizing the management of infectious diseases and provides diagnostic and therapeutic support for clinical management. Microbial proteomic research is aimed at identifying proteins associated with microbial activity, which has facilitated the discovery of microbial physiology changes and host–pathogen interactions during bacterial infection and antimicrobial therapy. Here, we summarize proteomic-driven progresses of host–microbial pathogen interactions at multiple levels, mass spectrometry-based microbial proteome identification for clinical diagnosis, and antimicrobial therapy. Proteomic technique progresses pave new ways towards effective prevention and drug discovery for microbial-induced infectious diseases.
Collapse
|
205
|
Keiblinger KM, Fuchs S, Zechmeister-Boltenstern S, Riedel K. Soil and leaf litter metaproteomics-a brief guideline from sampling to understanding. FEMS Microbiol Ecol 2016; 92:fiw180. [PMID: 27549116 PMCID: PMC5026301 DOI: 10.1093/femsec/fiw180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 08/18/2016] [Indexed: 11/14/2022] Open
Abstract
The increasing application of soil metaproteomics is providing unprecedented, in-depth characterization of the composition and functionality of in situ microbial communities. Despite recent advances in high-resolution mass spectrometry, soil metaproteomics still suffers from a lack of effective and reproducible protein extraction protocols and standardized data analyses. This review discusses the opportunities and limitations of selected techniques in soil-, and leaf litter metaproteomics, and presents a step-by-step guideline on their application, covering sampling, sample preparation, extraction and data evaluation strategies. In addition, we present recent applications of soil metaproteomics and discuss how such approaches, linking phylogenetics and functionality, can help gain deeper insights into terrestrial microbial ecology. Finally, we strongly recommend that to maximize the insights environmental metaproteomics may provide, such methods should be employed within a holistic experimental approach considering relevant aboveground and belowground ecosystem parameters.
Collapse
Affiliation(s)
- Katharina M Keiblinger
- Institute for Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Peter Jordan-Strasse 82, 1190 Vienna, Austria
| | - Stephan Fuchs
- Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahnstrasse 15, 17489 Greifswald, Germany
| | - Sophie Zechmeister-Boltenstern
- Institute for Soil Research, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), Peter Jordan-Strasse 82, 1190 Vienna, Austria
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Friedrich-Ludwig-Jahnstrasse 15, 17489 Greifswald, Germany
| |
Collapse
|
206
|
Long-Term Warming Alters Carbohydrate Degradation Potential in Temperate Forest Soils. Appl Environ Microbiol 2016; 82:6518-6530. [PMID: 27590813 PMCID: PMC5086546 DOI: 10.1128/aem.02012-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/19/2016] [Indexed: 11/20/2022] Open
Abstract
As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.
IMPORTANCE The massive carbon stocks currently held in soils have been built up over millennia, and while numerous lines of evidence indicate that climate change will accelerate the processing of this carbon, it is unclear whether the genetic repertoire of the microbes responsible for this elevated activity will also change. In this study, we showed that bacteria isolated from plots subject to 20 years of 5°C of warming were more likely to depolymerize the plant polymers xylan and cellulose, but that carbohydrate degradation capacity is not uniformly enriched by warming treatment in the metagenomes of soil microbial communities. This study illustrates the utility of combining culture-dependent and culture-independent surveys of microbial communities to improve our understanding of the role changing microbial communities may play in soil carbon cycling under climate change.
Collapse
|
207
|
Synergism of proteomics and mRNA sequencing for enzyme discovery. J Biotechnol 2016; 235:132-8. [DOI: 10.1016/j.jbiotec.2015.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022]
|
208
|
Morrison EW, Frey SD, Sadowsky JJ, van Diepen LT, Thomas WK, Pringle A. Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.05.011] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
209
|
Bastida F, Torres IF, Moreno JL, Baldrian P, Ondoño S, Ruiz-Navarro A, Hernández T, Richnow HH, Starke R, García C, Jehmlich N. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils. Mol Ecol 2016; 25:4660-73. [DOI: 10.1111/mec.13783] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Felipe Bastida
- Department of Soil and Water Conservation; CEBAS-CSIC; Campus Universitario de Espinardo 30100 Murcia Spain
| | - Irene F. Torres
- Department of Soil and Water Conservation; CEBAS-CSIC; Campus Universitario de Espinardo 30100 Murcia Spain
| | - José L. Moreno
- Department of Soil and Water Conservation; CEBAS-CSIC; Campus Universitario de Espinardo 30100 Murcia Spain
| | - Petr Baldrian
- Laboratory of Environmental Microbiology; Institute of Microbiology of the CAS; Vídeňská 1083 Praha 4 14220 Czech Republic
| | - Sara Ondoño
- Department of Soil and Water Conservation; CEBAS-CSIC; Campus Universitario de Espinardo 30100 Murcia Spain
| | - Antonio Ruiz-Navarro
- Department of Soil and Water Conservation; CEBAS-CSIC; Campus Universitario de Espinardo 30100 Murcia Spain
| | - Teresa Hernández
- Department of Soil and Water Conservation; CEBAS-CSIC; Campus Universitario de Espinardo 30100 Murcia Spain
| | - Hans H. Richnow
- Department of Isotope Biogeochemistry; Helmholtz-Centre for Environmental Research - UFZ; Permoserstr. 15 04318 Leipzig Germany
| | - Robert Starke
- Department of Molecular Systems Biology; Helmholtz-Centre for Environmental Research - UFZ; Permoserstr. 15 04318 Leipzig Germany
| | - Carlos García
- Department of Soil and Water Conservation; CEBAS-CSIC; Campus Universitario de Espinardo 30100 Murcia Spain
| | - Nico Jehmlich
- Department of Molecular Systems Biology; Helmholtz-Centre for Environmental Research - UFZ; Permoserstr. 15 04318 Leipzig Germany
| |
Collapse
|
210
|
Tláskal V, Voříšková J, Baldrian P. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol Ecol 2016; 92:fiw177. [DOI: 10.1093/femsec/fiw177] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
|
211
|
Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, Hofrichter M, Krüger D, Buscot F. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol 2016; 25:4059-74. [DOI: 10.1111/mec.13739] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Witoon Purahong
- Department of Soil Ecology; UFZ-Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 D-06120 Halle (Saale) Germany
| | - Tesfaye Wubet
- Department of Soil Ecology; UFZ-Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 D-06120 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e D-04103 Leipzig Germany
| | - Guillaume Lentendu
- Department of Soil Ecology; UFZ-Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 D-06120 Halle (Saale) Germany
| | - Michael Schloter
- Helmholtz Zentrum München; Research Unit for Environmental Genomics; Ingolstädter Landstr. 1 D-85758 Oberschleissheim Germany
| | - Marek J. Pecyna
- Technische Universität Dresden; International Institute (IHI) Zittau; Markt 23 D-02763 Zittau Germany
| | - Danuta Kapturska
- Department of Soil Ecology; UFZ-Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 D-06120 Halle (Saale) Germany
- Technische Universität Dresden; International Institute (IHI) Zittau; Markt 23 D-02763 Zittau Germany
| | - Martin Hofrichter
- Technische Universität Dresden; International Institute (IHI) Zittau; Markt 23 D-02763 Zittau Germany
| | - Dirk Krüger
- Department of Soil Ecology; UFZ-Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 D-06120 Halle (Saale) Germany
| | - François Buscot
- Department of Soil Ecology; UFZ-Helmholtz Centre for Environmental Research; Theodor-Lieser-Str. 4 D-06120 Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e D-04103 Leipzig Germany
| |
Collapse
|
212
|
Fenoy E, Casas JJ, Díaz-López M, Rubio J, Guil-Guerrero JL, Moyano-López FJ. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS Microbiol Ecol 2016; 92:fiw169. [PMID: 27515735 DOI: 10.1093/femsec/fiw169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 11/13/2022] Open
Abstract
Abiotic factors, substrate chemistry and decomposers community composition are primary drivers of leaf litter decomposition. In soil, much of the variation in litter decomposition is explained by climate and substrate chemistry, but with a significant contribution of the specialisation of decomposer communities to degrade specific substrates (home-field advantage, HFA). In streams, however, HFA effects on litter decomposition have not been explicitly tested. We evaluated responses of microbial decomposition and β-glucosidase activity to abiotic factors, substrate and decomposer assemblages, using a reciprocal litter transplant experiment: 'ecosystem type' (mountain vs lowland streams) × 'litter chemistry' (alder vs reed). Temperature, pH and ionic concentration were higher in lowland streams. Decomposition for both species was faster in lowland streams. Decomposition of reed was more accelerated in lowland compared with mountain streams than that of alder, suggesting higher temperature sensitivity of decomposition in reed. Q10 (5°C-15°C) values of β-glucosidase activity were over 2. The alkaline pH and high ionic concentration of lowland streams depleted enzyme activity. We found similar relationships of decomposition or enzyme activity with abiotic factors for both species, suggesting limited support to the HFA hypothesis. Overall, our results suggest a prime role of temperature interacting with substrate chemistry on litter decomposition.
Collapse
Affiliation(s)
- Encarnación Fenoy
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - J Jesús Casas
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain Andalusian Centre for the Evaluation and Monitoring of Global Change, CAESCG, 04120 Almería, Spain
| | - Manuel Díaz-López
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Juan Rubio
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - J Luís Guil-Guerrero
- Department of Agronomy, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Francisco J Moyano-López
- Department of Biology and Geology, ceiMar, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
213
|
Malik AA, Chowdhury S, Schlager V, Oliver A, Puissant J, Vazquez PGM, Jehmlich N, von Bergen M, Griffiths RI, Gleixner G. Soil Fungal:Bacterial Ratios Are Linked to Altered Carbon Cycling. Front Microbiol 2016; 7:1247. [PMID: 27555839 PMCID: PMC4977315 DOI: 10.3389/fmicb.2016.01247] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/27/2016] [Indexed: 11/13/2022] Open
Abstract
Despite several lines of observational evidence, there is a lack of consensus on whether higher fungal:bacterial (F:B) ratios directly cause higher soil carbon (C) storage. We employed RNA sequencing, protein profiling and isotope tracer techniques to evaluate whether differing F:B ratios are associated with differences in C storage. A mesocosm (13)C labeled foliar litter decomposition experiment was performed in two soils that were similar in their physico-chemical properties but differed in microbial community structure, specifically their F:B ratio (determined by PLFA analyses, RNA sequencing and protein profiling; all three corroborating each other). Following litter addition, we observed a consistent increase in abundance of fungal phyla; and greater increases in the fungal dominated soil; implicating the role of fungi in litter decomposition. Litter derived (13)C in respired CO2 was consistently lower, and residual (13)C in bulk SOM was higher in high F:B soil demonstrating greater C storage potential in the F:B dominated soil. We conclude that in this soil system, the increased abundance of fungi in both soils and the altered C cycling patterns in the F:B dominated soils highlight the significant role of fungi in litter decomposition and indicate that F:B ratios are linked to higher C storage potential.
Collapse
Affiliation(s)
- Ashish A. Malik
- Department of Biogeochemical Processes, Max Planck Institute for BiogeochemistryJena, Germany
- Centre for Ecology and HydrologyWallingford, UK
| | - Somak Chowdhury
- Department of Biogeochemical Processes, Max Planck Institute for BiogeochemistryJena, Germany
| | - Veronika Schlager
- Department of Biogeochemical Processes, Max Planck Institute for BiogeochemistryJena, Germany
| | - Anna Oliver
- Centre for Ecology and HydrologyWallingford, UK
| | | | - Perla G. M. Vazquez
- Department of Biogeochemical Processes, Max Planck Institute for BiogeochemistryJena, Germany
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz Centre for Environmental ResearchLeipzig, Germany
- Department of Metabolomics, Helmholtz Centre for Environmental ResearchLeipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of LeipzigLeipzig, Germany
- Department of Life Sciences and Chemistry, Aalborg UniversityAalborg, Denmark
| | | | - Gerd Gleixner
- Department of Biogeochemical Processes, Max Planck Institute for BiogeochemistryJena, Germany
| |
Collapse
|
214
|
Wang DZ, Kong LF, Li YY, Xie ZX. Environmental Microbial Community Proteomics: Status, Challenges and Perspectives. Int J Mol Sci 2016; 17:E1275. [PMID: 27527164 PMCID: PMC5000673 DOI: 10.3390/ijms17081275] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/08/2016] [Accepted: 07/29/2016] [Indexed: 01/17/2023] Open
Abstract
Microbial community proteomics, also termed metaproteomics, is an emerging field within the area of microbiology, which studies the entire protein complement recovered directly from a complex environmental microbial community at a given point in time. Although it is still in its infancy, microbial community proteomics has shown its powerful potential in exploring microbial diversity, metabolic potential, ecological function and microbe-environment interactions. In this paper, we review recent advances achieved in microbial community proteomics conducted in diverse environments, such as marine and freshwater, sediment and soil, activated sludge, acid mine drainage biofilms and symbiotic communities. The challenges facing microbial community proteomics are also discussed, and we believe that microbial community proteomics will greatly enhance our understanding of the microbial world and its interactions with the environment.
Collapse
Affiliation(s)
- Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yuan-Yuan Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
215
|
Purahong W, Krüger D, Buscot F, Wubet T. Correlations between the composition of modular fungal communities and litter decomposition-associated ecosystem functions. FUNGAL ECOL 2016. [DOI: 10.1016/j.funeco.2016.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
216
|
Charretier Y, Schrenzel J. Mass spectrometry methods for predicting antibiotic resistance. Proteomics Clin Appl 2016; 10:964-981. [PMID: 27312049 DOI: 10.1002/prca.201600041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 11/10/2022]
Abstract
Developing elaborate techniques for clinical applications can be a complicated process. Whole-cell MALDI-TOF MS revolutionized reliable microorganism identification in clinical microbiology laboratories and is now replacing phenotypic microbial identification. This technique is a generic, accurate, rapid, and cost-effective growth-based method. Antibiotic resistance keeps emerging in environmental and clinical microorganisms, leading to clinical therapeutic challenges, especially for Gram-negative bacteria. Antimicrobial susceptibility testing is used to reliably predict antimicrobial success in treating infection, but it is inherently limited by the need to isolate and grow cultures, delaying the application of appropriate therapies. Antibiotic resistance prediction by growth-independent methods is expected to reduce the turnaround time. Recently, the potential of next-generation sequencing and microarrays in predicting microbial resistance has been demonstrated, and this review evaluates the potential of MS in this field. First, technological advances are described, and the possibility of predicting antibiotic resistance by MS is then illustrated for three prototypical human pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clearly, MS methods can identify antimicrobial resistance mediated by horizontal gene transfers or by mutations that affect the quantity of a gene product, whereas antimicrobial resistance mediated by target mutations remains difficult to detect.
Collapse
Affiliation(s)
- Yannick Charretier
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Geneva University Hospitals
| |
Collapse
|
217
|
Klimek B, Sitarz A, Choczyński M, Niklińska M. The Effects of Heavy Metals and Total Petroleum Hydrocarbons on Soil Bacterial Activity and Functional Diversity in the Upper Silesia Industrial Region (Poland). WATER, AIR, AND SOIL POLLUTION 2016; 227:265. [PMID: 27471330 PMCID: PMC4943982 DOI: 10.1007/s11270-016-2966-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/04/2016] [Indexed: 05/28/2023]
Abstract
Various inorganic and organic pollutants in industrial soils may adversely affect soil microorganisms and terrestrial ecosystem functioning. The aim of the study was to explore the relationship between the microbial activity, microbial biomass, and functional diversity of soil bacteria and the metals and total petroleum hydrocarbons (TPHs) in the Upper Silesian Industrial Region (Poland). We collected soil samples in pine-dominated forest stands and analyzed them according to a range of soil physicochemical properties, including metal content (cadmium, lead, and zinc) and TPH content. Metal concentrations were normalized to their toxicity to soil microorganisms and integrated in a toxicity index (TI). Soil microbial activity measured as soil respiration rate, microbial biomass measured as substrate-induced respiration rate, and the bacterial catabolic activity (area under the curve, AUC) assessed using Biolog® ECO plates were negatively related to TPH pollution as shown in multiple regressions. The canonical correspondence analysis (CCA) showed that both TPH and TI affected the community-level physiological profiles (CLPPs) of soil bacteria and the pollutants' effects were much stronger than the effects of other soil properties, including nutrient content.
Collapse
Affiliation(s)
- Beata Klimek
- Institute of Environmental Sciences, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Anna Sitarz
- Institute of Environmental Sciences, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maciej Choczyński
- Institute of Environmental Sciences, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Maria Niklińska
- Institute of Environmental Sciences, Faculty of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
218
|
Tian JH, Pourcher AM, Peu P. Isolation of bacterial strains able to metabolize lignin and lignin-related compounds. Lett Appl Microbiol 2016; 63:30-7. [DOI: 10.1111/lam.12581] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 12/01/2022]
Affiliation(s)
- J.-H. Tian
- Irstea; UR OPAALE; 17 Avenue de Cucillé-CS 64427 F-35044 Rennes France
- Université Bretagne Loire; France
| | - A.-M. Pourcher
- Irstea; UR OPAALE; 17 Avenue de Cucillé-CS 64427 F-35044 Rennes France
- Université Bretagne Loire; France
| | - P. Peu
- Irstea; UR OPAALE; 17 Avenue de Cucillé-CS 64427 F-35044 Rennes France
- Université Bretagne Loire; France
| |
Collapse
|
219
|
Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Sci Rep 2016; 6:25773. [PMID: 27161395 PMCID: PMC4861934 DOI: 10.1038/srep25773] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023] Open
Abstract
For some truffle species of the Tuber genus, the symbiotic phase is often associated with the presence of an area of scant vegetation, commonly known as the brûlé, around the host tree. Previous metagenomics studies have identified the microorganisms present inside and outside the brûlé of a Tuber melanosporum truffle-ground, but the molecular mechanisms that operate in this ecological niche remain to be clarified. To elucidate the metabolic pathways present in the brûlé, we conducted a metaproteomics analysis on the soil of a characterized truffle-ground and cross-referenced the resulting proteins with a database we constructed, incorporating the metagenomics data for the organisms previously identified in this soil. The soil inside the brûlé contained a larger number of proteins and, surprisingly, more proteins from plants, compared with the soil outside the brûlé. In addition, Fisher's Exact Tests detected more biological processes inside the brûlé; these processes were related to responses to multiple types of stress. Thus, although the brûlé has a reduced diversity of plant and microbial species, the organisms in the brûlé show strong metabolic activity. Also, the combination of metagenomics and metaproteomics provides a powerful tool to reveal soil functioning.
Collapse
|
220
|
Looby CI, Maltz MR, Treseder KK. Belowground responses to elevation in a changing cloud forest. Ecol Evol 2016; 6:1996-2009. [PMID: 27066220 PMCID: PMC4767876 DOI: 10.1002/ece3.2025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/08/2016] [Accepted: 01/23/2016] [Indexed: 12/27/2022] Open
Abstract
Few studies have investigated how soil fungal communities respond to elevation, especially within TMCF (tropical montane cloud forests). We used an elevation gradient in a TMCF in Costa Rica to determine how soil properties, processes, and community composition of fungi change in response to elevation and across seasons. As elevation increased, soil temperature and soil pH decreased, while soil moisture and soil C:N ratios increased with elevation. Responses of these properties varied seasonally. Fungal abundance increased with elevation during wet and dry seasons. Fungal community composition shifted in response to elevation, and to a lesser extent by season. These shifts were accompanied by varying responses of important fungal functional groups during the wet season and the relative abundance of certain fungal phyla. We suggest that elevation and the responses of certain fungal functional groups may be structuring fungal communities along this elevation gradient. TMCF are ecosystems that are rapidly changing due to climate change. Our study suggests that these changes may affect how fungal communities are structured.
Collapse
Affiliation(s)
- Caitlin I. Looby
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia92697
| | - Mia R. Maltz
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia92697
| | - Kathleen K. Treseder
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia92697
| |
Collapse
|
221
|
He P, Wan SZ, Fang XM, Wang FC, Chen FS. Exogenous nutrients and carbon resource change the responses of soil organic matter decomposition and nitrogen immobilization to nitrogen deposition. Sci Rep 2016; 6:23717. [PMID: 27020048 PMCID: PMC4810377 DOI: 10.1038/srep23717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 03/14/2016] [Indexed: 11/09/2022] Open
Abstract
It is unclear whether exogenous nutrients and carbon (C) additions alter substrate immobilization to deposited nitrogen (N) during decomposition. In this study, we used laboratory microcosm experiments and 15N isotope tracer techniques with five different treatments including N addition, N+non-N nutrients addition, N+C addition, N+non-N nutrients+C addition and control, to investigate the coupling effects of non-N nutrients, C addition and N deposition on forest floor decomposition in subtropical China. The results indicated that N deposition inhibited soil organic matter and litter decomposition by 66% and 38%, respectively. Soil immobilized 15N following N addition was lowest among treatments. Litter 15N immobilized following N addition was significantly higher and lower than that of combined treatments during the early and late decomposition stage, respectively. Both soil and litter extractable mineral N were lower in combined treatments than in N addition treatment. Since soil N immobilization and litter N release were respectively enhanced and inhibited with elevated non-N nutrient and C resources, it can be speculated that the N leaching due to N deposition decreases with increasing nutrient and C resources. This study should advance our understanding of how forests responds the elevated N deposition.
Collapse
Affiliation(s)
- Ping He
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Song-Ze Wan
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China.,Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang-Min Fang
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China.,Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fang-Chao Wang
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fu-Sheng Chen
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China.,Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
222
|
Gacura MD, Sprockett DD, Heidenreich B, Blackwood CB. Comparison of pectin-degrading fungal communities in temperate forests using glycosyl hydrolase family 28 pectinase primers targeting Ascomycete fungi. J Microbiol Methods 2016; 123:108-13. [PMID: 26899925 DOI: 10.1016/j.mimet.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 01/22/2023]
Abstract
Fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this study we developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from 40 fungal genomes. The primers were used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senesced tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communities were up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystem type were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes.
Collapse
Affiliation(s)
- Matthew D Gacura
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States.
| | - Daniel D Sprockett
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| | - Bess Heidenreich
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| | | |
Collapse
|
223
|
|
224
|
Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure. Nat Microbiol 2016; 1:15025. [DOI: 10.1038/nmicrobiol.2015.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/08/2015] [Indexed: 11/08/2022]
|
225
|
Herbst FA, Lünsmann V, Kjeldal H, Jehmlich N, Tholey A, von Bergen M, Nielsen JL, Hettich RL, Seifert J, Nielsen PH. Enhancing metaproteomics--The value of models and defined environmental microbial systems. Proteomics 2016; 16:783-98. [PMID: 26621789 DOI: 10.1002/pmic.201500305] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 12/24/2022]
Abstract
Metaproteomics--the large-scale characterization of the entire protein complement of environmental microbiota at a given point in time--has provided new features to study complex microbial communities in order to unravel these "black boxes." New technical challenges arose that were not an issue for classical proteome analytics before that could be tackled by the application of different model systems. Here, we review different current and future model systems for metaproteome analysis. Following a short introduction to microbial communities and metaproteomics, we introduce model systems for clinical and biotechnological research questions including acid mine drainage, anaerobic digesters, and activated sludge. Model systems are useful to evaluate the challenges encountered within (but not limited to) metaproteomics, including species complexity and coverage, biomass availability, or reliable protein extraction. The implementation of model systems can be considered as a step forward to better understand microbial community responses and ecological functions of single member organisms. In the future, improvements are necessary to fully explore complex environmental systems by metaproteomics.
Collapse
Affiliation(s)
- Florian-Alexander Herbst
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Vanessa Lünsmann
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Henrik Kjeldal
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Nico Jehmlich
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Martin von Bergen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark.,Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, TN, USA
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Per Halkjaer Nielsen
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| |
Collapse
|
226
|
|
227
|
Hori C, Cullen D. Prospects for Bioprocess Development Based on Recent Genome Advances in Lignocellulose Degrading Basidiomycetes. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
228
|
Involutin is an Fe3+ reductant secreted by the ectomycorrhizal fungus Paxillus involutus during Fenton-based decomposition of organic matter. Appl Environ Microbiol 2015; 81:8427-33. [PMID: 26431968 PMCID: PMC4644656 DOI: 10.1128/aem.02312-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 09/27/2015] [Indexed: 11/20/2022] Open
Abstract
Ectomycorrhizal fungi play a key role in mobilizing nutrients embedded in recalcitrant organic matter complexes, thereby increasing nutrient accessibility to the host plant. Recent studies have shown that during the assimilation of nutrients, the ectomycorrhizal fungus Paxillus involutus decomposes organic matter using an oxidative mechanism involving Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + ˙OH + H2O), similar to that of brown rot wood-decaying fungi. In such fungi, secreted metabolites are one of the components that drive one-electron reductions of Fe3+ and O2, generating Fenton chemistry reagents. Here we investigated whether such a mechanism is also implemented by P. involutus during organic matter decomposition. Activity-guided purification was performed to isolate the Fe3+-reducing principle secreted by P. involutus during growth on a maize compost extract. The Fe3+-reducing activity correlated with the presence of one compound. Mass spectrometry and nuclear magnetic resonance (NMR) identified this compound as the diarylcyclopentenone involutin. A major part of the involutin produced by P. involutus during organic matter decomposition was secreted into the medium, and the metabolite was not detected when the fungus was grown on a mineral nutrient medium. We also demonstrated that in the presence of H2O2, involutin has the capacity to drive an in vitro Fenton reaction via Fe3+ reduction. Our results show that the mechanism for the reduction of Fe3+ and the generation of hydroxyl radicals via Fenton chemistry by ectomycorrhizal fungi during organic matter decomposition is similar to that employed by the evolutionarily related brown rot saprotrophs during wood decay.
Collapse
|
229
|
Wilmes P, Heintz-Buschart A, Bond PL. A decade of metaproteomics: where we stand and what the future holds. Proteomics 2015; 15:3409-17. [PMID: 26315987 PMCID: PMC5049639 DOI: 10.1002/pmic.201500183] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/06/2015] [Accepted: 08/05/2015] [Indexed: 12/21/2022]
Abstract
We are living through exciting times during which we are able to unravel the “microbial dark matter” in and around us through the application of high‐resolution “meta‐omics”. Metaproteomics offers the ability to resolve the major catalytic units of microbial populations and thereby allows the establishment of genotype‐phenotype linkages from in situ samples. A decade has passed since the term “metaproteomics” was first coined and corresponding analyses were carried out on mixed microbial communities. Since then metaproteomics has yielded many important insights into microbial ecosystem function in the various environmental settings where it has been applied. Although initial progress in analytical capacities and resulting numbers of proteins identified was extremely fast, this trend slowed rapidly. Here, we discuss several representative metaproteomic investigations of activated sludge, acid mine drainage biofilms, freshwater and seawater microbial communities, soil, and human gut microbiota. By using these case studies, we highlight current challenges and possible solutions for metaproteomics to realize its full potential, i.e. to enable conclusive links between microbial community composition, physiology, function, interactions, ecology, and evolution in situ.
Collapse
Affiliation(s)
- Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Philip L Bond
- Advanced Water Management Centre, University of Queensland, Brisbane, Australia
| |
Collapse
|
230
|
Mueller RC, Belnap J, Kuske CR. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland. Front Microbiol 2015; 6:891. [PMID: 26388845 PMCID: PMC4559666 DOI: 10.3389/fmicb.2015.00891] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0-0.5 or 0-10 cm) across the N-amendment gradient (0, 7, and 15 kg ha(-1) yr(-1)). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.
Collapse
Affiliation(s)
- Rebecca C Mueller
- Bioscience Division, Los Alamos National Laboratory Los Alamos, NM, USA
| | - Jayne Belnap
- Southwest Biological Science Center, United States Geological Survey Moab, UT, USA
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory Los Alamos, NM, USA
| |
Collapse
|
231
|
Heyer R, Kohrs F, Reichl U, Benndorf D. Metaproteomics of complex microbial communities in biogas plants. Microb Biotechnol 2015; 8:749-63. [PMID: 25874383 PMCID: PMC4554464 DOI: 10.1111/1751-7915.12276] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 11/29/2022] Open
Abstract
Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed.
Collapse
Affiliation(s)
- Robert Heyer
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Fabian Kohrs
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Udo Reichl
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University MagdeburgUniversitätsplatz 2, Magdeburg, 39106, Germany
- Max Planck Institute for Dynamics of Complex Technical SystemsSandtorstr. 1, Magdeburg, 39106, Germany
| |
Collapse
|
232
|
Arsène-Ploetze F, Bertin PN, Carapito C. Proteomic tools to decipher microbial community structure and functioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13599-13612. [PMID: 25475614 PMCID: PMC4560766 DOI: 10.1007/s11356-014-3898-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Recent advances in microbial ecology allow studying microorganisms in their environment, without laboratory cultivation, in order to get access to the large uncultivable microbial community. With this aim, environmental proteomics has emerged as an appropriate complementary approach to metagenomics providing information on key players that carry out main metabolic functions and addressing the adaptation capacities of living organisms in situ. In this review, a wide range of proteomic approaches applied to investigate the structure and functioning of microbial communities as well as recent examples of such studies are presented.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Génétique moléculaire, Génomique et Microbiologie, Université de Strasbourg, UMR7156 CNRS, Strasbourg, France,
| | | | | |
Collapse
|
233
|
Scheunemann N, Digel C, Scheu S, Butenschoen O. Roots rather than shoot residues drive soil arthropod communities of arable fields. Oecologia 2015; 179:1135-45. [DOI: 10.1007/s00442-015-3415-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/15/2015] [Indexed: 11/29/2022]
|
234
|
Moll J, Goldmann K, Kramer S, Hempel S, Kandeler E, Marhan S, Ruess L, Krüger D, Buscot F. Resource Type and Availability Regulate Fungal Communities Along Arable Soil Profiles. MICROBIAL ECOLOGY 2015; 70:390-399. [PMID: 25687125 DOI: 10.1007/s00248-015-0569-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
Soil fungi play an essential role in the decomposition of plant-derived organic material entering soils. The quality and quantity of organic compounds vary seasonally as well as with soil depth. To elucidate how these resources affect fungal communities in an arable soil, a field experiment was set up with two plant species, maize and wheat. Resource availability was experimentally manipulated by maize litter input on one half of these maize and wheat plots after harvest in autumn. Fungal biomass was determined by ergosterol quantification, and community structure was investigated by fungal automated ribosomal intergenic spacer analysis (F-ARISA). An annual cycle was assessed across a depth gradient, distinguishing three soil habitats: the plough layer, rooted soil below the plough layer, and deeper root-free soil. Fungal communities appeared highly dynamic and varied according to soil depth and plant resources. In the plough layer, the availability of litter played a dominant role in shaping fungal communities, whereas in the rooted layer below, community structure and biomass mainly differed between plant species. This plant effect was also extended into the root-free soil at a depth of 70 cm. In winter, the availability of litter also affected fungal communities in deeper soil layers, suggesting vertical transport processes under fallow conditions. These distinct resource effects indicate diverse ecological niches along the soil profile, comprising specific fungal metacommunities. The recorded responses to both living plants and litter point to a central role of fungi in connecting primary production and decomposition within the plant-soil system.
Collapse
Affiliation(s)
- Julia Moll
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120, Halle, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Microbiota Dynamics Associated with Environmental Conditions and Potential Roles of Cellulolytic Communities in Traditional Chinese Cereal Starter Solid-State Fermentation. Appl Environ Microbiol 2015; 81:5144-56. [PMID: 26002897 DOI: 10.1128/aem.01325-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/16/2015] [Indexed: 12/25/2022] Open
Abstract
Traditional Chinese solid-state fermented cereal starters contain highly complex microbial communities and enzymes. Very little is known, however, about the microbial dynamics related to environmental conditions, and cellulolytic communities have never been proposed to exist during cereal starter fermentation. In this study, we performed Illumina MiSeq sequencing combined with PCR-denaturing gradient gel electrophoresis to investigate microbiota, coupled with clone library construction to trace cellulolytic communities in both fermentation stages. A succession of microbial assemblages was observed during the fermentation of starters. Lactobacillales and Saccharomycetales dominated the initial stages, with a continuous decline in relative abundance. However, thermotolerant and drought-resistant Bacillales, Eurotiales, and Mucorales were considerably accelerated during the heating stages, and these organisms dominated until the end of fermentation. Enterobacteriales were consistently ubiquitous throughout the process. For the cellulolytic communities, only the genera Sanguibacter, Beutenbergia, Agrobacterium, and Erwinia dominated the initial fermentation stages. In contrast, stages at high incubation temperature induced the appearance and dominance of Bacillus, Aspergillus, and Mucor. The enzymatic dynamics of amylase and glucoamylase also showed a similar trend, with the activities clearly increased in the first 7 days and subsequently decreased until the end of fermentation. Furthermore, β-glucosidase activity continuously and significantly increased during the fermentation process. Evidently, cellulolytic potential can adapt to environmental conditions by changes in the community structure during the fermentation of starters.
Collapse
|
236
|
Pold G, Melillo JM, DeAngelis KM. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front Microbiol 2015; 6:480. [PMID: 26042112 PMCID: PMC4438230 DOI: 10.3389/fmicb.2015.00480] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 11/13/2022] Open
Abstract
As Earth's climate warms, the massive stores of carbon found in soil are predicted to become depleted, and leave behind a smaller carbon pool that is less accessible to microbes. At a long-term forest soil-warming experiment in central Massachusetts, soil respiration and bacterial diversity have increased, while fungal biomass and microbially-accessible soil carbon have decreased. Here, we evaluate how warming has affected the microbial community's capability to degrade chemically-complex soil carbon using lignin-amended BioSep beads. We profiled the bacterial and fungal communities using PCR-based methods and completed extracellular enzyme assays as a proxy for potential community function. We found that lignin-amended beads selected for a distinct community containing bacterial taxa closely related to known lignin degraders, as well as members of many genera not previously noted as capable of degrading lignin. Warming tended to drive bacterial community structure more strongly in the lignin beads, while the effect on the fungal community was limited to unamended beads. Of those bacterial operational taxonomic units (OTUs) enriched by the warming treatment, many were enriched uniquely on lignin-amended beads. These taxa may be contributing to enhanced soil respiration under warming despite reduced readily available C availability. In aggregate, these results suggest that there is genetic potential for chemically complex soil carbon degradation that may lead to extended elevated soil respiration with long-term warming.
Collapse
Affiliation(s)
- Grace Pold
- Microbiology Department, University of Massachusetts Amherst, MA, USA ; Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, MA, USA
| | | | | |
Collapse
|
237
|
Liu D, Li M, Xi B, Zhao Y, Wei Z, Song C, Zhu C. Metaproteomics reveals major microbial players and their biodegradation functions in a large-scale aerobic composting plant. Microb Biotechnol 2015; 8:950-60. [PMID: 25989417 PMCID: PMC4621448 DOI: 10.1111/1751-7915.12290] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/14/2023] Open
Abstract
Composting is an appropriate management alternative for municipal solid waste; however, our knowledge about the microbial regulation of this process is still scare. We employed metaproteomics to elucidate the main biodegradation pathways in municipal solid waste composting system across the main phases in a large-scale composting plant. The investigation of microbial succession revealed that Bacillales, Actinobacteria and Saccharomyces increased significantly with respect to abundance in composting process. The key microbiologic population for cellulose degradation in different composting stages was different. Fungi were found to be the main producers of cellulase in earlier phase. However, the cellulolytic fungal communities were gradually replaced by a purely bacterial one in active phase, which did not support the concept that the thermophilic fungi are active through the thermophilic phase. The effective decomposition of cellulose required the synergy between bacteria and fungi in the curing phase.
Collapse
Affiliation(s)
- Dongming Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.,Innovation Base of Groundwater and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Mingxiao Li
- Innovation Base of Groundwater and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Beidou Xi
- Innovation Base of Groundwater and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Caihong Song
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.,Innovation Base of Groundwater and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Chaowei Zhu
- Innovation Base of Groundwater and Environmental System Engineering, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| |
Collapse
|
238
|
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, Wanek W. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. ECOL MONOGR 2015. [DOI: 10.1890/14-0777.1] [Citation(s) in RCA: 504] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
239
|
|
240
|
Hesse CN, Mueller RC, Vuyisich M, Gallegos-Graves LV, Gleasner CD, Zak DR, Kuske CR. Forest floor community metatranscriptomes identify fungal and bacterial responses to N deposition in two maple forests. Front Microbiol 2015; 6:337. [PMID: 25954263 PMCID: PMC4407611 DOI: 10.3389/fmicb.2015.00337] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/05/2015] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic N deposition alters patterns of C and N cycling in temperate forests, where forest floor litter decomposition is a key process mediated by a diverse community of bacteria and fungi. To track forest floor decomposer activity we generated metatranscriptomes that simultaneously surveyed the actively expressed bacterial and eukaryote genes in the forest floor, to compare the impact of N deposition on the decomposers in two natural maple forests in Michigan, USA, where replicate field plots had been amended with N for 16 years. Site and N amendment responses were compared using about 74,000 carbohydrate active enzyme transcript sequences (CAZymes) in each metatranscriptome. Parallel ribosomal RNA (rRNA) surveys of bacterial and fungal biomass and taxonomic composition showed no significant differences in either biomass or OTU richness between the two sites or in response to N. Site and N amendment were not significant variables defining bacterial taxonomic composition, but they were significant for fungal community composition, explaining 17 and 14% of the variability, respectively. The relative abundance of expressed bacterial and fungal CAZymes changed significantly with N amendment in one of the forests, and N-response trends were also identified in the second forest. Although the two ambient forests were similar in community biomass, taxonomic structure and active CAZyme profile, the shifts in active CAZyme profiles in response to N-amendment differed between the sites. One site responded with an over-expression of bacterial CAZymes, and the other site responded with an over-expression of both fungal and different bacterial CAZymes. Both sites showed reduced representation of fungal lignocellulose degrading enzymes in N-amendment plots. The metatranscriptome approach provided a holistic assessment of eukaryote and bacterial gene expression and is applicable to other systems where eukaryotes and bacteria interact.
Collapse
Affiliation(s)
- Cedar N Hesse
- Bioscience Division, Los Alamos National Laboratory Los Alamos, NM, USA
| | - Rebecca C Mueller
- Bioscience Division, Los Alamos National Laboratory Los Alamos, NM, USA
| | - Momchilo Vuyisich
- Bioscience Division, Los Alamos National Laboratory Los Alamos, NM, USA
| | | | - Cheryl D Gleasner
- Bioscience Division, Los Alamos National Laboratory Los Alamos, NM, USA
| | - Donald R Zak
- Department of Ecology and Evolutionary Biology, School of Natural Resources and Environment, University of Michigan Ann Arbor, MI, USA
| | - Cheryl R Kuske
- Bioscience Division, Los Alamos National Laboratory Los Alamos, NM, USA
| |
Collapse
|
241
|
Peng Y, Yang W, Li J, Wang B, Zhang C, Yue K, Wu F. Contribution of Soil Fauna to Foliar Litter-Mass Loss in Winter in an Ecotone between Dry Valley and Montane Forest in the Upper Reaches of the Minjiang River. PLoS One 2015; 10:e0124605. [PMID: 25901894 PMCID: PMC4406521 DOI: 10.1371/journal.pone.0124605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/04/2015] [Indexed: 12/05/2022] Open
Abstract
Litter decomposition during winter can provide essential nutrients for plant growth in the subsequent growing season, which plays important role in preventing the expansion of dry areas and maintaining the stability of ecotone ecosystems. However, limited information is currently available on the contributions of soil fauna to litter decomposition during winter in such ecosystems. Therefore, a field experiment that included litterbags with two different mesh sizes (0.04 mm and 3 mm) was conducted to investigate the contribution of soil fauna to the loss of foliar litter mass in winter from November 2013 to April 2014 along the upper reaches of the Minjiang River. Two litter types of the dominant species were selected in each ecosystem: cypress (Cupressus chengiana) and oak (Quercus baronii) in ecotone; cypress (Cupressus chengiana) and clovershrub (Campylotropis macrocarpa) in dry valley; and fir (Abies faxoniana) and birch (Betula albosinensis) in montane forest. Over one winter incubation, foliar litter lost 6.0%-16.1%, 11.4%-26.0%, and 6.4%-8.5% of initial mass in the ecotone, dry valley and montane forest, respectively. Soil fauna showed obvious contributions to the loss of foliar litter mass in all of the ecosystems. The highest contribution (48.5%-56.8%) was observed in the ecotone, and the lowest contribution (0.4%-25.8%) was observed in the montane forest. Compared with other winter periods, thawing period exhibited higher soil fauna contributions to litter mass loss in ecotone and dry valley, but both thawing period and freezing period displayed higher soil fauna contributions in montane forest. Statistical analysis demonstrated that the contribution of soil fauna was significantly correlated with temperature and soil moisture during the winter-long incubation. These results suggest that temperature might be the primary control factor in foliar litter decomposition, but more active soil fauna in the ecotone could contribute more in litter decomposition and its related ecological processes in this region.
Collapse
Affiliation(s)
- Yan Peng
- Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Wanqin Yang
- Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Jun Li
- Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Bin Wang
- Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Chuan Zhang
- Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Kai Yue
- Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| | - Fuzhong Wu
- Long-term Research Station of Alpine Forest Ecosystem, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu 611130, Sichuan, PR China
| |
Collapse
|
242
|
Hanson BT, Madsen EL. In situ expression of nitrite-dependent anaerobic methane oxidation proteins by Candidatus Methylomirabilis oxyfera co-occurring with expressed anammox proteins in a contaminated aquifer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:252-264. [PMID: 25403415 DOI: 10.1111/1758-2229.12239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here, we used environmental metaproteomics to obtain information about the identity of subsurface microbial populations in coal tar-contaminated groundwater and the metabolic processes they catalyze. Metaproteomic libraries (two shotgun and seven slices from one SDS-PAGE gel) were generated from replicate samples of microbial biomass. Peptide fragment analysis using nano-liquid chromatography (LC)-mass spectrometry (MS)/MS of the three protein pools generated a total of 95,725 mass spectra. When analyzed using mascot v.2.3.02 and searched against the NCBInr bacterial database [confidence interval 99% (P < 0.01)], a total of 1,270 proteins had at least two peptide matches. Replication of identified proteins across the three libraries was low (3.3%); however, in each library, the most frequently identified protein host was Candidatus Methylomirabilis oxyfera (15, 12 and 62 proteins for each shotgun and the gel-slice library respectively). Remarkably, eight of the nine proteins in the nitrite-dependent anaerobic methane oxidation pathway were found. Additionally, 39 proteins were matched to known anammox bacteria including hydroxylamine and hydrazine oxidase. Metaproteomics thus revealed a microbial population, closely related to Ca. Methylomirabilis oxyfera, actively engaged in nitrite-dependent anaerobic methane oxidation and likely competing for nitrite with anammox bacteria.
Collapse
Affiliation(s)
- Buck T Hanson
- Department of Microbiology, Cornell University, Wing Hall, Ithaca, NY, 14853, USA
| | | |
Collapse
|
243
|
Lassek C, Burghartz M, Chaves-Moreno D, Otto A, Hentschker C, Fuchs S, Bernhardt J, Jauregui R, Neubauer R, Becher D, Pieper DH, Jahn M, Jahn D, Riedel K. A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections (CAUTIs). Mol Cell Proteomics 2015; 14:989-1008. [PMID: 25673765 PMCID: PMC4390275 DOI: 10.1074/mcp.m114.043463] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
Long-term catheterization inevitably leads to a catheter-associated bacteriuria caused by multispecies bacterial biofilms growing on and in the catheters. The overall goal of the presented study was (1) to unravel bacterial community structure and function of such a uropathogenic biofilm and (2) to elucidate the interplay between bacterial virulence and the human immune system within the urine. To this end, a metaproteomics approach combined with in vitro proteomics analyses was employed to investigate both, the pro- and eukaryotic protein inventory. Our proteome analyses demonstrated that the biofilm of the investigated catheter is dominated by three bacterial species, that is, Pseudomonas aeruginosa, Morganella morganii, and Bacteroides sp., and identified iron limitation as one of the major challenges in the bladder environment. In vitro proteome analysis of P. aeruginosa and M. morganii isolated from the biofilm revealed that these opportunistic pathogens are able to overcome iron restriction via the production of siderophores and high expression of corresponding receptors. Notably, a comparison of in vivo and in vitro protein profiles of P. aeruginosa and M. morganii also indicated that the bacteria employ different strategies to adapt to the urinary tract. Although P. aeruginosa seems to express secreted and surface-exposed proteases to escape the human innate immune system and metabolizes amino acids, M. morganii is able to take up sugars and to degrade urea. Most interestingly, a comparison of urine protein profiles of three long-term catheterized patients and three healthy control persons demonstrated the elevated level of proteins associated with neutrophils, macrophages, and the complement system in the patient's urine, which might point to a specific activation of the innate immune system in response to biofilm-associated urinary tract infections. We thus hypothesize that the often asymptomatic nature of catheter-associated urinary tract infections might be based on a fine-tuned balance between the expression of bacterial virulence factors and the human immune system.
Collapse
Affiliation(s)
- Christian Lassek
- From the ‡Institute of Microbiology, University of Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, Germany; §Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Spielmannstrasse 7, Germany
| | - Melanie Burghartz
- §Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Spielmannstrasse 7, Germany
| | - Diego Chaves-Moreno
- ¶Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Inhoffenstrasse 7, Germany
| | - Andreas Otto
- From the ‡Institute of Microbiology, University of Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, Germany
| | - Christian Hentschker
- From the ‡Institute of Microbiology, University of Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, Germany
| | - Stephan Fuchs
- From the ‡Institute of Microbiology, University of Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, Germany
| | - Jörg Bernhardt
- From the ‡Institute of Microbiology, University of Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, Germany
| | - Ruy Jauregui
- ¶Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Inhoffenstrasse 7, Germany
| | | | - Dörte Becher
- From the ‡Institute of Microbiology, University of Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, Germany
| | - Dietmar H Pieper
- ¶Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Inhoffenstrasse 7, Germany
| | - Martina Jahn
- §Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Spielmannstrasse 7, Germany
| | - Dieter Jahn
- §Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Spielmannstrasse 7, Germany
| | - Katharina Riedel
- From the ‡Institute of Microbiology, University of Greifswald, 17489 Greifswald, Friedrich-Ludwig-Jahn-Strasse 15, Germany; ¶Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Inhoffenstrasse 7, Germany;
| |
Collapse
|
244
|
Vandegehuchte ML, Raschein U, Schütz M, Gwiazdowicz DJ, Risch AC. Indirect short- and long-term effects of aboveground invertebrate and vertebrate herbivores on soil microarthropod communities. PLoS One 2015; 10:e0118679. [PMID: 25738942 PMCID: PMC4349861 DOI: 10.1371/journal.pone.0118679] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/07/2015] [Indexed: 11/19/2022] Open
Abstract
Recognition is growing that besides ungulates, small vertebrate and invertebrate herbivores are important drivers of grassland functioning. Even though soil microarthropods play key roles in several soil processes, effects of herbivores-especially those of smaller body size-on their communities are not well understood. Therefore, we progressively excluded large, medium and small vertebrate and invertebrate herbivores for three growing seasons using size-selective fences in two vegetation types in subalpine grasslands; short-grass and tall-grass vegetation generated by high and low historical levels of ungulate grazing. Herbivore exclusions generally had few effects on microarthropod communities, but exclusion of all herbivore groups resulted in decreased total springtail and Poduromorpha richness compared with exclusion of only ungulates and medium-sized mammals, regardless of vegetation type. The tall-grass vegetation had a higher total springtail richness and mesostigmatid mite abundance than the short-grass vegetation and a different oribatid mite community composition. Although several biotic and abiotic variables differed between the exclusion treatments and vegetation types, effects on soil microarthropods were best explained by differences in nutrient and fibre content of the previous year's vegetation, a proxy for litter quality, and to a lesser extent soil temperature. After three growing seasons, smaller herbivores had a stronger impact on these functionally important soil microarthropod communities than large herbivores. Over longer time-scales, however, large grazers created two different vegetation types and thereby influenced microarthropod communities bottom-up, e.g. by altering resource quality. Hence, both short- and long-term consequences of herbivory affected the structure of the soil microarthropod community.
Collapse
Affiliation(s)
- Martijn L. Vandegehuchte
- Research Unit Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Ursina Raschein
- Research Unit Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Martin Schütz
- Research Unit Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | | | - Anita C. Risch
- Research Unit Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
245
|
Muth T, Behne A, Heyer R, Kohrs F, Benndorf D, Hoffmann M, Lehtevä M, Reichl U, Martens L, Rapp E. The MetaProteomeAnalyzer: A Powerful Open-Source Software Suite for Metaproteomics Data Analysis and Interpretation. J Proteome Res 2015; 14:1557-65. [DOI: 10.1021/pr501246w] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Thilo Muth
- Max Planck Institute
for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Alexander Behne
- Chair
of Bioprocess Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Robert Heyer
- Chair
of Bioprocess Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Fabian Kohrs
- Chair
of Bioprocess Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Dirk Benndorf
- Chair
of Bioprocess Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Marcus Hoffmann
- Max Planck Institute
for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| | - Miro Lehtevä
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Udo Reichl
- Max Planck Institute
for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
- Chair
of Bioprocess Engineering, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Lennart Martens
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Erdmann Rapp
- Max Planck Institute
for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany
| |
Collapse
|
246
|
Enzymatic systems involved in decomposition reflects the ecology and taxonomy of saprotrophic fungi. FUNGAL ECOL 2015. [DOI: 10.1016/j.funeco.2014.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
247
|
López-González JA, Suárez-Estrella F, Vargas-García MC, López MJ, Jurado MM, Moreno J. Dynamics of bacterial microbiota during lignocellulosic waste composting: Studies upon its structure, functionality and biodiversity. BIORESOURCE TECHNOLOGY 2015; 175:406-416. [PMID: 25459849 DOI: 10.1016/j.biortech.2014.10.123] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
An intensive isolation program carried out in three replicated composting piles allowed the identification of the resident and transient components of the composting microbiome. More than 4000 bacterial strains were isolated, enzymatically characterized and identified by partial sequencing of their 16S rRNA gene. While microorganisms isolated under mesophilic conditions were prominent throughout the process, thermophilic stages gathered the highest total counts and spore-forming bacteria prevailed at the bio-oxidative phase of composting. Enzymatic capabilities related to the degradation of polymeric materials were exhibited by most of the isolates and as a result of these activities, more soluble compounds could be made available to the entire composting microbiota. A high proportion of isolates showed to be thermotolerant as they were detected at mesophilic and thermophilic phases. Isolated strains belonged to 187 bacterial species. Biodiversity was greater at the central stages of composting and mesophilic, thermophilic and cooling phases shared 50% of species.
Collapse
Affiliation(s)
- J A López-González
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - F Suárez-Estrella
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - M C Vargas-García
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - M J López
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - M M Jurado
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain
| | - J Moreno
- Unit of Microbiology, Department of Biology and Geology, University of Almería, Agrifood Campus of International Excellence ceiA3, 04120 Almería, Spain.
| |
Collapse
|
248
|
Barbi F, Bragalini C, Vallon L, Prudent E, Dubost A, Fraissinet-Tachet L, Marmeisse R, Luis P. PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing. PLoS One 2014; 9:e116264. [PMID: 25545363 PMCID: PMC4278862 DOI: 10.1371/journal.pone.0116264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/26/2014] [Indexed: 12/27/2022] Open
Abstract
Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the discovery of complex patterns in gene expression of soil fungal communities.
Collapse
Affiliation(s)
- Florian Barbi
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Claudia Bragalini
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université de Lyon, Université Lyon 1, Villeurbanne, France
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Laurent Vallon
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Elsa Prudent
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Audrey Dubost
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Laurence Fraissinet-Tachet
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Roland Marmeisse
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Patricia Luis
- Ecologie Microbienne, UMR CNRS 5557, USC INRA 1364, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
249
|
Filipiak M, Weiner J. How to make a beetle out of wood: multi-elemental stoichiometry of wood decay, xylophagy and fungivory. PLoS One 2014; 9:e115104. [PMID: 25536334 PMCID: PMC4275229 DOI: 10.1371/journal.pone.0115104] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022] Open
Abstract
The majority of terrestrial biomass is wood, but the elemental composition of its potential consumers, xylophages, differs hugely from that of wood. This causes a severe nutritional imbalance. We studied the stoichiometric relationships of 11 elements (C, N, P, K, Ca, Mg, Fe, Zn, Mn, Cu, Na) in three species of pine-xylem-feeding insects, Stictoleptura rubra, Arhopalus rusticus (Coleoptera, Cerambycidae) and Chalcophora mariana (Coleoptera, Buprestidae), to elucidate their mechanisms of tissue growth and to match their life histories to their dietary constraints. These beetles do not differ from other Coleoptera in their absolute elemental compositions, which are approximately 1000 (N), 100 (P, Cu) and 50 (K, Na) times higher than in dead but undecayed pine wood. This discrepancy diminishes along the wood decay gradient, but the elemental concentrations remain higher by an order of magnitude in beetles than in highly decayed wood. Numerical simulation of the life history of S. rubra shows that feeding on nutrient-poor undecayed wood would extend its development time to implausible values, whereas feeding on highly decomposed wood (heavily infected with fungi) would barely balance its nutritional budget during the long development period of this species. The changes in stoichiometry indicate that the relative change in the nutrient levels in decaying wood cannot be attributed solely to carbon loss resulting from decomposer respiration: the action of fungi substantially enriches the decaying wood with nutritional elements imported from the outside of the system, making it a suitable food for wood-eating invertebrates.
Collapse
Affiliation(s)
- Michał Filipiak
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - January Weiner
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
250
|
Tanca A, Palomba A, Pisanu S, Deligios M, Fraumene C, Manghina V, Pagnozzi D, Addis MF, Uzzau S. A straightforward and efficient analytical pipeline for metaproteome characterization. MICROBIOME 2014; 2:49. [PMID: 25516796 PMCID: PMC4266899 DOI: 10.1186/s40168-014-0049-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/11/2014] [Indexed: 05/27/2023]
Abstract
BACKGROUND The massive characterization of host-associated and environmental microbial communities has represented a real breakthrough in the life sciences in the last years. In this context, metaproteomics specifically enables the transition from assessing the genomic potential to actually measuring the functional expression of a microbiome. However, significant research efforts are still required to develop analysis pipelines optimized for metaproteome characterization. RESULTS This work presents an efficient analytical pipeline for shotgun metaproteomic analysis, combining bead-beating/freeze-thawing for protein extraction, filter-aided sample preparation for cleanup and digestion, and single-run liquid chromatography-tandem mass spectrometry for peptide separation and identification. The overall procedure is more time-effective and less labor-intensive when compared to state-of-the-art metaproteomic techniques. The pipeline was first evaluated using mock microbial mixtures containing different types of bacteria and yeasts, enabling the identification of up to over 15,000 non-redundant peptide sequences per run with a linear dynamic range from 10(4) to 10(8) colony-forming units. The pipeline was then applied to the mouse fecal metaproteome, leading to the overall identification of over 13,000 non-redundant microbial peptides with a false discovery rate of <1%, belonging to over 600 different microbial species and 250 functionally relevant protein families. An extensive mapping of the main microbial metabolic pathways actively functioning in the gut microbiome was also achieved. CONCLUSIONS The analytical pipeline presented here may be successfully used for the in-depth and time-effective characterization of complex microbial communities, such as the gut microbiome, and represents a useful tool for the microbiome research community.
Collapse
Affiliation(s)
- Alessandro Tanca
- />Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio 07041 Alghero, Italy
| | - Antonio Palomba
- />Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Salvatore Pisanu
- />Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio 07041 Alghero, Italy
| | - Massimo Deligios
- />Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Cristina Fraumene
- />Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio 07041 Alghero, Italy
| | - Valeria Manghina
- />Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Daniela Pagnozzi
- />Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio 07041 Alghero, Italy
| | - Maria Filippa Addis
- />Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio 07041 Alghero, Italy
| | - Sergio Uzzau
- />Porto Conte Ricerche, S.P. 55 Porto Conte/Capo Caccia Km 8.400, Tramariglio 07041 Alghero, Italy
- />Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| |
Collapse
|