201
|
Mukherjee M, Blair RH, Wang ZQ. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Metab Eng 2022; 74:139-149. [DOI: 10.1016/j.ymben.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
202
|
Zhang H, Liao G, Luo X, Tang X. Harnessing nature's biosynthetic capacity to facilitate total synthesis. Natl Sci Rev 2022; 9:nwac178. [PMID: 36425752 PMCID: PMC9681125 DOI: 10.1093/nsr/nwac178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/07/2022] [Accepted: 08/23/2022] [Indexed: 07/25/2024] Open
Affiliation(s)
- Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, China
| | - Ge Liao
- Institute of Chemical Biology, Shenzhen Bay Laboratory, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, China
| |
Collapse
|
203
|
Brás T, Neves LA, Crespo JG, Duarte MF. Advances in sesquiterpene lactones extraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
204
|
Ding YW, Lu CZ, Zheng Y, Ma HZ, Jin J, Jia B, Yuan YJ. Directed evolution of the fusion enzyme for improving astaxanthin biosynthesis in Saccharomyces cerevisiae. Synth Syst Biotechnol 2022; 8:46-53. [DOI: 10.1016/j.synbio.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
|
205
|
Qi F, Zhang W, Xue Y, Geng C, Jin Z, Li J, Guo Q, Huang X, Lu X. Microbial production of the plant-derived fungicide physcion. Metab Eng 2022; 74:130-138. [DOI: 10.1016/j.ymben.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/15/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
206
|
Glykofrydis F, Elfick A. Exploring standards for multicellular mammalian synthetic biology. Trends Biotechnol 2022; 40:1299-1312. [PMID: 35803769 DOI: 10.1016/j.tibtech.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/21/2023]
Abstract
Synthetic biology is moving towards bioengineering multicellular mammalian systems that are poised to advance tissue engineering, biomedicine, and the food industry. Despite progress, the field lacks a framework of standards that could greatly accelerate further development. Here, we explore the landscape of standards for multicellular mammalian synthetic biology. We discuss the limits of current technical standards and categorise unaddressed parameters into an abstraction hierarchy. We then define the concept of a 'synthetic multicellular mammalian system' and apply our standard hierarchy framework to illustrate how it could aid bioengineering endeavours. We conclude with promising areas that could shape the future of the field, flagging the need for a critical and holistic consideration of standards that requires cross-disciplinary dialogue.
Collapse
Affiliation(s)
- Fokion Glykofrydis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK; UK Centre for Mammalian Synthetic Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BD, UK.
| |
Collapse
|
207
|
Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
208
|
Zhao L, Zhu Y, Jia H, Han Y, Zheng X, Wang M, Feng W. From Plant to Yeast-Advances in Biosynthesis of Artemisinin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206888. [PMID: 36296479 PMCID: PMC9609949 DOI: 10.3390/molecules27206888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022]
Abstract
Malaria is a life-threatening disease. Artemisinin-based combination therapy (ACT) is the preferred choice for malaria treatment recommended by the World Health Organization. At present, the main source of artemisinin is extracted from Artemisia annua; however, the artemisinin content in A. annua is only 0.1-1%, which cannot meet global demand. Meanwhile, the chemical synthesis of artemisinin has disadvantages such as complicated steps, high cost and low yield. Therefore, the application of the synthetic biology approach to produce artemisinin in vivo has magnificent prospects. In this review, the biosynthesis pathway of artemisinin was summarized. Then we discussed the advances in the heterologous biosynthesis of artemisinin using microorganisms (Escherichia coli and Saccharomyces cerevisiae) as chassis cells. With yeast as the cell factory, the production of artemisinin was transferred from plant to yeast. Through the optimization of the fermentation process, the yield of artemisinic acid reached 25 g/L, thereby producing the semi-synthesis of artemisinin. Moreover, we reviewed the genetic engineering in A. annua to improve the artemisinin content, which included overexpressing artemisinin biosynthesis pathway genes, blocking key genes in competitive pathways, and regulating the expression of transcription factors related to artemisinin biosynthesis. Finally, the research progress of artemisinin production in other plants (Nicotiana, Physcomitrella, etc.) was discussed. The current advances in artemisinin biosynthesis may help lay the foundation for the remarkable up-regulation of artemisinin production in A. annua through gene editing or molecular design breeding in the future.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Haoyu Jia
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Min Wang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
- Beijing Key Laboratory of Plant Research and Development, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Correspondence: (M.W.); (W.F.); Tel.: +86-134-2629-2115 (M.W.); +86-371-60190296 (W.F.)
| |
Collapse
|
209
|
ZHANG H, TANG X. Combining microbial and chemical syntheses for the production of complex natural products. Chin J Nat Med 2022; 20:729-736. [DOI: 10.1016/s1875-5364(22)60191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/28/2022]
|
210
|
Zhan C, Shen S, Yang C, Liu Z, Fernie AR, Graham IA, Luo J. Plant metabolic gene clusters in the multi-omics era. TRENDS IN PLANT SCIENCE 2022; 27:981-1001. [PMID: 35365433 DOI: 10.1016/j.tplants.2022.03.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Secondary metabolism in plants gives rise to a vast array of small-molecule natural products. The discovery of operon-like gene clusters in plants has provided a new perspective on the evolution of specialized metabolism and the opportunity to rapidly advance the metabolic engineering of natural product production. Here, we review historical aspects of the study of plant metabolic gene clusters as well as general strategies for identifying plant metabolic gene clusters in the multi-omics era. We also emphasize the exploration of their natural variation and evolution, as well as new strategies for the prospecting of plant metabolic gene clusters and a deeper understanding of how their structure influences their function.
Collapse
Affiliation(s)
- Chuansong Zhan
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shuangqian Shen
- College of Tropical Crops, Hainan University, Haikou 570228, China; National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenhua Liu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alisdair R Fernie
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Am Muhlenberg 1, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Ian A Graham
- Center for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 570228, China; Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China.
| |
Collapse
|
211
|
Xia H, Noushahi HA, Khan AH, Liu Y, Cosoveanu A, Cui L, Tang J, Iqbal S, Shu S. Genome sequencing of Colletotrichum gloeosporioides ESO026 reveals plausible pathway of HupA. Mol Biol Rep 2022; 49:11611-11622. [PMID: 36161578 DOI: 10.1007/s11033-022-07850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Colletotrichum gloeosporioides ES026, isolated as an endophytic fungal strain, was found to produce the important medicinal compound HuperzineA (HupA). In a genetic context, ES026 showed potential in elucidating the biosynthetic pathway of HupA. METHODS AND RESULTS The ES026 strain was sequenced using de-novo Illumina sequencing methods in this study. Assembling the cleaned data resulted in 58,594,804bp, consisting of 404 scaffolds. The G + C mol % content of this genome was 52.53%. The genome progressive-alignment with other 4 Colletotrichum strains revealed that ES026 showed closer relation with 030206, SMCG1#C and Nara gc5. More than 60 putative biosynthetic clusters were predicted with the fungal version antiSMASH4.0 program. More than 33 types I polyketide-related biosynthetic gene clusters were distributed, containing PKS and PKS-NRPS (polyketide-nonribosomal peptides) hybrid gene clusters. Another 8 NRPS biosynthetic gene clusters were distributed among the genome of ES026. The prenyltransferases, probably involved in aromatic prenyl-compounds and terpenoid biosynthesis, were analyzed using bioinformatics tools like MEGA. CONCLUSION We predicted a new possible biosynthetic pathway for the HupA from the pipecolic acid, based on the published HupA biosynthesis proposed pathway, the biosynthesis and pipecolic acid-derived compounds. We hypothesize that a hybrid PKS-NRPS mega-enzyme was probably involved in the biosynthesis of HupA with the pipecolic acid, the building block of rapamycin, as a HupA precursor. The rapamycin is produced from a polyketide biosynthesis pathway, and the domain incorporating the pipecolic acid is studied.
Collapse
Affiliation(s)
- Haiyang Xia
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Bio-Pharmaceuticals Institute , Taizhou University, 317000, Taizhou, China
| | - Hamza Armghan Noushahi
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Aamir Hamid Khan
- National Key Laboratory of Crop Genetics Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ying Liu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Andreea Cosoveanu
- Department of Botany, Ecology & Plant Physiology, CIPEV Group, Faculty of Science, Biology Section, Universidad de La Laguna, 38206, San Cristobal de La Laguna, Tenerife, Spain
| | - Lingli Cui
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jing Tang
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shehzad Iqbal
- Faculty of Agricultural Sciences, University of Talca, 3460000, Talca, Chile
| | - Shaohua Shu
- College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
212
|
Liu CJ. Cytochrome b 5: A versatile electron carrier and regulator for plant metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:984174. [PMID: 36212330 PMCID: PMC9539407 DOI: 10.3389/fpls.2022.984174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Cytochrome b 5 (CB5) is a small heme-binding protein, known as an electron donor delivering reducing power to the terminal enzymes involved in oxidative reactions. In plants, the CB5 protein family is substantially expanded both in its isoform numbers and cellular functions, compared to its yeast and mammalian counterparts. As an electron carrier, plant CB5 proteins function not only in fatty acid desaturation, hydroxylation and elongation, but also in the formation of specialized metabolites such as flavonoids, phenolic esters, and heteropolymer lignin. Furthermore, plant CB5s are found to interact with different non-catalytic proteins such as ethylene signaling regulator, cell death inhibitor, and sugar transporters, implicating their versatile regulatory roles in coordinating different metabolic and cellular processes, presumably in respect to the cellular redox status and/or carbon availability. Compared to the plentiful studies on biochemistry and cellular functions of mammalian CB5 proteins, the cellular and metabolic roles of plant CB5 proteins have received far less attention. This article summarizes the fragmentary information pertaining to the discovery of plant CB5 proteins, and discusses the conventional and peculiar functions that plant CB5s might play in different metabolic and cellular processes. Gaining comprehensive insight into the biological functions of CB5 proteins could offer effective biotechnological solutions to tailor plant chemodiversity and cellular responses to environment stimuli.
Collapse
|
213
|
Mao Y, Chen H, Zhao J, Li Y, Feng L, Yang Y, Zhang Y, Wei P, Hou D. Molecular cloning, functional characterization and expression of the β-amyrin synthase gene involved in saikosaponin biosynthesis in Bupleurum chinense DC. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2022; 32:284-295. [PMID: 36160316 PMCID: PMC9483273 DOI: 10.1007/s13562-022-00804-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/23/2022] [Indexed: 05/24/2023]
Abstract
Bupleurum chinense DC. is a commonly used plant in traditional Chinese medicine, and saikosaponins(SSs) are the main active oleanane-typetriterpene saponins in B. chinense. β-Amyrin synthase (β-AS) is an important enzyme in oleanane-type triterpenoid saponin synthesis, but its role in saikosaponin synthesis has rarely been studied. Here, the putative β-AS gene BcBAS1(Accession No.ON890382) selected according to metabolomic and transcriptomic analyses was cloned and functionally characterized by heterologous expression in Escherichia coli and Pichia pastoris, and its subcellular localization and expression patterns were examined. The molecular weight of the BcBAS1 recombinant protein was approximately 87 kDa, and this protein could catalyse the production of β-amyrin, the precursor of SSs. Furthermore, BcBAS1 was located in the cytosol, and relative expression in four tissues of the four genotypes was positively correlated with SSa and SSd contents. Our results indicate that BcBAS1 is a β-AS gene and may play an important role in saikosaponin biosynthesis and regulation. This study sheds light on the role of β-AS genes in the synthesis of SSs and provides insights for the metabolic engineering of SSs.
Collapse
Affiliation(s)
- Yanping Mao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
- College of Life Science and Biotechnology, Mianyang Teachers’ College, 621000 Mianyang, China
| | - Hua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Jun Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yuchan Li
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Liang Feng
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yuping Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| | - Yiguan Zhang
- Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Ping Wei
- Sichuan Institute for Translational Chinese Medicine, 610041 Chengdu, China
| | - Dabin Hou
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010 Mianyang, China
| |
Collapse
|
214
|
d'Oelsnitz S, Kim W, Burkholder NT, Javanmardi K, Thyer R, Zhang Y, Alper HS, Ellington AD. Using fungible biosensors to evolve improved alkaloid biosyntheses. Nat Chem Biol 2022; 18:981-989. [PMID: 35799063 PMCID: PMC11494455 DOI: 10.1038/s41589-022-01072-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 12/25/2022]
Abstract
A key bottleneck in the microbial production of therapeutic plant metabolites is identifying enzymes that can improve yield. The facile identification of genetically encoded biosensors can overcome this limitation and become part of a general method for engineering scaled production. We have developed a combined screening and selection approach that quickly refines the affinities and specificities of generalist transcription factors; using RamR as a starting point, we evolve highly specific (>100-fold preference) and sensitive (half-maximum effective concentration (EC50) < 30 μM) biosensors for the alkaloids tetrahydropapaverine, papaverine, glaucine, rotundine and noscapine. High-resolution structures reveal multiple evolutionary avenues for the malleable effector-binding site and the creation of new pockets for different chemical moieties. These sensors further enabled the evolution of a streamlined pathway for tetrahydropapaverine, a precursor to four modern pharmaceuticals, collapsing multiple methylation steps into a single evolved enzyme. Our methods for evolving biosensors enable the rapid engineering of pathways for therapeutic alkaloids.
Collapse
Affiliation(s)
- Simon d'Oelsnitz
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Wantae Kim
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | | | - Kamyab Javanmardi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ross Thyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Yan Zhang
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
215
|
A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 2022; 609:341-347. [PMID: 36045295 PMCID: PMC9452304 DOI: 10.1038/s41586-022-05157-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues. De novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast and in vitro chemical coupling to vinblastine is carried out, positioning yeast as a scalable platform to produce many monoterpene indole alkaloids.
Collapse
|
216
|
Engineered yeast brews precursors of anticancer drug vinblastine. Nature 2022:10.1038/d41586-022-02256-z. [PMID: 36045165 DOI: 10.1038/d41586-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
217
|
Metabolic Engineering of Saccharomyces cerevisiae for Production of Fragrant Terpenoids from Agarwood and Sandalwood. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sandalwood and agarwood essential oils are rare natural oils comprising fragrant terpenoids that have been used in perfumes and incense for millennia. Increasing demand for these terpenoids, coupled with difficulties in isolating them from natural sources, have led to an interest in finding alternative production platforms. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce fragrant terpenoids from sandalwood and agarwood. Specifically, we constructed strain FPPY005_39850, which overexpresses all eight genes in the mevalonate pathway. Using this engineered strain as the background strain, we screened seven distinct terpene synthases from agarwood, sandalwood, and related plant species for their activities in the context of yeast. Five terpene synthases led to the production of fragrant terpenoids, including α-santalene, α-humulene, δ-guaiene, α-guaiene, and β-eudesmol. To our knowledge, this is the first demonstration of β-eudesmol production in yeast. We further improved the production titers by downregulating ERG9, a key enzyme from a competing pathway, as well as employing enzyme fusions. Our final engineered strains produced fragrant terpenoids at up to 101.7 ± 6.9 mg/L. We envision our work will pave the way for a scalable route to these fragrant terpenoids and further establish S. cerevisiae as a versatile production platform for high-value chemicals.
Collapse
|
218
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
219
|
Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9246-9261. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Terpenes are a large class of secondary metabolites with diverse structures and functions that are commonly used as valuable raw materials in food, cosmetics, and medicine. With the development of metabolic engineering and emerging synthetic biology tools, these important terpene compounds can be sustainably produced using different microbial chassis. Currently, yeasts such as Saccharomyces cerevisiae and Yarrowia lipolytica have received extensive attention as potential hosts for the production of terpenes due to their clear genetic background and endogenous mevalonate pathway. In this review, we summarize the natural terpene biosynthesis pathways and various engineering strategies, including enzyme engineering, pathway engineering, and cellular engineering, to further improve the terpene productivity and strain stability in these two widely used yeasts. In addition, the future prospects of yeast-based terpene production are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liuwei Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
220
|
Sirirungruang S, Ad O, Privalsky TM, Ramesh S, Sax JL, Dong H, Baidoo EEK, Amer B, Khosla C, Chang MCY. Engineering site-selective incorporation of fluorine into polyketides. Nat Chem Biol 2022; 18:886-893. [PMID: 35817967 PMCID: PMC10030150 DOI: 10.1038/s41589-022-01070-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
Although natural products and synthetic small molecules both serve important medicinal functions, their structures and chemical properties are relatively distinct. To expand the molecular diversity available for drug discovery, one strategy is to blend the effective attributes of synthetic and natural molecules. A key feature found in synthetic compounds that is rare in nature is the use of fluorine to tune drug behavior. We now report a method to site-selectively incorporate fluorine into complex structures to produce regioselectively fluorinated full-length polyketides. We engineered a fluorine-selective trans-acyltransferase to produce site-selectively fluorinated erythromycin precursors in vitro. We further demonstrated that these analogs could be produced in vivo in Escherichia coli on engineering of the fluorinated extender unit pool. By using engineered microbes, elaborate fluorinated compounds can be produced by fermentation, offering the potential for expanding the identification and development of bioactive fluorinated small molecules.
Collapse
Affiliation(s)
| | - Omer Ad
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Swetha Ramesh
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Joel L Sax
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Edward E K Baidoo
- Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Bashar Amer
- Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Michelle C Y Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
221
|
Lu S, Zhou C, Guo X, Du Z, Cheng Y, Wang Z, He X. Enhancing fluxes through the mevalonate pathway in Saccharomyces cerevisiae by engineering the HMGR and β-alanine metabolism. Microb Biotechnol 2022; 15:2292-2306. [PMID: 35531990 PMCID: PMC9328733 DOI: 10.1111/1751-7915.14072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Mevalonate (MVA) pathway is the core for terpene and sterol biosynthesis, whose metabolic flux influences the synthesis efficiency of such compounds. Saccharomyces cerevisiae is an attractive chassis for the native active MVA pathway. Here, the truncated form of Enterococcus faecalis MvaE with only 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity was found to be the most effective enzyme for MVA pathway flux using squalene as the metabolic marker, resulting in 431-fold and 9-fold increases of squalene content in haploid and industrial yeast strains respectively. Furthermore, a positive correlation between MVA metabolic flux and β-alanine metabolic activity was found based on a metabolomic analysis. An industrial strain SQ3-4 with high MVA metabolic flux was constructed by combined engineering HMGR activity, NADPH regeneration, cytosolic acetyl-CoA supply and β-alanine metabolism. The strain was further evaluated as the chassis for terpenoids production. Strain SQ3-4-CPS generated from expressing β-caryophyllene synthase in SQ3-4 produced 11.86 ± 0.09 mg l-1 β-caryophyllene, while strain SQ3-5 resulted from down-regulation of ERG1 in SQ3-4 produced 408.88 ± 0.09 mg l-1 squalene in shake flask cultivations. Strain SQ3-5 produced 4.94 g l-1 squalene in fed-batch fermentation in cane molasses medium, indicating the promising potential for cost-effective production of squalene.
Collapse
Affiliation(s)
- Surui Lu
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Chenyao Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
222
|
Liao B, Shen X, Xiang L, Guo S, Chen S, Meng Y, Liang Y, Ding D, Bai J, Zhang D, Czechowski T, Li Y, Yao H, Ma T, Howard C, Sun C, Liu H, Liu J, Pei J, Gao J, Wang J, Qiu X, Huang Z, Li H, Yuan L, Wei J, Graham I, Xu J, Zhang B, Chen S. Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. MOLECULAR PLANT 2022; 15:1310-1328. [PMID: 35655434 DOI: 10.1016/j.molp.2022.05.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Artemisia annua is the major natural source of artemisinin, an anti-malarial medicine commonly used worldwide. Here, we present chromosome-level haploid maps for two A. annua strains with different artemisinin contents to explore the relationships between genomic organization and artemisinin production. High-fidelity sequencing, optical mapping, and chromatin conformation capture sequencing were used to assemble the heterogeneous and repetitive genome and resolve the haplotypes of A. annua. Approximately 50,000 genes were annotated for each haplotype genome, and a triplication event that occurred approximately 58.12 million years ago was examined for the first time in this species. A total of 3,903,467-5,193,414 variants (SNPs, indels, and structural variants) were identified in the 1.5-Gb genome during pairwise comparison between haplotypes, consistent with the high heterozygosity of this species. Genomic analyses revealed a correlation between artemisinin concents and the copy number of amorpha-4,11-diene synthase genes. This correlation was further confirmed by resequencing of 36 A. annua samples with varied artemisinin contents. Circular consensus sequencing of transcripts facilitated the detection of paralog expression. Collectively, our study provides chromosome-level allele-aware genome assemblies for two A. annua strains and new insights into the biosynthesis of artemisinin and its regulation, which will contribute to conquering malaria worldwide.
Collapse
Affiliation(s)
- Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaofeng Shen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Li Xiang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuai Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shiyu Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Meng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Ding
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Bai
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Tomasz Czechowski
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Hui Yao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Tingyu Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caroline Howard
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1RQ, UK
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Jin Pei
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jihai Gao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jigang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Qiu
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongyi Li
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, the Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ling Yuan
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Ian Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, UK
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Boli Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
223
|
Tan J, Zhang C, Pai H, Lu W. Heterologous Biosynthesis of Taraxerol by Engineered Saccharomyces cerevisiae. FEMS Microbiol Lett 2022; 369:6650882. [PMID: 35896500 DOI: 10.1093/femsle/fnac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Taraxerol is an oleanane-type pentacyclic triterpenoid compound distributed in many plant species that has good effects on the treatment of inflammation and tumors. However, the taraxerol content in medicinal plants is low, and chemical extraction requires considerable energy and time, so taraxerol production is a problem. It is a promising strategy to produce taraxerol by applying recombinant microorganisms. In this study, a Saccharomyces cerevisiae strain WKde2 was constructed to produce taraxerol with a titer of 1.85 mg·L-1, and the taraxerol titer was further increased to 12.51 mg·L-1 through multiple metabolic engineering strategies. The endoplasmic reticulum (ER) size regulatory factor INO2, which was reported to increase squalene and cytochrome P450-mediated 2,3-oxidosqualene production, was overexpressed in this study, and the resultant strain WTK11 showed a taraxerol titer of 17.35 mg·L-1. Eventually, the highest reported titer of 59.55 mg·L-1 taraxerol was achieved in a 5 L bioreactor. These results will serve as a general strategy for the production of other triterpenoids in yeast.
Collapse
Affiliation(s)
- Jinxiu Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Huihui Pai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350, PR China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, PR China
| |
Collapse
|
224
|
Sirirungruang S, Markel K, Shih PM. Plant-based engineering for production of high-valued natural products. Nat Prod Rep 2022; 39:1492-1509. [PMID: 35674317 DOI: 10.1039/d2np00017b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to March 2022Plants are a unique source of complex specialized metabolites, many of which play significant roles in human society. In many cases, however, the availability of these metabolites from naturally occurring sources fails to meet current demands. Thus, there is much interest in expanding the production capacity of target plant molecules. Traditionally, plant breeding, chemical synthesis, and microbial fermentation are considered the primary routes towards large scale production of natural products. Here, we explore the advances, challenges, and future of plant engineering as a complementary path. Although plants are an integral part of our food and agricultural systems and sustain an extensive array of chemical constituents, their complex genetics and physiology have prevented the optimal exploitation of plants as a production chassis. We highlight emerging engineering tools and scientific advances developed in recent years that have improved the prospects of using plants as a sustainable and scalable production platform. We also discuss technological limitations and overall economic outlook of plant-based production of natural products.
Collapse
Affiliation(s)
- Sasilada Sirirungruang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kasey Markel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA. .,Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
225
|
Baldera-Aguayo PA, Lee A, Cornish VW. High-Titer Production of the Fungal Anhydrotetracycline, TAN-1612, in Engineered Yeasts. ACS Synth Biol 2022; 11:2429-2444. [PMID: 35699947 PMCID: PMC9480237 DOI: 10.1021/acssynbio.2c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is a growing global health threat, demanding urgent responses. Tetracyclines, a widely used antibiotic class, are increasingly succumbing to antibiotic resistance; generating novel analogues is therefore a top priority for public health. Fungal tetracyclines provide structural and enzymatic diversity for novel tetracycline analogue production in tractable heterologous hosts, like yeasts, to combat antibiotic-resistant pathogens. Here, we successfully engineered Saccharomyces cerevisiae (baker's yeast) and Saccharomyces boulardii (probiotic yeast) to produce the nonantibiotic fungal anhydrotetracycline, TAN-1612, in synthetic defined media─necessary for clean purifications─through heterologously expressing TAN-1612 genes mined from the fungus, Aspergillus niger ATCC 1015. This was accomplished via (i) a promoter library-based combinatorial pathway optimization of the biosynthetic TAN-1612 genes coexpressed with a putative TAN-1612 efflux pump, reducing TAN-1612 toxicity in yeasts while simultaneously increasing supernatant titers and (ii) the development of a medium-throughput UV-visible spectrophotometric assay that facilitates TAN-1612 combinatorial library screening. Through this multipronged approach, we optimized TAN-1612 production, yielding an over 450-fold increase compared to previously reported S. cerevisiae yields. TAN-1612 is an important tetracycline analogue precursor, and we thus present the first step toward generating novel tetracycline analogue therapeutics to combat current and emerging antibiotic resistance. We also report the first heterologous production of a fungal polyketide, like TAN-1612, in the probiotic S. boulardii. This highlights that engineered S. boulardii can biosynthesize complex natural products like tetracyclines, setting the stage to equip probiotic yeasts with synthetic therapeutic functionalities to generate living therapeutics or biocontrol agents for clinical and agricultural applications.
Collapse
Affiliation(s)
- Pedro A Baldera-Aguayo
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, New York 10032, United States
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Arden Lee
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, 550 W 120th Street, Northwest Corner Building 1206, New York, New York 10027, United States
- Department of Systems Biology, Columbia University Irving Cancer Research Center, 1130 St. Nicholas Avenue, New York, New York 10032, United States
| |
Collapse
|
226
|
Guo Q, Li YW, Yan F, Li K, Wang YT, Ye C, Shi TQ, Huang H. Dual cytoplasmic-peroxisomal engineering for high-yield production of sesquiterpene α-humulene in Yarrowia lipolytica. Biotechnol Bioeng 2022; 119:2819-2830. [PMID: 35798689 DOI: 10.1002/bit.28176] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
The sesquiterpene α-humulene is an important plant natural product, which has been used in pharmaceutical industry due to the anti-inflammatory and anticancer activities. Although phytoextraction and chemical synthesis have previously been applied into α-humulene production, the low efficiency and high costs limit the development. In this study, Y. lipolytica was engineered as the robust cell factory for sustainable α-humulene production. First, a chassis with high α-humulene output in the cytoplasm was constructed by integrating α-humulene synthases with high catalytic activity, optimizing the flux of MVA and acetyl-CoA pathways. Subsequently, the strategy of dual cytoplasmic-peroxisomal engineering was adopted in Y. lipolytica, the best strain GQ3006 generated by introducing 31 copies of 12 different genes could produce 2280.3 ± 38.2 mg/L (98.7 ± 4.2 mg/g DCW) α-humulene, a 100-fold improvement relative to the baseline strain. In order to further improve the titer, a novel strategy for downregulation of squalene biosynthesis based on Cu2+ -repressible promoters was firstly established, which significantly improved the α-humulene titer by 54.2 % to 3516.6 ± 34.3 mg/L. Finally, the engineered strain could produce 21.7 g/L α-humulene in 5-L bioreactor, 6.8-fold higher than the highest α-humulene titer reported prior to this study. Overall, system metabolic engineering strategies used in this study provide a valuable reference for highly sustainable production of terpenoids in Y. lipolytica. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210046, People's Republic of China.,College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|
227
|
Takahashi S. Studies on Streptomyces sp. SN-593: reveromycin biosynthesis, β-carboline biomediator activating LuxR family regulator, and construction of terpenoid biosynthetic platform. J Antibiot (Tokyo) 2022; 75:432-444. [PMID: 35778609 DOI: 10.1038/s41429-022-00539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Streptomyces represents an important reservoir for biologically active natural products. Understanding the biosynthetic mechanism and the mode of gene expression is important for enhanced metabolite production and evaluation of biological activities. This review provides an overview of biosynthetic studies investigating reveromycin and β-carboline biomediators that enhanced the production of reveromycin in Streptomyces sp. SN-593 through activation of the LuxR family regulator. Furthermore, based on the optimal expression of a pathway specific regulator controlling the mevalonate pathway gene cluster, Streptomyces sp. SN-593 was developed as a platform for terpenoid compounds mass production.
Collapse
Affiliation(s)
- Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
228
|
Li Y, Chen T, Liu H, Qin W, Yan X, Wu-Zhang K, Peng B, Zhang Y, Yao X, Fu X, Li L, Tang K. The truncated AaActin1 promoter is a candidate tool for metabolic engineering of artemisinin biosynthesis in Artemisia annua L. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153712. [PMID: 35644103 DOI: 10.1016/j.jplph.2022.153712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Malaria is a devastating parasitic disease with high levels of morbidity and mortality worldwide. Artemisinin, the active substance against malaria, is a sesquiterpenoid produced by Artemisia annua. To improve artemisinin content in the native A. annua plants, considerable efforts have been attempted, with genetic transformation serving as an effective strategy. Although, the most frequently-used cauliflower mosaic virus (CaMV) 35S (CaMV35S) promoter has proved to be efficient in A. annua transgenic studies, it appears to show weak activity in peltate glandular secretory trichomes (GSTs) of A. annua plants. Here, we characterized the 1727 bp fragment upstream from the translation start codon (ATG) of AaActin1, however, found it was inactive in tobacco. After removal of the 5' intron, the truncated AaActin1 promoter (tpACT) showed 69% and 50% activity of CaMV35S promoter in transiently transformed tobacco and stably transformed A. annua, respectively. β-glucuronidase (GUS) staining analysis showed that the tpACT promoter was capable of directing the constant expression of a foreign gene in peltate GSTs of transgenic A. annua, representing higher activity than CaMV35S promoter. Collectively, our study provided a novel promoter available for metabolic engineering of artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tiantian Chen
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Qin
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Yan
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kuanyu Wu-Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaojie Zhang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinghao Yao
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
229
|
Liu Z, Tong X, Liu R, Zou L. Metabolome and Transcriptome Profiling Reveal That Four Terpenoid Hormones Dominate the Growth and Development of Sanghuangporus baumii. J Fungi (Basel) 2022; 8:jof8070648. [PMID: 35887404 PMCID: PMC9317858 DOI: 10.3390/jof8070648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Sanghuangporus baumii is a traditional medicinal fungus that produces pharmacological terpenoids, but natural resources are insufficient for applications, and its growth and development mechanisms are poorly understood. Combining metabolomic and transcriptomic analyses, we found four terpenoid hormones and a central gene, isopentenyl diphosphate isomerase (IDI), involved in growth and development. Additionally, an exogenous hormone test was used to further confirm the importance of the four terpenoid hormones. Finally, hormone content determination and qRT−PCR were performed to explore the growth and development mechanism; we found thatcis-zeatin (CZ) plays a major role in the mycelia stage, trans-zeatin (TZ) and gibberellin A4 (GA4) are important in the primordia stage, GA4 is crucial for the fruiting bodies stage, and abscisic acid (ABA) may be a marker of maturity. The IDI gene was also found to affectterpenoid hormone content by regulating the relative gene transcript levels, thereby controlling morphological changes in S. baumii. Our results revealthe growth and development mechanisms of S. baumii and may promote the breeding and utilisation of high-quality varieties.
Collapse
Affiliation(s)
| | | | | | - Li Zou
- Correspondence: ; Tel.: +86-0451-86660457
| |
Collapse
|
230
|
Shi Y, Dong T, Zeng B, Yao M, Wang Y, Xie Z, Xiao W, Yuan Y. Production of Plant Sesquiterpene Lactone Parthenolide in the Yeast Cell Factory. ACS Synth Biol 2022; 11:2473-2483. [PMID: 35723427 DOI: 10.1021/acssynbio.2c00132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Parthenolide, a kind of sesquiterpene lactone, is the direct precursor for the promising anti-glioblastoma drug ACT001. Compared with traditional parthenolide source from plant extraction, de novo biosynthesis of parthenolide in microorganisms has the potential to make a sustainable supply. Herein, an integrated strategy was designed with P450 source screening, nicotinamide adenine dinucleotide phosphate (NADPH) supply, and endoplasmic reticulum (ER) size rewiring to manipulate three P450s regarded as the bottleneck for parthenolide production. Germacrene A oxidase from Cichorium intybus, costunolide synthase from Lactuca sativa, and parthenolide synthase from Tanacetum parthenium have the best efficiency, resulting in a parthenolide titer of 2.19 mg/L, which was first achieved in yeast. The parthenolide titer was further increased by 300% with NADPH supplementation and ER expanding stepwise. Finally, the highest titers of 31.0 mg/L parthenolide and 648.5 mg/L costunolide in microbes were achieved in 2.0 L fed-batch fermentation. This study not only provides an alternative microbial platform for producing sesquiterpene lactones in a sustainable way but also highlights a general strategy for manipulating multiple plant-derived P450s in microbes.
Collapse
Affiliation(s)
- Yiting Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Boxuan Zeng
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zexiong Xie
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
231
|
Shen Q, Huang H, Xie L, Hao X, Kayani SI, Liu H, Qin W, Chen T, Pan Q, Liu P, Tang K. Basic Helix-Loop-Helix Transcription Factors AabHLH2 and AabHLH3 Function Antagonistically With AaMYC2 and Are Negative Regulators in Artemisinin Biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:885622. [PMID: 35734250 PMCID: PMC9207477 DOI: 10.3389/fpls.2022.885622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Plants have evolved sophisticated systems for regulating the biosynthesis of specialized phytochemicals. Artemisinin, which is a sesquiterpene lactone widely used in anti-malaria treatment, is produced by the Artemisia annua L. plant. However, the artemisinin content in A. annua is low and difficult to meet market demands. Studies have shown that artemisinin biosynthesis in A. annua has complex temporal and spatial specificity and is under tightly transcriptional regulation. However, the mechanism of transcriptional regulation of artemisinin biosynthesis remains unclear. In this study, we identified two MYC-type bHLH transcription factors (AabHLH2 and AabHLH3) as novel regulators of artemisinin biosynthesis. These bHLH TFs act as transcription repressors and function redundantly to negatively regulate artemisinin biosynthesis. Furthermore, AabHLH2 and AabHLH3 are nuclear proteins that bind to DNA elements with similar specificity to that of AaMYC2, but lack the conserved activation domain, suggesting that repression is achieved by competition for the same cis-regulatory elements. Together, our findings reveal a novel artemisinin biosynthesis regulatory network, provide new insight into how specialized metabolites are modulated in plants, and propose a model in which different bHLH TFs coordinated in regulating artemisinin production in the plant. Finally, this study provides some useful target genes for metabolic engineering of artemisinin production via CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Qian Shen
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huayi Huang
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lihui Xie
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Hao
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Sadaf-Ilyas Kayani
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hang Liu
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Qin
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Chen
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qifang Pan
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pin Liu
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Plant Biotechnology Research Center, SJTU–Fudan–Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
232
|
Ranganathan PR, Narayanan AK, Nawada N, Rao MJ, Reju KS, Priya SC, Gujarathi T, Manjithaya R, Venkata Rao DK. Diacylglycerol kinase alleviates autophagic degradation of the endoplasmic reticulum in SPT10-deficient yeast to enhance triterpene biosynthesis. FEBS Lett 2022; 596:1778-1794. [PMID: 35661158 DOI: 10.1002/1873-3468.14418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
A recent study showed that deletion of the gene encoding the transcription regulator SuPpressor of Ty10 (SPT10) increases total phospholipids, and our previous study established a critical link between phospholipids and the mevalonate/ergosterol (MEV/ERG) pathway, which synthesizes triterpenes. This study aims to use spt10Δ yeast to improve triterpene production. Though MEV/ERG pathway was highly expressed in spt10Δ yeast, results showed insufficient accumulation of key metabolites and also revealed massive endoplasmic reticulum (ER) degradation. We found a stable, massive ER structure when we overexpressed diacylglycerol kinase1 (DGK1OE ) in spt10Δ yeast. Analyses of ER-stress and autophagy suggest that DGK1OE in the spt10Δ strain decreased autophagy, resulting in increased MEV/ERG pathway activity. Heterologous expression of β-amyrin synthase showed significant production of the triterpene β-amyrin in DGK1OE spt10Δ yeast. Overall, our study provides a strategic approach to improve triterpene production by increasing ER biogenesis while limiting ER degradation.
Collapse
Affiliation(s)
- Poornima Ramani Ranganathan
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Ananth Krishna Narayanan
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Niveditha Nawada
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| | - Monala Jayaprakash Rao
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - Kalyani Sai Reju
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India
| | - S Chaithra Priya
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India
| | - Tejal Gujarathi
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore-560064, India
| | - D K Venkata Rao
- Biochemistry laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, GKVK (post), Allalasandra, India.,Academy of Scientific and Innovative Research (AcSIR), Kamla Nehru Nagar, Sector 19, Ghaziabad, Uttar Pradesh-201 002, India
| |
Collapse
|
233
|
Singh R, Chandel S, Ghosh A, Gautam A, Huson DH, Ravichandiran V, Ghosh D. Easy efficient HDR-based targeted knock-in in Saccharomyces cerevisiae genome using CRISPR-Cas9 system. Bioengineered 2022; 13:14857-14871. [PMID: 36602175 PMCID: PMC10109214 DOI: 10.1080/21655979.2022.2162667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During the last two decades, yeast has been used as a biological tool to produce various small molecules, biofuels, etc., using an inexpensive bioprocess. The application of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated protein (Cas) techniques in yeast genetic and metabolic engineering has made a paradigm shift, particularly with a significant improvement in targeted chromosomal integration using synthetic donor constructs, which was previously a challenge. This study reports the CRISPR-Cas9-based highly efficient strategy for targeted chromosomal integration and in-frame expression of a foreign gene in the genome of Saccharomyces cerevisiae (S. cerevisiae) by homology-dependent recombination (HDR); our optimized methods show that CRISPR-Cas9-based chromosomal targeted integration of small constructs at multiple target sites of the yeast genome can be achieved with an efficiency of 74%. Our study also suggests that 15 bp microhomology flanked arms are sufficient for 50% targeted knock-in at minimal knock-in construct concentration. Whole-genome sequencing confirmed that there is no off-target effect. This study provides a comprehensive and streamlined protocol that will support the targeted integration of essential genes into the yeast genome for synthetic biology and other industrial purposes.Highlights• CRISPR-Cas9 based in-frame expression of foreign protein in Saccharomyces cerevisiae using Homology arm without a promoter.• As low as 15 base pairs of microhomology (HDR) are sufficient for targeted integration in Saccharomyces cerevisiae.• The methodology is highly efficient and very specific as no off-targeted effects were shown by the whole-genome sequence.
Collapse
Affiliation(s)
- Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Shivani Chandel
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Arijit Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India.,Department of Molecular Biology and Gynaecological Oncology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata, India
| | - Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Daniel H Huson
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - V Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
234
|
Sankaranarayanan K, Heid E, Coley CW, Verma D, Green WH, Jensen KF. Similarity based enzymatic retrosynthesis. Chem Sci 2022; 13:6039-6053. [PMID: 35685792 PMCID: PMC9132021 DOI: 10.1039/d2sc01588a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Enzymes synthesize complex natural products effortlessly by catalyzing chemo-, regio-, and enantio-selective transformations. Further, biocatalytic processes are increasingly replacing conventional organic synthesis steps because they use mild solvents, avoid the use of metals, and reduce overall non-biodegradable waste. Here, we present a single-step retrosynthesis search algorithm to facilitate enzymatic synthesis of natural product analogs. First, we develop a tool, RDEnzyme, capable of extracting and applying stereochemically consistent enzymatic reaction templates, i.e., subgraph patterns that describe the changes in connectivity between a product molecule and its corresponding reactant(s). Using RDEnzyme, we demonstrate that molecular similarity is an effective metric to propose retrosynthetic disconnections based on analogy to precedent enzymatic reactions in UniProt/RHEA. Using ∼5500 reactions from RHEA as a knowledge base, the recorded reactants to the product are among the top 10 proposed suggestions in 71% of ∼700 test reactions. Second, we trained a statistical model capable of discriminating between reaction pairs belonging to homologous enzymes and evolutionarily distant enzymes using ∼30 000 reaction pairs from SwissProt as a knowledge base. This model is capable of understanding patterns in enzyme promiscuity to evaluate the likelihood of experimental evolution success. By recursively applying the similarity-based single-step retrosynthesis and evolution prediction workflow, we successfully plan the enzymatic synthesis routes for both active pharmaceutical ingredients (e.g. Islatravir, Molnupiravir) and commodity chemicals (e.g. 1,4-butanediol, branched-chain higher alcohols/biofuels), in a retrospective fashion. Through the development and demonstration of the single-step enzymatic retrosynthesis strategy using natural transformations, our approach provides a first step towards solving the challenging problem of incorporating both enzyme- and organic-chemistry based transformations into a computer aided synthesis planning workflow.
Collapse
Affiliation(s)
- Karthik Sankaranarayanan
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Esther Heid
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
- Institute of Materials Chemistry, TU Wien 1060 Vienna Austria
| | - Connor W Coley
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Deeptak Verma
- Computational and Structural Chemistry, Discovery Chemistry, Merck & Co., Inc. Kenilworth NJ 07033 USA
| | - William H Green
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| |
Collapse
|
235
|
Jin K, Xia H, Liu Y, Li J, Du G, Lv X, Liu L. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb Cell Fact 2022; 21:92. [PMID: 35599322 PMCID: PMC9125818 DOI: 10.1186/s12934-022-01819-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022] Open
Abstract
Microbial cell factories for terpenoid synthesis form a less expensive and more environment-friendly approach than chemical synthesis and extraction, and are thus being regarded as mainstream research recently. Organelle compartmentalization for terpenoid synthesis has received much attention from researchers owing to the diverse physiochemical characteristics of organelles. In this review, we first systematically summarized various compartmentalization strategies utilized in terpenoid production, mainly plant terpenoids, which can provide catalytic reactions with sufficient intermediates and a suitable environment, while bypassing competing metabolic pathways. In addition, because of the limited storage capacity of cells, strategies used for the expansion of specific organelle membranes were discussed. Next, transporter engineering strategies to overcome the cytotoxic effects of terpenoid accumulation were analyzed. Finally, we discussed the future perspectives of compartmentalization and transporter engineering strategies, with the hope of providing theoretical guidance for designing and constructing cell factories for the purpose of terpenoid production.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Hongzhi Xia
- Richen Bioengineering Co., Ltd, Nantong, 226000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
236
|
Zhao C, Wang XH, Lu XY, Zong H, Zhuge B. Tuning Geraniol Biosynthesis via a Novel Decane-Responsive Promoter in Candida glycerinogenes. ACS Synth Biol 2022; 11:1835-1844. [PMID: 35507528 DOI: 10.1021/acssynbio.2c00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geraniol is a rose-scented monoterpene with significant commercial and industrial value in medicine, condiments, cosmetics, and bioenergy. Here, we first targeted geraniol as a reporter metabolite and explored the suitability and potential of Candida glycerinogenes as a heterologous host for monoterpenoid production. Subsequently, dual-pathway engineering was employed to improve the production of geraniol with a geraniol titer of 858.4 mg/L. We then applied a synthetic hybrid promoter approach to develop a decane-responsive hybrid promoter based on the native promoter PGAP derived from C. glycerinogenes itself. The hybrid promoter was able to be induced by n-decane with 3.6 times higher transcriptional intensity than the natural promoter PGAP. In particular, the hybrid promoter effectively reduces the conflict between cell growth and product formation in the production of geraniol. Ultimately, 1194.6 mg/L geraniol was obtained at the shake flask level. The strong and tunable decane-responsive hybrid promoter developed in this study provides an important tool for fine regulation of toxic terpenoid production in cells.
Collapse
Affiliation(s)
- Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xi-Hui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
237
|
Cruz KCP, Enekegho LO, Stuart DT. Bioengineered Probiotics: Synthetic Biology Can Provide Live Cell Therapeutics for the Treatment of Foodborne Diseases. Front Bioeng Biotechnol 2022; 10:890479. [PMID: 35656199 PMCID: PMC9152101 DOI: 10.3389/fbioe.2022.890479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
The rising prevalence of antibiotic resistant microbial pathogens presents an ominous health and economic challenge to modern society. The discovery and large-scale development of antibiotic drugs in previous decades was transformational, providing cheap, effective treatment for what would previously have been a lethal infection. As microbial strains resistant to many or even all antibiotic drug treatments have evolved, there is an urgent need for new drugs or antimicrobial treatments to control these pathogens. The ability to sequence and mine the genomes of an increasing number of microbial strains from previously unexplored environments has the potential to identify new natural product antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to generate new production chassis, biosensors and “weaponized” live cell therapeutics may provide new means to combat the rapidly evolving threat of drug resistant microbial pathogens. This review focuses on the application of synthetic biology to construct probiotic strains that have been endowed with functionalities allowing them to identify, compete with and in some cases kill microbial pathogens as well as stimulate host immunity. Weaponized probiotics may have the greatest potential for use against pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of engineered probiotics are highlighted along with the challenges that must still be met before these intriguing and exciting new therapeutic tools can be widely deployed.
Collapse
|
238
|
Deng YA, Li L, Peng Q, Feng LF, Yang JF, Zhan RT, Ma DM. Isolation and characterization of AaZFP1, a C2H2 zinc finger protein that regulates the AaIPPI1 gene involved in artemisinin biosynthesis in Artemisia annua. PLANTA 2022; 255:122. [PMID: 35554686 DOI: 10.1007/s00425-022-03892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
AaZFP1, a C2H2-type transcription factor, was found to bind the AGT-N1-10-AGT box of AaIPPI1pro and activate the expression of AaIPPI1 involved in artemisinin biosynthesis. Artemisinin, an endoperoxide sesquiterpene lactone, is a widely used antimalarial drug isolated from Artemisia annua L. Isopentenyl pyrophosphate isomerase (AaIPPI1) catalyzes the interconversion of isopentenyl diphosphate and dimethylallyl diphosphate and is the key gene involved in the biosynthesis of artemisinin. However, the AaIPPI1 gene regulation network remains largely unknown. Here, we isolated the AaIPPI1 promoter (AaIPPI1pro) and predicted that it contains cis-elements involved in stress responses, including the TGACG motif (a methyl jasmonate-responsive element), GARE motif (a gibberellin-responsive element), ABRE (an abscisic acid-responsive element), TC-rich repeats (a stress-responsive element), and the AGT-N1-10-AGT box, which is the binding site of Cys/His2 zinc finger protein (C2H2 ZFP). The C2H2 ZFP gene AaZFP1 was discovered by screening a cDNA library using AaIPPI1pro as bait in yeast. AaZFP1 contains two conserved C2H2 regions, a nuclear localization domain (B box), a Leu-rich domain (L box), and a conserved DLN sequence (DLN box) close to its C terminus. A subcellular localization assay indicated that AaZFP1 protein is localized in the nucleus and cytoplasm. An electrophoretic mobility shift assay demonstrated that AaZFP1 binds to the AGT-N1-10-AGT box of AaIPPI1pro. A dual-luciferase assay indicated that AaZFP1 enhanced the promoter activity of AaIPPI1 in vivo. Transient overexpression of AaZFP1 in A. annua increased the expression of AaIPPI1 and the content of artemisinin. Our data demonstrated that AaZFP1 functions as a transcriptional activator that regulates the expression of AaIPPI1 by directly binding to its promoter. The present study provides insights into the transcriptional regulation of genes involved in artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Yin-Ai Deng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Li Li
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Qian Peng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ling-Fang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Jin-Fen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ruo-Ting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| | - Dong-Ming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
239
|
Research Progress on the Synthetic Biology of Botanical Biopesticides. Bioengineering (Basel) 2022; 9:bioengineering9050207. [PMID: 35621485 PMCID: PMC9137473 DOI: 10.3390/bioengineering9050207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
The production and large-scale application of traditional chemical pesticides will bring environmental pollution and food safety problems. With the advantages of high safety and environmental friendliness, botanical biopesticides are in line with the development trend of modern agriculture and have gradually become the mainstream of modern pesticide development. However, the traditional production of botanical biopesticides has long been faced with prominent problems, such as limited source and supply, complicated production processes, and excessive consumption of resources. In recent years, the rapid development of synthetic biology will break through these bottlenecks, and many botanical biopesticides are produced using synthetic biology, such as emodin, celangulin, etc. This paper reviews the latest progress and application prospect of synthetic biology in the development of botanical pesticides so as to provide new ideas for the analysis of synthetic pathways and heterologous and efficient production of botanical biopesticides and accelerate the research process of synthetic biology of natural products.
Collapse
|
240
|
Song C, Ma J, Li G, Pan H, Zhu Y, Jin Q, Cai Y, Han B. Natural Composition and Biosynthetic Pathways of Alkaloids in Medicinal Dendrobium Species. FRONTIERS IN PLANT SCIENCE 2022; 13:850949. [PMID: 35599884 PMCID: PMC9121007 DOI: 10.3389/fpls.2022.850949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/30/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium is the second biggest genus in the Orchidaceae family, some of which have both ornamental and therapeutic values. Alkaloids are a group of active chemicals found in Dendrobium plants. Dendrobine has emerged specific pharmacological and therapeutic properties. Although Dendrobium alkaloids have been isolated and identified since the 1930s, the composition of alkaloids and their biosynthesis pathways, including metabolic intermediates, alkaloid transporters, concrete genes involved in downstream pathways, and associated gene clusters, have remained unresolved scientific issues. This paper comprehensively reviews currently identified and tentative alkaloids from the aspect of biogenic pathways or metabolic genes uncovered based on the genome annotations. The biosynthesis pathways of each class of alkaloids are highlighted. Moreover, advances of the high-throughput sequencing technologies in the discovery of Dendrobium alkaloid pathways have been addressed. Applications of synthetic biology in large-scale production of alkaloids are also described. This would serve as the basis for further investigation into Dendrobium alkaloids.
Collapse
Affiliation(s)
- Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Guohui Li
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yanfang Zhu
- College of Life Science, Huaibei Normal University, Huaibei, China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Bangxing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an, China
| |
Collapse
|
241
|
Ma Y, Zheng X, Lin Y, Zhang L, Yuan Y, Wang H, Winterburn J, Wu F, Wu Q, Ye JW, Chen GQ. Engineering an oleic acid-induced system for Halomonas, E. coli and Pseudomonas. Metab Eng 2022; 72:325-336. [PMID: 35513297 DOI: 10.1016/j.ymben.2022.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Ligand-induced system plays an important role for microbial engineering due to its tunable gene expression control over timings and levels. An oleic acid (OA)-induced system was recently constructed based on protein FadR, a transcriptional regulator involved in fatty acids metabolism, for metabolic control in Escherichia coli. In this study, we constructed a synthetic FadR-based OA-induced systems in Halomonas bluephagenesis by hybridizing the porin promoter core region and FadR-binding operator (fadO). The dynamic control range was optimized over 150-fold, and expression leakage was significantly reduced by tuning FadR expression and positioning fadO, forming a series of OA-induced systems with various expression strengths, respectively. Additionally, ligand orthogonality and cross-species portability were also studied and showed highly linear correlation among Halomonas spp., Escherichia coli and Pseudomonas spp. Finally, OA-induced systems with medium- and small-dynamic control ranges were employed to dynamically control the expression levels of morphology associated gene minCD, and monomer precursor 4-hydroxybutyrate-CoA (4HB-CoA) synthesis pathway for polyhydroxyalkanoates (PHA), respectively, in the presence of oleic acid as an inducer. As a result, over 10 g/L of poly-3-hydroxybutyrate (PHB) accumulated by elongated cell sizes, and 6 g/L of P(3HB-co-9.57 mol% 4HB) were obtained by controlling the dose and induction time of oleic acid only. This study provides a systematic approach for ligand-induced system engineering, and demonstrates an alternative genetic tool for dynamic control of industrial biotechnology.
Collapse
Affiliation(s)
- Yueyuan Ma
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiangrui Zheng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yiping Yuan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Huan Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - James Winterburn
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
242
|
Kretschmer S, Kortemme T. Advances in the Computational Design of Small-Molecule-Controlled Protein-Based Circuits for Synthetic Biology. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2022; 110:659-674. [PMID: 36531560 PMCID: PMC9754107 DOI: 10.1109/jproc.2022.3157898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Synthetic biology approaches living systems with an engineering perspective and promises to deliver solutions to global challenges in healthcare and sustainability. A critical component is the design of biomolecular circuits with programmable input-output behaviors. Such circuits typically rely on a sensor module that recognizes molecular inputs, which is coupled to a functional output via protein-level circuits or regulating the expression of a target gene. While gene expression outputs can be customized relatively easily by exchanging the target genes, sensing new inputs is a major limitation. There is a limited repertoire of sensors found in nature, and there are often difficulties with interfacing them with engineered circuits. Computational protein design could be a key enabling technology to address these challenges, as it allows for the engineering of modular and tunable sensors that can be tailored to the circuit's application. In this article, we review recent computational approaches to design protein-based sensors for small-molecule inputs with particular focus on those based on the widely used Rosetta software suite. Furthermore, we review mechanisms that have been harnessed to couple ligand inputs to functional outputs. Based on recent literature, we illustrate how the combination of protein design and synthetic biology enables new sensors for diverse applications ranging from biomedicine to metabolic engineering. We conclude with a perspective on how strategies to address frontiers in protein design and cellular circuit design may enable the next generation of sense-response networks, which may increasingly be assembled from de novo components to display diverse and engineerable input-output behaviors.
Collapse
Affiliation(s)
- Simon Kretschmer
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158 USA, and affiliated with the California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158 USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94158 USA, and affiliated with the California Quantitative Biosciences Institute (QBI) at UCSF, San Francisco, CA 94158 USA
| |
Collapse
|
243
|
Lv WX, Chen H, Zhang X, Ho CC, Liu Y, Wu S, Wang H, Jin Z, Chi YR. Programmable selective acylation of saccharides mediated by carbene and boronic acid. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
244
|
Exogenous artificial DNA forms chromatin structure with active transcription in yeast. SCIENCE CHINA. LIFE SCIENCES 2022; 65:851-860. [PMID: 34970711 DOI: 10.1007/s11427-021-2044-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022]
Abstract
Yeast artificial chromosomes (YACs) are important tools for sequencing, gene cloning, and transferring large quantities of genetic information. However, the structure and activity of YAC chromatin, as well as the unintended impacts of introducing foreign DNA sequences on DNA-associated biochemical events, have not been widely explored. Here, we showed that abundant genetic elements like TATA box and transcription factor-binding motifs occurred unintentionally in a previously reported data-carrying chromosome (dChr). In addition, we used state-of-the-art sequencing technologies to comprehensively profile the genetic, epigenetic, transcriptional, and proteomic characteristics of the exogenous dChr. We found that the data-carrying DNA formed active chromatin with high chromatin accessibility and H3K4 tri-methylation levels. The dChr also displayed highly pervasive transcriptional ability and transcribed hundreds of noncoding RNAs. The results demonstrated that exogenous artificial chromosomes formed chromatin structures and did not remain as naked or loose plasmids. A better understanding of the YAC chromatin nature will improve our ability to design better data-storage chromosomes.
Collapse
|
245
|
Nielsen J, Tillegreen CB, Petranovic D. Innovation trends in industrial biotechnology. Trends Biotechnol 2022; 40:1160-1172. [PMID: 35459568 DOI: 10.1016/j.tibtech.2022.03.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
Microbial fermentations are used for the sustainable production of a range of products. Due to increasing trends in the food sector toward plant-based foods and meat and dairy product substitutes, microbial fermentation will have an increasing role in this sector, as it will enable a sustainable and scalable production of valuable foods and food ingredients. Microbial fermentation will also be used to advance and expand the production of sustainable chemicals and natural products. Much of this market expansion will come from new start-ups that translate academic research into novel processes and products using state-of-the art technologies. Here, we discuss the trends in innovation and technology and provide recommendations for how to successfully start and grow companies in industrial biotechnology.
Collapse
Affiliation(s)
- Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark; Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden.
| | | | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| |
Collapse
|
246
|
Misa J, Billingsley JM, Niwa K, Yu RK, Tang Y. Engineered Production of Strictosidine and Analogues in Yeast. ACS Synth Biol 2022; 11:1639-1649. [PMID: 35294193 PMCID: PMC9171786 DOI: 10.1021/acssynbio.2c00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are an expansive class of plant natural products, many of which have been named on the World Health Organization's List of Essential Medicines. Low production from native plant hosts necessitates a more reliable source of these drugs to meet global demand. Here, we report the development of a yeast-based platform for high-titer production of the universal MIA precursor, strictosidine. Our fed-batch platform produces ∼50 mg/L strictosidine, starting from the commodity chemicals geraniol and tryptamine. The microbially produced strictosidine was purified to homogeneity and characterized by NMR. Additionally, our approach enables the production of halogenated strictosidine analogues through the feeding of modified tryptamines. The MIA platform strain enables rapid access to strictosidine for reconstitution and production of downstream MIA natural products.
Collapse
Affiliation(s)
- Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - John M. Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kanji Niwa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rachel K. Yu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
247
|
Arnesen JA, Jacobsen IH, Dyekjær JD, Rago D, Kristensen M, Klitgaard AK, Randelovic M, Martinez JL, Borodina I. Production of abscisic acid in the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res 2022; 22:foac015. [PMID: 35274684 PMCID: PMC8992728 DOI: 10.1093/femsyr/foac015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 11/14/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone with applications in agriculture and human health. ABA can be produced by Botrytis cinerea, a plant pathogenic filamentous fungus. However, the cultivation process is lengthy and strain improvement by genetic engineering is difficult. Therefore, we engineered the oleaginous yeast Yarrowia lipolytica as an alternative host for ABA production. First, we expressed five B. cinerea genes involved in ABA biosynthesis (BcABA1,BcABA2,BcABA3,BcABA4 and BcCPR1) in a Y. lipolytica chassis with optimized mevalonate flux. The strain produced 59.2 mg/L of ABA in small-scale cultivation. Next, we expressed an additional copy of each gene in the strain, but only expression of additional copy of BcABA1 gene increased the ABA titer to 168.5 mg/L. We then integrated additional copies of the mevalonate pathway and ABA biosynthesis encoding genes, and we expressed plant ABA transporters resulting in an improved strain producing 263.5 mg/L and 9.1 mg/g dry cell weight (DCW) ABA. Bioreactor cultivation resulted in a specific yield of 12.8 mg/g DCW ABA; however, surprisingly, the biomass level obtained in bioreactors was only 10.5 g DCW/L, with a lower ABA titer of 133.6 mg/L. While further optimization is needed, this study confirms Y. lipolytica as a potential alternative host for the ABA production.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Irene Hjorth Jacobsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs Lyngby, Denmark
| | - Jane Dannow Dyekjær
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Andreas Koedfoed Klitgaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - Milica Randelovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| | - José Luis Martinez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kgs Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
248
|
Industrially Relevant Enzyme Cascades for Drug Synthesis and Their Ecological Assessment. Int J Mol Sci 2022; 23:ijms23073605. [PMID: 35408960 PMCID: PMC8998672 DOI: 10.3390/ijms23073605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Environmentally friendly and sustainable processes for the production of active pharmaceutical ingredients (APIs) gain increasing attention. Biocatalytic synthesis routes with enzyme cascades support many stated green production principles, for example, the reduced need for solvents or the biodegradability of enzymes. Multi-enzyme reactions have even more advantages such as the shift of the equilibrium towards the product side, no intermediate isolation, and the synthesis of complex molecules in one reaction pot. Despite the intriguing benefits, only a few enzyme cascades have been applied in the pharmaceutical industry so far. However, several new enzyme cascades are currently being developed in research that could be of great importance to the pharmaceutical industry. Here, we present multi-enzymatic reactions for API synthesis that are close to an industrial application. Their performances are comparable or exceed their chemical counterparts. A few enzyme cascades that are still in development are also introduced in this review. Economic and ecological considerations are made for some example cascades to assess their environmental friendliness and applicability.
Collapse
|
249
|
Sankhuan D, Niramolyanun G, Kangwanrangsan N, Nakano M, Supaibulwatana K. Variation in terpenoids in leaves of Artemisia annua grown under different LED spectra resulting in diverse antimalarial activities against Plasmodium falciparum. BMC PLANT BIOLOGY 2022; 22:128. [PMID: 35313811 PMCID: PMC8935710 DOI: 10.1186/s12870-022-03528-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/14/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Productivities of bioactive compounds in high-value herbs and medicinal plants are often compromised by uncontrollable environmental parameters. Recent advances in the development of plant factories with artificial lighting (PFAL) have led to improved qualitative and/or quantitative production of bioactive compounds in several medicinal plants. However, information concerning the effect of light qualities on plant pharmaceutical properties is limited. The influence of three different light-emitting diode (LED) spectra on leaf fresh weight (FW), bioactive compound production and bioactivity of Artemisia annua L. against the malarial parasite Plasmodium falciparum NF54 was investigated. Correlation between the A. annua metabolites and antimalarial activity of light-treated plant extracts were also determined. RESULTS Artemisia annua plants grown under white and blue spectra that intersected at 445 nm exhibited higher leaf FW and increased amounts of artemisinin and artemisinic acid, with enhanced production of several terpenoids displaying a variety of pharmacological activities. Conversely, the red spectrum led to diminished production of bioactive compounds and a distinct metabolite profile compared with other wavelengths. Crude extracts obtained from white and blue spectral treatments exhibited 2 times higher anti-Plasmodium falciparum activity than those subjected to the red treatment. Highest bioactivity was 4 times greater than those obtained from greenhouse-grown plants. Hierarchical cluster analysis (HCA) revealed a strong correlation between levels of several terpenoids and antimalarial activity, suggesting that these compounds might be involved in increasing antimalarial activity. CONCLUSIONS Results demonstrated a strategy to overcome the limitation of A. annua cultivation in Bangkok, Thailand. A specific LED spectrum that operated in a PFAL system promoted the accumulation of some useful phytochemicals in A. annua, leading to increased antimalarial activity. Therefore, the application of PFAL with appropriate light spectra showed promise as an alternative method for industrial production of A. annua or other useful medicinal plants with minimal environmental influence.
Collapse
Affiliation(s)
- Darunmas Sankhuan
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Gamolthip Niramolyanun
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Masaru Nakano
- Faculty of Agriculture, Niigata University, 2-8050, Ikarashi, Niigata, 9502181, Japan
| | - Kanyaratt Supaibulwatana
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
| |
Collapse
|
250
|
Emwas AH, Szczepski K, Al-Younis I, Lachowicz JI, Jaremko M. Fluxomics - New Metabolomics Approaches to Monitor Metabolic Pathways. Front Pharmacol 2022; 13:805782. [PMID: 35387341 PMCID: PMC8977530 DOI: 10.3389/fphar.2022.805782] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Fluxomics is an innovative -omics research field that measures the rates of all intracellular fluxes in the central metabolism of biological systems. Fluxomics gathers data from multiple different -omics fields, portraying the whole picture of molecular interactions. Recently, fluxomics has become one of the most relevant approaches to investigate metabolic phenotypes. Metabolic flux using 13C-labeled molecules is increasingly used to monitor metabolic pathways, to probe the corresponding gene-RNA and protein-metabolite interaction networks in actual time. Thus, fluxomics reveals the functioning of multi-molecular metabolic pathways and is increasingly applied in biotechnology and pharmacology. Here, we describe the main fluxomics approaches and experimental platforms. Moreover, we summarize recent fluxomic results in different biological systems.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs, Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Inas Al-Younis
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences & Engineering Division (BESE), Thuwal, Saudi Arabia
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, Monserrato, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|