201
|
Chen MX, Liu Q, Cheng S, Lei L, Lin AJ, Wei R, K Hui TC, Li Q, Ao LJ, Sham PC. Interleukin-18 levels in the hippocampus and behavior of adult rat offspring exposed to prenatal restraint stress during early and late pregnancy. Neural Regen Res 2020; 15:1748-1756. [PMID: 32209782 PMCID: PMC7437598 DOI: 10.4103/1673-5374.276358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Exposure to maternal stress during prenatal life is associated with an increased risk of neuropsychiatric disorders, such as depression and anxiety, in offspring. It has also been increasingly observed that prenatal stress alters the phenotype of offspring via immunological mechanisms and that immunological dysfunction, such as elevated interleukin-18 levels, has been reported in cultures of microglia. Prenatal restraint stress (PRS) in rats permits direct experimental investigation of the link between prenatal stress and adverse outcomes. However, the majority of studies have focused on the consequences of PRS delivered in the second half of pregnancy, while the effects of early prenatal stress have rarely been examined. Therefore, pregnant rats were subjected to PRS during early/middle and late gestation (days 8-14 and 15-21, respectively). PRS comprised restraint in a round plastic transparent cylinder under bright light (6500 lx) three times per day for 45 minutes. Differences in interleukin-18 expression in the hippocampus and in behavior were compared between offspring rats and control rats on postnatal day 75. We found that adult male offspring exposed to PRS during their late prenatal periods had higher levels of anxiety-related behavior and depression than control rats, and both male and female offspring exhibited higher levels of depression-related behavior, impaired recognition memory and diminished exploration of novel objects. Moreover, an elevated level of interleukin-18 was observed in the dorsal and ventral hippocampus of male and female early- and late-PRS offspring rats. The results indicate that PRS can cause anxiety and depression-related behaviors in adult offspring and affect the expression of interleukin-18 in the hippocampus. Thus, behavior and the molecular biology of the brain are affected by the timing of PRS exposure and the sex of the offspring. All experiments were approved by the Animal Experimentation Ethics Committee at Kunming Medical University, China (approval No. KMMU2019074) in January 2019.
Collapse
Affiliation(s)
- Mo-Xian Chen
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Qiang Liu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shu Cheng
- Department of Rehabilitation, China Resources & WISCO General Hospital, Wuhan, Hubei Province, China
| | - Lei Lei
- Department of Rehabilitation Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ai-Jin Lin
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ran Wei
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Tomy C K Hui
- Department of Psychiatry, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Qi Li
- Department of Psychiatry; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li-Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, Yunnan Province, China
| | - Pak C Sham
- Department of Psychiatry; State Key Laboratory of Brain and Cognitive Sciences; Centre for Genomic Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
202
|
Duman RS, Deyama S, Fogaça MV. Role of BDNF in the pathophysiology and treatment of depression: Activity-dependent effects distinguish rapid-acting antidepressants. Eur J Neurosci 2019; 53:126-139. [PMID: 31811669 DOI: 10.1111/ejn.14630] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The pathophysiology and treatment of depression have been the focus of intense research and while there is much that remains unknown, modern neurobiological approaches are making progress. This work demonstrates that stress and depression are associated with atrophy of neurons and reduced synaptic connectivity in brain regions such as the hippocampus and prefrontal cortex that contribute to depressive behaviors, and conversely that antidepressant treatment can reverse these deficits. The role of neurotrophic factors, particularly brain-derived neurotrophic factor (BDNF), has been of particular interest as these factors play a key role in activity-dependent regulation of synaptic plasticity. Here, we review the literature demonstrating that exposure to stress and depression decreases BDNF expression in the hippocampus and PFC and conversely that antidepressant treatment can up-regulate BDNF in the adult brain and reverse the effects of stress. We then focus on rapid-acting antidepressants, particularly the NMDA receptor antagonist ketamine, which produces rapid synaptic and antidepressant behavioral actions that are dependent on activity-dependent release of BDNF. This rapid release of BDNF differs from typical monoaminergic agents that require chronic administration to produce a slow induction of BDNF expression, consistent with the time lag for the therapeutic action of these agents. We review evidence that other classes of rapid-acting agents also require BDNF release, demonstrating that this is a common, convergent downstream mechanism. Finally, we discuss evidence that the actions of ketamine are also dependent on another growth factor, vascular endothelial growth factor (VEGF) and its complex interplay with BDNF.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Manoela Viar Fogaça
- Department of Psychiatry and Neuroscience, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
203
|
Ciuculete DM, Voisin S, Kular L, Welihinda N, Jonsson J, Jagodic M, Mwinyi J, Schiöth HB. Longitudinal DNA methylation changes at MET may alter HGF/c-MET signalling in adolescents at risk for depression. Epigenetics 2019; 15:646-663. [PMID: 31852353 PMCID: PMC7574381 DOI: 10.1080/15592294.2019.1700628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Unrecognized depression during adolescence can result in adult suicidal behaviour. The aim of this study was to identify, replicate and characterize DNA methylation (DNAm) shifts in depression aetiology, using a longitudinal, multi-tissue (blood and brain) and multi-layered (genetics, epigenetics, transcriptomics) approach. We measured genome-wide blood DNAm data at baseline and one-year follow-up, and imputed genetic variants, in 59 healthy adolescents comprising the discovery cohort. Depression and suicidal symptoms were determined using the Development and Well-Being Assessment (DAWBA) depression band, Montgomery-Åsberg Depression Rating Scale-Self (MADRS-S) and SUicide Assessment Scale (SUAS). DNAm levels at follow-up were regressed against depression scores, adjusting for sex, age and the DNAm residuals at baseline. Higher methylation levels of 5% and 13% at cg24627299 within the MET gene were associated with higher depression scores (praw<1e-4) and susceptibility for suicidal symptoms (padj.<0.005). The nearby rs39748 was discovered to be a methylation and expression quantitative trait locus in blood cells. mRNA levels of hepatocyte growth factor (HGF) expression, known to strongly interact with MET, were inversely associated with methylation levels at cg24627299, in an independent cohort of 1180 CD14+ samples. In an open-access dataset of brain tissue, lower methylation at cg24627299 was found in 45 adults diagnosed with major depressive disorder compared with matched controls (padj.<0.05). Furthermore, lower MET expression was identified in the hippocampus of depressed individuals compared with controls in a fourth, independent cohort. Our findings reveal methylation changes at MET in the pathology of depression, possibly involved in downregulation of HGF/c-MET signalling the hippocampal region.
Collapse
Affiliation(s)
- Diana M Ciuculete
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University , Footscray, Australian
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Nipuni Welihinda
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet , Stockholm, Sweden
| | - Jessica Mwinyi
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University , Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University , Moscow, Russia
| |
Collapse
|
204
|
Duman RS, Shinohara R, Fogaça MV, Hare B. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function. Mol Psychiatry 2019; 24:1816-1832. [PMID: 30894661 PMCID: PMC6754322 DOI: 10.1038/s41380-019-0400-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Efforts to develop efficacious antidepressant agents with novel mechanisms have been largely unsuccessful since the 1950's until the discovery of ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist that produces rapid and sustained antidepressant actions even in treatment-resistant patients. This finding has ushered in a new era for the development of novel rapid-acting antidepressants that act at the NMDA receptor complex, but without dissociative and psychotomimetic side effects of ketamine. Here, we review the current state of rapid-acting antidepressant drug development, including NMDA channel blockers, glycine site agents, and allosteric modulators, as well as ketamine stereoisomers and metabolites. In addition, we focus on the neurobiological mechanisms underlying the actions of these diverse agents and discuss evidence of convergent mechanisms including increased brain-derived neurotrophic factor signaling, increased synthesis of synaptic proteins, and most notably increased GluR1 and synaptic connectivity in the medial prefrontal cortex. These convergent mechanisms provide insight for potential additional novel targets for drug development (e.g., agents that increase synaptic protein synthesis and plasticity). Importantly, the convergent effects on synapse formation and plasticity also reverse the well-documented neuronal and synaptic deficits associated with stress and depression, and thereby target the underlying pathophysiology of major depressive disorder.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Ryota Shinohara
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Manoela V Fogaça
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brendan Hare
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
205
|
Antidepressant mechanisms of venlafaxine involving increasing histone acetylation and modulating tyrosine hydroxylase and tryptophan hydroxylase expression in hippocampus of depressive rats. Neuroreport 2019; 30:255-261. [PMID: 30640193 DOI: 10.1097/wnr.0000000000001191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Venlafaxine (VEN) is a widely used antidepressant as a serotonin-reuptake and norepinephrine-reuptake inhibitor. It is used primarily in depression, especially with generalized anxiety disorder or chronic pain. This medicine is of interest because its mechanisms involved multiple aspects. In the current study, the antidepressant action of VEN was investigated by studying the histone acetylation and expression of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) in rats exposed to chronic unpredicted stress (CUS) for 28 days. Male Sprague-Dawley rats were divided into a control group, VEN-treated control group, CUS group, and VEN-treated CUS group. VEN (23.4 mg/kg once daily) was administered to rats by intragastric gavage, whereas the same volume of vehicle was given to rats in the control and model groups. Rat behaviors, acetylated H3 at lysine 9 (acH3K9), acetylated H3 at lysine 14 (acH3K14), acetylated H4 at lysine 12 (acH4K12), histone deacetylase 5, and TH and TPH expression in the hippocampus were determined. Chronic VEN treatment significantly relieved the anxiety- and depression-like behaviors, prevented the increase of histone deacetylase 5 expression and decrease of acH3K9 level, and promoted TH and TPH protein expression in the hippocampus of CUS rats. The results suggest that the preventive antidepressant mechanism of VEN is partly involved in the blocking effects on histone de-acetylated modification and then increasing TH, TPH expression.
Collapse
|
206
|
Electroconvulsive shock restores the decreased coverage of brain blood vessels by astrocytic endfeet and ameliorates depressive-like behavior. J Affect Disord 2019; 257:331-339. [PMID: 31302522 DOI: 10.1016/j.jad.2019.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Although growing evidence indicates that ECT affects astrocytes, the exact mechanisms of the therapeutic effect of ECT are still unknown. Astrocytic endfeet express the water channel aquaporin (AQP) 4 abundantly and ensheath brain blood vessels to form gliovascular units. It has been shown that the coverage of blood vessels by AQP4-immunostained endfeet is decreased in the prefrontal cortex (PFC) of patients with major depression. This study was made to determine whether ECT restores the astrocytic coverage of blood vessels with amelioration of depressive symptoms. METHODS After electroconvulsive shock (ECS) administration to rats, the forced swimming test (FST) and Y-maze test were performed. Subsequently, immunofluorescence analysis was conducted to measure the coverage of blood vessels by astrocytic endfeet in the PFC and hippocampus by using the endothelial cell marker lectin and anti-AQP4 antibody. We also performed Western blot to examine the effects of ECS on the hippocampal expression of AQP4 and the tight junction molecule claudin-5. RESULTS Gunn rats showed learned helplessness and impaired spatial working memory, compared to normal control Wistar rats. ECS significantly improved the depressive-like behavior. Gunn rats showed a decrease in astrocytic coverage of blood vessels, that was significantly increased by ECS. ECS significantly increased expression of AQP4 and claudin-5 in Gunn rats. CONCLUSIONS ECS increased the reduced coverage of blood vessels by astrocytic endfeet in the mPFC and hippocampus with amelioration of depressive-like behavior. Therefore, therapeutic mechanism of ECT may involve restoration of the impaired gliovascular units by increasing the astrocytic-endfoot coverage of blood vessels.
Collapse
|
207
|
McClintock CH, Anderson M, Svob C, Wickramaratne P, Neugebauer R, Miller L, Weissman MM. Multidimensional understanding of religiosity/spirituality: relationship to major depression and familial risk. Psychol Med 2019; 49:2379-2388. [PMID: 30419987 PMCID: PMC6513730 DOI: 10.1017/s0033291718003276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Previous research has shown prospectively that religiosity/spirituality protects against depression, but these findings are commonly critiqued on two grounds, namely: (1) apparent religiosity/spirituality reflects merely an original absence of depression or elevated mood and (2) religiosity/spirituality too often is measured as a global construct. The current study investigates the relationship between depression and religiosity/spirituality by examining its multidimensional structural integrity. METHOD Confirmatory factor analyses with a previously observed cross-cultural factor structure of religiosity/spirituality variables were conducted on an independent sample, diagnostic and familial risk subgroups from this sample, and a subsample of the original cross-cultural sample. Linear regressions onto a previous diagnosis of major depressive disorder (MDD) 5 years prior to assess the potential attenuating impact of a previous depression was explored. RESULTS Across familial risk groups and clinical subgroups, each of the previously validated religiosity/spirituality domains was confirmed, namely: religious/spiritual commitment, contemplative practice, sense of interconnectedness, the experience of love, and altruistic engagement. Previous MDD diagnosis was associated with a lower religious/spiritual commitment among high-risk individuals, higher contemplation among low-risk individuals, and lower importance of religion or spirituality regardless of risk group. CONCLUSIONS Structural integrity was found across familial risk groups and diagnostic history for a multidimensional structure of religiosity/spirituality. Differential associations between a previous diagnosis of MDD and level of religiosity/spirituality across domains suggest a complex and interactive relation between depression, familial risk, and religiosity/spirituality. Accounting for an empirically valid, multidimensional understanding of religiosity/spirituality may advance research on mechanisms underlying the relationship between religiosity/spirituality and mental health.
Collapse
Affiliation(s)
- Clayton H. McClintock
- Spirituality Mind Body Institute, Department of Counseling and Clinical Psychology, Teachers College, Columbia University, New York City, USA
| | - Micheline Anderson
- Spirituality Mind Body Institute, Department of Counseling and Clinical Psychology, Teachers College, Columbia University, New York City, USA
| | - Connie Svob
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York City, USA
- Division of Epidemiology, New York State Psychiatric Institute, New York City, USA
| | - Priya Wickramaratne
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York City, USA
- Division of Epidemiology, New York State Psychiatric Institute, New York City, USA
| | - Richard Neugebauer
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York City, USA
- Division of Epidemiology, New York State Psychiatric Institute, New York City, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, USA
| | - Lisa Miller
- Spirituality Mind Body Institute, Department of Counseling and Clinical Psychology, Teachers College, Columbia University, New York City, USA
| | - Myrna M. Weissman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York City, USA
- Division of Epidemiology, New York State Psychiatric Institute, New York City, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York City, USA
| |
Collapse
|
208
|
Sakurai M, Kurachi J, Sakai Y, Morimoto M. Nippostrongylus brasiliensis infection inhibits hippocampal neurogenesis in mice. Neuropathology 2019; 39:425-433. [PMID: 31502307 DOI: 10.1111/neup.12596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/28/2019] [Accepted: 07/28/2019] [Indexed: 11/29/2022]
Abstract
The brain has long been considered a site of "immune privilege"; however, recent evidence indicates the presence of brain-immune interactions in physiological and pathological conditions. Neurogenesis, a process of generating functionally integrated neurons, occurs in the adult brain of mammals. The adult neurogenesis predominantly takes place in the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ). Several studies have shown that an immune reaction or alteration could affect adult neurogenesis activity, suggesting a link between the immune system and adult neurogenesis. Helminth infection is one of the activators of Th2 immune response. However, the influence of this type of immune reaction on adult neurogenesis is not well studied. In this study, we evaluated adult neurogenesis in mice infected with the helminth Nippostrongylus brasiliensis (Nb). Immunohistochemically, the number of both doublecortin-positive cells and doublecortin/5-bromodeoxyuridine (BrdU)-double-positive cells was decreased in the SGZ of Nb-infected mice by day 9 after infection. However, the total number of BrdU-positive newborn cells in the SGZ did not change. In no significant alterations were detected in the SVZ of infected mice. In addition, using reverse transcription-quantitative polymerase chain reaction, we observed no significant changes in the expression levels of neurotropic factors important for neurogenesis in the hippocampus. In conclusion, our results indicate that adult neurogenesis in SGZ, but not in SVZ, is inhibited by Nb infection. Th2 immune response might have a suppressive effect on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Junya Kurachi
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Sakai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masahiro Morimoto
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
209
|
Sex differences in cued fear responses and parvalbumin cell density in the hippocampus following repetitive concussive brain injuries in C57BL/6J mice. PLoS One 2019; 14:e0222153. [PMID: 31487322 PMCID: PMC6728068 DOI: 10.1371/journal.pone.0222153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
There is strong evidence to suggest a link between repeated head trauma and cognitive and emotional disorders, and Repetitive concussive brain injuries (rCBI) may also be a risk factor for depression and anxiety disorders. Animal models of brain injury afford the opportunity for controlled study of the effects of injury on functional outcomes. In this study, male and cycling female C57BL/6J mice sustained rCBI (3x) at 24-hr intervals and were tested in a context and cued fear conditioning paradigm, open field (OF), elevated zero maze and tail suspension test. All mice with rCBI showed less freezing behavior than sham control mice during the fear conditioning context test. Injured male, but not female mice also froze less in response to the auditory cue (tone). Injured mice were hyperactive in an OF environment and spent more time in the open quadrants of the elevated zero maze, suggesting decreased anxiety, but there were no differences between injured mice and sham-controls in depressive-like activity on the tail suspension test. Pathologically, injured mice showed increased astrogliosis in the injured cortex and white matter tracts (optic tracts and corpus callosum). There were no changes in the number of parvalbumin-positive interneurons in the cortex or amygdala, but injured male mice had fewer parvalbumin-positive neurons in the hippocampus. Parvalbumin-reactive interneurons of the hippocampus have been previously demonstrated to be involved in hippocampal-cortical interactions required for memory consolidation, and it is possible memory changes in the fear-conditioning paradigm following rCBI are the result of more subtle imbalances in excitation and inhibition both within the amygdala and hippocampus, and between more widespread brain regions that are injured following a diffuse brain injury.
Collapse
|
210
|
Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behav Brain Res 2019; 369:111900. [DOI: 10.1016/j.bbr.2019.111900] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
211
|
Molecular programs underlying differences in the expression of mood disorders in males and females. Brain Res 2019; 1719:89-103. [DOI: 10.1016/j.brainres.2019.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/20/2019] [Accepted: 05/13/2019] [Indexed: 01/13/2023]
|
212
|
Smeeth DM, Dima D, Jones L, Jones I, Craddock N, Owen MJ, Rietschel M, Maier W, Korszun A, Rice JP, Mors O, Preisig M, Uher R, Lewis CM, Thuret S, Powell TR. Polygenic risk for circulating reproductive hormone levels and their influence on hippocampal volume and depression susceptibility. Psychoneuroendocrinology 2019; 106:284-292. [PMID: 31039525 PMCID: PMC6597945 DOI: 10.1016/j.psyneuen.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
Abstract
Altered reproductive hormone levels have been associated with the pathophysiology of depressive disorders and this risk may be imparted by their modulatory effect upon hippocampal structure and function. Currently it is unclear whether altered levels of reproductive hormones are causally associated with hippocampal volume reductions and the risk of depressive disorders. Here, we utilize genome-wide association study (GWAS) summary statistics from a GWAS focusing on reproductive hormones, consisting of 2913 individuals. Using this data, we generated polygenic risk scores (PRS) for estradiol, progesterone, prolactin and testosterone in the European RADIANT cohort consisting of 176 postpartum depression (PPD) cases (100% female, mean age: 41.6 years old), 2772 major depressive disorder (MDD) cases (68.6% female, mean age: 46.9 years old) and 1588 control participants (62.5% female, mean age: 42.4 years old), for which there was also a neuroimaging subset of 111 individuals (60.4% female, mean age: 50.0 years old). Only the best-fit PRS for estradiol showed a significant negative association with hippocampal volume, as well as many of its individual subfields; including the molecular layer and granule cell layer of the dentate gyrus, subiculum, CA1, CA2/3 and CA4 regions. Interestingly, several of these subfields are implicated in adult hippocampal neurogenesis. When we tested the same estradiol PRS for association with case-control status for PPD or MDD there was no significant relationship observed. Here, we provide evidence that genetic risk for higher plasma estradiol is negatively associated with hippocampal volume, but this does not translate into an increased risk of MDD or PPD. This work suggests that the relationship between reproductive hormones, the hippocampus, and depression is complex, and that there may not be a clear-cut pathway for etiology or risk moderation.
Collapse
Affiliation(s)
- Demelza M Smeeth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lisa Jones
- Institute of Health & Society, University of Worcester, Worcester, UK
| | - Ian Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Nick Craddock
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Marcella Rietschel
- Department of Psychiatry, University of Bonn, Bonn, Germany; Division of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Wolfgang Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Ania Korszun
- Barts and The London Medical School, Queen Mary University of London, London, UK
| | - John P Rice
- Department of Psychiatry, Washington University, St. Louis, Missouri, USA
| | - Ole Mors
- Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Martin Preisig
- University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Timothy R Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
213
|
Kraus C, Seiger R, Pfabigan DM, Sladky R, Tik M, Paul K, Woletz M, Gryglewski G, Vanicek T, Komorowski A, Kasper S, Lamm C, Windischberger C, Lanzenberger R. Hippocampal Subfields in Acute and Remitted Depression-an Ultra-High Field Magnetic Resonance Imaging Study. Int J Neuropsychopharmacol 2019; 22:513-522. [PMID: 31175352 PMCID: PMC6672627 DOI: 10.1093/ijnp/pyz030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studies investigating hippocampal volume changes after treatment with serotonergic antidepressants in patients with major depressive disorder yielded inconsistent results, and effects on hippocampal subfields are unclear. METHODS To detail treatment effects on total hippocampal and subfield volumes, we conducted an open-label study with escitalopram followed by venlafaxine upon nonresponse in 20 unmedicated patients with major depressive disorder. Before and after 12 weeks treatment, we measured total hippocampal formation volumes and subfield volumes with ultra-high field (7 Tesla), T1-weighted, structural magnetic resonance imaging, and FreeSurfer. Twenty-eight remitted patients and 22 healthy subjects were included as controls. We hypothesized to detect increased volumes after treatment in major depressive disorder. RESULTS We did not detect treatment-related changes of total hippocampal or subfield volumes in patients with major depressive disorder. Secondary results indicated that the control group of untreated, stable remitted patients, compared with healthy controls, had larger volumes of the right hippocampal-amygdaloid transition area and right fissure at both measurement time points. Depressed patients exhibited larger volumes of the right subiculum compared with healthy controls at MRI-2. Exploratory data analyses indicated lower baseline volumes in the subgroup of remitting (n = 10) vs nonremitting (n = 10) acute patients. CONCLUSIONS The results demonstrate that monoaminergic antidepressant treatment in major depressive disorder patients was not associated with volume changes in hippocampal subfields. Studies with larger sample sizes to detect smaller effects as well as other imaging modalities are needed to further assess the impact of antidepressant treatment on hippocampal subfields.
Collapse
Affiliation(s)
- Christoph Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rene Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Daniela M Pfabigan
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ronald Sladky
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Martin Tik
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Katharina Paul
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Michael Woletz
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Arkadiusz Komorowski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Claus Lamm
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
214
|
Spinelli M, Fusco S, Grassi C. Brain Insulin Resistance and Hippocampal Plasticity: Mechanisms and Biomarkers of Cognitive Decline. Front Neurosci 2019; 13:788. [PMID: 31417349 PMCID: PMC6685093 DOI: 10.3389/fnins.2019.00788] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
In the last decade, much attention has been devoted to the effects of nutrient-related signals on brain development and cognitive functions. A turning point was the discovery that brain areas other than the hypothalamus expressed receptors for hormones related to metabolism. In particular, insulin signaling has been demonstrated to impact on molecular cascades underlying hippocampal plasticity, learning and memory. Here, we summarize the molecular evidence linking alteration of hippocampal insulin sensitivity with changes of both adult neurogenesis and synaptic plasticity. We also review the epidemiological studies and experimental models emphasizing the critical role of brain insulin resistance at the crossroad between metabolic and neurodegenerative disease. Finally, we brief novel findings suggesting how biomarkers of brain insulin resistance, involving the study of brain-derived extracellular vesicles and brain glucose metabolism, may predict the onset and/or the progression of cognitive decline.
Collapse
Affiliation(s)
- Matteo Spinelli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Fusco
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
215
|
Galts CP, Bettio LE, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. Depression in neurodegenerative diseases: Common mechanisms and current treatment options. Neurosci Biobehav Rev 2019; 102:56-84. [DOI: 10.1016/j.neubiorev.2019.04.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022]
|
216
|
Functional disconnectivity of the hippocampal network and neural correlates of memory impairment in treatment-resistant depression. J Affect Disord 2019; 253:248-256. [PMID: 31060011 DOI: 10.1016/j.jad.2019.04.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 04/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a disabling neuropsychiatric condition associated with cognitive impairment. Neuroimaging studies have consistently linked memory deficits with hippocampal atrophy in MDD patients. However, there has been a paucity of research examining how the hippocampus functionally contributes to memory impairments in MDD. The present study examined whether hippocampal networks distinguish treatment-resistant depression (TRD) patients from healthy controls (HCs), and whether these networks underlie declarative memory deficits in TRD. We hypothesized that functional connectivity (FC) of the posterior hippocampus would correlate preferentially with memory in patients, whereas FC pattern of the anterior and intermediate hippocampus would correlate with emotion-mediated regions and show a significant correlation with memory. METHODS Resting-state functional magnetic resonance imaging (fMRI) scans were acquired in 56 patients and 42 age- and sex-matched HCs. We parcellated the hippocampus into three subregions based on a sparse representation-based method recently developed by our group. FC networks of hippocampal subregions were compared between patients and HCs and correlated with clinical measures and cognitive performance. RESULTS Decreased connectivity of the right intermediate hippocampus (RIH) with the limbic regions was a distinguishing feature between TRD and HCs. These functional abnormalities were present in the absence of structural volumetric differences. Furthermore, lower right amygdalar connectivity to the RIH related to a longer current depressive episode. Declarative memory deficits in TRD were significantly associated with left posterior and right intermediate hippocampal FC patterns. LIMITATIONS Our patient samples were treatment-resistant, the conclusions from this study cannot be generalized to all MDD patients directly. Task-based imaging studies are needed to demonstrate hippocampal engagement in the memory deficits of patients. Finally, our findings are strongly in need of replication in independent validation samples. CONCLUSIONS These findings demonstrate a transitional property of the intermediate hippocampal subregion between its anterior and posterior counterparts in TRD patients, and provide new insights into the neural network-level dysfunction of the hippocampus in TRD.
Collapse
|
217
|
Metformin Promotes Anxiolytic and Antidepressant-Like Responses in Insulin-Resistant Mice by Decreasing Circulating Branched-Chain Amino Acids. J Neurosci 2019; 39:5935-5948. [PMID: 31160539 DOI: 10.1523/jneurosci.2904-18.2019] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/07/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Epidemiological studies indicate that insulin resistance (IR), a hallmark of type 2 diabetes, is associated with an increased risk of major depression. Here, we demonstrated that male mice fed a high-fat diet (HFD) exhibited peripheral metabolic impairments reminiscent of IR accompanied by elevated circulating levels of branched-chain amino acids (BCAAs), whereas both parameters were normalized by chronic treatment with metformin (Met). Given the role of BCAAs in the regulation of tryptophan influx into the brain, we then explored the activity of the serotonin (5-HT) system. Our results indicated that HFD-fed mice displayed impairment in the electrical activity of dorsal raphe 5-HT neurons, attenuated hippocampal extracellular 5-HT concentrations and anxiety, one of the most visible and early symptoms of depression. On the contrary, Met stimulated 5-HT neurons excitability and 5-HT neurotransmission while hindering HFD-induced anxiety. Met also promoted antidepressant-like activities as observed with fluoxetine. In light of these data, we designed a modified HFD in which BCAA dietary supply was reduced by half. Deficiency in BCAAs failed to reverse HFD-induced metabolic impairments while producing antidepressant-like activity and enhancing the behavioral response to fluoxetine. Our results suggest that Met may act by decreasing circulating BCAAs levels to favor serotonergic neurotransmission in the hippocampus and promote antidepressant-like effects in mice fed an HFD. These findings also lead us to envision that a diet poor in BCAAs, provided either alone or as add-on therapy to conventional antidepressant drugs, could help to relieve depressive symptoms in patients with metabolic comorbidities.SIGNIFICANCE STATEMENT Insulin resistance in humans is associated with increased risk of anxiodepressive disorders. Such a relationship has been also found in rodents fed a high-fat diet (HFD). To determine whether insulin-sensitizing strategies induce anxiolytic- and/or antidepressant-like activities and to investigate the underlying mechanisms, we tested the effects of metformin, an oral antidiabetic drug, in mice fed an HFD. Metformin reduced levels of circulating branched-chain amino acids, which regulate tryptophan uptake within the brain. Moreover, metformin increased hippocampal serotonergic neurotransmission while promoting anxiolytic- and antidepressant-like effects. Moreover, a diet poor in these amino acids produced similar beneficial behavioral property. Collectively, these results suggest that metformin could be used as add-on therapy to a conventional antidepressant for the comorbidity between metabolic and mental disorders.
Collapse
|
218
|
Li J, Chen J, Ma N, Yan D, Wang Y, Zhao X, Zhang Y, Zhang C. Effects of corticosterone on the expression of mature brain-derived neurotrophic factor (mBDNF) and proBDNF in the hippocampal dentate gyrus. Behav Brain Res 2019; 365:150-156. [DOI: 10.1016/j.bbr.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/17/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
|
219
|
Relationships between adrenarcheal hormones, hippocampal volumes and depressive symptoms in children. Psychoneuroendocrinology 2019; 104:55-63. [PMID: 30802711 DOI: 10.1016/j.psyneuen.2019.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/15/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
Abstract
Early timing of puberty (i.e., advanced pubertal maturation relative to same-age peers) has been associated with depressive symptoms during adolescence. To date, research on this relationship has focused on gonadarche, the second phase of puberty, while less is known about the first phase of puberty, adrenarche. Increasing evidence suggests that androgens that rise during adrenarche, most notably dehyrdoepiandrosterone (DHEA) and testosterone, may be involved both in the development of the hippocampus, and risk for depression. The current study investigated whether hippocampal volumes mediated the relationship between adrenarcheal timing (based on relative levels of adrenarcheal hormones) and depressive symptoms in children. Data were collected from a cross-sectional sample of 88 children (46 female) selected to have relatively increased variance in these androgens. Participants completed brain MRI structural scans, provided saliva samples for hormones, and completed the Children's Depression Inventory (CDI). Contrary to predictions, larger right hippocampi significantly partially mediated the positive relationship between early timing of testosterone exposure (i.e., relatively high levels of testosterone for one's age) and depressive symptoms in girls. No other evidence of significant mediation effects was obtained, however DHEA and testosterone exposure showed unique effects on hippocampal volumes in males and females, and larger hippocampal volumes predicted higher depressive symptoms in the entire sample. These results suggest that adrenarcheal timing may be related to hippocampal development and depressive symptoms, extending current knowledge of pubertal risk processes.
Collapse
|
220
|
Effects of chronic mild stress induced depression on synaptic plasticity in mouse hippocampus. Behav Brain Res 2019; 365:26-35. [DOI: 10.1016/j.bbr.2019.02.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/23/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
|
221
|
Roddy D, O'Keane V. Cornu Ammonis Changes Are at the Core of Hippocampal Pathology in Depression. ACTA ACUST UNITED AC 2019; 3:2470547019849376. [PMID: 32440594 PMCID: PMC7219935 DOI: 10.1177/2470547019849376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022]
Abstract
Commentary on: Roddy DW, Farrell C, Doolin K, Roman E, Tozzi L, Frodl T, O'Keane
V, O'Hanlon E. The Hippocampus in Depression: More Than the Sum of Its Parts?
Advanced Hippocampal Substructure Segmentation in Depression. Biol Psychiatry.
2019 Mar 15;85(6):487-497. doi: 10.1016/j.biopsych.2018.08.021. Epub 2018 Sep 6.
PubMed PMID: 30528746. The hippocampus is a key cognitive hub implicated in major depressive disorder.
However, major depressive disorder neuroimaging studies have used inconsistent
anatomical hippocampal definitions to estimate hippocampal volumes, leading to
some heterogeneity in findings. In a recent paper, we used a novel reassembly of
automated hippocampal substructures (composites) to build alternative anatomical
hippocampal definitions and used these to investigate differences in a
well-defined cohort of major depressive disorder patients and healthy controls.
We found that the most significant differences between major depressive disorder
and healthy controls were localized to the core cornu ammonis (CA) regions of
the hippocampus. The CA2–4 regions were smaller in first episode major
depressive disorder, whereas more widespread differences were found in
recurrent/chronic major depressive disorder, suggestive of a potential disease
process in major depressive disorder. In this commentary, we also show how new
hippocampal composites to investigate sections of the hippocampal circuitry
demonstrate that differences in major depressive disorder occur across the
input, middle and output circuit nodes of the hippocampal core. Hippocampal
pathology localized across the core hippocampal CA circuity may account for the
diverse and wide-ranging symptoms often experienced in depression.
Collapse
Affiliation(s)
- Darren Roddy
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
222
|
Kane J, Cavanagh JF, Dillon DG. Reduced Theta Power During Memory Retrieval in Depressed Adults. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:636-643. [PMID: 31072759 DOI: 10.1016/j.bpsc.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is associated with poor recollection, but the neural mechanisms responsible for this deficit are unclear. Recollection is supported by interactions between the hippocampus and cortex that appear to be mediated by oscillatory activity in the theta band (4-7 Hz) and that are elicited during source memory retrieval. Therefore, we tested the hypothesis that evoked theta power during source memory retrieval would be reduced in MDD, as this would provide a physiological basis for deficient recollection in adults with depression. METHODS Morlet wavelets were applied to event-related potentials collected from 24 unmedicated adults with MDD and 24 healthy control adults during the retrieval of source and semantic memories. Whole-scalp analyses focused on group differences in evoked theta power. RESULTS There were no group differences in behavior. Nevertheless, from 400 to 799 ms, theta power was broadly reduced in adults with depression versus healthy adults. This reduction was observed during source and semantic retrieval. Parietal midline electrodes showed significantly reduced theta power during source-but not semantic-retrieval in adults with depression versus healthy adults in this interval. Furthermore, theta power over parietal midline sites from 400 to 799 ms was more strongly related to source memory accuracy in healthy adults versus adults with depression. CONCLUSIONS Relative to healthy control adults, adults with depression showed reduced theta power during memory retrieval and a weaker relationship between parietal midline theta power and source memory accuracy. These findings indicate that abnormal theta signals may contribute to memory deficits in adults with MDD.
Collapse
Affiliation(s)
- Jonathan Kane
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
223
|
Alaiyed S, Conant K. A Role for Matrix Metalloproteases in Antidepressant Efficacy. Front Mol Neurosci 2019; 12:117. [PMID: 31133801 PMCID: PMC6517485 DOI: 10.3389/fnmol.2019.00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Major depressive disorder is a debilitating condition that affects approximately 15% of the United States population. Though the neurophysiological mechanisms that underlie this disorder are not completely understood, both human and rodent studies suggest that excitatory/inhibitory (E/I) balance is reduced with the depressive phenotype. In contrast, antidepressant efficacy in responsive individuals correlates with increased excitatory neurotransmission in select brain regions, suggesting that the restoration of E/I balance may improve mood. Enhanced excitatory transmission can occur through mechanisms including increased dendritic arborization and synapse formation in pyramidal neurons. Reduced activity of inhibitory neurons may also contribute to antidepressant efficacy. Consistent with this possibility, the fast-acting antidepressant ketamine may act by selective inhibition of glutamatergic input to GABA releasing parvalbumin (PV)-expressing interneurons. Recent work has also shown that a negative allosteric modulator of the GABA-A receptor α subunit can improve depression-related behavior. PV-expressing interneurons are thought to represent critical pacemakers for synchronous network events. These neurons also represent the predominant GABAergic neuronal population that is enveloped by the perineuronal net (PNN), a lattice-like structure that is thought to stabilize glutamatergic input to this cell type. Disruption of the PNN reduces PV excitability and increases pyramidal cell excitability. Various antidepressant medications increase the expression of matrix metalloproteinases (MMPs), enzymes that can increase pyramidal cell dendritic arborization and spine formation. MMPs can also cleave PNN proteins to reduce PV neuron-mediated inhibition. The present review will focus on mechanisms that may underlie antidepressant efficacy, with a focus on monoamines as facilitators of increased matrix metalloprotease (MMP) expression and activation. Discussion will include MMP-dependent effects on pyramidal cell structure and function, as well as MMP-dependent effects on PV expressing interneurons. We conclude with discussion of antidepressant use for those at risk for Alzheimer’s disease, and we also highlight areas for further study.
Collapse
Affiliation(s)
- Seham Alaiyed
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC, United States
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
224
|
Jog MV, Wang DJJ, Narr KL. A review of transcranial direct current stimulation (tDCS) for the individualized treatment of depressive symptoms. ACTA ACUST UNITED AC 2019; 17-18:17-22. [PMID: 31938757 DOI: 10.1016/j.pmip.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transcranial direct current stimulation (tDCS) is a low intensity neuromodulation technique shown to elicit therapeutic effects in a number of neuropsychological conditions. Independent randomized sham-controlled trials and meta- and mega-analyses demonstrate that tDCS targeted to the left dorsolateral prefrontal cortex can produce a clinically meaningful response in patients with major depressive disorder (MDD), but effects are small to moderate in size. However, the heterogeneous presentation, and the neurobiology underlying particular features of depression suggest clinical outcomes might benefit from empirically informed patient selection. In this review, we summarize the status of tDCS research in MDD with focus on the clinical, biological, and intrinsic and extrinsic factors shown to enhance or predict antidepressant response. We also discuss research strategies for optimizing tDCS to improve patient-specific clinical outcomes. TDCS appears suited for both bipolar and unipolar depression, but is less effective in treatment resistant depression. TDCS may also better target core aspects of depressed mood over vegetative symptoms, while pretreatment patient characteristics might inform subsequent response. Peripheral blood markers of gene and immune system function have not yet proven useful as predictors or correlates of tDCS response. Though further research is needed, several lines of evidence suggest that tDCS administered in combination with pharmacological and cognitive behavioral interventions can improve outcomes. Tailoring stimulation to the functional and structural anatomy and/or connectivity of individual patients can maximize physiological response in targeted networks, which in turn could translate to therapeutic benefits.
Collapse
Affiliation(s)
- Mayank V Jog
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California.,Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Katherine L Narr
- Ahmanson-Lovelace Brain Mapping Center, University of California Los Angeles, Los Angeles, California.,Department of Neurology, and Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
225
|
Nogovitsyn N, Souza R, Muller M, Srajer A, Hassel S, Arnott SR, Davis AD, Hall GB, Harris JK, Zamyadi M, Metzak PD, Ismail Z, Bray SL, Lebel C, Addington JM, Milev R, Harkness KL, Frey BN, Lam RW, Strother SC, Goldstein BI, Rotzinger S, Kennedy SH, MacQueen GM. Testing a deep convolutional neural network for automated hippocampus segmentation in a longitudinal sample of healthy participants. Neuroimage 2019; 197:589-597. [PMID: 31075395 DOI: 10.1016/j.neuroimage.2019.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/15/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Subtle changes in hippocampal volumes may occur during both physiological and pathophysiological processes in the human brain. Assessing hippocampal volumes manually is a time-consuming procedure, however, creating a need for automated segmentation methods that are both fast and reliable over time. Segmentation algorithms that employ deep convolutional neural networks (CNN) have emerged as a promising solution for large longitudinal neuroimaging studies. However, for these novel algorithms to be useful in clinical studies, the accuracy and reproducibility should be established on independent datasets. Here, we evaluate the performance of a CNN-based hippocampal segmentation algorithm that was developed by Thyreau and colleagues - Hippodeep. We compared its segmentation outputs to manual segmentation and FreeSurfer 6.0 in a sample of 200 healthy participants scanned repeatedly at seven sites across Canada, as part of the Canadian Biomarker Integration Network in Depression consortium. The algorithm demonstrated high levels of stability and reproducibility of volumetric measures across all time points compared to the other two techniques. Although more rigorous testing in clinical populations is necessary, this approach holds promise as a viable option for tracking volumetric changes in longitudinal neuroimaging studies.
Collapse
Affiliation(s)
- Nikita Nogovitsyn
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Roberto Souza
- Department of Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Meghan Muller
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Amelia Srajer
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | | | - Andrew D Davis
- Department of Psychology, Neuroscience & Behaviour, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | | | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Paul D Metzak
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Zahinoor Ismail
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Signe L Bray
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Child & Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Child & Adolescent Imaging Research (CAIR) Program, Calgary, AB, Canada
| | - Jean M Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roumen Milev
- Department of Psychiatry, Queen's University and Providence Care Hospital, Kingston, ON, Canada; Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada
| | - Raymond W Lam
- University of British Columbia and Vancouver Coastal Health Authority, Vancouver, BC, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest and Department of Medical Biophysics, University of Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Departments of Psychiatry and Pharmacology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Susan Rotzinger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
226
|
Yan L, Lonstein JS, Nunez AA. Light as a modulator of emotion and cognition: Lessons learned from studying a diurnal rodent. Horm Behav 2019; 111:78-86. [PMID: 30244030 PMCID: PMC6456444 DOI: 10.1016/j.yhbeh.2018.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
Light profoundly affects the behavior and physiology of almost all animals, including humans. One such effect in humans is that the level of illumination during the day positively contributes to affective well-being and cognitive function. However, the neural mechanisms underlying the effects of daytime light intensity on affect and cognition are poorly understood. One barrier for progress in this area is that almost all laboratory animal models studied are nocturnal. There are substantial differences in how light affects nocturnal and diurnal species, e.g., light induces sleep in nocturnal mammals but wakefulness in diurnal ones, like humans. Therefore, the mechanisms through which light modulates affect and cognition must differ between the chronotypes. To further understand the neural pathways mediating how ambient light modulates affect and cognition, our recent work has developed a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), in which daytime light intensity is chronically manipulated in grass rats housed under the same 12:12 hour light/dark cycle. This simulates lighting conditions during summer-like bright sunny days vs. winter-like dim cloudy days. Our work has revealed that chronic dim daylight intensity results in higher depression- and anxiety-like behaviors, as well as impaired spatial learning and memory. Furthermore, we have found that hypothalamic orexin is a mediator of these effects. A better understanding of how changes in daytime light intensity impinge upon the neural substrates involved in affect and cognition will lead to novel preventive and therapeutic strategies for seasonal affective disorder, as well as for non-seasonal emotional or cognitive impairments associated with light deficiency.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Antonio A Nunez
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
227
|
Treccani G, Ardalan M, Chen F, Musazzi L, Popoli M, Wegener G, Nyengaard JR, Müller HK. S-Ketamine Reverses Hippocampal Dendritic Spine Deficits in Flinders Sensitive Line Rats Within 1 h of Administration. Mol Neurobiol 2019; 56:7368-7379. [PMID: 31037646 DOI: 10.1007/s12035-019-1613-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/15/2019] [Indexed: 11/26/2022]
Abstract
When administered as a single subanesthetic dose, the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine, produces rapid (within hours) and relatively sustained antidepressant actions even in treatment-resistant patients. Preclinical studies have shown that ketamine increases dendritic spine density and synaptic proteins in brain areas critical for the actions of antidepressants, yet the temporal relationship between structural changes and the onset of antidepressant action remains poorly understood. In this study, we examined the effects of a single dose of S-ketamine (15 mg/kg) on dendritic length, dendritic arborization, spine density, and spine morphology in the Flinders Sensitive and Flinders Resistant Line (FSL/FRL) rat model of depression. We found that already 1 h after injection with ketamine, apical dendritic spine deficits in CA1 pyramidal neurons of FSL rats were completely restored. Notably, the observed increase in spine density was attributable to regulation of both mushroom and long-thin spines. In contrast, ketamine had no effect on dendritic spine density in FRL rats. On the molecular level, ketamine normalized elevated levels of phospho-cofilin and the NMDA receptor subunits GluN2A and GluN2B and reversed homer3 deficiency in hippocampal synaptosomes of FSL rats. Taken together, our data suggest that rapid formation of new spines may provide an important structural substrate during the initial phase of ketamine's antidepressant action.
Collapse
Affiliation(s)
- Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center Mainz, Untere Zahlbacher Straße 8, Mainz, Germany
- Deutsches Resilienz Zentrum (DRZ) gGmbH, Mainz, Germany
| | - Maryam Ardalan
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark
| | - Fenghua Chen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark
| | - Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milan, Italy
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark
- AUGUST Centre, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 72, 8240, Risskov, Denmark.
| |
Collapse
|
228
|
Duman RS, Sanacora G, Krystal JH. Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron 2019; 102:75-90. [PMID: 30946828 PMCID: PMC6450409 DOI: 10.1016/j.neuron.2019.03.013] [Citation(s) in RCA: 538] [Impact Index Per Article: 107.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying the pathophysiology and treatment of depression and stress-related disorders remain unclear, but studies in depressed patients and rodent models are beginning to yield promising insights. These studies demonstrate that depression and chronic stress exposure cause atrophy of neurons in cortical and limbic brain regions implicated in depression, and brain imaging studies demonstrate altered connectivity and network function in the brains of depressed patients. Studies of the neurobiological basis of the these alterations have focused on both the principle, excitatory glutamate neurons, as well as inhibitory GABA interneurons. They demonstrate structural, functional, and neurochemical deficits in both major neuronal types that could lead to degradation of signal integrity in cortical and hippocampal regions. The molecular mechanisms underlying these changes have not been identified but are thought to be related to stress induced excitotoxic effects in combination with elevated adrenal glucocorticoids and inflammatory cytokines as well as other environmental factors. Transcriptomic studies are beginning to demonstrate important sex differences and, together with genomic studies, are starting to reveal mechanistic domains of overlap and uniqueness with regards to risk and pathophysiological mechanisms with schizophrenia and bipolar disorder. These studies also implicate GABA and glutamate dysfunction as well as immunologic mechanisms. While current antidepressants have significant time lag and efficacy limitations, new rapid-acting agents that target the glutamate and GABA systems address these issues and offer superior therapeutic interventions for this widespread and debilitating disorder.
Collapse
Affiliation(s)
- Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA.
| | - Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| |
Collapse
|
229
|
Malhi GS, Das P, Outhred T, Dobson-Stone C, Irwin L, Gessler D, Bryant R, Mannie Z. Effect of stress gene-by-environment interactions on hippocampal volumes and cortisol secretion in adolescent girls. Aust N Z J Psychiatry 2019; 53:316-325. [PMID: 30754992 DOI: 10.1177/0004867419827649] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Adolescence is a time of increased susceptibility to environmental stress and mood disorders, and girls are particularly at risk. Genes interacting with the environment (G × E) are implicated in hypothalamic-pituitary-adrenal axis dysregulation, hippocampal volume changes and risk or resilience to mood disorders. In this study, we assessed the effects of stress system G × E interactions on hippocampal volumes and cortisol secretion in adolescent girls. METHODS We recruited 229 girls aged 12-18 years, and scans were obtained from 202 girls. Of these, 76 had been exposed to higher emotional trauma (abuse or neglect). Hippocampal volumes were measured using Freesurfer and high-resolution structural magnetic resonance imaging scans. Saliva samples were collected for measurement of cortisol levels and genotyping of stress system genes: FKBP5, NR3C1 (both N = 194) and NR3C2 ( N = 193). RESULTS Among girls with the 'G' allelic variant of the NR3C1 gene, those who had been exposed to higher emotional trauma had significantly smaller left hippocampal volumes ( N = 44; mean = 4069.58 mm3, standard deviation = 376.99) than girls who had been exposed to minimal emotional trauma with the same allelic variant ( N = 69; mean = 4222.34 mm3, standard deviation = 366.74). CONCLUSION In healthy adolescents, interactions between emotional trauma and the 'protective' NR3C1 'GG' variant seem to induce reductions in left hippocampal volumes. These G × E interactions suggest that vulnerability to mood disorders is perhaps driven by reduced 'protection' that may be specific to emotional trauma. This novel but preliminary evidence has implications for targeted prevention of mood disorders and prospective multimodal neuroimaging and longitudinal studies are now needed to investigate this possibility.
Collapse
Affiliation(s)
- Gin S Malhi
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Pritha Das
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Tim Outhred
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- 5 Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,6 Faculty of Science, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lauren Irwin
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Danielle Gessler
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.,5 Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,7 Department of Music and Performing Arts Professions, School of Psychology, The University of Sydney, Sydney, NSW, Australia
| | - Richard Bryant
- 8 Faculty of Science, School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Zola Mannie
- 1 Academic Department of Psychiatry, Northern Sydney Local Health District, Sydney, NSW, Australia.,2 Department of Psychiatry, ARCHI, Sydney Medical School Northern, The University of Sydney, Sydney, NSW, Australia.,3 Department of Psychiatry, Northern Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,4 Department of Academic Psychiatry, CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia.,9 NSW Health and Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| |
Collapse
|
230
|
Sheppard PAS, Choleris E, Galea LAM. Structural plasticity of the hippocampus in response to estrogens in female rodents. Mol Brain 2019; 12:22. [PMID: 30885239 PMCID: PMC6423800 DOI: 10.1186/s13041-019-0442-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
It is well established that estrogens affect neuroplasticity in a number of brain regions. In particular, estrogens modulate and mediate spine and synapse formation as well as neurogenesis in the hippocampal formation. In this review, we discuss current research exploring the effects of estrogens on dendritic spine plasticity and neurogenesis with a focus on the modulating factors of sex, age, and pregnancy. Hormone levels, including those of estrogens, fluctuate widely across the lifespan from early life to puberty, through adulthood and into old age, as well as with pregnancy and parturition. Dendritic spine formation and modulation are altered both by rapid (likely non-genomic) and classical (genomic) actions of estrogens and have been suggested to play a role in the effects of estrogens on learning and memory. Neurogenesis in the hippocampus is influenced by age, the estrous cycle, pregnancy, and parity in female rodents. Furthermore, sex differences exist in hippocampal cellular and molecular responses to estrogens and are briefly discussed throughout. Understanding how structural plasticity in the hippocampus is affected by estrogens and how these effects can influence function and be influenced by other factors, such as experience and sex, is critical and can inform future treatments in conditions involving the hippocampus.
Collapse
Affiliation(s)
- Paul A. S. Sheppard
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| | - Elena Choleris
- Department of Psychology & Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1 Canada
| | - Liisa A. M. Galea
- Department of Psychology, Graduate Program in Neuroscience, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3 Canada
| |
Collapse
|
231
|
Roddy DW, Farrell C, Doolin K, Roman E, Tozzi L, Frodl T, O'Keane V, O'Hanlon E. The Hippocampus in Depression: More Than the Sum of Its Parts? Advanced Hippocampal Substructure Segmentation in Depression. Biol Psychiatry 2019; 85:487-497. [PMID: 30528746 DOI: 10.1016/j.biopsych.2018.08.021] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hippocampal volume reduction is the most replicated finding in neuroimaging studies of major depressive disorder (MDD). Varying hippocampal volume definition is a well-established problem in this field. Given that hippocampal function can be mapped onto anatomically defined substructures and that detailed examination of substructure volumes is now possible, we examined different hippocampal composite measures in MDD to look for hippocampal markers of MDD. METHODS Magnetic resonance imaging brain scans were compared between 80 patients with a range of MDD duration and 83 healthy control subjects. High-resolution T1-weighted and T2-weighted-fluid-attenuated inversion recovery magnetic resonance images were examined using the automated hippocampal substructure module in FreeSurfer 6.0. Between-group volumetric assessments were performed at substructure and composite substructures levels. RESULTS Patients with MDD showed a bilateral pattern of volume reduction in principal hippocampal substructures: the cornu ammonis (CA1-CA4), dentate gyrus, and subiculum. Changes were more pronounced on the left of these structures and in recurrent depression. CA2 to CA4 were the only substructures reduced in first-presentation depression. Overall changes were most marked in the left CA1, and CA1 volume was a predictor of illness duration. CONCLUSIONS Hippocampal involvement in MDD is confined to principal substructures only. Differences between patients with MDD and healthy control subjects increased with progressively restricted hippocampal definitions, with the left CA1 emerging as a potential marker of MDD. Changes were more extensive in patients with recurrent, as opposed to first-presentation, MDD, suggesting a hippocampal disease process. These findings identify core hippocampal regions in the pathology of MDD, suggesting a potential marker of disease progression in MDD.
Collapse
Affiliation(s)
- Darren W Roddy
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Department of Physiology, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Chloe Farrell
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kelly Doolin
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Elena Roman
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Leonardo Tozzi
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Frodl
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erik O'Hanlon
- Department of Psychiatry, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland; Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
232
|
FCPR16, a novel phosphodiesterase 4 inhibitor, produces an antidepressant-like effect in mice exposed to chronic unpredictable mild stress. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:62-75. [PMID: 30391306 DOI: 10.1016/j.pnpbp.2018.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 12/29/2022]
Abstract
The canonical phosphodiesterase 4 (PDE4) inhibitors produce antidepressant-like effects in a variety of animal models. However, severe side effects, particularly vomiting and nausea, limit their clinical application. FCPR16 is a novel PDE4 inhibitor with less vomiting potential. However, whether it will exert an antidepressant-like effect remains unclear. Here, we aimed to evaluate the effect of FCPR16 in mice subjected to chronic unpredictable mild stress (CUMS). Our results showed that FCPR16 produced antidepressant-like effects in multiple behavioral tests, including a forced swimming test, tail suspension test, sucrose preference test and novelty suppression feeding test. Simultaneously, data indicated that FCPR16 enhanced the levels of several proteins, including cAMP, brain derived neurotrophic factor, exchange protein directly activated by cAMP 2 (EPAC-2), synapsin1, postsynaptic density protein 95, phosphorylated cAMP response element binding protein and extracellular regulated protein kinases 1/2, which were downregulated by CUMS in both the cerebral cortex and hippocampus. The number of DCX+ cells in the hippocampus of CUMS mice was increased after FCPR16 treatment. Moreover, treatment with FCPR16 resulted in decreased expression of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and increased expression of anti-inflammatory cytokines (IL-10) in mice challenged with CUMS. Consistently, the mRNA levels of microglial M1 markers (iNOS and TNF-α) were downregulated, while M2 markers (Arginase 1 and CD206) were upregulated in CUMS-exposed mice after FCPR16 treatment. Immunofluorescence analysis showed that FCPR16 inhibited the activation of microglial cells and increased the number of CD206+ in CUMS-exposed mice. Collectively, these results suggested that FCPR16 is a potential compound with effects against depressive-like behaviors, and the antidepressant-like effect of FCPR16 is possibly mediated through activation of the cAMP-mediated signaling pathways and inhibition of neuroinflammation in both the cerebral cortex and hippocampus.
Collapse
|
233
|
Peripheral blood GILZ mRNA levels in depression and following electroconvulsive therapy. Psychoneuroendocrinology 2019; 101:304-310. [PMID: 30602137 DOI: 10.1016/j.psyneuen.2018.12.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022]
Abstract
Dysregulation of the hypothalamic-pituitary-adrenocortical (HPA)-axis is commonly observed in patients with depression. The delayed feedback system that mediates inhibition of HPA-axis activation is regulated by glucocorticoid receptors (GRs) found in stress-responsive areas of the brain. Glucocorticoid-induced leucine zipper (GILZ) is a key molecule in glucocorticoid biology and is thought to mediate the downstream anti-inflammatory effects of GRs. Previous reports suggest that GILZ levels are altered in the blood and brains of patients with, and animal models of, depression. However, no study has yet investigated the effects of antidepressant treatment on GILZ. Therefore, our aim was to examine peripheral blood GILZ mRNA levels in patients with depression (n = 88) compared to age- and sex-matched healthy controls (n = 63), and in patients with depression following treatment with a course of electroconvulsive therapy (ECT). We also assessed the relationship between GILZ and mood and clinical outcomes following ECT. GILZ mRNA levels were assessed using qRT-PCR. GILZ levels were found to be significantly lower in patients with depression compared to controls (p < 0.002), and ECT further decreased GILZ levels (p = 0.05). Both of these results survived adjustment for potential covariates. However, we found no association between GILZ and mood scores. Overall, these results suggest that GILZ is involved in the pathophysiology of depression and the peripheral molecular response to ECT.
Collapse
|
234
|
Sánchez-Vidaña DI, Po KKT, Fung TKH, Chow JKW, Lau WKW, So PK, Lau BWM, Tsang HWH. Lavender essential oil ameliorates depression-like behavior and increases neurogenesis and dendritic complexity in rats. Neurosci Lett 2019; 701:180-192. [PMID: 30825591 DOI: 10.1016/j.neulet.2019.02.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 02/11/2019] [Accepted: 02/26/2019] [Indexed: 02/05/2023]
Abstract
Depression is a major health issue that causes severe societal economic and health burden. Aromatherapy, a practice that uses essential oils for preventive and therapeutic purposes, represents a promising therapeutic alternative for the alleviation of depressive symptoms. Lavender essential oil (LEO) has been the focus of clinical studies due to its positive effect on mood. An animal model of chronic administration of high dose corticosterone to induce depression- and anxiety-like behavior and reduced neurogenesis was used to explore the biological changes brought by aromatherapy. Twenty-four adult male Sprague Dawley rats were randomly assigned into four groups: Control, corticosterone (Cort) group with high dose of corticosterone, LEO group with daily exposure to LEO by inhalation, and LEO + Cort. At the end of the 14-day treatment period, behavioral tests were carried out. Serum samples were collected 2-3 days after the 14-day period treatment and before perfusion to carry out biochemical analyses to measure BDNF, corticosterone and oxytocin. After perfusion, brains were collected for immunohistochemical analysis to detect BrdU and DCX positive cells in the hippocampus and subventricular zone. Results showed that treatment with LEO ameliorated the depression-like behavior induced by the chronic administration of corticosterone as observed in the LEO + Cort group. Cort treatment reduced the number of BrdU positive cells in the hippocampus and the subventricular zone. Treatment with LEO prevented the corticosterone-induced reduction in the number of BrdU positive cells (LEO + Cort group) demonstrating the neurogenic effect of LEO under high corticosterone conditions. Chronic administration of high dose of corticosterone significantly reduced the dendritic complexity of immature neurons. On the contrary, treatment with LEO increased dendritic complexity of immature neurons under high corticosterone conditions (LEO + Cort group). The improved neurogenesis and dendritic complexity observed in the LEO + Cort group demonstrated a clear restorative effect of LEO under high corticosterone conditions. However, 2-3 days after the treatment, the levels of BDNF were upregulated in the LEO and LEO + Cort groups. Furthermore, the concentration of oxytocin in serum, 2-3 days after the treatment, showed to be upregulated in the LEO group alone. The present study has provided evidence of the biological effect of LEO on neuroplasticity and neurogenesis. Also, this study contributes to the understanding of the mechanism of action of LEO in an animal model where depression- and anxiety-like behavior and reduced neurogenesis were induced by high corticosterone administration.
Collapse
Affiliation(s)
| | - Kevin Kai-Ting Po
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Timothy Kai-Hang Fung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jason Ka-Wing Chow
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Way Kwok-Wai Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Hector Wing-Hong Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
235
|
Fateh AA, Long Z, Duan X, Cui Q, Pang Y, Farooq MU, Nan X, Chen Y, Sheng W, Tang Q, Chen H. Hippocampal functional connectivity-based discrimination between bipolar and major depressive disorders. Psychiatry Res Neuroimaging 2019; 284:53-60. [PMID: 30684896 DOI: 10.1016/j.pscychresns.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Abstract
Despite the impressive advancements in the neuropathology of mood disorders, patients with bipolar disorder (BD) are often misdiagnosed on the initial presentation with major depressive disorder (MDD). With supporting evidence from neuroimaging studies, the abnormal functional connectivity (FC) of the hippocampus has been associated with various mood disorders, including BD and MDD. However, the features of the hippocampal FC underlying MDD and BD have not been directly compared. This study aims to investigate the hippocampal resting-state FC (rsFC) analyses to distinguish these two clinical conditions. Resting-state functional magnetic resonance imaging (fMRI) data was collected from a sample group of 30 patients with BD, 29 patients with MDD and 30 healthy controls (HCs). One-way ANOVA was employed to assess the potential differences of the hippocampus FC across all subjects. BD patients exhibited increased FC of the bilateral anterior/posterior hippocampus with lingual gyrus and inferior frontal gyrus (IFG) relative to patients MDD patients. In comparison with HCs, patients with BD and MDD had an increased FC between the right anterior hippocampus and lingual gyrus and a decreased FC between the right posterior hippocampus and right IFG. The results revealed a distinct hippocampal FC in MDD patients compared with that observed in BD patients. These findings may assist investigators in attempting to distinguish mood disorders by using fMRI data.
Collapse
Affiliation(s)
- Ahmed Ameen Fateh
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiliang Long
- Sleep and Neuroimaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Muhammad Umar Farooq
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, China
| | - Xiaoyu Nan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China; School of Political Science and Public Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuro-Information, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
236
|
Schafer M, Schiller D. The Hippocampus and Social Impairment in Psychiatric Disorders. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 83:105-118. [PMID: 30787048 DOI: 10.1101/sqb.2018.83.037614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Social deficits, such as poor social skills (i.e., the inability to engage in appropriate and effective social interactions) and social withdrawal, are prevalent across psychiatric disorders and often co-occur with hippocampal structural and functional abnormalities. The centrality of both social and hippocampal dysfunction in psychiatric research prompts the question: Are they linked? The social cognitive map framework provides a clue: The hippocampus tracks social information in the physical environment, maps others along social dimensions, and supports social memory and decision-making. Hippocampal dysfunction might disrupt social map representation and contribute to commonly seen social behavioral symptoms. This review summarizes evidence for the role of the hippocampus in social cognitive mapping, followed by evidence that hippocampal dysfunction and social dysfunction co-occur in psychiatric disorders. We argue that the co-occurrence of hippocampal and social impairment may be related via hippocampal social cognitive mapping.
Collapse
Affiliation(s)
- Matthew Schafer
- Department of Psychiatry, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daniela Schiller
- Department of Psychiatry, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
237
|
Alaiyed S, Bozzelli PL, Caccavano A, Wu JY, Conant K. Venlafaxine stimulates PNN proteolysis and MMP-9-dependent enhancement of gamma power; relevance to antidepressant efficacy. J Neurochem 2019; 148:810-821. [PMID: 30697747 DOI: 10.1111/jnc.14671] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/30/2018] [Accepted: 01/23/2019] [Indexed: 01/15/2023]
Abstract
Drugs that target monoaminergic transmission represent a first-line treatment for major depression. Though a full understanding of the mechanisms that underlie antidepressant efficacy is lacking, evidence supports a role for enhanced excitatory transmission. This can occur through two non-mutually exclusive mechanisms. The first involves increased function of excitatory neurons through relatively direct mechanisms such as enhanced dendritic arborization. Another mechanism involves reduced inhibitory function, which occurs with the rapid antidepressant ketamine. Consistent with this, GABAergic interneuron-mediated cortical inhibition is linked to reduced gamma oscillatory power, a rhythm also diminished in depression. Remission of depressive symptoms correlates with restoration of gamma power. As a result of strong excitatory input, reliable GABA release, and fast firing, PV-expressing neurons (PV neurons) represent critical pacemakers for synchronous oscillations. PV neurons also represent the predominant GABAergic population enveloped by perineuronal nets (PNNs), lattice-like structures that localize glutamatergic input. Disruption of PNNs reduces PV excitability and enhances gamma activity. Studies suggest that monoamine reuptake inhibitors reduce integrity of the PNN. Mechanisms by which these inhibitors reduce PNN integrity, however, remain largely unexplored. A better understanding of these issues might encourage development of therapeutics that best up-regulate PNN-modulating proteases. We observe that the serotonin/norepinephrine reuptake inhibitor venlafaxine increases hippocampal matrix metalloproteinase (MMP)-9 levels as determined by ELISA and concomitantly reduces PNN integrity in murine hippocampus as determined by analysis of sections following their staining with a fluorescent PNN-binding lectin. Moreover, venlafaxine-treated mice (30 mg/kg/day) show an increase in carbachol-induced gamma power in ex vivo hippocampal slices as determined by local field potential recording and Matlab analyses. Studies with mice deficient in matrix metalloproteinase 9 (MMP-9), a protease linked to PNN disruption in other settings, suggest that MMP-9 contributes to venlafaxine-enhanced gamma power. In conclusion, our results support the possibility that MMP-9 activity contributes to antidepressant efficacy through effects on the PNN that may in turn enhance neuronal population dynamics involved in mood and/or memory. Cover Image for this issue: doi: 10.1111/jnc.14498.
Collapse
Affiliation(s)
- Seham Alaiyed
- Departments of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - P Lorenzo Bozzelli
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adam Caccavano
- Departments of Pharmacology, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Jian Young Wu
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Katherine Conant
- Departments of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA.,Departments of Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| |
Collapse
|
238
|
Hao H, Chen C, Mao W, Zhong J, Dai Z. Aberrant brain regional homogeneity in first-episode drug-naïve patients with major depressive disorder: A voxel-wise meta-analysis. J Affect Disord 2019; 245:63-71. [PMID: 30368072 DOI: 10.1016/j.jad.2018.10.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/05/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Resting-state functional magnetic resonance imaging studies have reported aberrant brain regional homogeneity (ReHo) in patients with major depressive disorder (MDD). However, the findings across studies were confounded by medication status and different depressive episodes. METHODS A systematic literature search of the PubMed, Embase, and Web of Science databases was conducted. We conducted a quantitative voxel-wise meta-analysis of ReHo studies, using the Seed-based d Mapping approach, in first-episode drug-naïve patients with MDD. RESULTS We identified 10 studies with 12 datasets suitable for inclusion, consisting of 402 first-episode drug-naïve patients with MDD and 330 healthy controls. The most consistent and robust findings were that patients with MDD relative to healthy controls exhibited increased ReHo in the left hippocampus and decreased ReHo in the left orbitofrontal cortex. LIMITATIONS The patient samples included in our meta-analysis were all Chinese, thus limiting the applicability of the present findings to other populations. CONCLUSIONS ReHo alterations in these brain regions are likely to reflect the core disease-related functional abnormalities, which are implicated in emotional dysregulation and cognitive impairment that are seen in the early stage of MDD. These findings contribute to a better understanding of the neurobiological underpinnings of MDD, and the left hippocampus and orbitofrontal cortex could serve as specific regions of interest for further investigations.
Collapse
Affiliation(s)
- HuiHui Hao
- Department of Inspection and Pharmacy, Jiangsu College of Nursing, Huai'an, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Chuang Chen
- Department of Hepatopancreatobiliary Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Second People's Hospital of Huai'an City, Huai'an, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - WeiBing Mao
- Department of Psychiatry, WuXi Xishan People's Hospital, Affiliated to ZhongDa Hospital, School of Medicine, Southeast University, Wuxi, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - JianGuo Zhong
- Department of Psychiatry, WuXi Xishan People's Hospital, Affiliated to ZhongDa Hospital, School of Medicine, Southeast University, Wuxi, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China.
| | - ZhenYu Dai
- Department of Neurology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China; Department of Radiology, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China.
| |
Collapse
|
239
|
Baudry A, Pietri M, Launay JM, Kellermann O, Schneider B. Multifaceted Regulations of the Serotonin Transporter: Impact on Antidepressant Response. Front Neurosci 2019; 13:91. [PMID: 30809118 PMCID: PMC6379337 DOI: 10.3389/fnins.2019.00091] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Serotonin transporter, SERT (SLC64A for solute carrier family 6, member A4), is a twelve transmembrane domain (TMDs) protein that assumes the uptake of serotonin (5-HT) through dissipation of the Na+ gradient established by the electrogenic pump Na/K ATPase. Abnormalities in 5-HT level and signaling have been associated with various disorders of the central nervous system (CNS) such as depression, obsessive-compulsive disorder, anxiety disorders, and autism spectrum disorder. Since the 50s, SERT has raised a lot of interest as being the target of a class of antidepressants, the Serotonin Selective Reuptake Inhibitors (SSRIs), used in clinics to combat depressive states. Because of the refractoriness of two-third of patients to SSRI treatment, a better understanding of the mechanisms regulating SERT functions is of priority. Here, we review how genetic and epigenetic regulations, post-translational modifications of SERT, and specific interactions between SERT and a set of diverse partners influence SERT expression, trafficking to and away from the plasma membrane and activity, in connection with the neuronal adaptive cell response to SSRI antidepressants.
Collapse
Affiliation(s)
- Anne Baudry
- INSERM UMR-S 1124, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Mathea Pietri
- INSERM UMR-S 1124, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Jean-Marie Launay
- Hôpital Lariboisière, AP-HP, INSERM UMR-S 942, Paris, France.,Pharma Research Department, Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Odile Kellermann
- INSERM UMR-S 1124, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| | - Benoit Schneider
- INSERM UMR-S 1124, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124, Paris, France
| |
Collapse
|
240
|
Won JH, Kim M, Park BY, Youn J, Park H. Effectiveness of imaging genetics analysis to explain degree of depression in Parkinson's disease. PLoS One 2019; 14:e0211699. [PMID: 30742647 PMCID: PMC6370199 DOI: 10.1371/journal.pone.0211699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022] Open
Abstract
Depression is one of the most common and important neuropsychiatric symptoms in Parkinson's disease and often becomes worse as Parkinson's disease progresses. However, the underlying mechanisms of depression in Parkinson's disease are not clear. The aim of our study was to find genetic features related to depression in Parkinson's disease using an imaging genetics approach and to construct an analytical model for predicting the degree of depression in Parkinson's disease. The neuroimaging and genotyping data were obtained from an openly accessible database. We computed imaging features through connectivity analysis derived from tractography of diffusion tensor imaging. The imaging features were used as intermediate phenotypes to identify genetic variants according to the imaging genetics approach. We then constructed a linear regression model using the genetic features from imaging genetics approach to describe clinical scores indicating the degree of depression. As a comparison, we constructed other models using imaging features and genetic features based on references to demonstrate the effectiveness of our imaging genetics model. The models were trained and tested in a five-fold cross-validation. The imaging genetics approach identified several brain regions and genes known to be involved in depression, with the potential to be used as meaningful biomarkers. Our proposed model using imaging genetic features predicted and explained the degree of depression in Parkinson's disease appropriately (adjusted R2 larger than 0.6 over five training folds) and with a lower error and higher correlation than with other models over five test folds.
Collapse
Affiliation(s)
- Ji Hye Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Mansu Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Bo-yong Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
| | - Jinyoung Youn
- Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
241
|
Barch DM, Harms MP, Tillman R, Hawkey E, Luby JL. Early childhood depression, emotion regulation, episodic memory, and hippocampal development. JOURNAL OF ABNORMAL PSYCHOLOGY 2019; 128:81-95. [PMID: 30628810 DOI: 10.1037/abn0000392] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Depression in adults is associated with deficits in a number of cognitive domains, however it remains less clear how early in development theses deficits can be detected in early onset depression. There are several different hypotheses about the links between cognitive function and depression. For example, it has been argued that executive function deficits contribute to emotion regulation difficulties, which in turn increase risk for depression. Further, it has been suggested that some cognitive deficits, such as episodic memory, may reflect hippocampal abnormalities linked to both depression and episodic memory. We examined these questions in adolescents participating in a longitudinal study of preschool onset depression. We measured cognitive function at adolescence using the National Institutes of Health toolbox (vocabulary, processing speed, executive function, working memory and episodic memory), and examined relationships of cognitive deficits to depression, emotion regulation, life stress and adversity, as well as hippocampal volume trajectories over three imaging assessments starting at school age. Depression related deficits in episodic memory were found. Youths with either current and past depression showed episodic memory deficits even after controlling for other psychopathology and family income. Depression severity, emotion dysregulation, and life stress/adversity all predicted episodic memory impairment, as did smaller intercepts and slopes of hippocampal growth over time. Modest relationships of depression to hippocampal volume and strong relationships between emotion regulation and both episodic memory and hippocampal volume were found. These data are consistent with prior work in adults linking depression, episodic memory, emotion regulation, life stress/adversity, and hippocampal volume in adults and suggest similar relations are evident as early as adolescence when memory systems are under development. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University
| | | | | | | | - Joan L Luby
- Departments of Psychiatry, Washington University
| |
Collapse
|
242
|
Tian P, Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. J Nutr Biochem 2019; 66:43-51. [PMID: 30743155 DOI: 10.1016/j.jnutbio.2019.01.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
Depression disorder is rapidly advancing worldwide, and therapeutic strategy through gut-brain axis has been proven to be effective in the treatment. Here we studied the effect of lactic acid bacteria (LAB) treatment on depression. C57BL/6J mice were administered with LAB during a 5-week chronic unpredictable mild stress. Bifidobacterium longum subsp. infantis E41 and Bifidobacterium breve M2CF22M7, which improved the expression of Tph1 and secretion of 5-hydroxytryptophan (5-HTP) in RIN14B cells, significantly reduced depressive behaviors of mice in the forced swim test, sucrose preference test and step-down test, as well as increased the level of 5-hydroxytryptamine and brain-derived neurotrophic factor concentration in brain. Besides, M2CF22M7 reduced the serum corticosterone level. E41 increased cecal butyrate level, which significantly and positively correlated with some depression-related indexes. Using 16S rRNA-amplicon sequencing of faces, E41 and M2CF22M7 were found to improve the chronic-stress-induced microbial dysbiosis. They also normalized the host's pathways involving metabolism and gene information processing. These results indicate that Bifidobacterium E41 and M2CF22M7 have an antidepressant effect in mice partly in a 5-HTP dependent and microbiota-regulating manner. Nurturing the gut microbiota with these strains may become an emerging therapeutic way for mood disorder.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, Jiangsu, China; National Engineering Center of Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Center of Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.
| |
Collapse
|
243
|
Xu Z, Zhang J, Wang D, Wang T, Zhang S, Ren X, Zhu X, Kamiya A, Fang J, Qu M. Altered Brain Function in Drug-Naïve Major Depressive Disorder Patients With Early-Life Maltreatment: A Resting-State fMRI Study. Front Psychiatry 2019; 10:255. [PMID: 31068844 PMCID: PMC6491847 DOI: 10.3389/fpsyt.2019.00255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/03/2019] [Indexed: 01/14/2023] Open
Abstract
Childhood Maltreatment (CM) is an important risk factor for major depressive disorder (MDD). Previous studies using emotional task-state functional magnetic resonance (task-state fMRI) found that altered brain function in prefrontal-limbic regions was the key neuropathological mechanism in adult MDD patients with experience of early-life maltreatment. However, to the best of our knowledge, there is no published study investigating brain function in MDD patients with CM experience using resting-state fMRI (rs-fMRI). In present study, we aimed to detect altered resting-state brain activity in MDD patients with CM experience, and identify significantly activated brain regions, which may provide new insights into the neural mechanism underlying the relationship between MDD and CM experience. The results showed MDD patients with CM experience were associated with increased amplitude of low-frequency fluctuation (ALFF) and altered function connection (FC) in the prefrontal cortex, when compared to MDD patients without CM. Of note, left frontal middle gyrus (LFEG) was found as a specific brain region which differentiates MDD patients with CM from patients without CM. These results suggest that rs-fMRI is a useful method in studying the correlation between MDD and CM experience and altered function of LFEG in resting-state may explain the correlation between MDD and CM experience.
Collapse
Affiliation(s)
- Zhexue Xu
- Department of Neurology, Xuan Wu Hospital Capital Medical University, Beijing, China.,Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuan Wu Hospital Capital Medical University, Beijing, China
| | - Di Wang
- Department of Clinical Psychology, Beijing Anding Hospital, Beijing, China
| | - Ting Wang
- Nanjing Municipal Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Shu Zhang
- Department of Neurology, Fengtai Integrated Chinese and Western Medicine Hospital of Beijing, Beijing, China
| | - Xi Ren
- Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jiliang Fang
- Department of Radiology, Guang' anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Miao Qu
- Department of Neurology, Xuan Wu Hospital Capital Medical University, Beijing, China.,Department of Neurology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
244
|
Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behav Brain Res 2019; 356:348-357. [DOI: 10.1016/j.bbr.2018.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/12/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
|
245
|
Peng D, Yao Z. Neuroimaging Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:59-83. [DOI: 10.1007/978-981-32-9271-0_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
246
|
James SN, Davis D, O'Hare C, Sharma N, John A, Gaysina D, Hardy R, Kuh D, Richards M. Lifetime affective problems and later-life cognitive state: Over 50 years of follow-up in a British birth cohort study. J Affect Disord 2018; 241:348-355. [PMID: 30144717 PMCID: PMC6137547 DOI: 10.1016/j.jad.2018.07.078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/27/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Affective problems increase the risk of dementia and cognitive impairment, yet the life course dimension of this association is not clearly understood. We aimed to investigate how affective problems across the life course relate to later-life cognitive state. METHODS Data from 1269 participants from the Medical Research Council National Survey of Health and Development (NSHD, the British 1946 birth cohort) were used. Prospectively-assessed measures of affective symptoms spanning ages 13-69 and categorised into case-level thresholds. Outcomes consisted of a comprehensive measure of cognitive state (Addenbrooke's Cognitive Examination (ACE-III)), verbal memory, and letter search speed and accuracy at age 69. RESULTS Complementary life course models demonstrated that having 2 or more case-level problems across the life course was most strongly associated with poorer cognitive outcomes, before and after adjusting for sex, childhood cognition, childhood and midlife occupational position and education. LIMITATIONS A disproportionate loss to follow-up of those who had lower childhood cognitive scores may have led to underestimation of the strength of associations. DISCUSSION Using a population-based prospective study we provide evidence that recurrent lifetime affective problems predicts poorer later-life cognitive state, and this risk can be already manifest in early old age (age 69). Our findings raise the possibility that effective management to minimise affective problems reoccurring across the life course may reduce the associated risk of cognitive impairment and decline.
Collapse
Affiliation(s)
- Sarah-Naomi James
- MRC Unit for Lifelong Health and Aging at UCL, 33 Bedford Place, WC1B 5JU, London, United Kingdom
| | - Daniel Davis
- MRC Unit for Lifelong Health and Aging at UCL, 33 Bedford Place, WC1B 5JU, London, United Kingdom
| | - Celia O'Hare
- MRC Unit for Lifelong Health and Aging at UCL, 33 Bedford Place, WC1B 5JU, London, United Kingdom
| | - Nikhil Sharma
- MRC Unit for Lifelong Health and Aging at UCL, 33 Bedford Place, WC1B 5JU, London, United Kingdom
| | - Amber John
- EDGE Lab, School of Psychology, University of Sussex, BN1 9RH, Brighton, United Kingdom
| | - Darya Gaysina
- EDGE Lab, School of Psychology, University of Sussex, BN1 9RH, Brighton, United Kingdom
| | - Rebecca Hardy
- MRC Unit for Lifelong Health and Aging at UCL, 33 Bedford Place, WC1B 5JU, London, United Kingdom
| | - Diana Kuh
- MRC Unit for Lifelong Health and Aging at UCL, 33 Bedford Place, WC1B 5JU, London, United Kingdom
| | - Marcus Richards
- MRC Unit for Lifelong Health and Aging at UCL, 33 Bedford Place, WC1B 5JU, London, United Kingdom.
| |
Collapse
|
247
|
Liu PZ, Nusslock R. How Stress Gets Under the Skin: Early Life Adversity and Glucocorticoid Receptor Epigenetic Regulation. Curr Genomics 2018; 19:653-664. [PMID: 30532645 PMCID: PMC6225447 DOI: 10.2174/1389202919666171228164350] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/31/2017] [Accepted: 12/17/2017] [Indexed: 11/22/2022] Open
Abstract
Early life adversity is associated with both persistent disruptions in the hypothalamic-pituitary-adrenal (HPA) axis and psychiatric symptoms. Glucocorticoid receptors (GRs), which are encoded by the NR3C1 gene, bind to cortisol and other glucocorticoids to create a negative feedback loop within the HPA axis to regulate the body's neuroendocrine response to stress. Excess methylation of a promoter sequence within NR3C1 that attenuates GR expression, however, has been associated with both early life adversity and psychopathology. As critical regulators within the HPA axis, GRs and their epigenetic regulation may mediate the link between early life adversity and the onset of psychopathology. The present review discusses this work as one mechanism by which stress may get under the skin to disrupt HPA functioning at an epigenetic level and create long-lasting vulnerabilities in the stress regulatory system that subsequently predispose individuals to psychopathology. Spanning prenatal influences to critical periods of early life and adolescence, we detail the impact that early adversity has on GR expression, physiological responses to stress, and their implications for long-term stress management. We next propose a dual transmission hypothesis regarding both genomic and non-genomic mechanisms by which chronic and acute stress propagate through numerous generations. Lastly, we outline several directions for future research, including potential reversibility of methylation patterns and its functional implications, variation in behavior determined solely by NR3C1, and consensus on which specific promoter regions should be studied.
Collapse
Affiliation(s)
- Patrick Z. Liu
- Department of Psychology, Northwestern University, Evanston, IL60208, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL60208, USA
| |
Collapse
|
248
|
Teng C, Zhou J, Ma H, Tan Y, Wu X, Guan C, Qiao H, Li J, Zhong Y, Wang C, Zhang N. Abnormal resting state activity of left middle occipital gyrus and its functional connectivity in female patients with major depressive disorder. BMC Psychiatry 2018; 18:370. [PMID: 30477561 PMCID: PMC6258168 DOI: 10.1186/s12888-018-1955-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/16/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Women are more susceptible to major depressive disorder (MDD). A possible explanation is that women have a trait tendency to engage in a ruminative response style. Depending on cognitive model of depression, attention bias, memory bias and self-referential bias were closely related among depressed patients. Previous studies have explored the neural mechanism of the cognitive biases by using amplitude of low frequency fluctuations (ALFF) or functional connectivity (FC), and few combined these two metrics, especially focusing on female patients. METHODS We assessed 25 female patients diagnosed with MDD and 13 well matched healthy controls (HCs) using Rs-fMRI. Two metrics ALFF and FC based on abnormal ALFF were explored and made comparisons. RESULTS Compared with HCs, female patients with MDD showed that one cluster with significantly decreased ALFF in the left middle occipital gyrus(L-MOG). Furtherly we founded depressed female subjects showed significantly lower FC between the L-MOG seed and left orbitofrontal cortex, and significantly higher FC between the L-MOG seed and left medial prefrontal gyrus and left hippocampus. CONCLUSIONS Our results showed L-MOG may act as a connection, which involved in the processing of cognitive biases of MDD by connected with limbic-cortical regions in resting state. These findings may enhance the understanding of the neurobiological mechanism in female patients with MDD.
Collapse
Affiliation(s)
- Changjun Teng
- 0000 0004 1798 8369grid.452645.4Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Jing Zhou
- Nanjing PuKou Central Hospital, Nanjing, 211800 People’s Republic of China
| | - Hui Ma
- 0000 0004 1798 8369grid.452645.4Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Yarong Tan
- 0000 0004 1798 8369grid.452645.4Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Xin Wu
- 0000 0004 1798 8369grid.452645.4Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Chengbin Guan
- 0000 0004 1798 8369grid.452645.4Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Huifen Qiao
- 0000 0004 1798 8369grid.452645.4Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Jijun Li
- 0000 0004 1798 8369grid.452645.4Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| | - Yuan Zhong
- 0000 0001 0089 5711grid.260474.3School of Psychology, Nanjing Normal University, Nanjing, 210024 People’s Republic of China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Ning Zhang
- 0000 0004 1798 8369grid.452645.4Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029 People’s Republic of China
| |
Collapse
|
249
|
Weckmann K, Deery MJ, Howard JA, Feret R, Asara JM, Dethloff F, Filiou MD, Labermaier C, Maccarrone G, Lilley KS, Mueller M, Turck CW. Ketamine's Effects on the Glutamatergic and GABAergic Systems: A Proteomics and Metabolomics Study in Mice. MOLECULAR NEUROPSYCHIATRY 2018; 5:42-51. [PMID: 31019917 DOI: 10.1159/000493425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022]
Abstract
Ketamine, a noncompetitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect and is used for patients experiencing treatment-resistant depression. We carried out a time-dependent targeted mass spectrometry-based metabolomics profiling analysis combined with a quantitative based on in vivo 15N metabolic labeling proteome comparison of ketamine- and vehicle-treated mice. The metabolomics and proteomics datasets were used to further elucidate ketamine's mode of action on the gamma-aminobutyric acid (GABA)ergic and glutamatergic systems. In addition, myelin basic protein levels were analyzed by Western Blot. We found altered GABA, glutamate and glutamine metabolite levels and ratios as well as increased levels of putrescine and serine - 2 positive modulators of the NMDAR. In addition, GABA receptor (GABAR) protein levels were reduced, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit Gria2 protein levels were increased upon ketamine treatment. The significantly altered metabolite and protein levels further significantly correlated with the antidepressant-like behavior, which was assessed using the forced swim test. In conclusion and in line with previous research, our data indicate that ketamine impacts the AMPAR subunit Gria2 and results in decreased GABAergic inhibitory neurotransmission leading to increased excitatory neuronal activity.
Collapse
Affiliation(s)
- Katja Weckmann
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany.,Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael J Deery
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Julie A Howard
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Renata Feret
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Frederik Dethloff
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Michaela D Filiou
- Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Christiana Labermaier
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Giuseppina Maccarrone
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Marianne Mueller
- Experimental Psychiatry, Department of Psychiatry and Psychotherapy and Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Christoph W Turck
- Max Planck Institute of Psychiatry, Department of Translational Research in Psychiatry, Munich, Germany
| |
Collapse
|
250
|
Schafer M, Schiller D. Navigating Social Space. Neuron 2018; 100:476-489. [PMID: 30359610 PMCID: PMC6226014 DOI: 10.1016/j.neuron.2018.10.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 01/17/2023]
Abstract
Cognitive maps are encoded in the hippocampal formation and related regions and range from the spatial to the purely conceptual. Neural mechanisms that encode information into relational structures, up to an arbitrary level of abstraction, may explain such a broad range of representation. Research now indicates that social life can also be mapped by these mechanisms: others' spatial locations, social memory, and even a two-dimensional social space framed by social power and affiliation. The systematic mapping of social life onto a relational social space facilitates adaptive social decision making, akin to social navigation. This emerging line of research has implications for cognitive mapping research, clinical disorders that feature hippocampal dysfunction, and the field of social cognitive neuroscience.
Collapse
Affiliation(s)
- Matthew Schafer
- Department of Psychiatry, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Schiller
- Department of Psychiatry, Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|