201
|
Kanemura H, Go MJ, Shikamura M, Nishishita N, Sakai N, Kamao H, Mandai M, Morinaga C, Takahashi M, Kawamata S. Tumorigenicity studies of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of age-related macular degeneration. PLoS One 2014; 9:e85336. [PMID: 24454843 PMCID: PMC3891869 DOI: 10.1371/journal.pone.0085336] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 12/04/2013] [Indexed: 12/13/2022] Open
Abstract
Basic studies of human pluripotential stem cells have advanced rapidly and stem cell products are now seeing therapeutic applications. However, questions remain regarding the tumorigenic potential of such cells. Here, we report the tumorigenic potential of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of wet-type, age-related macular degeneration (AMD). First, immunodeficient mouse strains (nude, SCID, NOD-SCID and NOG) were tested for HeLa cells' tumor-forming capacity by transplanting various cell doses subcutaneously with or without Matrigel. The 50% Tumor Producing Dose (TPD50 value) is the minimal dose of transplanted cells that generated tumors in 50% of animals. For HeLa cells, the TPD50 was the lowest when cells were embedded in Matrigel and transplanted into NOG mice (TPD50 = 10(1.1), n = 75). The TPD50 for undifferentiated iPSCs transplanted subcutaneously to NOG mice in Matrigel was 10(2.12); (n = 30). Based on these experiments, 1×10(6) iPSC-derived RPE were transplanted subcutaneously with Matrigel, and no tumor was found during 15 months of monitoring (n = 65). Next, to model clinical application, we assessed the tumor-forming potential of HeLa cells and iPSC 201B7 cells following subretinal transplantation of nude rats. The TPD50 for iPSCs was 10(4.73) (n = 20) and for HeLa cells 10(1.32) (n = 37) respectively. Next, the tumorigenicity of iPSC-derived RPE was tested in the subretinal space of nude rats by transplanting 0.8-1.5×10(4) iPSC-derived RPE in a collagen-lined (1 mm×1 mm) sheet. No tumor was found with iPSC-derived RPE sheets during 6-12 months of monitoring (n = 26). Considering the number of rodents used, the monitoring period, the sensitivity of detecting tumors via subcutaneous and subretinal administration routes and the incidence of tumor formation from the iPSC-derived RPE, we conclude that the tumorigenic potential of the iPSC-derived RPE was negligible.
Collapse
Affiliation(s)
- Hoshimi Kanemura
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Masahiro J. Go
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Masayuki Shikamura
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Naoki Nishishita
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Noriko Sakai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Hiroyuki Kamao
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
- Department of Ophthalmology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Michiko Mandai
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Chikako Morinaga
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Shin Kawamata
- Division of Cell Therapy, Foundation for Biomedical Research and Innovation, Kobe, Japan
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Japan
- * E-mail:
| |
Collapse
|
202
|
Mizukami H, Yagihashi S. Exploring a new therapy for diabetic polyneuropathy - the application of stem cell transplantation. Front Endocrinol (Lausanne) 2014; 5:45. [PMID: 24782826 PMCID: PMC3988365 DOI: 10.3389/fendo.2014.00045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/21/2014] [Indexed: 12/14/2022] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common complication that emerges early in diabetic patients. Intervention with strict blood glucose control or treatment with aldose reductase inhibitor is reported to be effective in early stages of DPN. Curative treatment for overt or symptomatic DPN, however, has not been established, thus requiring much effort to explore a new therapy. Recent preclinical studies on the use of gene or cell therapy have provided promising results in the treatment of DPN. Of particular interest, induced pluripotent stem cells are introduced. In these studies, restoration of DPN was proposed to be attributed to either neurotrophic factors released from transplanted stem cells or differentiation of stem cells to substitute the damaged peripheral nerve. There are still several problems, however, that remain to be overcome, such as perturbed function, fragility, or limited survival of transplanted cells in diabetes milieu and risk for malignant transformation of transplanted cells. Questions, which cell is the most appropriate as the source for cell therapy, or which site is the best for transplantation to obtain the most effective results, remain to be answered. In this communication, we overview the current status of preclinical studies on the cell therapy for DPN and discuss the future prospect.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- *Correspondence: Hiroki Mizukami, Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan e-mail:
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
203
|
Affiliation(s)
- Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507 (Japan); Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158 (USA).
| |
Collapse
|
204
|
Yamanaka S. Auf verschlungenen Pfaden zur Pluripotenz (Nobel-Aufsatz). Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
205
|
Harding J, Mirochnitchenko O. Preclinical studies for induced pluripotent stem cell-based therapeutics. J Biol Chem 2013; 289:4585-93. [PMID: 24362021 DOI: 10.1074/jbc.r113.463737] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions.
Collapse
Affiliation(s)
- John Harding
- From the Division of Comparative Medicine, Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
206
|
Goyal A, Chavez SL, Reijo Pera RA. Generation of human induced pluripotent stem cells using epigenetic regulators reveals a germ cell-like identity in partially reprogrammed colonies. PLoS One 2013; 8:e82838. [PMID: 24349377 PMCID: PMC3861446 DOI: 10.1371/journal.pone.0082838] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022] Open
Abstract
Previous studies have shown that induced pluripotent stem cells (iPSCs) can be derived from fibroblasts by ectopic expression of four transcription factors, OCT4, SOX2, KLF4 and c-MYC using various methods. More recent studies have focused on identifying alternative approaches and factors that can be used to increase reprogramming efficiency of fibroblasts to pluripotency. Here, we use nucleofection, morpholino technologies and novel epigenetic factors, which were chosen based on their expression profile in human embryos, fibroblasts and undifferentiated/differentiated human embryonic stem cells (hESCs) and conventionally generated iPSCs, to reprogram human fibroblasts into iPSCs. By over expressing DNMT3B, AURKB, PRMT5 and/or silencing SETD7 in human fibroblasts with and without NANOG, hTERT and/or SV40 overexpression, we observed the formation of colonies resembling iPSCs that were positive for certain pluripotency markers, but exhibited minimal proliferation. More importantly, we also demonstrate that these partially-reprogrammed colonies express high levels of early to mid germ cell-specific genes regardless of the transfection approach, which suggests conversion to a germ cell-like identity is associated with early reprogramming. These findings may provide an additional means to evaluate human germ cell differentiation in vitro, particularly in the context of pluripotent stem cell-derived germ cell development, and contribute to our understanding of the epigenetic requirements of the reprogramming process.
Collapse
Affiliation(s)
- Akshi Goyal
- Center for Reproductive and Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California, United States of America
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shawn L. Chavez
- Center for Reproductive and Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California, United States of America
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Renee A. Reijo Pera
- Center for Reproductive and Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford, California, United States of America
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
207
|
Kamon M, Katano M, Hiraki-Kamon K, Hishida T, Nakachi Y, Mizuno Y, Okazaki Y, Suzuki A, Hirasaki M, Ueda A, Nishimoto M, Kato H, Okuda A. Identification of Ccr4-not complex components as regulators of transition from partial to genuine induced pluripotent stem cells. Stem Cells Dev 2013; 23:2170-9. [PMID: 24200330 DOI: 10.1089/scd.2013.0326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by defined factors. However, substantial cell numbers subjected to iPSC induction stray from the main reprogramming route and are immortalized as partial iPSCs. These partial iPSCs can become genuine iPSCs by exposure to the ground state condition. However, such conversion is only possible for mouse partial iPSCs, and it is not applicable to human cells. Moreover, the molecular basis of this conversion is completely unknown. Therefore, we performed genome-wide screening with a piggyBac vector to identify genes involved in conversion from partial to genuine iPSCs. This screening led to identification of Cnot2, one of the core components of the Ccr4-Not complex. Subsequent analyses revealed that other core components, Cnot1 and Cnot3, also contributed to the conversion. Thus, our data have uncovered a novel role of core components of the Ccr4-Not complex as regulators of transition from partial to genuine iPSCs.
Collapse
Affiliation(s)
- Masayoshi Kamon
- 1 Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University , Yamane Hidaka, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
An improved method for the derivation of high quality iPSCs in the absence of c-Myc. Exp Cell Res 2013; 319:3190-200. [DOI: 10.1016/j.yexcr.2013.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/13/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
|
209
|
Khalesi E, Nakamura H, Lee KL, Putra AC, Fukazawa T, Kawahara Y, Makino Y, Poellinger L, Yuge L, Tanimoto K. The Krüppel-like zinc finger transcription factor, GLI-similar 1, is regulated by hypoxia-inducible factors via non-canonical mechanisms. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2013.10.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
210
|
Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013; 502:462-71. [PMID: 24153299 PMCID: PMC4216318 DOI: 10.1038/nature12749] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/05/2013] [Indexed: 12/13/2022]
Abstract
Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Effie Apostolou
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine; Harvard Stem Cell Institute, 185 Cambridge Street, Boston, MA 02114, USA
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
211
|
Yao K, Ki MO, Chen H, Cho YY, Kim SH, Yu DH, Lee SY, Lee KY, Bae K, Peng C, Lim DY, Bode AM, Dong Z. JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity. Stem Cell Res 2013; 12:139-52. [PMID: 24211391 DOI: 10.1016/j.scr.2013.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 10/01/2013] [Accepted: 10/14/2013] [Indexed: 01/22/2023] Open
Abstract
Embryonic stem (ES) cells are pluripotent cells with the capacity for unlimited self-renewal or differentiation. Inhibition of MAPK pathways enhances mouse ES cell pluripotency characteristics. Compared to wildtype ES cells, jnk2(-/-) ES cells displayed a much higher growth rate. To determine whether JNKs are required for stem cell self-renewal or differentiation, we performed a phosphorylation kinase array assay to compare mouse ES cells under LIF+ or LIF- culture conditions. The data showed that activation of JNKs was induced by LIF withdrawal. We also found that JNK1 or 2 phosphorylated Klf4 at threonines 224 and 225. Activation of JNK signaling and phosphorylation of Klf4 inhibited Klf4 transcription and transactivation activity. Importantly, jnk1(-/-) and jnk2(-/-) murine embryonic fibroblasts (MEFs) exhibited a significantly greater potency in the ability to increase the number of iPS colonies compared with jnk wildtype MEFs. Overall, our results demonstrated that JNK1 and 2 play a negative role in reprogramming to pluripotent stem cells by suppressing Klf4 activity.
Collapse
Affiliation(s)
- Ke Yao
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Myoung Ok Ki
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Yong-Yeon Cho
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Sung-Hyun Kim
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Dong Hoon Yu
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Sung-Young Lee
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Kun-Yeong Lee
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Kibeom Bae
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Cong Peng
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Do Young Lim
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801, 16th Ave, NE, Austin, MN 55912, USA
| |
Collapse
|
212
|
Fujii Y, Kakegawa M, Koide H, Akagi T, Yokota T. Zfp296 is a novel Klf4-interacting protein and functions as a negative regulator. Biochem Biophys Res Commun 2013; 441:411-7. [PMID: 24161396 DOI: 10.1016/j.bbrc.2013.10.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/15/2013] [Indexed: 01/07/2023]
Abstract
Pluripotency and self-renewing ability of embryonic stem (ES) cells are regulated by several transcription factors, including Oct3/4, Sox2, Kruppel-like factor 4 (Klf4), and c-Myc. These transcription factors reprogram somatic cells into induced pluripotent stem (iPS) cells. Zinc finger protein (Zfp) 296 has been reported to enhance iPS cell formation. Here we found that Zfp296 interacts with Klf4. A maltose-binding protein pull-down assay demonstrated that Klf4 binds to the Zfp296 158-483 amino acid region, and that Zfp296 binds to the Klf4 DNA-binding domain (DBD). A quantitative reverse transcription-polymerase chain reaction analysis revealed that expression of Zfp296 and Klf4 decreased during differentiation of E14 and ZHBTc4 ES cells. We also found that green fluorescent protein-labeled Zfp296 and Klf4 were localized to the nucleus. Because Zfp296 bound to the Klf4 DBD, we next examined the influence of Zfp296 on Klf4 DNA-binding activity. A biotin DNA pull-down assay showed that Klf4 binds to the Lefty1 promoter region, and that binding activity was sustained even in the presence of Zfp296. In contrast, a reporter assay showed that the Lefty1 promoter was activated by Klf4, and that the enhanced activity was repressed by Zfp296. These findings suggest that Zfp296 is a functional regulator of Klf4 in ES cells.
Collapse
Affiliation(s)
- Yuka Fujii
- Department of Stem Cell Biology, Graduate School of Medical Sciences, Kanazawa University, Japan
| | | | | | | | | |
Collapse
|
213
|
Del Debbio CB, Peng X, Xiong H, Ahmad I. Adult ciliary epithelial stem cells generate functional neurons and differentiate into both early and late born retinal neurons under non-cell autonomous influences. BMC Neurosci 2013; 14:130. [PMID: 24148749 PMCID: PMC3856605 DOI: 10.1186/1471-2202-14-130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022] Open
Abstract
Background The neural stem cells discovered in the adult ciliary epithelium (CE) in higher vertebrates have emerged as an accessible source of retinal progenitors; these cells can self-renew and possess retinal potential. However, recent studies have cast doubt as to whether these cells could generate functional neurons and differentiate along the retinal lineage. Here, we have systematically examined the pan neural and retinal potential of CE stem cells. Results Molecular and cellular analysis was carried out to examine the plasticity of CE stem cells, obtained from mice expressing green fluorescent protein (GFP) under the influence of the promoter of the rod photoreceptor-specific gene, Nrl, using the neurospheres assay. Differentiation was induced by specific culture conditions and evaluated by both transcripts and protein levels of lineage-specific regulators and markers. Temporal pattern of their levels were examined to determine the expression of genes and proteins underlying the regulatory hierarchy of cells specific differentiation in vitro. Functional attributes of differentiation were examined by the presence of current profiles and pharmacological mobilization of intracellular calcium using whole cell recordings and Fura-based calcium imaging, respectively. We demonstrate that stem cells in adult CE not only have the capacity to generate functional neurons, acquiring the expression of sodium and potassium channels, but also respond to specific cues in culture and preferentially differentiate along the lineages of retinal ganglion cells (RGCs) and rod photoreceptors, the early and late born retinal neurons, respectively. The retinal differentiation of CE stem cells was characterized by the temporal acquisition of the expression of the regulators of RGCs and rod photoreceptors, followed by the display of cell type-specific mature markers and mobilization of intracellular calcium. Conclusions Our study demonstrates the bonafide retinal potential of adult CE stem cells and suggests that their plasticity could be harnessed for clinical purposes once barriers associated with any lineage conversion, i.e., low efficiency and fidelity is overcome through the identification of conducive culture conditions.
Collapse
Affiliation(s)
| | | | | | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Durham Research Center 1, Room 4044, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, USA.
| |
Collapse
|
214
|
Shu J, Deng H. Lineage specifiers: new players in the induction of pluripotency. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:259-63. [PMID: 24095709 PMCID: PMC4357841 DOI: 10.1016/j.gpb.2013.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/18/2013] [Indexed: 12/28/2022]
Abstract
Pluripotency-associated factors and their rivals, lineage specifiers, have long been considered the determining factors for the identity of pluripotent and differentiated cells, respectively. Therefore, factors that are employed for cellular reprogramming in order to induce pluripotency have been identified mainly from embryonic stem cell (ESC)-enriched and pluripotency-associated factors. Recently, lineage specifiers have been identified to play important roles in orchestrating the process of restoring pluripotency. In this review, we summarize the latest discoveries regarding cell fate conversion using pluripotency-associated factors and lineage specifiers. We highlight the value of the "seesaw" model in defining cellular identity, opening up a novel scenario to consider pluripotency and lineage specification.
Collapse
Affiliation(s)
- Jian Shu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
215
|
Nakamura M, Okano H, Toyama Y. [110th Scientific Meeting of the Japanese Society of Internal Medicine: Symposium: 1. Frontier of the regenerative medicine; 4) Perspective on regenerative medicine for spinal cord injury using iPS cell--from bench to bedside]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2013; 102:2247-53. [PMID: 24228406 DOI: 10.2169/naika.102.2247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Japan
| | | | | |
Collapse
|
216
|
Ye L, Swingen C, Zhang J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr Cardiol Rev 2013; 9:63-72. [PMID: 22935022 PMCID: PMC3584308 DOI: 10.2174/157340313805076278] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/31/2012] [Accepted: 08/27/2012] [Indexed: 02/08/2023] Open
Abstract
Induced pluripotent stem (iPS) cells, are a type of pluripotent stem cell derived from adult somatic cells. They have been reprogrammed through inducing genes and factors to be pluripotent. iPS cells are similar to embryonic stem (ES) cells in many aspects. This review summarizes the recent progresses in iPS cell reprogramming and iPS cell based therapy, and describe patient specific iPS cells as a disease model at length in the light of the literature. This review also analyzes and discusses the problems and considerations of iPS cell therapy in the clinical perspective for the treatment of disease.
Collapse
Affiliation(s)
- Lei Ye
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
| | | | | |
Collapse
|
217
|
Rosselló RA, Chen CC, Dai R, Howard JT, Hochgeschwender U, Jarvis ED. Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. eLife 2013; 2:e00036. [PMID: 24015354 PMCID: PMC3762186 DOI: 10.7554/elife.00036] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/27/2013] [Indexed: 12/21/2022] Open
Abstract
Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001 Stem cells are ‘pluripotent’—in other words, they have the potential to become many other cell types. This ability makes them extremely valuable for research. They also hold substantial promise for medical applications, since they can be used to replace cells lost or damaged by disease or injury. Embryos represent a rich source of stem cells; however, obtaining these cells from human embryos raises obvious ethical and practical concerns, and they have also been difficult to isolate from many species. A recent discovery circumvented these issues for humans and several mammalian species commonly studied in the laboratory. This technique can turn cells from adult mammals into ‘induced pluripotent stem cells’, or iPSCs, by switching on four genes. Nevertheless, no analogous method has yet been established to create similar cell populations in non-mammalian organisms, which are also important models for human development and disease. Now, Rosselló et al. have shown that cells from both invertebrate and non-mammalian vertebrate species—including birds, fish and insects—can be reprogrammed into cells that closely resemble iPSCs. Intriguingly, these cells were created by switching on the same four genes that generate iPSCs in mammals, even though vertebrates and invertebrates are separated by around 550 million years of evolution. Rosselló et al. used a viral vector that carries the four stem-cell genes (from the mouse) into target cells from the different species. The genetically altered cells developed into iPSC-like cells with many of the characteristics of natural mammalian and bird stem cells. To confirm that the cells were pluripotent, Rossello et al. first showed that the cells could develop into primitive early embryos called embryoid bodies. For the vertebrate species tested, the embryoid bodies contained cells from each of the three main vertebrate embryo cell types. Secondly, iPSC-like cells from two organisms—chicks and zebrafish—formed various mature cell types when injected into developing chick or zebrafish embryos. These results have two important implications. They suggest that the genetic mechanisms by which cells can be reprogrammed into a stem-like state have been conserved through 550 million years of evolution; additionally, they demonstrate that stem-like cells can be generated from important experimental organisms, and provide an important tool for both biological and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.00036.002
Collapse
Affiliation(s)
- Ricardo Antonio Rosselló
- Department of Biochemistry , University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico ; Department of Neurobiology , Duke University Medical Center , Durham , United States ; Howard Hughes Medical Institute, Duke University Medical Center , Durham , United States
| | | | | | | | | | | |
Collapse
|
218
|
Welling M, Geijsen N. Uncovering the true identity of naïve pluripotent stem cells. Trends Cell Biol 2013; 23:442-8. [DOI: 10.1016/j.tcb.2013.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/10/2013] [Accepted: 04/10/2013] [Indexed: 01/08/2023]
|
219
|
Guo J, Wang H, Hu X. Reprogramming and transdifferentiation shift the landscape of regenerative medicine. DNA Cell Biol 2013; 32:565-72. [PMID: 23930590 DOI: 10.1089/dna.2013.2104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regenerative medicine is a new interdisciplinary field in biomedical science, which aims at the repair or replacement of the defective tissue or organ by congenital defects, age, injury, or disease. Various cell-related techniques such as stem cell-based biotherapy are a hot topic in the current press, and stem cell research can help us to expand our understanding of development as well as the pathogenesis of disease. In addition, new technology such as reprogramming or dedifferentiation and transdifferentiation open a new area for regenerative medicine. Here we review new approaches of these technologies used for cell-based therapy and discuss future directions and challenges in the field of regeneration.
Collapse
Affiliation(s)
- Jingjing Guo
- 1 College of Life and Environmental Sciences, Shanghai Normal University , Shanghai, China
| | | | | |
Collapse
|
220
|
Boiani M. Cloned human ES cells: a great leap forward, and still needed? Mol Hum Reprod 2013; 19:629-33. [PMID: 23907161 DOI: 10.1093/molehr/gat054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Michele Boiani
- Max-Planck-Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
221
|
Shu J, Wu C, Wu Y, Li Z, Shao S, Zhao W, Tang X, Yang H, Shen L, Zuo X, Yang W, Shi Y, Chi X, Zhang H, Gao G, Shu Y, Yuan K, He W, Tang C, Zhao Y, Deng H. Induction of pluripotency in mouse somatic cells with lineage specifiers. Cell 2013; 153:963-75. [PMID: 23706735 DOI: 10.1016/j.cell.2013.05.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 04/15/2013] [Indexed: 11/15/2022]
Abstract
The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here, we report that, during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes, whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a "seesaw model" in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming.
Collapse
Affiliation(s)
- Jian Shu
- MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Conversion of somatic cells to pluripotency by defined factors is a long and complex process that yields embryonic-stem-cell-like cells that vary in their developmental potential. To improve the quality of resulting induced pluripotent stem cells (iPSCs), which is important for potential therapeutic applications, and to address fundamental questions about control of cell identity, molecular mechanisms of the reprogramming process must be understood. Here we discuss recent discoveries regarding the role of reprogramming factors in remodelling the genome, including new insights into the function of MYC, and describe the different phases, markers and emerging models of reprogramming.
Collapse
|
223
|
Shimozawa N, Ono R, Shimada M, Shibata H, Takahashi I, Inada H, Takada T, Nosaka T, Yasutomi Y. Cynomolgus monkey induced pluripotent stem cells established by using exogenous genes derived from the same monkey species. Differentiation 2013; 85:131-9. [PMID: 23792767 DOI: 10.1016/j.diff.2013.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 01/29/2013] [Accepted: 02/23/2013] [Indexed: 02/06/2023]
Abstract
Induced pluripotent stem (iPS) cells established by introduction of the transgenes POU5F1 (also known as Oct3/4), SOX2, KLF4 and c-MYC have competence similar to embryonic stem (ES) cells. iPS cells generated from cynomolgus monkey somatic cells by using genes taken from the same species would be a particularly important resource, since various biomedical investigations, including studies on the safety and efficacy of drugs, medical technology development, and research resource development, have been performed using cynomolgus monkeys. In addition, the use of xenogeneic genes would cause complicating matters such as immune responses when they are expressed. In this study, therefore, we established iPS cells by infecting cells from the fetal liver and newborn skin with amphotropic retroviral vectors containing cDNAs for the cynomolgus monkey genes of POU5F1, SOX2, KLF4 and c-MYC. Flat colonies consisting of cells with large nuclei, similar to those in other primate ES cell lines, appeared and were stably maintained. These cell lines had normal chromosome numbers, expressed pluripotency markers and formed teratomas. We thus generated cynomolgus monkey iPS cell lines without the introduction of ecotropic retroviral receptors or other additional transgenes by using the four allogeneic transgenes. This may enable detailed analysis of the mechanisms underlying the reprogramming. In conclusion, we showed that iPS cells could be derived from cynomolgus monkey somatic cells. To the best of our knowledge, this is the first report on iPS cell lines established from cynomolgus monkey somatic cells by using genes from the same species.
Collapse
Affiliation(s)
- Nobuhiro Shimozawa
- Tsukuba Primate Research Center (TPRC), National Institute of Biomedical Innovation (NIBIO), 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Zhao H, Sun N, Young SR, Nolley R, Santos J, Wu JC, Peehl DM. Induced pluripotency of human prostatic epithelial cells. PLoS One 2013; 8:e64503. [PMID: 23717621 PMCID: PMC3661502 DOI: 10.1371/journal.pone.0064503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/15/2013] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are a valuable resource for discovery of epigenetic changes critical to cell type-specific differentiation. Although iPS cells have been generated from other terminally differentiated cells, the reprogramming of normal adult human basal prostatic epithelial (E-PZ) cells to a pluripotent state has not been reported. Here, we attempted to reprogram E-PZ cells by forced expression of Oct4, Sox2, c-Myc, and Klf4 using lentiviral vectors and obtained embryonic stem cell (ESC)-like colonies at a frequency of 0.01%. These E-PZ-iPS-like cells with normal karyotype gained expression of pluripotent genes typical of iPS cells (Tra-1-81, SSEA-3, Nanog, Sox2, and Oct4) and lost gene expression characteristic of basal prostatic epithelial cells (CK5, CK14, and p63). E-PZ-iPS-like cells demonstrated pluripotency by differentiating into ectodermal, mesodermal, and endodermal cells in vitro, although lack of teratoma formation in vivo and incomplete demethylation of pluripotency genes suggested only partial reprogramming. Importantly, E-PZ-iPS-like cells re-expressed basal epithelial cell markers (CD44, p63, MAO-A) in response to prostate-specific medium in spheroid culture. Androgen induced expression of androgen receptor (AR), and co-culture with rat urogenital sinus further induced expression of prostate-specific antigen (PSA), a hallmark of secretory cells, suggesting that E-PZ-iPS-like cells have the capacity to differentiate into prostatic basal and secretory epithelial cells. Finally, when injected into mice, E-PZ-iPS-like cells expressed basal epithelial cell markers including CD44 and p63. When co-injected with rat urogenital mesenchyme, E-PZ-iPS-like cells expressed AR and expression of p63 and CD44 was repressed. DNA methylation profiling identified epigenetic changes in key pathways and genes involved in prostatic differentiation as E-PZ-iPS-like cells converted to differentiated AR- and PSA-expressing cells. Our results suggest that iPS-like cells derived from prostatic epithelial cells are pluripotent and capable of prostatic differentiation; therefore, provide a novel model for investigating epigenetic changes involved in prostate cell lineage specification.
Collapse
Affiliation(s)
- Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ning Sun
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sarah R. Young
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jennifer Santos
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joseph C. Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
225
|
Soufi A, Zaret KS. Understanding impediments to cellular conversion to pluripotency by assessing the earliest events in ectopic transcription factor binding to the genome. Cell Cycle 2013; 12:1487-91. [PMID: 23603987 DOI: 10.4161/cc.24663] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In all known cases of transcription factor (TF)-based reprogramming, the process is relatively slow and inefficient. For example, it takes about a month for the ectopic expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM) to fully reprogram human somatic cells to pluripotency. Furthermore, recent studies indicate that there is an initial stochastic phase, whereby random cells in the converting population begin to express a few genes of the new fate, followed by a so-called deterministic phase, whereby activation of a network for the new fate leads to homogeneous changes in gene expression patterns within a subset of the cell population. We recently mapped the initial interactions between OSKM factors and the human genome during the first 48 h of human fibroblast conversion to pluripotency. Unlike that reported in ES and iPS cells, distal enhancer sites in closed chromatin dominate the initial O, S, K and M binding distribution, showing that promoter occupancy is a later event in reprogramming. O, S and K act as pioneer factors for c-Myc, and c-Myc enhances the engagement of O, S and K. Despite the ability of OSKM to access closed chromatin, megabase-scale chromatin regions in somatic cells, referred to as "differentially bound regions" (DBRs), are remarkably refractory to OSKM binding at 48 h, though they become bound in pluripotent cells. These DBRs are highly enriched for the repressive H3K9me3 mark and span genes at the top of the deterministic hierarchy. Transient knockdown of the relevant chromatin modifiers allows access of OSKM to DBRs and a more rapid and efficient conversion to pluripotency. Thus, overcoming DBR barriers helps explain the conversion from a stochastic to a deterministic phase of transcription factor-mediated cell type conversion.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute for Regenerative Medicine, Epigenetics Program and Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
226
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
227
|
Abstract
Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.
Collapse
Affiliation(s)
- Wenting Zhu
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering; Princeton University; Princeton, NJ USA; Department of Molecular Biology; Princeton University; Princeton, NJ USA
| |
Collapse
|
228
|
Declercq J, Sheshadri P, Verfaillie CM, Kumar A. Zic3 enhances the generation of mouse induced pluripotent stem cells. Stem Cells Dev 2013; 22:2017-25. [PMID: 23421367 DOI: 10.1089/scd.2012.0651] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Zinc finger protein of the cerebellum (Zic)3, a member of Gli family of transcription factors (TFs), is essential for maintaining pluripotency of embryonic stem cells (ESCs) and has been reported to activate TF Nanog in an Oct4/Sox2-independent manner. Previously, we showed that Zic3 (Z), in combination with the Yamanka factors OCT4, SOX2, and KLF4 (OSK), induces neural progenitor-like cells from human fibroblasts. However, a similar combination of TFs (OSKZ) transduced in mouse embryonic fibroblasts resulted in enhanced induced pluripotent stem cells (iPSCs) formation compared with OSK alone, but not neuroprogenitors. OSKZ-derived iPSCs are indistinguishable from mESCs in colony morphology, expression of alkaline phosphatase and pluripotency genes, and embryoid body and teratoma formation. Zic3 activates the transcription of Nanog, a key pluripotency regulator, as evidenced by a luciferase promoter assay. During the course of iPSC derivation, Zic3-mediated enhanced expression of Nanog and Tbx3, gene known to enhance iPSCs derivation, is observed. Not only does Zic3 enhance the reprogramming efficiency, but also reactivation of the endogenous Zic3 protein is essential for the generation of iPSCs, as knockdown of Zic3 during the iPSC generation with OSKM significantly reduced the number of colonies. Together, our result uncovers an important role of Zic3 in generating mouse iPSCs.
Collapse
|
229
|
Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K. Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 2013; 112:523-33. [PMID: 23371901 DOI: 10.1161/circresaha.111.256149] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enthusiasm for producing patient-specific human embryonic stem cells using somatic nuclear transfer has somewhat abated in recent years because of ethical, technical, and political concerns. However, the interest in generating induced pluripotent stem cells (iPSCs), in which pluripotency can be obtained by transcription factor transduction of various somatic cells, has rapidly increased. Human iPSCs are anticipated to open enormous opportunities in the biomedical sciences in terms of cell therapies for regenerative medicine and stem cell modeling of human disease. On the other hand, recent reports have emphasized the pitfalls of iPSC technology, including the potential for genetic and epigenetic abnormalities, tumorigenicity, and immunogenicity of transplanted cells. These constitute serious safety-related concerns for iPSC-based cell therapy. However, preclinical data supporting the safety and efficacy of iPSCs are also accumulating. In this Review, recent achievements and future tasks for safe iPSC-based cell therapy are summarized, using regenerative medicine for repair strategies in the damaged central nervous system (CNS) as a model. Insights on safety and preclinical use of iPSCs in cardiovascular repair model are also discussed.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Heider A, Alt R. virtualArray: a R/bioconductor package to merge raw data from different microarray platforms. BMC Bioinformatics 2013; 14:75. [PMID: 23452776 PMCID: PMC3599117 DOI: 10.1186/1471-2105-14-75] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 02/22/2013] [Indexed: 11/10/2022] Open
Abstract
Background Microarrays have become a routine tool to address diverse biological questions. Therefore, different types and generations of microarrays have been produced by several manufacturers over time. Likewise, the diversity of raw data deposited in public databases such as NCBI GEO or EBI ArrayExpress has grown enormously. This has resulted in databases currently containing several hundred thousand microarray samples clustered by different species, manufacturers and chip generations. While one of the original goals of these databases was to make the data available to other researchers for independent analysis and, where appropriate, integration with their own data, current software implementations could not provide that feature. Only those data sets generated on the same chip platform can be readily combined and even here there are batch effects to be taken care of. A straightforward approach to deal with multiple chip types and batch effects has been missing. The software presented here was designed to solve both of these problems in a convenient and user friendly way. Results The virtualArray software package can combine raw data sets using almost any chip types based on current annotations from NCBI GEO or Bioconductor. After establishing congruent annotations for the raw data, virtualArray can then directly employ one of seven implemented methods to adjust for batch effects in the data resulting from differences between the chip types used. Both steps can be tuned to the preferences of the user. When the run is finished, the whole dataset is presented as a conventional Bioconductor “ExpressionSet” object, which can be used as input to other Bioconductor packages. Conclusions Using this software package, researchers can easily integrate their own microarray data with data from public repositories or other sources that are based on different microarray chip types. Using the default approach a robust and up-to-date batch effect correction technique is applied to the data.
Collapse
Affiliation(s)
- Andreas Heider
- Translational Centre for Regenerative Medicine Leipzig, University of Leipzig, Semmelweisstr. 14, Leipzig 04103, Germany.
| | | |
Collapse
|
231
|
Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, Goshima N, Yamanaka S. An Efficient Nonviral Method to Generate Integration-Free Human-Induced Pluripotent Stem Cells from Cord Blood and Peripheral Blood Cells. Stem Cells 2013. [DOI: 10.1002/stem.1293] [Citation(s) in RCA: 503] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
232
|
Ke Q, Li L, Cai B, Liu C, Yang Y, Gao Y, Huang W, Yuan X, Wang T, Zhang Q, Harris AL, Tao L, Xiang AP. Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Hum Mol Genet 2013; 22:2221-33. [PMID: 23420013 DOI: 10.1093/hmg/ddt074] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although somatic cells can be successfully programmed to create pluripotent stem cells by ectopically expressing defined transcriptional factors, reprogramming efficiency is low and the reprogramming mechanism remains unclear. Previous reports have shown that almost all human connexin (CX) isoforms are expressed by human embryonic stem (hES) cells and that gap junctional intercellular communication (GJIC) is important for ES cell survival and differentiation. However, the CX expression profiles in human induced pluripotent stem (iPS) cells and the role of CXs in the process of reprogramming back to iPS cells remains unknown. Here, we determined the expression levels of most forms of CX in human embryonic fibroblasts (hEFs) and in the hEF-derived iPS cells. A scrape loading/dye transfer assay showed that human iPS cells contained functional gap junctions (GJs) that could be affected by pharmacological inhibitors of GJ function. We found that CX43 was the most dramatically upregulated CX following reprogramming. Most importantly, the ectopic expression of CX43 significantly enhanced the reprogramming efficiency, whereas shRNA-mediated knockdown of endogenous CX43 expression greatly reduced the efficiency. In addition, we found that CX43 overexpression or knockdown affected the expression of E-CADHERIN, a marker of the mesenchymal-to-epithelial transition (MET), during reprogramming. In conclusion, our data indicate that CX43 expression is important for reprogramming and may mediate the MET that is associated with the acquisition of pluripotency.
Collapse
Affiliation(s)
- Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Abstract
The crucial facts underlying the low efficiency of cellular reprogramming are poorly understood. Cellular reprogramming occurs in nuclear transfer, induced pluripotent stem cell (iPSC) formation, cell fusion, and lineage-switching experiments. Despite these advances, there are three fundamental problems to be addressed: (1) the majority of cells cannot be reprogrammed, (2) the efficiency of reprogramming cells is usually low, and (3) the reprogrammed cells developed from a patient's own cells activate immune responses. These shortcomings present major obstacles for using reprogramming approaches in customised cell therapy. In this Perspective, the author synthesises past and present observations in the field of cellular reprogramming to propose a theoretical picture of the cellular memory disc. The current hypothesis is that all cells undergo an endogenous and exogenous holographic memorisation such that parts of the cellular memory dramatically decrease the efficiency of reprogramming cells, act like a barrier against reprogramming in the majority of cells, and activate immune responses. Accordingly, the focus of this review is mainly to describe the cellular memory disc (CMD). Based on the present theory, cellular memory includes three parts: a reprogramming-resistance memory (RRM), a switch-promoting memory (SPM) and a culture-induced memory (CIM). The cellular memory arises genetically, epigenetically and non-genetically and affects cellular behaviours. [corrected].
Collapse
Affiliation(s)
- Seyed Hadi Anjamrooz
- Cellular and Molecular Research Center, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
234
|
Aoi T. [Induced pluripotent stem (iPS) cell - issues for clinical application - ]. YAKUGAKU ZASSHI 2013; 133:197-200. [PMID: 23370513 DOI: 10.1248/yakushi.12-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Induced pluripotent stem (iPS) cells are generated from somatic cells by introducing small sets of transcription factors. iPS cells demonstrate pluripotency and the ability to self-renew. In addition, iPS cells can be generated from donor individuals with particular characteristics. Based on these features, iPS cells are expected to be applicable in drug discovery, the study of disease mechanisms and cell therapy. From a technical point of view, "diversity" is the key word. At present, iPS cells can be derived using various techniques, resulting in diversity in the quality of iPS cells generated. Therefore, optimization of the derivation technology is one of the most important issues. Another "diversity" is in the propensities amongst iPS cell lines derived using similar techniques. Thus, strategies for selecting good quality lines remain to be established. Considering such technical hurdles, establishment of an iPS cell bank consisting of high quality and versatile iPS lines is a promising idea because of the merits of cost and quality control. Now, we are exploring relevant parameters for the quality control of banked cells. The challenges facing clinical application of iPS cells are new but not unprecedented. To realize clinical applications of iPS cells, we need to make these challenges clear and overcome them through partnership not only with industry, governments and universities, but also patients and society at large.
Collapse
Affiliation(s)
- Takashi Aoi
- Department of Regulatory Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
235
|
Yamanaka S. Shinya Yamanaka: purveyor of pluripotency. Interview by Ruth Williams. Circ Res 2013; 112:233-5. [PMID: 23233755 DOI: 10.1161/circresaha.112.281105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
236
|
Okita K, Takahashi K, Yamanaka S. Induced Pluripotent Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
237
|
Abstract
The isolation of embryonic stem cells (ESCs) has furthered our understanding of normal embryonic development and fueled the progression of stem cell derived therapies. However, the generation of ESCs requires the destruction of an embryo, making the use of these cells ethically controversial. In 2006 the Yamanaka group overcame this ethical controversy when they described a protocol whereby somatic cells could be dedifferentiated into a pluripotent state following the transduction of a four transcription factor cocktail. Following this initial study numerous groups have described protocols to generate induced pluripotent stem cells (iPSCs). These protocols have simplified the reprogramming strategy by employing polycistronic reprogramming cassettes and flanking such polycistronic cassettes with loxP or piggyBac recognition sequences. Thus, these strategies allow for excision of the entire transgene cassette, limiting the potential for the integration of exogenous transgenes to have detrimental effect. Others have prevented the potentially deleterious effects of integrative reprogramming strategies by using non-integrating adenoviral vectors, traditional recombinant DNA transfection, transfection of minicircle DNA, or transfection of episomally maintained EBNA1/OriP plasmids. Interestingly, transfection of mRNA or miRNA has also been shown to be capable of reprogramming cells, and multiple groups have developed protocols using cell penetrating peptide tagged reprogramming factors to de-differentiate somatic cells in the absence of exogenous nucleic acid. Despite the numerous different reprogramming strategies that have been developed, the reprogramming process remains extremely inefficient. To overcome this inefficiency multiple groups have successfully used small molecules such as valproic acid, sodium butyrate, PD0325901, and others to generate iPSCs.The fast paced field of cellular reprogramming has recently produced protocols to generate iPSCs using non integrative techniques with an ever improving efficiency. These recent developments have brought us one step closer to developing a safe and efficient method to reprogram cells for clinical use. However, a lot of work is still needed before iPSCs can be implemented in a clinical setting.
Collapse
|
238
|
Serrano F, Calatayud CF, Blazquez M, Torres J, Castell JV, Bort R. Gata4 Blocks Somatic Cell Reprogramming By Directly Repressing Nanog. Stem Cells 2012; 31:71-82. [DOI: 10.1002/stem.1272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/04/2012] [Indexed: 12/31/2022]
|
239
|
Abstract
Cancer develops through the accumulation of genetic and epigenetic abnormalities. The role of genetic alterations in cancer development has been demonstrated by reverse genetic approaches. However, evidence indicating the functional significance of epigenetic abnormalities remains limited due to the lack of means to actively modify coordinated epigenetic regulations in the genome. Application of the reprogramming technology may help researchers to overcome this limitation and shed new light on cancer research. Reprogramming is accompanied by dynamic changes of epigenetic modifications and is therefore considered to be a useful tool to induce global epigenetic changes in cancer genomes. We herein discuss the similarities between reprogramming processes and carcinogenesis and propose the potential use of reprogramming technology to help understanding of the significance of epigenetic regulations in cancer cells. We, also discuss the application of induced pluripotent stem cell technology to cancer modeling based on the similar characteristics between pluripotent stem cells and cancer cells.
Collapse
Affiliation(s)
- Katsunori Semi
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
240
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
241
|
Teramura T, Frampton J. Induced pluripotent stem cells in reproductive medicine. Reprod Med Biol 2012; 12:39-46. [PMID: 29699129 DOI: 10.1007/s12522-012-0141-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/29/2012] [Indexed: 01/25/2023] Open
Abstract
Despite recent advances in reproductive medicine, there are still no effective treatments for severe infertility caused by congenital absence of germ cells or gonadotoxic treatments during prepubertal childhood. However, the development of technologies for germ cell formation from stem cells in vitro, induction of pluripotency from somatic cells, and production of patient-specific pluripotent stem cells may provide new solutions for treating these severe fertility problems. It may be possible to produce germ cells in vitro from our own somatic cells that can be used to restore fertility. In addition, these technologies may also bring about novel therapies by helping to elucidate the mechanisms of human germ cell development. In this review, we describe the current approaches for obtaining germ cells from pluripotent stem cells, and provide basic information about induction of pluripotency and germ cell development.
Collapse
Affiliation(s)
- Takeshi Teramura
- Institute of Advanced Clinical Medicine Kinki University Faculty of Medicine 377-2 Osaka-sayama Osaka Japan.,Department of Obstetrics and Gynecology Mie University Faculty of Medicine Tsu Mie Japan
| | - John Frampton
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| |
Collapse
|
242
|
Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 2012; 23:70-80. [PMID: 23229514 DOI: 10.1038/cr.2012.171] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Stimulated by the 2012 Nobel Prize in Physiology or Medicine awarded for Shinya Yamanaka and Sir John Gurdon, there is an increasing interest in the induced pluripotent stem (iPS) cells and reprograming technologies in medical science. While iPS cells are expected to open a new era providing enormous opportunities in biomedical sciences in terms of cell therapies and regenerative medicine, safety-related concerns for iPS cell-based cell therapy should be resolved prior to the clinical application of iPS cells. In this review, the pre-clinical investigations of cell therapy for spinal cord injury (SCI) using neural stem/progenitor cells derived from iPS cells, and their safety issues in vivo, are outlined. We also wish to discuss the strategy for the first human trails of iPS cell-based cell therapy for SCI patients.
Collapse
|
243
|
Bhutani N, Decker MN, Brady JJ, Bussat RT, Burns DM, Corbel SY, Blau HM. A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J 2012; 27:1107-13. [PMID: 23212122 DOI: 10.1096/fj.12-222125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mechanistic insights into the reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) are limited, particularly for early acting molecular regulators. Here we use an acute loss of function approach to demonstrate that activation-induced deaminase (AID) activity is necessary for the initiation of reprogramming to iPSCs. While AID is well known for antibody diversification, it has also recently been shown to have a role in active DNA demethylation in reprogramming toward pluripotency and development. These findings suggested a potential role for AID in iPSC generation, yet, iPSC yield from AID-knockout mouse fibroblasts was similar to that of wild-type (WT) fibroblasts. We reasoned that an acute loss of AID function might reveal effects masked by compensatory mechanisms during development, as reported for other proteins. Accordingly, we induced an acute reduction (>50%) in AID levels using 4 different shRNAs and determined that reprogramming to iPSCs was significantly impaired by 79 ± 7%. The deaminase activity of AID was critical, as coexpression of WT but not a catalytic mutant AID rescued reprogramming. Notably, AID was required only during a 72-h time window at the onset of iPSC reprogramming. Our findings show a critical role for AID activity in the initiation of reprogramming to iPSCs.
Collapse
Affiliation(s)
- Nidhi Bhutani
- Baxter Laboratory for Stem Cell Biology, Institute for Stem Cell Biology and Regenerative Medicine, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305-5175, USA
| | | | | | | | | | | | | |
Collapse
|
244
|
BYRNE JAMESA. NUCLEAR REPROGRAMMING AND THE CURRENT CHALLENGES IN ADVANCING PERSONALIZED PLURIPOTENT STEM CELL-BASED THERAPIES. ACTA ACUST UNITED AC 2012. [DOI: 10.1142/s1568558612300028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
245
|
Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 2012; 151:994-1004. [PMID: 23159369 PMCID: PMC3508134 DOI: 10.1016/j.cell.2012.09.045] [Citation(s) in RCA: 677] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/25/2012] [Accepted: 09/14/2012] [Indexed: 01/04/2023]
Abstract
The ectopic expression of transcription factors can reprogram cell fate, yet it is unknown how the initial binding of factors to the genome relates functionally to the binding seen in the minority of cells that become reprogrammed. We report a map of Oct4, Sox2, Klf4, and c-Myc (O, S, K, and M) on the human genome during the first 48 hr of reprogramming fibroblasts to pluripotency. Three striking aspects of the initial chromatin binding events include an unexpected role for c-Myc in facilitating OSK chromatin engagement, the primacy of O, S, and K as pioneer factors at enhancers of genes that promote reprogramming, and megabase-scale chromatin domains spanned by H3K9me3, including many genes required for pluripotency, that prevent initial OSKM binding and impede the efficiency of reprogramming. We find diverse aspects of initial factor binding that must be overcome in the minority of cells that become reprogrammed.
Collapse
Affiliation(s)
- Abdenour Soufi
- Department of Cell and Developmental Biology, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Building 421, Rooms 131-132, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5157, USA
| | | | | |
Collapse
|
246
|
Shofuda T, Kanematsu D, Fukusumi H, Yamamoto A, Bamba Y, Yoshitatsu S, Suemizu H, Nakamura M, Sugimoto Y, Furue MK, Kohara A, Akamatsu W, Okada Y, Okano H, Yamasaki M, Kanemura Y. Human Decidua-Derived Mesenchymal Cells Are a Promising Source for the Generation and Cell Banking of Human Induced Pluripotent Stem Cells. CELL MEDICINE 2012; 4:125-47. [PMID: 26858858 DOI: 10.3727/215517912x658918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications.
Collapse
Affiliation(s)
- Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization , Chuo-ku, Osaka , Japan
| | - Daisuke Kanematsu
- † Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization , Osaka , Japan
| | - Hayato Fukusumi
- † Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization , Osaka , Japan
| | - Atsuyo Yamamoto
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization , Chuo-ku, Osaka , Japan
| | - Yohei Bamba
- ‡ Department of Physiology, Keio University School of Medicine , Shinjuku-ku, Tokyo , Japan
| | - Sumiko Yoshitatsu
- § Department of Plastic Surgery, Osaka National Hospital, National Hospital Organization , Osaka , Japan
| | - Hiroshi Suemizu
- ¶ Biomedical Research Department, Central Institute for Experimental Animals , Kawasaki-ku, Kawasaki , Japan
| | - Masato Nakamura
- ¶Biomedical Research Department, Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Japan; #Department of Pathology and Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshikazu Sugimoto
- * Division of Chemotherapy, Faculty of Pharmacy, Keio University , Minato-ku, Tokyo , Japan
| | - Miho Kusuda Furue
- †† Laboratory of Stem Cell Cultures, Laboratory of Cell Cultures, Department of Disease Bioresources Research, National Institute of Biomedical Innovation , Ibaraki, Osaka , Japan
| | - Arihiro Kohara
- ‡‡ JCRB Cell Bank, Laboratory of Cell Cultures, Research on Disease Bioresources, National Institute of Biomedical Innovation , Osaka , Japan
| | - Wado Akamatsu
- ‡ Department of Physiology, Keio University School of Medicine , Shinjuku-ku, Tokyo , Japan
| | - Yohei Okada
- ‡Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan; §§Kanrinmaru-Project, School of Medicine, Keio University, Tokyo, Japan
| | - Hideyuki Okano
- ‡ Department of Physiology, Keio University School of Medicine , Shinjuku-ku, Tokyo , Japan
| | - Mami Yamasaki
- ¶¶Division of Molecular Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan; ##Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan; **Department of Pediatric Neurosurgery, Takatsuki General Hospital, Takatsuki, Osaka, Japan
| | - Yonehiro Kanemura
- †Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, Japan; ##Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, Japan
| |
Collapse
|
247
|
Ito D, Okano H, Suzuki N. Accelerating progress in induced pluripotent stem cell research for neurological diseases. Ann Neurol 2012; 72:167-74. [PMID: 22926850 DOI: 10.1002/ana.23596] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In 2006, Yamanaka's group pioneered a method for reprogramming somatic cells by introducing definite transcription factors, which enabled the generation of induced pluripotent stem cells (iPSCs) with pluripotency comparable to that of embryonic stem cells. These iPSCs are attracting considerable attention for their potential in rejection-tolerance personalized replacement therapy. In recent years, patient-derived iPSCs have been used to recapitulate the phenotypes of neurological diseases and broaden our understanding of the pathogenesis of many neurological diseases, including those of late onset. It is now expected that iPSCs will serve as an unlimited source of disease-specific neural cells for use in disease modeling. This review outlines current progress in neurodegenerative disease research involving iPSCs and discusses the potential roles iPSCs may play in helping researchers elucidate the pathological processes of neurodegenerative diseases and in drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Daisuke Ito
- Departments of Neurology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | |
Collapse
|
248
|
Zhang Y, Yao L, Yu X, Ou J, Hui N, Liu S. A poor imitation of a natural process: a call to reconsider the iPSC engineering technique. Cell Cycle 2012; 11:4536-44. [PMID: 23114619 DOI: 10.4161/cc.22575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reprogramming somatic cells into a pluripotent state is expected to initiate a new era in medicine. Because the precise underlying mechanism of reprogramming remains unclear, many efforts have been made to optimize induced pluripotent stem cell (iPSC) engineering. However, satisfactory results have not yet been attained. In this review, we focus on recent roadblocks in iPSC reprogramming engineering, such as the inefficiency of the process, tumorigenicity and heterogeneity of the generation. We conclude that cell reprogramming is a naturally occurring phenomenon rather than a biological technique. We will only be able to mimic the natural process of reprogramming when we fully understand its underlying mechanism. Finally, we highlight the alternative method of direct conversion, which avoids the use of iPSCs to generate cell materials for patient-specific cell therapy.
Collapse
Affiliation(s)
- Yemin Zhang
- Department of Obstetrics and Gynecology, Changhai Hospital of Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
249
|
Pereira CF, Lemischka IR, Moore K. Reprogramming cell fates: insights from combinatorial approaches. Ann N Y Acad Sci 2012; 1266:7-17. [PMID: 22901251 DOI: 10.1111/j.1749-6632.2012.06508.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epigenetic reprogramming can be achieved in different ways, including nuclear transfer, cell fusion, or the expression of transcription factors (TFs). Combinatorial overexpression provides an opportunity to define the minimal core network of TFs that instructs specific cell fates. This approach has been employed to induce mouse and human pluripotency and differentiated cell types from cells that can be also as distant as cells from different germ layers. This suggests the possibility that any specific cell type may be directly converted into another if the appropriate reprogramming TF core is determined. Herein, we review the factors used for reprogramming multiple cell identities and raise the question of whether there is a common underlying blueprint for reprogramming factors. In addition to the generation of human cell types of interest for cell-replacement therapies, we propose that the TF-mediated conversion of differentiated cell types, especially somatic stem cells, will have an impact on our understanding of their biological development.
Collapse
Affiliation(s)
- Carlos-Filipe Pereira
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | |
Collapse
|
250
|
Sakurai H, Sakaguchi Y, Shoji E, Nishino T, Maki I, Sakai H, Hanaoka K, Kakizuka A, Sehara-Fujisawa A. In vitro modeling of paraxial mesodermal progenitors derived from induced pluripotent stem cells. PLoS One 2012; 7:e47078. [PMID: 23115636 PMCID: PMC3480377 DOI: 10.1371/journal.pone.0047078] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/11/2012] [Indexed: 11/22/2022] Open
Abstract
Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-α+/Flk-1− population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-α+/KDR− population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-α+/KDR− population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.
Collapse
Affiliation(s)
- Hidetoshi Sakurai
- Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|