201
|
Patel S, Patel J, Silliman K, Hall N, Bowen K, Koebernick J. Comparative Transcriptome Profiling Unfolds a Complex Defense and Secondary Metabolite Networks Imparting Corynespora cassiicola Resistance in Soybean ( Glycine max (L.) Merrill). Int J Mol Sci 2023; 24:10563. [PMID: 37445741 DOI: 10.3390/ijms241310563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Target spot is caused by Corynespora cassiicola, which heavily affects soybean production areas that are hot and humid. Resistant soybean genotypes have been identified; however, the molecular mechanisms governing resistance to infection are unknown. Comparative transcriptomic profiling using two known resistant genotypes and two susceptible genotypes was performed under infected and control conditions to understand the regulatory network operating between soybean and C. cassiicola. RNA-Seq analysis identified a total of 2571 differentially expressed genes (DEGs) which were shared by all four genotypes. These DEGs are related to secondary metabolites, immune response, defense response, phenylpropanoid, and flavonoid/isoflavonoid pathways in all four genotypes after C. cassiicola infection. In the two resistant genotypes, additional upregulated DEGs were identified affiliated with the defense network: flavonoids, jasmonic acid, salicylic acid, and brassinosteroids. Further analysis led to the identification of differentially expressed transcription factors, immune receptors, and defense genes with a leucine-rich repeat domain, dirigent proteins, and cysteine (C)-rich receptor-like kinases. These results will provide insight into molecular mechanisms of soybean resistance to C. cassiicola infection and valuable resources to potentially pyramid quantitative resistance loci for improving soybean germplasm.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jinesh Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Katherine Silliman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Nathan Hall
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| | - Kira Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
202
|
Nissan N, Hooker J, Arezza E, Dick K, Golshani A, Mimee B, Cober E, Green J, Samanfar B. Large-scale data mining pipeline for identifying novel soybean genes involved in resistance against the soybean cyst nematode. FRONTIERS IN BIOINFORMATICS 2023; 3:1199675. [PMID: 37409347 PMCID: PMC10319130 DOI: 10.3389/fbinf.2023.1199675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
The soybean cyst nematode (SCN) [Heterodera glycines Ichinohe] is a devastating pathogen of soybean [Glycine max (L.) Merr.] that is rapidly becoming a global economic issue. Two loci conferring SCN resistance have been identified in soybean, Rhg1 and Rhg4; however, they offer declining protection. Therefore, it is imperative that we identify additional mechanisms for SCN resistance. In this paper, we develop a bioinformatics pipeline to identify protein-protein interactions related to SCN resistance by data mining massive-scale datasets. The pipeline combines two leading sequence-based protein-protein interaction predictors, the Protein-protein Interaction Prediction Engine (PIPE), PIPE4, and Scoring PRotein INTeractions (SPRINT) to predict high-confidence interactomes. First, we predicted the top soy interacting protein partners of the Rhg1 and Rhg4 proteins. Both PIPE4 and SPRINT overlap in their predictions with 58 soybean interacting partners, 19 of which had GO terms related to defense. Beginning with the top predicted interactors of Rhg1 and Rhg4, we implement a "guilt by association" in silico proteome-wide approach to identify novel soybean genes that may be involved in SCN resistance. This pipeline identified 1,082 candidate genes whose local interactomes overlap significantly with the Rhg1 and Rhg4 interactomes. Using GO enrichment tools, we highlighted many important genes including five genes with GO terms related to response to the nematode (GO:0009624), namely, Glyma.18G029000, Glyma.11G228300, Glyma.08G120500, Glyma.17G152300, and Glyma.08G265700. This study is the first of its kind to predict interacting partners of known resistance proteins Rhg1 and Rhg4, forming an analysis pipeline that enables researchers to focus their search on high-confidence targets to identify novel SCN resistance genes in soybean.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Julia Hooker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Eric Arezza
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Kevin Dick
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jeansur-Richelieu, QC, Canada
| | - Elroy Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - James Green
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
203
|
Gaikwad K, Ramakrishna G, Srivastava H, Saxena S, Kaila T, Tyagi A, Sharma P, Sharma S, Sharma R, Mahla HR, Kumar K, Sv AM, Solanke AU, Kalia P, Rao AR, Rai A, Sharma TR, Singh NK. The chromosome-scale genome assembly of cluster bean provides molecular insight into edible gum (galactomannan) biosynthesis family genes. Sci Rep 2023; 13:9941. [PMID: 37336893 DOI: 10.1038/s41598-023-33762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 04/18/2023] [Indexed: 06/21/2023] Open
Abstract
Cluster bean (Cyamopsis tetragonoloba (L.) Taub 2n = 14, is commonly known as Guar. Apart from being a vegetable crop, it is an abundant source of a natural hetero-polysaccharide called guar gum or galactomannan. Here, we are reporting a chromosome-scale reference genome assembly of a popular cluster bean cultivar RGC-936, by combining sequencing data from Illumina, 10X Genomics, Oxford Nanopore technologies. An initial assembly of 1580 scaffolds with an N50 value of 7.12 Mb was generated and these scaffolds were anchored to a high density SNP linkage map. Finally, a genome assembly of 550.31 Mb (94% of the estimated genome size of ~ 580 Mb (through flow cytometry) with 58 scaffolds was obtained, including 7 super scaffolds with a very high N50 value of 78.27 Mb. Phylogenetic analysis using single copy orthologs among 12 angiosperms showed that cluster bean shared a common ancestor with other legumes 80.6 MYA. No evidence of recent whole genome duplication event in cluster bean was found in our analysis. Further comparative transcriptomics analyses revealed pod-specific up-regulation of genes encoding enzymes involved in galactomannan biosynthesis. The high-quality chromosome-scale cluster bean genome assembly will facilitate understanding of the molecular basis of galactomannan biosynthesis and aid in genomics-assisted improvement of cluster bean.
Collapse
Affiliation(s)
- Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, India.
| | | | | | - Swati Saxena
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Anshika Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Priya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - R Sharma
- ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | - H R Mahla
- ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Amitha Mithra Sv
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Pritam Kalia
- Division of Vegetable Sciences, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - A R Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - T R Sharma
- DDG (CS), Indian Council of Agricultural Research, New Delhi, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
204
|
Li H, Chen T, Jia L, Wang Z, Li J, Wang Y, Fu M, Chen M, Wang Y, Huang F, Jiang Y, Li T, Zhou Z, Li Y, Yao W, Wang Y. SoybeanGDB: A comprehensive genomic and bioinformatic platform for soybean genetics and genomics. Comput Struct Biotechnol J 2023; 21:3327-3338. [PMID: 38213885 PMCID: PMC10781885 DOI: 10.1016/j.csbj.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 01/13/2024] Open
Abstract
Soybean (Glycine max (L.) Merr.) is a globally significant crop, widely cultivated for oilseed production and animal feeds. In recent years, the rapid growth of multi-omics data from thousands of soybean accessions has provided unprecedented opportunities for researchers to explore genomes, genetic variations, and gene functions. To facilitate the utilization of these abundant data for soybean breeding and genetic improvement, the SoybeanGDB database (https://venyao.xyz/SoybeanGDB/) was developed as a comprehensive platform. SoybeanGDB integrates high-quality de novo assemblies of 39 soybean genomes and genomic variations among thousands of soybean accessions. Genomic information and variations in user-specified genomic regions can be searched and downloaded from SoybeanGDB, in a user-friendly manner. To facilitate research on genetic resources and elucidate the biological significance of genes, SoybeanGDB also incorporates a variety of bioinformatics analysis modules with graphical interfaces, such as linkage disequilibrium analysis, nucleotide diversity analysis, allele frequency analysis, gene expression analysis, primer design, gene set enrichment analysis, etc. In summary, SoybeanGDB is an essential and valuable resource that provides an open and free platform to accelerate global soybean research.
Collapse
Affiliation(s)
- Haoran Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Tiantian Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Lihua Jia
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhizhan Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiaming Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yazhou Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Mengjia Fu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Mingming Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuping Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Fangfang Huang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yingru Jiang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Tao Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhengfu Zhou
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yang Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yihan Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
205
|
Yang Y, Zhu J, Wang H, Guo D, Wang Y, Mei W, Peng S, Dai H. Systematic investigation of the R2R3-MYB gene family in Aquilaria sinensis reveals a transcriptional repressor AsMYB054 involved in 2-(2-phenylethyl)chromone biosynthesis. Int J Biol Macromol 2023:125302. [PMID: 37315664 DOI: 10.1016/j.ijbiomac.2023.125302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Trees in the genus Aquilaria produce agarwood, a valuable resin used in medicine, perfumes, and incense. 2-(2-Phenethyl)chromones (PECs) are characteristic components of agarwood; however, molecular mechanisms underlying PEC biosynthesis and regulation remain largely unknown. The R2R3-MYB transcription factors play important regulatory roles in the biosynthesis of various secondary metabolites. In this study, 101 R2R3-MYB genes in Aquilaria sinensis were systematically identified and analyzed at the genome-wide level. Transcriptomic analysis revealed that 19 R2R3-MYB genes were significantly regulated by an agarwood inducer, and showed significant correlations with PEC accumulation. Expression and evolutionary analyses revealed that AsMYB054, a subgroup 4 R2R3-MYB, was negatively correlated with PEC accumulation. AsMYB054 was located in the nucleus and functioned as a transcriptional repressor. Moreover, AsMYB054 could bind to the promoters of the PEC biosynthesis related genes AsPKS02 and AsPKS09, and inhibit their transcriptional activity. These findings suggested that AsMYB054 functions as a negative regulator of PEC biosynthesis via the inhibition of AsPKS02 and AsPKS09 in A. sinensis. Our results provide a comprehensive understanding of the R2R3-MYB subfamily in A. sinensis and lay a foundation for further functional analyses of R2R3-MYB genes in PEC biosynthesis.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China; International Joint Research Center of Agarwood, Haikou 571101, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China
| | - Dong Guo
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ying Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| |
Collapse
|
206
|
Ma J, Wang R, Zhao H, Li L, Zeng F, Wang Y, Chen M, Chang J, He G, Yang G, Li Y. Genome-wide characterization of the VQ genes in Triticeae and their functionalization driven by polyploidization and gene duplication events in wheat. Int J Biol Macromol 2023:125264. [PMID: 37302635 DOI: 10.1016/j.ijbiomac.2023.125264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Valine-glutamine motif-containing (VQ) proteins are transcriptional cofactors widely involved in plant growth, development, and response to various stresses. Although the VQ family has been genome-wide identified in some species, but the knowledge regarding duplication-driven functionalization of VQ genes among evolutionarily related species is still lacking. Here, 952 VQ genes have been identified from 16 species, emphasizing seven Triticeae species including the bread wheat. Comprehensive phylogenetic and syntenic analyses allow us to establish the orthologous relationship of VQ genes from rice (Oryza sativa) to bread wheat (Triticum aestivum). The evolutionary analysis revealed that whole-genome duplication (WGD) drives the expansion of OsVQs, while TaVQs expansion is associated with a recent burst of gene duplication (RBGD). We also analyzed the motif composition and molecular properties of TaVQ proteins, enriched biological functions, and expression patterns of TaVQs. We demonstrate that WGD-derived TaVQs have become divergent in both protein motif composition and expression pattern, while RBGD-derived TaVQs tend to adopt specific expression patterns, suggesting their functionalization in certain biological processes or in response to specific stresses. Furthermore, some RBGD-derived TaVQs are found to be associated with salt tolerance. Several of the identified salt-related TaVQ proteins were located in the cytoplasm and nucleus and their salt-responsive expression patterns were validated by qPCR analysis. Yeast-based functional experiments confirmed that TaVQ27 may be a new regulator to salt response and regulation. Overall, this study lays the foundation for further functional validation of VQ family members within the Triticeae species.
Collapse
Affiliation(s)
- Jingfei Ma
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Li Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Fang Zeng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuesheng Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China.
| |
Collapse
|
207
|
Yu H, Zhang Y, Fang J, Yang X, Zhang Z, Wang F, Wu T, Khan MHU, Bhat JA, Jiang Y, Wang Y, Feng X. GmUFO1 Regulates Floral Organ Number and Shape in Soybean. Int J Mol Sci 2023; 24:ijms24119662. [PMID: 37298613 DOI: 10.3390/ijms24119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The UNUSUAL FLORAL ORGANS (UFO) gene is an essential regulatory factor of class B genes and plays a vital role in the process of inflorescence primordial and flower primordial development. The role of UFO genes in soybean was investigated to better understand the development of floral organs through gene cloning, expression analysis, and gene knockout. There are two copies of UFO genes in soybean and in situ hybridization, which have demonstrated similar expression patterns of the GmUFO1 and GmUFO2 genes in the flower primordium. The phenotypic observation of GmUFO1 knockout mutant lines (Gmufo1) showed an obvious alteration in the floral organ number and shape and mosaic organ formation. By contrast, GmUFO2 knockout mutant lines (Gmufo2) showed no obvious difference in the floral organs. However, the GmUFO1 and GmUFO2 double knockout lines (Gmufo1ufo2) showed more mosaic organs than the Gmufo1 lines, in addition to the alteration in the organ number and shape. Gene expression analysis also showed differences in the expression of major ABC function genes in the knockout lines. Based on the phenotypic and expression analysis, our results suggest the major role of GmUFO1 in the regulation of flower organ formation in soybeans and that GmUFO2 does not have any direct effect but might have an interaction role with GmUFO1 in the regulation of flower development. In conclusion, the present study identified UFO genes in soybean and improved our understanding of floral development, which could be useful for flower designs in hybrid soybean breeding.
Collapse
Affiliation(s)
- Huimin Yu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Junling Fang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xinjing Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fawei Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Hafeez Ullah Khan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | | | - Yu Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xianzhong Feng
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
208
|
Kong W, Wang Y, Zhang S, Yu J, Zhang X. Recent Advances in Assembly of Complex Plant Genomes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:427-439. [PMID: 37100237 PMCID: PMC10787022 DOI: 10.1016/j.gpb.2023.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Over the past 20 years, tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already, ranging from those of nonvascular plants to those of flowering plants. However, complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity, highly repetitive sequences, or high ploidy characteristics of complex genomes. Herein, we summarize the challenges of and advances in complex plant genome assembly, including feasible experimental strategies, upgrades to sequencing technology, existing assembly methods, and different phasing algorithms. Moreover, we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes. Finally, we expect that the accurate, gapless, telomere-to-telomere, and fully phased assembly of complex plant genomes could soon become routine.
Collapse
Affiliation(s)
- Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengcheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
209
|
Yuan J, Song Q. Polyploidy and diploidization in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:51. [PMID: 37313224 PMCID: PMC10244302 DOI: 10.1007/s11032-023-01396-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Polyploidy is widespread and particularly common in angiosperms. The prevalence of polyploidy in the plant suggests it as a crucial driver of diversification and speciation. The paleopolyploid soybean (Glycine max) is one of the most important crops of plant protein and oil for humans and livestock. Soybean experienced two rounds of whole genome duplication around 13 and 59 million years ago. Due to the relatively slow process of post-polyploid diploidization, most genes are present in multiple copies across the soybean genome. Growing evidence suggests that polyploidization and diploidization could cause rapid and dramatic changes in genomic structure and epigenetic modifications, including gene loss, transposon amplification, and reorganization of chromatin architecture. This review is focused on recent progresses about genetic and epigenetic changes during polyploidization and diploidization of soybean and represents the challenges and potentials for application of polyploidy in soybean breeding.
Collapse
Affiliation(s)
- Jingya Yuan
- College of Life Sciences, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| | - Qingxin Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095 Jiangsu China
| |
Collapse
|
210
|
Leung HS, Chan LY, Law CH, Li MW, Lam HM. Twenty years of mining salt tolerance genes in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:45. [PMID: 37313223 PMCID: PMC10248715 DOI: 10.1007/s11032-023-01383-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/12/2023] [Indexed: 06/15/2023]
Abstract
Current combined challenges of rising food demand, climate change and farmland degradation exert enormous pressure on agricultural production. Worldwide soil salinization, in particular, necessitates the development of salt-tolerant crops. Soybean, being a globally important produce, has its genetic resources increasingly examined to facilitate crop improvement based on functional genomics. In response to the multifaceted physiological challenge that salt stress imposes, soybean has evolved an array of defences against salinity. These include maintaining cell homeostasis by ion transportation, osmoregulation, and restoring oxidative balance. Other adaptations include cell wall alterations, transcriptomic reprogramming, and efficient signal transduction for detecting and responding to salt stress. Here, we reviewed functionally verified genes that underly different salt tolerance mechanisms employed by soybean in the past two decades, and discussed the strategy in selecting salt tolerance genes for crop improvement. Future studies could adopt an integrated multi-omic approach in characterizing soybean salt tolerance adaptations and put our existing knowledge into practice via omic-assisted breeding and gene editing. This review serves as a guide and inspiration for crop developers in enhancing soybean tolerance against abiotic stresses, thereby fulfilling the role of science in solving real-life problems. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01383-3.
Collapse
Affiliation(s)
- Hoi-Sze Leung
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Long-Yiu Chan
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Cheuk-Hin Law
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Man-Wah Li
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000 People’s Republic of China
| |
Collapse
|
211
|
Nguyen CX, Dohnalkova A, Hancock CN, Kirk KR, Stacey G, Stacey MG. Critical role for uricase and xanthine dehydrogenase in soybean nitrogen fixation and nodule development. THE PLANT GENOME 2023; 16:e20171. [PMID: 34904377 DOI: 10.1002/tpg2.20172] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/22/2021] [Indexed: 06/14/2023]
Abstract
De novo purine biosynthesis is required for the incorporation of fixed nitrogen in ureide exporting nodules, as formed on soybean [Glycine max (L.) Merr.] roots. However, in many cases, the enzymes involved in this pathway have been deduced strictly from genome annotations with little direct genetic evidence, such as mutant studies, to confirm their biochemical function or importance to nodule development. While efforts to develop large mutant collections of soybean are underway, research on this plant is still hampered by the inability to obtain mutations in any specific gene of interest. Using a forward genetic approach, as well as CRISPR/Cas9 gene editing via Agrobacterium rhizogenes-mediated hairy root transformation, we identified and characterized the role of GmUOX (Uricase) and GmXDH (Xanthine Dehydrogenase) in nitrogen fixation and nodule development in soybean. The gmuox knockout soybean mutants displayed nitrogen deficiency chlorosis and early nodule senescence, as exemplified by the reduced nitrogenase (acetylene reduction) activity in nodules, the internal greenish-white internal appearance of nodules, and diminished leghemoglobin production. In addition, gmuox1 nodules showed collapsed infected cells with degraded cytoplasm, aggregated bacteroids with no discernable symbiosome membranes, and increased formation of poly-β-hydroxybutyrate granules. Similarly, knockout gmxdh mutant nodules, generated with the CRISPR/Cas9 system, also exhibited early nodule senescence. These genetic studies confirm the critical role of the de novo purine metabolisms pathway not only in the incorporation of fixed nitrogen but also in the successful development of a functional, nitrogen-fixing nodule. Furthermore, these studies demonstrate the great utility of the CRISPR/Cas9 system for studying root-associated gene traits when coupled with hairy root transformation.
Collapse
Affiliation(s)
- Cuong X Nguyen
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - C Nathan Hancock
- Dep. of Biology & Geology, Univ. of South Carolina, Aiken, SC, 29801, USA
| | - Kendall R Kirk
- Edisto Research & Education Center, Clemson Univ., Blackville, SC, 29817, USA
| | - Gary Stacey
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
- Division of Biochemistry, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Division of Plant Sciences, Univ. of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
212
|
Wang C, Hao X, Liu X, Su Y, Pan Y, Zong C, Wang W, Xing G, He J, Gai J. An Improved Genome-Wide Association Procedure Explores Gene-Allele Constitutions and Evolutionary Drives of Growth Period Traits in the Global Soybean Germplasm Population. Int J Mol Sci 2023; 24:ijms24119570. [PMID: 37298521 DOI: 10.3390/ijms24119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In soybeans (Glycine max (L.) Merr.), their growth periods, DSF (days of sowing-to-flowering), and DFM (days of flowering-to-maturity) are determined by their required accumulative day-length (ADL) and active temperature (AAT). A sample of 354 soybean varieties from five world eco-regions was tested in four seasons in Nanjing, China. The ADL and AAT of DSF and DFM were calculated from daily day-lengths and temperatures provided by the Nanjing Meteorological Bureau. The improved restricted two-stage multi-locus genome-wide association study using gene-allele sequences as markers (coded GASM-RTM-GWAS) was performed. (i) For DSF and its related ADLDSF and AATDSF, 130-141 genes with 384-406 alleles were explored, and for DFM and its related ADLDFM and AATDFM, 124-135 genes with 362-384 alleles were explored, in a total of six gene-allele systems. DSF shared more ADL and AAT contributions than DFM. (ii) Comparisons between the eco-region gene-allele submatrices indicated that the genetic adaptation from the origin to the geographic sub-regions was characterized by allele emergence (mutation), while genetic expansion from primary maturity group (MG)-sets to early/late MG-sets featured allele exclusion (selection) without allele emergence in addition to inheritance (migration). (iii) Optimal crosses with transgressive segregations in both directions were predicted and recommended for breeding purposes, indicating that allele recombination in soybean is an important evolutionary drive. (iv) Genes of the six traits were mostly trait-specific involved in four categories of 10 groups of biological functions. GASM-RTM-GWAS showed potential in detecting directly causal genes with their alleles, identifying differential trait evolutionary drives, predicting recombination breeding potentials, and revealing population gene networks.
Collapse
Affiliation(s)
- Can Wang
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoshuai Hao
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueqin Liu
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhu Su
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongpeng Pan
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Zong
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wubin Wang
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangnan Xing
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianbo He
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- Soybean Research Institute, MARA National Center for Soybean Improvement, MARA Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, State Innovation Platform for Integrated Production and Education in Soybean Bio-breeding, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
213
|
Jiang L, Wang P, Jia H, Wu T, Yuan S, Jiang B, Sun S, Zhang Y, Wang L, Han T. Haplotype Analysis of GmSGF14 Gene Family Reveals Its Roles in Photoperiodic Flowering and Regional Adaptation of Soybean. Int J Mol Sci 2023; 24:ijms24119436. [PMID: 37298387 DOI: 10.3390/ijms24119436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Flowering time and photoperiod sensitivity are fundamental traits that determine soybean adaptation to a given region or a wide range of geographic environments. The General Regulatory Factors (GRFs), also known as 14-3-3 family, are involved in protein-protein interactions in a phosphorylation-dependent manner, thus regulating ubiquitous biological processes, such as photoperiodic flowering, plant immunity and stress response. In this study, 20 soybean GmSGF14 genes were identified and divided into two categories according to phylogenetic relationships and structural characteristics. Real-time quantitative PCR analysis revealed that GmSGF14g, GmSGF14i, GmSGF14j, GmSGF14k, GmSGF14m and GmSGF14s were highly expressed in all tissues compared to other GmSGF14 genes. In addition, we found that the transcript levels of GmSGF14 family genes in leaves varied significantly under different photoperiodic conditions, indicating that their expression responds to photoperiod. To explore the role of GmSGF14 in the regulation of soybean flowering, the geographical distribution of major haplotypes and their association with flowering time in six environments among 207 soybean germplasms were studied. Haplotype analysis confirmed that the GmSGF14mH4 harboring a frameshift mutation in the 14-3-3 domain was associated with later flowering. Geographical distribution analysis demonstrated that the haplotypes related to early flowering were frequently found in high-latitude regions, while the haplotypes associated with late flowering were mostly distributed in low-latitude regions of China. Taken together, our results reveal that the GmSGF14 family genes play essential roles in photoperiodic flowering and geographical adaptation of soybean, providing theoretical support for further exploring the function of specific genes in this family and varietal improvement for wide adaptability.
Collapse
Affiliation(s)
- Liwei Jiang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163316, China
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Peiguo Wang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongchang Jia
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Heihe Branch, Heilongjiang Academy of Agricultural Sciences, Heihe 164399, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yuxian Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163316, China
| | - Liwei Wang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Tianfu Han
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163316, China
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
214
|
Nidumolu LCM, Lorilla KM, Chakravarty I, Uhde-Stone C. Soybean Root Transcriptomics: Insights into Sucrose Signaling at the Crossroads of Nutrient Deficiency and Biotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112117. [PMID: 37299096 DOI: 10.3390/plants12112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Soybean (Glycine max) is an important agricultural crop, but nutrient deficiencies frequently limit soybean production. While research has advanced our understanding of plant responses to long-term nutrient deficiencies, less is known about the signaling pathways and immediate responses to certain nutrient deficiencies, such as Pi and Fe deficiencies. Recent studies have shown that sucrose acts as a long-distance signal that is sent in increased concentrations from the shoot to the root in response to various nutrient deficiencies. Here, we mimicked nutrient deficiency-induced sucrose signaling by adding sucrose directly to the roots. To unravel transcriptomic responses to sucrose acting as a signal, we performed Illumina RNA-sequencing of soybean roots treated with sucrose for 20 min and 40 min, compared to non-sucrose-treated controls. We obtained a total of 260 million paired-end reads, mapping to 61,675 soybean genes, some of which are novel (not yet annotated) transcripts. Of these, 358 genes were upregulated after 20 min, and 2416 were upregulated after 40 min of sucrose exposure. GO (gene ontology) analysis revealed a high proportion of sucrose-induced genes involved in signal transduction, particularly hormone, ROS (reactive oxygen species), and calcium signaling, in addition to regulation of transcription. In addition, GO enrichment analysis indicates that sucrose triggers crosstalk between biotic and abiotic stress responses.
Collapse
Affiliation(s)
| | - Kristina Mae Lorilla
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| | - Indrani Chakravarty
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| | - Claudia Uhde-Stone
- Department of Biological Sciences, California State University, East Bay, Hayward, CA 94542, USA
| |
Collapse
|
215
|
Chaudhry A, Hassan AU, Khan SH, Abbasi A, Hina A, Khan MT, Abdelsalam NR. The changing landscape of agriculture: role of precision breeding in developing smart crops. Funct Integr Genomics 2023; 23:167. [PMID: 37204621 DOI: 10.1007/s10142-023-01093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Food plants play a crucial role in human survival, providing them essential nutrients. However, traditional breeding methods have not been able to keep up with the demands of the growing population. The improvement of food plants aims to increase yield, quality, and resistance to biotic and abiotic stresses. With CRISPR/Cas9, researchers can identify and edit key genes conferring desirable qualities in agricultural plants, including increased yield, enhanced product quality attributes, and increased tolerance to biotic and abiotic challenges. These modifications have enabled the creation of "smart crops" that exhibit rapid climatic adaptation, resistance to extreme weather conditions and high yield and quality. The use of CRISPR/Cas9 combined with viral vectors or growth regulators has made it possible to produce more efficient modified plants with certain conventional breeding methods. However, ethical and regulatory aspects of this technology must be carefully considered. Proper regulation and application of genome editing technology can bring immense benefits to agriculture and food security. This article provides an overview of genetically modified genes and conventional as well as emerging tools, including CRISPR/Cas9, that have been utilized to enhance the quality of plants/fruits and their products. The review also discusses the challenges and prospects associated with these techniques.
Collapse
Affiliation(s)
- Amna Chaudhry
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ahtsham Ul Hassan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University, Murree, 47150, Pakistan.
| | - Aiman Hina
- Soybean Research Institute, Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), MOA National Centre for Soybean Improvement, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab, Lahore, 54590, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Nader R Abdelsalam
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| |
Collapse
|
216
|
Zhu X, Leiser WL, Hahn V, Würschum T. The genetic architecture of soybean photothermal adaptation to high latitudes. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2987-3002. [PMID: 36808470 DOI: 10.1093/jxb/erad064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/16/2023] [Indexed: 05/21/2023]
Abstract
Soybean is a major plant protein source for both human food and animal feed, but to meet global demands as well as a trend towards regional production, soybean cultivation needs to be expanded to higher latitudes. In this study, we developed a large diversity panel consisting of 1503 early-maturing soybean lines and used genome-wide association mapping to dissect the genetic architecture underlying two crucial adaptation traits, flowering time and maturity. This revealed several known maturity loci, E1, E2, E3, and E4, and the growth habit locus Dt2 as causal candidate loci, and also a novel putative causal locus, GmFRL1, encoding a homolog of the vernalization pathway gene FRIGIDA-like 1. In addition, the scan for quantitative trait locus (QTL)-by-environment interactions identified GmAPETALA1d as a candidate gene for a QTL with environment-dependent reversed allelic effects. The polymorphisms of these candidate genes were identified using whole-genome resequencing data of 338 soybeans, which also revealed a novel E4 variant, e4-par, carried by 11 lines, with nine of them originating from Central Europe. Collectively, our results illustrate how combinations of QTL and their interactions with the environment facilitate the photothermal adaptation of soybean to regions far beyond its center of origin.
Collapse
Affiliation(s)
- Xintian Zhu
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, D-70599 Stuttgart, Germany
- State Plant Breeding Institute, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Volker Hahn
- State Plant Breeding Institute, University of Hohenheim, D-70599 Stuttgart, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, D-70599 Stuttgart, Germany
| |
Collapse
|
217
|
Cleary AM, Farmer AD. Genome Context Viewer (GCV) version 2: enhanced visual exploration of multiple annotated genomes. Nucleic Acids Res 2023:7173788. [PMID: 37207325 DOI: 10.1093/nar/gkad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
The Genome Context Viewer is a web application for identifying, aligning, and visualizing genomic regions based on their micro and macrosyntenic structures. By using functional elements such as gene annotations as the unit of search and comparison, the Genome Context Viewer can compute and display relationships between regions across many assemblies from federated data sources in real-time, enabling users to rapidly explore multiple annotated genomes and identify divergence and structural events that can help provide insight into evolutionary mechanisms associated with functional consequences. In this work, we introduce version 2 of the Genome Context Viewer and highlight new features that enhance usability, performance, and ease of deployment.
Collapse
Affiliation(s)
- Alan M Cleary
- National Center for Genome Resources, 2935 Rodeo Park Dr E, Santa Fe, NM 87505, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Dr E, Santa Fe, NM 87505, USA
| |
Collapse
|
218
|
Samal I, Bhoi TK, Raj MN, Majhi PK, Murmu S, Pradhan AK, Kumar D, Paschapur AU, Joshi DC, Guru PN. Underutilized legumes: nutrient status and advanced breeding approaches for qualitative and quantitative enhancement. Front Nutr 2023; 10:1110750. [PMID: 37275642 PMCID: PMC10232757 DOI: 10.3389/fnut.2023.1110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Underutilized/orphan legumes provide food and nutritional security to resource-poor rural populations during periods of drought and extreme hunger, thus, saving millions of lives. The Leguminaceae, which is the third largest flowering plant family, has approximately 650 genera and 20,000 species and are distributed globally. There are various protein-rich accessible and edible legumes, such as soybean, cowpea, and others; nevertheless, their consumption rate is far higher than production, owing to ever-increasing demand. The growing global urge to switch from an animal-based protein diet to a vegetarian-based protein diet has also accelerated their demand. In this context, underutilized legumes offer significant potential for food security, nutritional requirements, and agricultural development. Many of the known legumes like Mucuna spp., Canavalia spp., Sesbania spp., Phaseolus spp., and others are reported to contain comparable amounts of protein, essential amino acids, polyunsaturated fatty acids (PUFAs), dietary fiber, essential minerals and vitamins along with other bioactive compounds. Keeping this in mind, the current review focuses on the potential of discovering underutilized legumes as a source of food, feed and pharmaceutically valuable chemicals, in order to provide baseline data for addressing malnutrition-related problems and sustaining pulse needs across the globe. There is a scarcity of information about underutilized legumes and is restricted to specific geographical zones with local or traditional significance. Around 700 genera and 20,000 species remain for domestication, improvement, and mainstreaming. Significant efforts in research, breeding, and development are required to transform existing local landraces of carefully selected, promising crops into types with broad adaptability and economic viability. Different breeding efforts and the use of biotechnological methods such as micro-propagation, molecular markers research and genetic transformation for the development of underutilized crops are offered to popularize lesser-known legume crops and help farmers diversify their agricultural systems and boost their profitability.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Faculty of Agriculture, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute, Jodhpur, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prasanta Kumar Majhi
- Regional Research and Technology Transfer Station, Odisha University of Agriculture and Technology, Keonjhar, Odisha, India
| | - Sneha Murmu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Dilip Kumar
- ICAR-National Institute of Agricultural Economics and Policy Research, New Delhi, India
| | | | | | - P. N. Guru
- ICAR-Central Institute of Post-Harvest Engineering and Technology, Ludhiana, India
| |
Collapse
|
219
|
Feng Z, Du Y, Chen J, Chen X, Ren W, Wang L, Zhou L. Comparison and Characterization of Phenotypic and Genomic Mutations Induced by a Carbon-Ion Beam and Gamma-ray Irradiation in Soybean ( Glycine max (L.) Merr.). Int J Mol Sci 2023; 24:ijms24108825. [PMID: 37240171 DOI: 10.3390/ijms24108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Soybean (Glycine max (L.) Merr.) is a nutritious crop that can provide both oil and protein. A variety of mutagenesis methods have been proposed to obtain better soybean germplasm resources. Among the different types of physical mutagens, carbon-ion beams are considered to be highly efficient with high linear energy transfer (LET), and gamma rays have also been widely used for mutation breeding. However, systematic knowledge of the mutagenic effects of these two mutagens during development and on phenotypic and genomic mutations has not yet been elucidated in soybean. To this end, dry seeds of Williams 82 soybean were irradiated with a carbon-ion beam and gamma rays. The biological effects of the M1 generation included changes in survival rate, yield and fertility. Compared with gamma rays, the relative biological effectiveness (RBE) of the carbon-ion beams was between 2.5 and 3.0. Furthermore, the optimal dose for soybean was determined to be 101 Gy to 115 Gy when using the carbon-ion beam, and it was 263 Gy to 343 Gy when using gamma rays. A total of 325 screened mutant families were detected from out of 2000 M2 families using the carbon-ion beam, and 336 screened mutant families were found using gamma rays. Regarding the screened phenotypic M2 mutations, the proportion of low-frequency phenotypic mutations was 23.4% when using a carbon ion beam, and the proportion was 9.8% when using gamma rays. Low-frequency phenotypic mutations were easily obtained with the carbon-ion beam. After screening the mutations from the M2 generation, their stability was verified, and the genome mutation spectrum of M3 was systemically profiled. A variety of mutations, including single-base substitutions (SBSs), insertion-deletion mutations (INDELs), multinucleotide variants (MNVs) and structural variants (SVs) were detected with both carbon-ion beam irradiation and gamma-ray irradiation. Overall, 1988 homozygous mutations and 9695 homozygous + heterozygous genotype mutations were detected when using the carbon-ion beam. Additionally, 5279 homozygous mutations and 14,243 homozygous + heterozygous genotype mutations were detected when using gamma rays. The carbon-ion beam, which resulted in low levels of background mutations, has the potential to alleviate the problems caused by linkage drag in soybean mutation breeding. Regarding the genomic mutations, when using the carbon-ion beam, the proportion of homozygous-genotype SVs was 0.45%, and that of homozygous + heterozygous-genotype SVs was 6.27%; meanwhile, the proportions were 0.04% and 4.04% when using gamma rays. A higher proportion of SVs were detected when using the carbon ion beam. The gene effects of missense mutations were greater under carbon-ion beam irradiation, and the gene effects of nonsense mutations were greater under gamma-ray irradiation, which meant that the changes in the amino acid sequences were different between the carbon-ion beam and gamma rays. Taken together, our results demonstrate that both carbon-ion beam and gamma rays are effective techniques for rapid mutation breeding in soybean. If one would like to obtain mutations with a low-frequency phenotype, low levels of background genomic mutations and mutations with a higher proportion of SVs, carbon-ion beams are the best choice.
Collapse
Affiliation(s)
- Zhuo Feng
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingmin Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Chen
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Ren
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Wang
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Libin Zhou
- Biophysics Group, Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
220
|
Chen Q, Shi X, Ai L, Tian X, Zhang H, Tian J, Wang Q, Zhang M, Cui S, Yang C, Zhao H. Genome-wide identification of genes encoding SWI/SNF components in soybean and the functional characterization of GmLFR1 in drought-stressed plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1176376. [PMID: 37255551 PMCID: PMC10225534 DOI: 10.3389/fpls.2023.1176376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
ATP-dependent SWI/SNF chromatin remodeling complexes (CRCs) are evolutionarily conserved multi-component machines that regulate transcription, replication, and genome stability in eukaryotes. SWI/SNF components play pivotal roles in development and various stress responses in plants. However, the compositions and biological functions of SWI/SNF complex subunits remain poorly understood in soybean. In this study, we used bioinformatics to identify 39 genes encoding SWI/SNF subunit distributed on the 19 chromosomes of soybean. The promoter regions of the genes were enriched with several cis-regulatory elements that are responsive to various hormones and stresses. Digital expression profiling and qRT-PCR revealed that most of the SWI/SNF subunit genes were expressed in multiple tissues of soybean and were sensitive to drought stress. Phenotypical, physiological, and molecular genetic analyses revealed that GmLFR1 (Leaf and Flower-Related1) plays a negative role in drought tolerance in soybean and Arabidopsis thaliana. Together, our findings characterize putative components of soybean SWI/SNF complex and indicate possible roles for GmLFR1 in plants under drought stress. This study offers a foundation for comprehensive analyses of soybean SWI/SNF subunit and provides mechanistic insight into the epigenetic regulation of drought tolerance in soybean.
Collapse
Affiliation(s)
- Qiang Chen
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Ministry of Agriculture and Rural Affairs, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Ministry of Agriculture and Rural Affairs, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Lijuan Ai
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Xuan Tian
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Hongwei Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Jiawang Tian
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Qianying Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Ministry of Agriculture and Rural Affairs, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Ministry of Agriculture and Rural Affairs, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, College of Life Science, Hebei Normal University, Shijiazhuang, Shijiazhuang, Hebei, China
| |
Collapse
|
221
|
Yin Y, Ren Z, Zhang L, Qin L, Chen L, Liu L, Jia R, Xue K, Liu B, Wang X. In Situ Proteomic Analysis of Herbicide-Resistant Soybean and Hybrid Seeds via Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7140-7151. [PMID: 37098110 DOI: 10.1021/acs.jafc.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transgenic soybean is the commercial crop with the largest cultivation area worldwide. During transgenic soybean cultivation, exogenous genes may be transferred to wild relatives through gene flow, posing unpredictable ecological risks. Accordingly, an environmental risk assessment should focus on fitness changes and underlying mechanisms in hybrids between transgenic and wild soybeans (Glycine soja). Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) was used for in situ detection and imaging of protein changes in the seeds of transgenic herbicide-resistant soybean harboring epsps and pat genes, non-transgenic soybean, wild soybean, and their F2 hybrid. Protein data clearly distinguished wild soybeans, while the F2 seeds had protein characteristics of both parents and were distinguished from wild soybean seeds. Using UPLC-Q-TOF-MS, 22 differentially expressed proteins (DEPs) were identified, including 13 specific to wild soybean. Sucrose synthase and stress response-related DEPs were differentially expressed in parental and offspring. Differences in these may underpin the greater adaptability of the latter. MSI revealed DEP distribution in transgenic, wild, and F2 seeds. Identifying DEPs related to fitness may elucidate mechanisms underlying fitness differences among the studied varieties. Our study shows that MALDI-MSI has the potential to become a visual method for transgenic soybean analysis.
Collapse
Affiliation(s)
- Yue Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
- Nanjing Agro-Tech Extension and Service Center, Agricultural and Rural Bureau of Nanjing, Nanjing, Jiangsu 210029, China
| | - Zhentao Ren
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Li Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Liang Qin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Lulu Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| | - Laipan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruizong Jia
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya 572025, China
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (State Ethnic Affairs Commission), Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
222
|
Viswanath KK, Kuo SY, Tu CW, Hsu YH, Huang YW, Hu CC. The Role of Plant Transcription Factors in the Fight against Plant Viruses. Int J Mol Sci 2023; 24:ijms24098433. [PMID: 37176135 PMCID: PMC10179606 DOI: 10.3390/ijms24098433] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.
Collapse
Affiliation(s)
- Kotapati Kasi Viswanath
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Tu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
223
|
Liu Y, Zhang Y, Liu X, Shen Y, Tian D, Yang X, Liu S, Ni L, Zhang Z, Song S, Tian Z. SoyOmics: A deeply integrated database on soybean multi-omics. MOLECULAR PLANT 2023; 16:794-797. [PMID: 36950735 DOI: 10.1016/j.molp.2023.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/19/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaonan Liu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongmei Tian
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaoyue Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lingbin Ni
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhang Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Shuhui Song
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
224
|
Li D, Zhang Z, Gao X, Zhang H, Bai D, Wang Q, Zheng T, Li YH, Qiu LJ. The elite variations in germplasms for soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:37. [PMID: 37312749 PMCID: PMC10248635 DOI: 10.1007/s11032-023-01378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 06/15/2023]
Abstract
The genetic base of soybean cultivars (Glycine max (L.) Merr.) has been narrowed through selective domestication and specific breeding improvement, similar to other crops. This presents challenges in breeding new cultivars with improved yield and quality, reduced adaptability to climate change, and increased susceptibility to diseases. On the other hand, the vast collection of soybean germplasms offers a potential source of genetic variations to address those challenges, but it has yet to be fully leveraged. In recent decades, rapidly improved high-throughput genotyping technologies have accelerated the harness of elite variations in soybean germplasm and provided the important information for solving the problem of a narrowed genetic base in breeding. In this review, we will overview the situation of maintenance and utilization of soybean germplasms, various solutions provided for different needs in terms of the number of molecular markers, and the omics-based high-throughput strategies that have been used or can be used to identify elite alleles. We will also provide an overall genetic information generated from soybean germplasms in yield, quality traits, and pest resistance for molecular breeding.
Collapse
Affiliation(s)
- Delin Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhengwei Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinyue Gao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hao Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Dong Bai
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qi Wang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
- College of Agriculture, Northeast Agricultural University, Harbin, 150030 China
| | - Tianqing Zheng
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Ying-Hui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
225
|
Arvas YE, Marakli S, Kaya Y, Kalendar R. The power of retrotransposons in high-throughput genotyping and sequencing. FRONTIERS IN PLANT SCIENCE 2023; 14:1174339. [PMID: 37180380 PMCID: PMC10167742 DOI: 10.3389/fpls.2023.1174339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
The use of molecular markers has become an essential part of molecular genetics through their application in numerous fields, which includes identification of genes associated with targeted traits, operation of backcrossing programs, modern plant breeding, genetic characterization, and marker-assisted selection. Transposable elements are a core component of all eukaryotic genomes, making them suitable as molecular markers. Most of the large plant genomes consist primarily of transposable elements; variations in their abundance contribute to most of the variation in genome size. Retrotransposons are widely present throughout plant genomes, and replicative transposition enables them to insert into the genome without removing the original elements. Various applications of molecular markers have been developed that exploit the fact that these genetic elements are present everywhere and their ability to stably integrate into dispersed chromosomal localities that are polymorphic within a species. The ongoing development of molecular marker technologies is directly related to the deployment of high-throughput genotype sequencing platforms, and this research is of considerable significance. In this review, the practical application to molecular markers, which is a use of technology of interspersed repeats in the plant genome were examined using genomic sources from the past to the present. Prospects and possibilities are also presented.
Collapse
Affiliation(s)
- Yunus Emre Arvas
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - Sevgi Marakli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Türkiye
| | - Yılmaz Kaya
- Agricultural Biotechnology Department, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Ruslan Kalendar
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
226
|
Develtere W, Waegneer E, Debray K, De Saeger J, Van Glabeke S, Maere S, Ruttink T, Jacobs TB. SMAP design: a multiplex PCR amplicon and gRNA design tool to screen for natural and CRISPR-induced genetic variation. Nucleic Acids Res 2023; 51:e37. [PMID: 36718951 PMCID: PMC10123101 DOI: 10.1093/nar/gkad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Multiplex amplicon sequencing is a versatile method to identify genetic variation in natural or mutagenized populations through eco-tilling or multiplex CRISPR screens. Such genotyping screens require reliable and specific primer designs, combined with simultaneous gRNA design for CRISPR screens. Unfortunately, current tools are unable to combine multiplex gRNA and primer design in a high-throughput and easy-to-use manner with high design flexibility. Here, we report the development of a bioinformatics tool called SMAP design to overcome these limitations. We tested SMAP design on several plant and non-plant genomes and obtained designs for more than 80-90% of the target genes, depending on the genome and gene family. We validated the designs with Illumina multiplex amplicon sequencing and Sanger sequencing in Arabidopsis, soybean, and maize. We also used SMAP design to perform eco-tilling by tilling PCR amplicons across nine candidate genes putatively associated with haploid induction in Cichorium intybus. We screened 60 accessions of chicory and witloof and identified thirteen knockout haplotypes and their carriers. SMAP design is an easy-to-use command-line tool that generates highly specific gRNA and/or primer designs for any number of loci for CRISPR or natural variation screens and is compatible with other SMAP modules for seamless downstream analysis.
Collapse
Affiliation(s)
- Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark-Zwijnaarde 71) 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark-Zwijnaarde 71), 9052, Ghent, Belgium
| | - Evelien Waegneer
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, (Caritasstraat 39), 9090, Melle, Belgium
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kevin Debray
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark-Zwijnaarde 71) 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark-Zwijnaarde 71), 9052, Ghent, Belgium
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, (Caritasstraat 39), 9090, Melle, Belgium
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark-Zwijnaarde 71) 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark-Zwijnaarde 71), 9052, Ghent, Belgium
| | - Sabine Van Glabeke
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, (Caritasstraat 39), 9090, Melle, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark-Zwijnaarde 71) 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark-Zwijnaarde 71), 9052, Ghent, Belgium
| | - Tom Ruttink
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark-Zwijnaarde 71) 9052, Ghent, Belgium
- ILVO, Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, (Caritasstraat 39), 9090, Melle, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark-Zwijnaarde 71) 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark-Zwijnaarde 71), 9052, Ghent, Belgium
| |
Collapse
|
227
|
Njaci I, Waweru B, Kamal N, Muktar MS, Fisher D, Gundlach H, Muli C, Muthui L, Maranga M, Kiambi D, Maass BL, Emmrich PMF, Domelevo Entfellner JB, Spannagl M, Chapman MA, Shorinola O, Jones CS. Chromosome-level genome assembly and population genomic resource to accelerate orphan crop lablab breeding. Nat Commun 2023; 14:1915. [PMID: 37069152 PMCID: PMC10110558 DOI: 10.1038/s41467-023-37489-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/17/2023] [Indexed: 04/19/2023] Open
Abstract
Under-utilised orphan crops hold the key to diversified and climate-resilient food systems. Here, we report on orphan crop genomics using the case of Lablab purpureus (L.) Sweet (lablab) - a legume native to Africa and cultivated throughout the tropics for food and forage. Our Africa-led plant genome collaboration produces a high-quality chromosome-scale assembly of the lablab genome. Our assembly highlights the genome organisation of the trypsin inhibitor genes - an important anti-nutritional factor in lablab. We also re-sequence cultivated and wild lablab accessions from Africa confirming two domestication events. Finally, we examine the genetic and phenotypic diversity in a comprehensive lablab germplasm collection and identify genomic loci underlying variation of important agronomic traits in lablab. The genomic data generated here provide a valuable resource for lablab improvement. Our inclusive collaborative approach also presents an example that can be explored by other researchers sequencing indigenous crops, particularly from low and middle-income countries (LMIC).
Collapse
Affiliation(s)
- Isaac Njaci
- International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Bernice Waweru
- International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya
| | - Nadia Kamal
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | | | - David Fisher
- University of Southampton, School of Biological Sciences, Southampton, SO17 1BJ, UK
| | - Heidrun Gundlach
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Collins Muli
- International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya
| | - Lucy Muthui
- International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya
| | - Mary Maranga
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 00200, Kenya
| | - Davies Kiambi
- Bioscience Research Centre (PUBReC), Pwani University, P.O Box 195-80108, Kilifi, Kenya
| | - Brigitte L Maass
- Department of Crop Sciences, Georg-August-University Göttingen, Grisebachstr 6, 37077, Göttingen, Germany
| | - Peter M F Emmrich
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department for International Development, University of East Anglia, Norwich, NR4 7TJ, UK
| | | | - Manuel Spannagl
- Helmholtz Zentrum München, Plant Genome and Systems Biology, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Mark A Chapman
- University of Southampton, School of Biological Sciences, Southampton, SO17 1BJ, UK.
| | - Oluwaseyi Shorinola
- International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya.
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Chris S Jones
- International Livestock Research Institute, PO Box 30709-00100, Nairobi, Kenya.
| |
Collapse
|
228
|
Kenchanmane Raju SK, Ledford M, Niederhuth CE. DNA methylation signatures of duplicate gene evolution in angiosperms. PLANT PHYSIOLOGY 2023:kiad220. [PMID: 37061825 PMCID: PMC10400039 DOI: 10.1093/plphys/kiad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Gene duplication is a source of evolutionary novelty. DNA methylation may play a role in the evolution of duplicate genes (paralogs) through its association with gene expression. While this relationship has been examined to varying extents in a few individual species, the generalizability of these results at either a broad phylogenetic scale with species of differing duplication histories or across a population remains unknown. We applied a comparative epigenomics approach to 43 angiosperm species across the phylogeny and a population of 928 Arabidopsis (Arabidopsis thaliana) accessions, examining the association of DNA methylation with paralog evolution. Genic DNA methylation was differentially associated with duplication type, the age of duplication, sequence evolution, and gene expression. Whole genome duplicates were typically enriched for CG-only gene-body methylated or unmethylated genes, while single-gene duplications were typically enriched for non-CG methylated or unmethylated genes. Non-CG methylation, in particular, was characteristic of more recent single-gene duplicates. Core angiosperm gene families differentiated into those which preferentially retain paralogs and 'duplication-resistant' families, which convergently reverted to singletons following duplication. Duplication-resistant families that still have paralogous copies were, uncharacteristically for core angiosperm genes, enriched for non-CG methylation. Non-CG methylated paralogs had higher rates of sequence evolution, higher frequency of presence-absence variation, and more limited expression. This suggests that silencing by non-CG methylation may be important to maintaining dosage following duplication and be a precursor to fractionation. Our results indicate that genic methylation marks differing evolutionary trajectories and fates between paralogous genes and have a role in maintaining dosage following duplication.
Collapse
Affiliation(s)
| | | | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
229
|
Wang J, Sun Z, Liu H, Yue L, Wang F, Liu S, Su B, Liu B, Kong F, Fang C. Genome-Wide Identification and Characterization of the Soybean Snf2 Gene Family and Expression Response to Rhizobia. Int J Mol Sci 2023; 24:ijms24087250. [PMID: 37108411 PMCID: PMC10138738 DOI: 10.3390/ijms24087250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sucrose nonfermenting 2 (Snf2) family proteins are the core component of chromatin remodeling complexes that can alter chromatin structure and nucleosome position by utilizing the energy of ATP, playing a vital role in transcription regulation, DNA replication, and DNA damage repair. Snf2 family proteins have been characterized in various species including plants, and they have been found to regulate development and stress responses in Arabidopsis. Soybean (Glycine max) is an important food and economic crop worldwide, unlike other non-leguminous crops, soybeans can form a symbiotic relationship with rhizobia for biological nitrogen fixation. However, little is known about Snf2 family proteins in soybean. In this study, we identified 66 Snf2 family genes in soybean that could be classified into six groups like Arabidopsis, unevenly distributed on 20 soybean chromosomes. Phylogenetic analysis with Arabidopsis revealed that these 66 Snf2 family genes could be divided into 18 subfamilies. Collinear analysis showed that segmental duplication was the main mechanism for expansion of Snf2 genes rather than tandem repeats. Further evolutionary analysis indicated that the duplicated gene pairs had undergone purifying selection. All Snf2 proteins contained seven domains, and each Snf2 protein had at least one SNF2_N domain and one Helicase_C domain. Promoter analysis revealed that most Snf2 genes had cis-elements associated with jasmonic acid, abscisic acid, and nodule specificity in their promoter regions. Microarray data and real-time quantitative PCR (qPCR) analysis revealed that the expression profiles of most Snf2 family genes were detected in both root and nodule tissues, and some of them were found to be significantly downregulated after rhizobial infection. In this study, we conducted a comprehensive analysis of the soybean Snf2 family genes and demonstrated their responsiveness to Rhizobia infection. This provides insight into the potential roles of Snf2 family genes in soybean symbiotic nodulation.
Collapse
Affiliation(s)
- Jianhao Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhihui Sun
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Huan Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lin Yue
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fan Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Shuangrong Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bohong Su
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fanjiang Kong
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Chao Fang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
230
|
Kafer JM, Molinari MDC, Henning FA, Koltun A, Marques VV, Marin SRR, Nepomuceno AL, Mertz-Henning LM. Transcriptional Profile of Soybean Seeds with Contrasting Seed Coat Color. PLANTS (BASEL, SWITZERLAND) 2023; 12:1555. [PMID: 37050181 PMCID: PMC10097363 DOI: 10.3390/plants12071555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Soybean is the primary source of vegetable protein and is used for various purposes, mainly to feed animals. This crop can have diverse seed coat colors, varying from yellow, black, brown, and green to bicolor. Black seed coat cultivars have already been assigned as favorable for both seed and grain production. Thus, this work aimed to identify genes associated with soybean seed quality by comparing the transcriptomes of soybean seeds with contrasting seed coat colors. The results from RNA-seq analyses were validated with real-time PCR using the cultivar BRS 715A (black seed coat) and the cultivars BRS 413 RR and DM 6563 IPRO (yellow seed coat). We found 318 genes differentially expressed in all cultivars (freshly harvested seeds and seeds stored in cold chamber). From the in silico analysis of the transcriptomes, the following genes were selected and validated with RT-qPCR: ACS1, ACSF3, CYP90A1, CYP710A1, HCT, CBL, and SAHH. These genes are genes induced in the black seed coat cultivar and are part of pathways responsible for ethylene, lipid, brassinosteroid, lignin, and sulfur amino acid biosynthesis. The BRSMG 715A gene has almost 4times more lignin than the yellow seed coat cultivars. These attributes are related to the BRSMG 715A cultivar's higher seed quality, which translates to more longevity and resistance to moisture and mechanical damage. Future silencing studies may evaluate the knockout of these genes to better understand the biology of soybean seeds with black seed coat.
Collapse
Affiliation(s)
- João M. Kafer
- Biotechnology Department, Londrina State University, Londrina 86057-970, PR, Brazil
| | - Mayla D. C. Molinari
- Arthur Bernardes Foundation, Embrapa Soja, Londrina 86085-981, PR, Brazil; (M.D.C.M.); (V.V.M.)
| | - Fernando A. Henning
- Embrapa Soja, Londrina 86085-981, PR, Brazil; (F.A.H.); (S.R.R.M.); (A.L.N.)
| | - Alessandra Koltun
- Agronomy Department, State University of Maringá, Maringá 87020-900, PR, Brazil;
| | - Viviani V. Marques
- Arthur Bernardes Foundation, Embrapa Soja, Londrina 86085-981, PR, Brazil; (M.D.C.M.); (V.V.M.)
| | - Silvana R. R. Marin
- Embrapa Soja, Londrina 86085-981, PR, Brazil; (F.A.H.); (S.R.R.M.); (A.L.N.)
| | | | | |
Collapse
|
231
|
Liu Z, Kong X, Long Y, Liu S, Zhang H, Jia J, Cui W, Zhang Z, Song X, Qiu L, Zhai J, Yan Z. Integrated single-nucleus and spatial transcriptomics captures transitional states in soybean nodule maturation. NATURE PLANTS 2023; 9:515-524. [PMID: 37055554 DOI: 10.1038/s41477-023-01387-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Legumes form symbiosis with rhizobium leading to the development of nitrogen-fixing nodules. By integrating single-nucleus and spatial transcriptomics, we established a cell atlas of soybean nodules and roots. In central infected zones of nodules, we found that uninfected cells specialize into functionally distinct subgroups during nodule development, and revealed a transitional subtype of infected cells with enriched nodulation-related genes. Overall, our results provide a single-cell perspective for understanding rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Zhijian Liu
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiangying Kong
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Long
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Sirui Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Hong Zhang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jinbu Jia
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenhui Cui
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Zunmian Zhang
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Zhe Yan
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| |
Collapse
|
232
|
Yang Q, Zhang J, Shi X, Chen L, Qin J, Zhang M, Yang C, Song Q, Yan L. Development of SNP marker panels for genotyping by target sequencing (GBTS) and its application in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:26. [PMID: 37313526 PMCID: PMC10248699 DOI: 10.1007/s11032-023-01372-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/16/2023] [Indexed: 06/15/2023]
Abstract
A high-throughput genotyping platform with customized flexibility, high genotyping accuracy, and low cost is critical for marker-assisted selection and genetic mapping in soybean. Three assay panels were selected from the SoySNP50K, 40K, 20K, and 10K arrays, containing 41,541, 20,748, and 9670 SNP markers, respectively, for genotyping by target sequencing (GBTS). Fifteen representative accessions were used to assess the accuracy and consistency of the SNP alleles identified by the SNP panels and sequencing platform. The SNP alleles were 99.87% identical between technical replicates and 98.86% identical between the 40K SNP GBTS panel and 10× resequencing analysis. The GBTS method was also accurate in the sense that the genotypic dataset of the 15 representative accessions correctly revealed the pedigree of the accessions, and the biparental progeny datasets correctly constructed the linkage maps of the SNPs. The 10K panel was also used to genotype two parent-derived populations and analyze QTLs controlling 100-seed weight, resulting in the identification of the stable associated genetic locus Locus_OSW_06 on chromosome 06. The markers flanking the QTL explained 7.05% and 9.83% of the phenotypic variation, respectively. Compared with GBS and DNA chips, the 40K, 20K, and 10K panels reduced costs by 5.07% and 58.28%, 21.44% and 65.48%, and 35.74% and 71.76%, respectively. Low-cost genotyping panels could facilitate soybean germplasm assessment, genetic linkage map construction, QTL identification, and genomic selection. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01372-6.
Collapse
Affiliation(s)
- Qing Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Jianan Zhang
- Mol Breeding Biotechnology Co., Ltd., 136 Huanghe Parkway, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Lei Chen
- School of Life Sciences, Yantai University, 30# Qingquan Road, Lai Shan District, Yantai, 264005 Shandong People’s Republic of China
| | - Jun Qin
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Mengchen Zhang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD USA
| | - Long Yan
- Hebei Laboratory of Crop Genetics and Breeding, National Soybean Improvement Center Shijiazhuang Sub-Center, Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture and Rural Affairs, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, High-Tech Industrial Development Zone, 162 Hengshan St, Shijiazhuang, 050035 Hebei People’s Republic of China
| |
Collapse
|
233
|
Yu H, Bhat JA, Li C, Zhao B, Guo T, Feng X. Genome-wide survey identified superior and rare haplotypes for plant height in the north-eastern soybean germplasm of China. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:22. [PMID: 37309452 PMCID: PMC10248691 DOI: 10.1007/s11032-023-01363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/18/2023] [Indexed: 06/14/2023]
Abstract
The proper and efficient utilization of natural genetic diversity can significantly impact crop improvements. Plant height is a quantitative trait governing the plant type as well as the yield and quality of soybean. Here, we used a combined approach including a genome-wide association study (GWAS) and haplotype and candidate gene analyses to explore the genetic basis of plant height in diverse natural soybean populations. For the GWAS analysis, we used the whole-genome resequencing data of 196 diverse soybean cultivars collected from different accumulated temperature zones of north-eastern China to detect the significant single-nucleotide polymorphisms (SNPs) associated with plant height across three environments (E1, E2, and E3). A total of 33 SNPs distributed on four chromosomes, viz., Chr.02, Chr.04, Chr.06, and Chr.19, were identified to be significantly associated with plant height across the three environments. Among them, 23 were consistently detected in two or more environments and the remaining 10 were identified in only one environment. Interestingly, all the significant SNPs detected on the respective chromosomes fell within the physical interval of linkage disequilibrium (LD) decay (± 38.9 kb). Hence, these genomic regions were considered to be four quantitative trait loci (QTLs), viz., qPH2, qPH4, qPH6, and qPH19, regulating plant height. Moreover, the genomic region flanking all significant SNPs on four chromosomes exhibited strong LD. These significant SNPs thus formed four haplotype blocks, viz., Hap-2, Hap-4, Hap-6, and Hap-19. The number of haplotype alleles underlying each block varied from four to six, and these alleles regulate the different phenotypes of plant height ranging from dwarf to extra-tall heights. Nine candidate genes were identified within the four haplotype blocks, and these genes were considered putative candidates regulating soybean plant height. Hence, these stable QTLs, superior haplotypes, and candidate genes (after proper validation) can be deployed for the development of soybean cultivars with desirable plant heights. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01363-7.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- Zhejiang Lab, Hangzhou, 310012 China
| | | | - Candong Li
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007 China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Tai Guo
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007 China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- Zhejiang Lab, Hangzhou, 310012 China
| |
Collapse
|
234
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
235
|
Yamaguchi N, Sato Y, Taguchi-Shiobara F, Yamashita K, Kawasaki M, Ishimoto M, Senda M. A novel QTL associated with tolerance to cold-induced seed cracking in the soybean cultivar Toyomizuki. BREEDING SCIENCE 2023; 73:204-211. [PMID: 37404349 PMCID: PMC10316309 DOI: 10.1270/jsbbs.22066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/25/2022] [Indexed: 07/06/2023]
Abstract
Low temperatures after flowering cause seed cracking (SC) in soybean. Previously, we reported that proanthocyanidin accumulation on the dorsal side of the seed coat, controlled by the I locus, may lead to cracked seeds; and that homozygous IcIc alleles at the I locus confer SC tolerance in the line Toiku 248. To discover new genes related to SC tolerance, we evaluated the physical and genetic mechanisms of SC tolerance in the cultivar Toyomizuki (genotype II). Histological and texture analyses of the seed coat revealed that the ability to maintain hardness and flexibility under low temperature, regardless of proanthocyanidin accumulation in the dorsal seed coat, contributes to SC tolerance in Toyomizuki. This indicated that the SC tolerance mechanism differed between Toyomizuki and Toiku 248. A quantitative trait loci (QTL) analysis of recombinant inbred lines revealed a new, stable QTL related to SC tolerance. The relationship between this new QTL, designated as qCS8-2, and SC tolerance was confirmed in residual heterozygous lines. The distance between qCS8-2 and the previously identified QTL qCS8-1, which is likely the Ic allele, was estimated to be 2-3 Mb, so it will be possible to pyramid these regions to develop new cultivars with increased SC tolerance.
Collapse
Affiliation(s)
- Naoya Yamaguchi
- Hokkaido Research Organization Tokachi Agricultural Experiment Station, Shinsei, Memuro-cho, Kasai-gun, Hokkaido 082-0081, Japan
| | - Yumi Sato
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Fumio Taguchi-Shiobara
- Institute of Crop Science, The National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Kazuki Yamashita
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Michio Kawasaki
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo, Hirosaki, Aomori 036-8561, Japan
| | - Masao Ishimoto
- Institute of Crop Science, The National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Mineo Senda
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo, Hirosaki, Aomori 036-8561, Japan
| |
Collapse
|
236
|
Bisht A, Saini DK, Kaur B, Batra R, Kaur S, Kaur I, Jindal S, Malik P, Sandhu PK, Kaur A, Gill BS, Wani SH, Kaur B, Mir RR, Sandhu KS, Siddique KHM. Multi-omics assisted breeding for biotic stress resistance in soybean. Mol Biol Rep 2023; 50:3787-3814. [PMID: 36692674 DOI: 10.1007/s11033-023-08260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
Biotic stress is a critical factor limiting soybean growth and development. Soybean responses to biotic stresses such as insects, nematodes, fungal, bacterial, and viral pathogens are governed by complex regulatory and defense mechanisms. Next-generation sequencing has availed research techniques and strategies in genomics and post-genomics. This review summarizes the available information on marker resources, quantitative trait loci, and marker-trait associations involved in regulating biotic stress responses in soybean. We discuss the differential expression of related genes and proteins reported in different transcriptomics and proteomics studies and the role of signaling pathways and metabolites reported in metabolomic studies. Recent advances in omics technologies offer opportunities to reshape and improve biotic stress resistance in soybean by altering gene regulation and/or other regulatory networks. We suggest using 'integrated omics' to precisely understand how soybean responds to different biotic stresses. We also discuss the potential challenges of integrating multi-omics for the functional analysis of genes and their regulatory networks and the development of biotic stress-resistant cultivars. This review will help direct soybean breeding programs to develop resistance against different biotic stresses.
Collapse
Affiliation(s)
- Ashita Bisht
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
- CSK Himachal Pradesh Krishi Vishvavidyalaya, Highland Agricultural Research and Extension Centre, 175142, Kukumseri, Lahaul and Spiti, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India.
| | - Baljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, 25004, Meerut, India
| | - Sandeep Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Ishveen Kaur
- Agriculture, Environmental and Sustainability Sciences, College of sciences, University of Texas Rio Grande Valley, 78539, Edinburg, TX, USA
| | - Suruchi Jindal
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Palvi Malik
- , Gurdev Singh Khush Institute of Genetics, Plant Breeding and Biotechnology, Punjab Agricultural University,, 141004, Ludhiana, India
| | - Pawanjit Kaur Sandhu
- Department of Chemistry, University of British Columbia, V1V 1V7, Okanagan, Kelowna, Canada
| | - Amandeep Kaur
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Balwinder Singh Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, 141004, Ludhiana, India
| | - Shabir Hussain Wani
- MRCFC Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, Shalimar, India
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, 33430, Belle Glade, Florida, USA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, 193201, India
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, 99163, Pullman, WA, USA.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, 6001, Perth, WA, Australia.
| |
Collapse
|
237
|
Takahashi Y, Nasu H, Nakayama S, Tomooka N. Domestication of azuki bean and soybean in Japan: From the insight of archeological and molecular evidence. BREEDING SCIENCE 2023; 73:117-131. [PMID: 37404345 PMCID: PMC10316305 DOI: 10.1270/jsbbs.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/05/2023] [Indexed: 07/06/2023]
Abstract
Domestication of azuki bean and soybean has enabled them to acquire non-dormant seeds, non-shattering pods, and larger seed size. Seed remains of the Jomon period recently discovered at archeological sites in the Central Highlands of Japan (6,000-4,000 BP) suggest that the use of azuki bean and soybean and their increase in seed size began earlier in Japan than in China and Korea; molecular phylogenetic studies indicate that azuki bean and soybean originated in Japan. Recent identification of domestication genes indicate that the domestication traits of azuki bean and soybean were established by different mechanisms. Analyses of domestication related genes using DNA extracted from the seed remains would reveal further details about their domestication processes.
Collapse
Affiliation(s)
- Yu Takahashi
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroo Nasu
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Okayama 700-0005, Japan
| | - Seiji Nakayama
- Research Institute of Cultural Properties, Teikyo University, Fuefuki, Yamanashi 406-0032, Japan
| | - Norihiko Tomooka
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
238
|
Marsh JI, Nestor BJ, Petereit J, Tay Fernandez CG, Bayer PE, Batley J, Edwards D. Legume-wide comparative analysis of pod shatter locus PDH1 reveals phaseoloid specificity, high cowpea expression, and stress responsive genomic context. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36970933 DOI: 10.1111/tpj.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Pod dehiscence is a major source of yield loss in legumes, which is exacerbated by aridity. Disruptive mutations in "Pod indehiscent 1" (PDH1), a pod sclerenchyma-specific lignin biosynthesis gene, has been linked to significant reductions in dehiscence in several legume species. We compared syntenic PDH1 regions across 12 legumes and two outgroups to uncover key historical evolutionary trends at this important locus. Our results clarified the extent to which PDH1 orthologs are present in legumes, showing the typical genomic context surrounding PDH1 has only arisen relatively recently in certain phaseoloid species (Vigna, Phaseolus, Glycine). The notable absence of PDH1 in Cajanus cajan may be a major contributor to its indehiscent phenotype compared with other phaseoloids. In addition, we identified a novel PDH1 ortholog in Vigna angularis and detected remarkable increases in PDH1 transcript abundance during Vigna unguiculata pod development. Investigation of the shared genomic context of PDH1 revealed it lies in a hotspot of transcription factors and signaling gene families that respond to abscisic acid and drought stress, which we hypothesize may be an additional factor influencing expression of PDH1 under specific environmental conditions. Our findings provide key insights into the evolutionary history of PDH1 and lay the foundation for optimizing the pod dehiscence role of PDH1 in major and understudied legume species.
Collapse
Affiliation(s)
- Jacob I Marsh
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Benjamin J Nestor
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Cassandria G Tay Fernandez
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Centre for Applied Bioinformatics, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
239
|
Li JM, Ye MY, Wang C, Ma XH, Wu NN, Zhong CL, Zhang Y, Cheng N, Nakata PA, Zeng L, Liu JZ. Soybean GmSAUL1, a Bona Fide U-Box E3 Ligase, Negatively Regulates Immunity Likely through Repressing the Activation of GmMPK3. Int J Mol Sci 2023; 24:ijms24076240. [PMID: 37047211 PMCID: PMC10094664 DOI: 10.3390/ijms24076240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
E3 ubiquitin ligases play important roles in plant immunity, but their role in soybean has not been investigated previously. Here, we used Bean pod mottle virus (BPMV)-mediated virus-induced gene silencing (VIGS) to investigate the function of GmSAUL1 (Senescence-Associated E3 Ubiquitin Ligase 1) homologs in soybean. When two closely related SAUL1 homologs were silenced simultaneously, the soybean plants displayed autoimmune phenotypes, which were significantly alleviated by high temperature, suggesting that GmSAUL1a/1b might be guarded by an R protein. Interestingly, silencing GmSAUL1a/1b resulted in the decreased activation of GmMPK6, but increased activation of GmMPK3 in response to flg22, suggesting that the activation of GmMPK3 is most likely responsible for the activated immunity observed in the GmSAUL1a/1b-silenced plants. Furthermore, we provided evidence that GmSAUL1a is a bona fide E3 ligase. Collectively, our results indicated that GmSAUL1 plays a negative role in regulating cell death and immunity in soybean.
Collapse
Affiliation(s)
- Jun-Mei Li
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mei-Yan Ye
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Wang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | - Xiao-Han Ma
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ni-Ni Wu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chen-Li Zhong
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ninghui Cheng
- U.S. Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A. Nakata
- U.S. Department of Agriculture-Agricultural Research Service, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lirong Zeng
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | - Jian-Zhong Liu
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
- Correspondence:
| |
Collapse
|
240
|
Tang W, Wang J, Lv Q, Michael PP, Ji W, Chen M, Huang Y, Zhou B, Peng D. Overexpression of ClWRKY48 from Cunninghamia lanceolata improves Arabidopsis phosphate uptake. PLANTA 2023; 257:87. [PMID: 36961548 DOI: 10.1007/s00425-023-04120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Our findings suggested that ClWRKY48 promoted the expression level of Arabidopsis phosphate transporter genes, enhanced phosphate uptake, and delayed the transition from the vegetative stage to the reproductive phase in Arabidopsis. Phosphorus (P) is an essential mineral for plants that influences their growth and development. ClWRKY48, one of the most highly expressed genes in the leaf, was identified by RT-PCR from Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] (C. lanceolata). Furthermore, when treating C. lanceolata with increasing phosphate (Pi) concentration, the expression level of ClWRKY48 rose in leaves, the trends followed the increasing phosphate concentration treatment. ClWRKY48 is a transcription factor in C. lanceolata, according to the results of a yeast one hybridization experiment. Based on subcellular localization studies, ClWRKY48 is a nuclear-localized protein. Under Pi deficiency conditions, the phosphorus concentration of ClWRKY48 overexpressing Arabidopsis increased by 43.2-51.1% compared to the wild-type. Moreover, under Pi limiting conditions, the phosphate transporter genes AtPHT1;1 (Arabidopsis Phosphate transporter 1;1), AtPHT1;4, and AtPHO1 (Arabidopsis PHOSPHATE 1) were expressed 2.1-2.5, 2.2-2.7, and 6.7-7.3-fold greater than the wild-type in ClWRKY48 transgenic Arabidopsis, respectively. Under Pi-sufficient conditions, the phosphorus concentration and phosphate transporter genes of ClWRKY48 overexpression in Arabidopsis are not significantly different from the wild type. These findings indicated that ClWRKY48 increased phosphate absorption in transgenic Arabidopsis. Furthermore, compared to the wild type, the ClWRKY48 transgenic Arabidopsis not only had a delayed flowering time characteristic but also had lower expression of flowering-related genes AtFT (FLOWERING LOCUS T), AtFUL (FRUITFUL), and AtTSF (TWIN SISTER OF FT). Our findings show that ClWRKY48 enhances phosphate absorption and slows the transition from the vegetative to the reproductive stage in ClWRKY48 transgenic Arabidopsis.
Collapse
Affiliation(s)
- Weiwei Tang
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Jing Wang
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Paul Promise Michael
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Wenjun Ji
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Min Chen
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation EcOsystem in Hunan Province, Huaihua, 438107, Hunan, China.
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, 410004, Hunan, China.
- Forestry Biotechnology of Hunan Key Laboratories, Changsha, 410004, Hunan, China.
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Yuelushan Laboratory, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Dan Peng
- Faculty of Life Science and Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation EcOsystem in Hunan Province, Huaihua, 438107, Hunan, China.
- Forestry Biotechnology of Hunan Key Laboratories, Changsha, 410004, Hunan, China.
- Yuelushan Laboratory, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
241
|
Jiao Y, Li X, Huang X, Liu F, Zhang Z, Cao L. The Identification of SQS/ SQE/ OSC Gene Families in Regulating the Biosynthesis of Triterpenes in Potentilla anserina. Molecules 2023; 28:2782. [PMID: 36985754 PMCID: PMC10051230 DOI: 10.3390/molecules28062782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The tuberous roots of Potentilla anserina (Pan) are an edible and medicinal resource in Qinghai-Tibetan Plateau, China. The triterpenoids from tuberous roots have shown promising anti-cancer, hepatoprotective, and anti-inflammatory properties. In this study, we carried out phylogenetic analysis of squalene synthases (SQSs), squalene epoxidases (SQEs), and oxidosqualene cyclases (OSCs) in the pathway of triterpenes. In total, 6, 26, and 20 genes of SQSs, SQEs, and OSCs were retrieved from the genome of Pan, respectively. Moreover, 6 SQSs and 25 SQEs genes expressed in two sub-genomes (A and B) of Pan. SQSs were not expanded after whole-genome duplication (WGD), and the duplicated genes were detected in SQEs. Twenty OSCs were divided into two clades of cycloartenol synthases (CASs) and β-amyrin synthases (β-ASs) by a phylogenetic tree, characterized with gene duplication and evolutionary divergence. We speculated that β-ASs and CASs may participate in triterpenes synthesis. The data presented act as valuable references for future studies on the triterpene synthetic pathway of Pan.
Collapse
Affiliation(s)
- Yangmiao Jiao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Xu Li
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmacy, Hunan University of Medicine, Huaihua 418000, China
| | - Fan Liu
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Zaiqi Zhang
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| | - Liang Cao
- Hunan Provincial Key Laboratory of Dong Medicine, Ethnic Medicine Research Center, Hunan University of Medicine, Huaihua 418000, China; (Y.J.); (X.L.); (X.H.); (F.L.)
| |
Collapse
|
242
|
Zhang B, Zheng H, Wu H, Wang C, Liang Z. Recent genome-wide replication promoted expansion and functional differentiation of the JAZs in soybeans. Int J Biol Macromol 2023; 238:124064. [PMID: 36933593 DOI: 10.1016/j.ijbiomac.2023.124064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Jasmonate Zim-domain (JAZ) protein is an inhibitor of the jasmonate (JA) signal transduction pathway, and plays an important role in regulating plant growth, development, and defense. However, there have been few studies on its function under environmental stress in soybeans. In this study, a total of 275 JAZs protein-coding genes were identified in 29 soybean genomes. SoyC13 contained the least JAZ family members (26 JAZs), which was twice as high as AtJAZs. The genes are mainly generated by recent genome-wide replication (WGD), which replicated during the Late Cenozoic Ice Age. In addition, transcriptome analysis showed that the differences in gene expression patterns in the roots, stems, and leaves of the 29 cultivars at the V1 stage were not significant, but there was a significant difference among the three seed development stages. Finally, qRT-PCR results showed that GmJAZs responded the most strongly to heat stress, followed by drought and cold stress. This is consistent with the reason for their expansion and promoter analysis results. Therefore, we explored the significant role of conserved, duplicated, and neofunctionalized JAZs in the evolution of soybeans, which will contribute to the functional characterization of GmJAZ and the improvement of crops.
Collapse
Affiliation(s)
- Bingxue Zhang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zheng
- Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haihang Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chunli Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi 712100, China.
| | - Zongsuo Liang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Province Key Laboratory of Plant Secondary Metablism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
243
|
Bellec A, Sow MD, Pont C, Civan P, Mardoc E, Duchemin W, Armisen D, Huneau C, Thévenin J, Vernoud V, Depège-Fargeix N, Maunas L, Escale B, Dubreucq B, Rogowsky P, Bergès H, Salse J. Tracing 100 million years of grass genome evolutionary plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36919199 DOI: 10.1111/tpj.16185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.
Collapse
Affiliation(s)
- Arnaud Bellec
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Mamadou Dia Sow
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Caroline Pont
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Peter Civan
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Emile Mardoc
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | | | - David Armisen
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Cécile Huneau
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Johanne Thévenin
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Vanessa Vernoud
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | | | - Laurent Maunas
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
| | - Brigitte Escale
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
- Direction de l'agriculture de Polynésie française, Route de l'Hippodrome, 98713, Papeete, France
| | - Bertrand Dubreucq
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Peter Rogowsky
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | - Hélène Bergès
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jerome Salse
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| |
Collapse
|
244
|
Zhu C, Yuan T, Yang K, Liu Y, Li Y, Gao Z. Identification and characterization of CircRNA-associated CeRNA networks in moso bamboo under nitrogen stress. BMC PLANT BIOLOGY 2023; 23:142. [PMID: 36918810 PMCID: PMC10012455 DOI: 10.1186/s12870-023-04155-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nitrogen is a macronutrient element for plant growth and development. Circular RNAs (circRNAs) serve as pivotal regulators for the coordination between nutrient supply and plant demand. Moso bamboo (Phyllostachys edulis) is an excellent plant with fast growth, and the mechanism of the circRNA-target module in response to nitrogen remains unclear. RESULTS Deep small RNA sequencing results of moso bamboo seedlings under different concentrations of KNO3 (N0 = 0 mM, N6 = 6 mM, N18 = 18 mM) were used to identify circRNAs. A total of 549 circRNAs were obtained, of which 309 were generated from corresponding parental coding genes including 66 new ones. A total of 536 circRNA-parent genes were unevenly distributed in 24 scaffolds and were associated with root growth and development. Furthermore, 52 differentially expressed circRNAs (DECs) were obtained, including 24, 33 and 15 DECs from three comparisons of N0 vs. N6, N0 vs. N18 and N6 vs. N18, respectively. Based on integrative analyses of the identified DECs, differentially expressed mRNAs (DEGs), and miRNAs (DEMs), a competitive endogenous RNA (ceRNA) network was constructed, including five DECs, eight DEMs and 32 DEGs. A regulatory module of PeSca_6:12,316,320|12,372,905-novel_miR156-PH02Gene35622 was further verified by qPCR and dual-luciferase reporter assays. CONCLUSION The results indicated that circRNAs could participate in multiple biological processes as miRNA sponges, including organ nitrogen compound biosynthesis and metabolic process regulation in moso bamboo. Our results provide valuable information for further study of circRNAs in moso bamboo under fluctuating nitrogen conditions.
Collapse
Affiliation(s)
- Chenglei Zhu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Tingting Yuan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Kebin Yang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Yan Liu
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Ying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China
| | - Zhimin Gao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing, 100102, China.
- Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo &, Rattan Science and Technology, Beijing, 100102, China.
| |
Collapse
|
245
|
Chen Y, Fang T, Su H, Duan S, Ma R, Wang P, Wu L, Sun W, Hu Q, Zhao M, Sun L, Dong X. A reference-grade genome assembly for Astragalus mongholicus and insights into the biosynthesis and high accumulation of triterpenoids and flavonoids in its roots. PLANT COMMUNICATIONS 2023; 4:100469. [PMID: 36307985 PMCID: PMC10030368 DOI: 10.1016/j.xplc.2022.100469] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/18/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Astragalus membranaceus var. mongholicus (AMM), a member of the Leguminosae, is one of the most important medicinal plants worldwide. The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine. Here, we report the first chromosome-level reference genome of AMM, comprising nine pseudochromosomes with a total size of 1.47 Gb and 27 868 protein-encoding genes. Comparative genomic analysis reveals that AMM has not experienced an independent whole-genome duplication (WGD) event after the WGD event shared by the Papilionoideae species. Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago, which may explain the large size of the AMM genome. Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded, and our data indicate that tandem duplication has been the main driver for expansion of these families. Among the expanded families, the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM, suggesting their roles in the biosynthesis of phenylpropanoid compounds. The functional versatility of 2,3-oxidosqualene cyclase genes in cluster III may play a critical role in the diversification of triterpenoids in AMM. Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.
Collapse
Affiliation(s)
- Yi Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ting Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - He Su
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Sifei Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruirui Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lin Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenbin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qichen Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
246
|
Chen H, Liu C, Li Y, Wang X, Pan X, Wang F, Zhang Q. Developmental dynamic transcriptome and systematic analysis reveal the major genes underlying isoflavone accumulation in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1014349. [PMID: 36959940 PMCID: PMC10027745 DOI: 10.3389/fpls.2023.1014349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Soy isoflavone, a class of polyphenolic compounds exclusively occurred in legumes, is an important bioactive compound for both plants and human beings. The outline of isoflavones biosynthesis pathway has been drawn up basically in the previous research. However, research on the subject has been mostly restricted to investigate the static regulation of isoflavone content in soybean, rather than characterize its dynamic variation and modulation network in developing seeds. METHODS In this study, by using eight recombinant inbred lines (RIL), the contents of six isoflavone components in the different stages of developing soybean seeds were determined to characterize the dynamic variation of isoflavones, and the isoflavones accumulation pattern at physiological level was investigated. Meanwhile, we integrated and analyzed the whole genome expression profile of four lines and 42 meta-transcriptome data, based on the multiple algorithms. RESULTS This study: 1) obtained 4 molecular modules strongly correlated with isoflavone accumulation; 2) identified 28 novel major genes that could affect the accumulation of isoflavones in developing seeds free from the limitation of environments; 3) discussed the dynamic molecular patterns regulating isoflavones accumulation in developing seed; 4) expanded the isoflavone biosynthesis pathway. DISCUSSION The results not only promote the understandings on the biosynthesis and regulation of isoflavones at physiological and molecular level, but also facilitate to breed elite soybean cultivars with high isoflavone contents.
Collapse
Affiliation(s)
- Heng Chen
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Changkai Liu
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Yansheng Li
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Xue Wang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Xiangwen Pan
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Feifei Wang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Qiuying Zhang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, China
| |
Collapse
|
247
|
Griffo A, Bosco N, Pagano A, Balestrazzi A, Macovei A. Noninvasive Methods to Detect Reactive Oxygen Species as a Proxy of Seed Quality. Antioxidants (Basel) 2023; 12:antiox12030626. [PMID: 36978875 PMCID: PMC10045522 DOI: 10.3390/antiox12030626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
ROS homeostasis is crucial to maintain radical levels in a dynamic equilibrium within physiological ranges. Therefore, ROS quantification in seeds with different germination performance may represent a useful tool to predict the efficiency of common methods to enhance seed vigor, such as priming treatments, which are still largely empirical. In the present study, ROS levels were investigated in an experimental system composed of hydroprimed and heat-shocked seeds, thus comparing materials with improved or damaged germination potential. A preliminary phenotypic analysis of germination parameters and seedling growth allowed the selection of the best-per-forming priming protocols for species like soybean, tomato, and wheat, having relevant agroeconomic value. ROS levels were quantified by using two noninvasive assays, namely dichloro-dihydro-fluorescein diacetate (DCFH-DA) and ferrous oxidation-xylenol orange (FOX-1). qRT-PCR was used to assess the expression of genes encoding enzymes involved in ROS production (respiratory burst oxidase homolog family, RBOH) and scavenging (catalase, superoxide dismutase, and peroxidases). The correlation analyses between ROS levels and gene expression data suggest a possible use of these indicators as noninvasive approaches to evaluate seed quality. These findings are relevant given the centrality of seed quality for crop production and the potential of seed priming in sustainable agricultural practices.
Collapse
Affiliation(s)
- Adriano Griffo
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Nicola Bosco
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
- Correspondence:
| |
Collapse
|
248
|
Cai Z, Zhao X, Zhou C, Fang T, Liu G, Luo J. Genome-Wide Mining of the Tandem Duplicated Type III Polyketide Synthases and Their Expression, Structure Analysis of Senna tora. Int J Mol Sci 2023; 24:ijms24054837. [PMID: 36902267 PMCID: PMC10003783 DOI: 10.3390/ijms24054837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Senna tora is one of the homologous crops used as a medicinal food containing an abundance of anthraquinones. Type III polyketide synthases (PKSs) are key enzymes that catalyze polyketide formation; in particular, the chalcone synthase-like (CHS-L) genes are involved in anthraquinone production. Tandem duplication is a fundamental mechanism for gene family expansion. However, the analysis of the tandem duplicated genes (TDGs) and the identification and characterization of PKSs have not been reported for S. tora. Herein, we identified 3087 TDGs in the S. tora genome; the synonymous substitution rates (Ks) analysis indicated that the TDGs had recently undergone duplication. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the type III PKSs were the most enriched TDGs involved in the biosynthesis of the secondary metabolite pathways, as evidenced by 14 tandem duplicated CHS-L genes. Subsequently, we identified 30 type III PKSs with complete sequences in the S. tora genome. Based on the phylogenetic analysis, the type III PKSs were classified into three groups. The protein conserved motifs and key active residues showed similar patterns in the same group. The transcriptome analysis showed that the chalcone synthase (CHS) genes were more highly expressed in the leaves than in the seeds in S. tora. The transcriptome and qRT-PCR analysis showed that the CHS-L genes had a higher expression in the seeds than in other tissues, particularly seven tandem duplicated CHS-L2/3/5/6/9/10/13 genes. The key active-site residues and three-dimensional models of the CHS-L2/3/5/6/9/10/13 proteins showed slight variation. These results indicated that the rich anthraquinones in S. tora seeds might be ascribed to the PKSs' expansion from tandem duplication, and the seven key CHS-L2/3/5/6/9/10/13 genes provide candidate genes for further research. Our study provides an important basis for further research on the regulation of anthraquinones' biosynthesis in S. tora.
Collapse
Affiliation(s)
- Zeping Cai
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou 570228, China
| | - Xingkun Zhao
- College of Tropical Crops & College of Life Sciences, Hainan University, Haikou 570228, China
| | - Chaoye Zhou
- College of Tropical Crops & College of Life Sciences, Hainan University, Haikou 570228, China
| | - Ting Fang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou 570228, China
| | - Guodao Liu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (G.L.); (J.L.)
| | - Jiajia Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (G.L.); (J.L.)
| |
Collapse
|
249
|
Kajla M, Roy A, Singh IK, Singh A. Regulation of the regulators: Transcription factors controlling biosynthesis of plant secondary metabolites during biotic stresses and their regulation by miRNAs. FRONTIERS IN PLANT SCIENCE 2023; 14:1126567. [PMID: 36938003 PMCID: PMC10017880 DOI: 10.3389/fpls.2023.1126567] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Biotic stresses threaten to destabilize global food security and cause major losses to crop yield worldwide. In response to pest and pathogen attacks, plants trigger many adaptive cellular, morphological, physiological, and metabolic changes. One of the crucial stress-induced adaptive responses is the synthesis and accumulation of plant secondary metabolites (PSMs). PSMs mitigate the adverse effects of stress by maintaining the normal physiological and metabolic functioning of the plants, thereby providing stress tolerance. This differential production of PSMs is tightly orchestrated by master regulatory elements, Transcription factors (TFs) express differentially or undergo transcriptional and translational modifications during stress conditions and influence the production of PSMs. Amongst others, microRNAs, a class of small, non-coding RNA molecules that regulate gene expression post-transcriptionally, also play a vital role in controlling the expression of many such TFs. The present review summarizes the role of stress-inducible TFs in synthesizing and accumulating secondary metabolites and also highlights how miRNAs fine-tune the differential expression of various stress-responsive transcription factors during biotic stress.
Collapse
Affiliation(s)
- Mohini Kajla
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Indrakant K. Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Jagdish Chandra Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India
| |
Collapse
|
250
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|