201
|
Joutsen J, Pessa JC, Jokelainen O, Sironen R, Hartikainen JM, Sistonen L. Comprehensive analysis of human tissues reveals unique expression and localization patterns of HSF1 and HSF2. Cell Stress Chaperones 2024; 29:235-271. [PMID: 38458311 PMCID: PMC10963207 DOI: 10.1016/j.cstres.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the evolutionarily conserved heat shock response. Beyond cell stress, several studies have demonstrated that HSFs also contribute to a vast variety of human pathologies, ranging from metabolic diseases to cancer and neurodegeneration. Despite their evident role in mitigating cellular perturbations, the functions of HSF1 and HSF2 in physiological proteostasis have remained inconclusive. Here, we analyzed a comprehensive selection of paraffin-embedded human tissue samples with immunohistochemistry. We demonstrate that both HSF1 and HSF2 display distinct expression and subcellular localization patterns in benign tissues. HSF1 localizes to the nucleus in all epithelial cell types, whereas nuclear expression of HSF2 was limited to only a few cell types, especially the spermatogonia and the urothelial umbrella cells. We observed a consistent and robust cytoplasmic expression of HSF2 across all studied smooth muscle and endothelial cells, including the smooth muscle cells surrounding the vasculature and the high endothelial venules in lymph nodes. Outstandingly, HSF2 localized specifically at cell-cell adhesion sites in a broad selection of tissue types, such as the cardiac muscle, liver, and epididymis. To the best of our knowledge, this is the first study to systematically describe the expression and localization patterns of HSF1 and HSF2 in benign human tissues. Thus, our work expands the biological landscape of these factors and creates the foundation for the identification of specific roles of HSF1 and HSF2 in normal physiological processes.
Collapse
Affiliation(s)
- Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland.
| | - Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Otto Jokelainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Reijo Sironen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland; Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana M Hartikainen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, and Cancer RC, University of Eastern Finland, Kuopio, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
202
|
Snow S, Mir D, Ma Z, Horrocks J, Cox M, Ruzga M, Sayed H, Rogers AN. Neuronal CBP-1 is required for enhanced body muscle proteostasis in response to reduced translation downstream of mTOR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585263. [PMID: 38559178 PMCID: PMC10980069 DOI: 10.1101/2024.03.15.585263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The ability to maintain muscle function decreases with age and loss of proteostatic function. Diet, drugs, and genetic interventions that restrict nutrients or nutrient signaling help preserve long-term muscle function and slow age-related decline. Previously, it was shown that attenuating protein synthesis downstream of the mechanistic target of rapamycin (mTOR) gradually increases expression of heat shock response (HSR) genes in a manner that correlates with increased resilience to protein unfolding stress. Here, we investigate the role of specific tissues in mediating the cytoprotective effects of low translation. Methods This study uses genetic tools (transgenic C. elegans , RNA interference and gene expression analysis) as well as physiological assays (survival and paralysis assays) in order to better understand how specific tissues contribute to adaptive changes involving cellular cross-talk that enhance proteostasis under low translation conditions. Results We use the C. elegans system to show that lowering translation in neurons or the germline increases heat shock gene expression and survival under conditions of heat stress. In addition, we find that low translation in these tissues protects motility in a body muscle-specific model of proteotoxicity that results in paralysis. Low translation in neurons or germline also results in increased expression of certain muscle regulatory and structural genes, reversing reduced expression normally observed with aging in C. elegans . Enhanced resilience to protein unfolding stress requires neuronal expression of cbp-1 . Conclusion Low translation in either neurons or the germline orchestrate protective adaptation in other tissues, including body muscle.
Collapse
|
203
|
Marques M, Ramos B, Albuquerque H, Pereira M, Ribeiro DR, Nunes A, Sarabando J, Brás D, Ferreira AR, Vitorino R, Amorim MJ, Silva AM, Soares AR, Ribeiro D. Influenza A virus propagation requires the activation of the unfolded protein response and the accumulation of insoluble protein aggregates. iScience 2024; 27:109100. [PMID: 38405606 PMCID: PMC10884513 DOI: 10.1016/j.isci.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Influenza A virus (IAV) employs multiple strategies to manipulate cellular mechanisms and support proper virion formation and propagation. In this study, we performed a detailed analysis of the interplay between IAV and the host cells' proteostasis throughout the entire infectious cycle. We reveal that IAV infection activates the inositol requiring enzyme 1 (IRE1) branch of the unfolded protein response, and that this activation is important for an efficient infection. We further observed the accumulation of virus-induced insoluble protein aggregates, containing both viral and host proteins, associated with a dysregulation of the host cell RNA metabolism. Our data indicate that this accumulation is important for IAV propagation and favors the final steps of the infection cycle, more specifically the virion assembly. These findings reveal additional mechanisms by which IAV disrupts host proteostasis and uncovers new cellular targets that can be explored for the development of host-directed antiviral strategies.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Hélio Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marisa Pereira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Diana Roberta Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Alexandre Nunes
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Jéssica Sarabando
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Brás
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Ana Rita Ferreira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisboa, Portugal
| | - Artur M.S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Raquel Soares
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| |
Collapse
|
204
|
Wang XX, Zhang H, Gao J, Wang XW. Ammonia stress-induced heat shock factor 1 enhances white spot syndrome virus infection by targeting the interferon-like system in shrimp. mBio 2024; 15:e0313623. [PMID: 38358252 PMCID: PMC10936208 DOI: 10.1128/mbio.03136-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Disease emergence is the consequence of host-pathogen-environment interactions. Ammonia is a key stress factor in aquatic environments that usually increases the risk of pathogenic diseases in aquatic animals. However, the molecular regulatory mechanisms underlying the enhancement of viral infection following ammonia stress remain largely unknown. Here, we found that ammonia stress enhances white spot syndrome virus infection in kuruma shrimp (Marsupenaeus japonicus) by targeting the antiviral interferon-like system through heat shock factor 1 (Hsf1). Hsf1 is an ammonia-induced transcription factor. It regulates the expression of Cactus and Socs2, which encode negative regulators of NF-κB signaling and Jak/Stat signaling, respectively. By inhibiting these two pathways, ammonia-induced Hsf1 suppressed the production and function of MjVago-L, an arthropod interferon analog. Therefore, this study revealed that Hsf1 is a central regulator of suppressed antiviral immunity after ammonia stress and provides new insights into the molecular regulation of immunity in stressful environments. IMPORTANCE Ammonia is the end product of protein catabolism and is derived from feces and unconsumed foods. It threatens the health and growth of aquatic animals. In this study, we demonstrated that ammonia stress suppresses shrimp antiviral immunity by targeting the shrimp interferon-like system and that heat shock factor 1 (Hsf1) is a central regulator of this process. When shrimp are stressed by ammonia, they activate Hsf1 for stress relief and well-being. Hsf1 upregulates the expression of negative regulators that inhibit the production and function of interferon analogs in shrimp, thereby enhancing white spot syndrome viral infection. Therefore, this study, from a molecular perspective, explains the problem in the aquaculture industry that animals living in stressed environments are more susceptible to pathogens than those living in unstressed conditions. Moreover, this study provides new insights into the side effects of heat shock responses and highlights the complexity of achieving cellular homeostasis under stressful conditions.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jie Gao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xian-Wei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
205
|
Foroutan Kalourazi A, Nazemi SA, Unniram Parambil AR, Muñoz-Tafalla R, Vidal P, Shahangian SS, Guallar V, Ferrer M, Shahgaldian P. Exploiting cyclodextrins as artificial chaperones to enhance enzyme protection through supramolecular engineering. NANOSCALE 2024; 16:5123-5129. [PMID: 38349359 DOI: 10.1039/d3nr06044f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
We report a method of enzyme stabilisation exploiting the artificial protein chaperone properties of β-cyclodextrin (β-CD) covalently embedded in an ultrathin organosilica layer. Putative interaction points of this artificial chaperone system with the surface of the selected enzyme were studied in silico using a protein energy landscape exploration simulation algorithm. We show that this enzyme shielding method allows for drastic enhancement of enzyme stability under thermal and chemical stress conditions, along with broadening the optimal temperature range of the biocatalyst. The presence of the β-CD macrocycle within the protective layer supports protein refolding after treatment with a surfactant.
Collapse
Affiliation(s)
- Ali Foroutan Kalourazi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland.
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Seyed Amirabbas Nazemi
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland.
| | - Ajmal Roshan Unniram Parambil
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland.
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| | - Ruben Muñoz-Tafalla
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Faculty of Pharmacy and Food Science, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Paula Vidal
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain
| | - S Shirin Shahangian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
- Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049 Madrid, Spain
| | - Patrick Shahgaldian
- School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, Muttenz CH-4132, Switzerland.
- Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel CH-4056, Switzerland
| |
Collapse
|
206
|
Jing B, Bi Y, Kong H, Wan W, Wang J, Yu B. Dual-environment-sensitive probe to detect protein aggregation in stressed laryngeal carcinoma cells and tissues. J Mater Chem B 2024; 12:2505-2510. [PMID: 38334693 DOI: 10.1039/d3tb02627b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The interplay between protein folding and biological activity is crucial, with the integrity of the proteome being paramount to ensuring effective biological function execution. In this study, we report a dual-environment-sensitive probe A1, capable of selectively binding to protein aggregates and dynamically monitoring their formation and degradation. Through in vitro, cellular, and tissue assays, A1 demonstrated specificity in distinguishing aggregated from folded protein states, selectively partitioning into aggregated proteins. Thermal shift assays revealed A1 could monitor the process of protein aggregation upon binding to misfolded proteins and preceding to insoluble aggregate formation. In cellular models, A1 detected stress-induced proteome aggregation in TU212 cells (laryngeal carcinoma cells), revealing a less polar microenvironment within the aggregated proteome. Similarly, tissue samples showed more severe proteome aggregation in cancerous tissues compared to paracancerous tissues. Overall, A1 represents a versatile tool for probing protein aggregation with significant implications for both fundamental research and clinical diagnostics.
Collapse
Affiliation(s)
- Biao Jing
- Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yanjie Bi
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| | - Hui Kong
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| | - Wang Wan
- Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jizhe Wang
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| | - Bo Yu
- The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, China.
| |
Collapse
|
207
|
Duan Y, Li L, Panzade GP, Piton A, Zinovyeva A, Ambros V. Modeling neurodevelopmental disorder-associated human AGO1 mutations in Caenorhabditis elegans Argonaute alg-1. Proc Natl Acad Sci U S A 2024; 121:e2308255121. [PMID: 38412125 PMCID: PMC10927592 DOI: 10.1073/pnas.2308255121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/30/2023] [Indexed: 02/29/2024] Open
Abstract
MicroRNAs (miRNA) associate with Argonaute (AGO) proteins and repress gene expression by base pairing to sequences in the 3' untranslated regions of target genes. De novo coding variants in the human AGO genes AGO1 and AGO2 cause neurodevelopmental disorders (NDD) with intellectual disability, referred to as Argonaute syndromes. Most of the altered amino acids are conserved between the miRNA-associated AGO in Homo sapiens and Caenorhabditis elegans, suggesting that the human mutations could disrupt conserved functions in miRNA biogenesis or activity. We genetically modeled four human AGO1 mutations in C. elegans by introducing identical mutations into the C. elegans AGO1 homologous gene, alg-1. These alg-1 NDD mutations cause phenotypes in C. elegans indicative of disrupted miRNA processing, miRISC (miRNA silencing complex) formation, and/or target repression. We show that the alg-1 NDD mutations are antimorphic, causing developmental and molecular phenotypes stronger than those of alg-1 null mutants, likely by sequestrating functional miRISC components into non-functional complexes. The alg-1 NDD mutations cause allele-specific disruptions in mature miRNA profiles, accompanied by perturbation of downstream gene expression, including altered translational efficiency and/or messenger RNA abundance. The perturbed genes include those with human orthologs whose dysfunction is associated with NDD. These cross-clade genetic studies illuminate fundamental AGO functions and provide insights into the conservation of miRNA-mediated post-transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Ye Duan
- Program of Molecular Medicine, UMass Chan Medical School, Worcester, MA01605
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA02138
| | - Li Li
- Division of Biology, Kansas State University, Manhattan, KS66506
| | | | - Amélie Piton
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch67 400, France
| | - Anna Zinovyeva
- Division of Biology, Kansas State University, Manhattan, KS66506
| | - Victor Ambros
- Program of Molecular Medicine, UMass Chan Medical School, Worcester, MA01605
| |
Collapse
|
208
|
Paul R, Shreya S, Pandey S, Shriya S, Abou Hammoud A, Grosset CF, Prakash Jain B. Functions and Therapeutic Use of Heat Shock Proteins in Hepatocellular Carcinoma. LIVERS 2024; 4:142-163. [DOI: 10.3390/livers4010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Heat shock proteins are intracellular proteins expressed in prokaryotes and eukaryotes that help protect the cell from stress. They play an important role in regulating cell cycle and cell death, work as molecular chaperons during the folding of newly synthesized proteins, and also in the degradation of misfolded proteins. They are not only produced under stress conditions like acidosis, energy depletion, and oxidative stress but are also continuously synthesized as a result of their housekeeping functions. There are different heat shock protein families based on their molecular weight, like HSP70, HSP90, HSP60, HSP27, HSP40, etc. Heat shock proteins are involved in many cancers, particularly hepatocellular carcinoma, the main primary tumor of the liver in adults. Their deregulations in hepatocellular carcinoma are associated with metastasis, angiogenesis, cell invasion, and cell proliferation and upregulated heat shock proteins can be used as either diagnostic or prognostic markers. Targeting heat shock proteins is a relevant strategy for the treatment of patients with liver cancer. In this review, we provide insights into heat shock proteins and heat shock protein-like proteins (clusterin) in the progression of hepatocellular carcinoma and their use as therapeutic targets.
Collapse
Affiliation(s)
- Ramakrushna Paul
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Smriti Shreya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | | | - Srishti Shriya
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| | - Aya Abou Hammoud
- MIRCADE Team, U1312, Bordeaux Institute of Oncology, BRIC, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Christophe F. Grosset
- MIRCADE Team, U1312, Bordeaux Institute of Oncology, BRIC, INSERM, University of Bordeaux, 33000 Bordeaux, France
| | - Buddhi Prakash Jain
- Gene Expression and Signaling Lab, Department of Zoology, Mahatma Gandhi Central University, Motihari 845401, India
| |
Collapse
|
209
|
Zhang X, Xu Y, Fan M, Lv X, Long J, Yang R, Zhang R, Liu Z, Gu J, Wu P, Wang C. Ponicidin-induced conformational changes of HSP90 regulates the MAPK pathway to relieve ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117483. [PMID: 38008273 DOI: 10.1016/j.jep.2023.117483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a recurring chronic intestinal disease that can be debilitating and in severe cases, may further lead to cancer. However, all these treatment techniques still suffer from drug dependence, adverse effects and poor patient compliance. Therefore, there is an urgent need to seek new therapeutic strategies. In traditional Chinese medicine, Rabdosia rubescens (Hemsl.) H.Hara has the effects of clearing heat-toxin and promoting blood circulation to relieve pain, it is wildly used for treating inflammatory diseases such as sore throats and tonsillitis. Ponicidin is an important molecule for the anti-inflammatory effects of Rabdosia rubescens, but it has not been studied in the treatment of colitis. HSP90 is the most critical regulator in the development and progression of inflammatory diseases such as UC. AIM OF THE STUDY The aim of this study was to explore the anti-inflammatory activity of ponicidin and its mechanism of effect in vitro and in vivo, as well as to identify the target proteins on which ponicidin may interact. MATERIAL AND METHODS 2.5% (w/v) dextran sulfate sodium (DSS) was used to induce C57BL/6 mice to form an ulcerative colitis model, and then 5 mg/kg and 10 mg/kg ponicidin was given for treatment, while the Rabdosia rubescens extract group and Rabdosia rubescens diterpene extract group were set up for comparison of the efficacy of ponicidin. At the end of modeling and drug administration, mouse colon tissues were taken, and the length of colon was counted, inflammatory factors and inflammatory signaling pathways were detected. RAW264.7 cells were induced to form cell inflammation model with 1 μg/mL Lipopolysaccharide (LPS) for 24 h. 1 μM, 2 μM and 4 μM ponicidin were given at the same time, and after the end of the modeling and administration of the drug, the inflammatory factors and inflammatory signaling pathways were detected by qRT-PCR, western blotting, immunofluorescence and other methods. In vitro, target angling and combined with mass spectrometry were used to search for relevant targets of ponicidin, while isothermal titration calorimetry (ITC), protease degradation experiments and molecular dynamics simulations were used for further confirmation of the mode of action and site of action between ponicidin and target proteins. RESULTS Ponicidin can alleviate DSS and LPS-induced inflammation by inhibiting the MAPK signaling pathway at the cellular and animal levels. In vitro, we confirmed that ponicidin can interact with the middle domain of HSP90 and induce the conformational changes in the N-terminal domain. CONCLUSION These innovative efforts identified the molecular target of ponicidin in the treatment of UC and revealed the molecular mechanism of its interaction with HSP90.
Collapse
Affiliation(s)
- Xuerong Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Yuanhang Xu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Minqi Fan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Xueqing Lv
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiachan Long
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Rong Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Rong Zhang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Jiangyong Gu
- Research Center of Integrative Medicine, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Peng Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Caiyan Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
210
|
Alazoumi KKM, Sharma P, Islam A, Farooqi H. Mitigation of the Deleterious Effect of Heavy Metals on the Conformational Stability of Ubiquitin through Osmoprotectants. Cell Biochem Biophys 2024; 82:193-202. [PMID: 37843791 DOI: 10.1007/s12013-023-01188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The Ubiquitin-Proteasome System (UPS) is important in protein homeostasis and is involved in many cell processes. UPS's wide range of regulatory activities is based on the unique and diverse signals transmitted through all-encompassing processes. Cells need a fully functional UPP to cope with oxidative stress, so cellular redox status modulates ubiquitin activity. However, these protein quality control systems are compromised under adverse conditions such as heavy metal stress, resulting in pathological conditions. Heavy metals disrupt the physiological action of sensitive proteins by forming complexes with side-chain functional groups or by dislocating critical metal ions in metalloproteins. In addition, perturbation in the structure of Ubiquitin may affect the ubiquitin-proteasome pathway. In this study, it has been investigated the effects of heavy metals likewise chromium (Cr), cadmium (Cd), and mercury chloride (HgCl2) on the conformational stability of Ubiquitin as well as overcome their hazardous effect, the interaction of osmo-protectants such as Sesamol, gallic acid, Glycine, and ascorbic acid have also been explored in the study. The near and far UV-circular dichroism measurements deduced the secondary and tertiary structural changes. The size of the Ubiquitin before and after exposure to heavy metals was measured by DLS (dynamic light scattering). Docking research was also used to investigate the interaction of Ubiquitin with various heavy metals. Near and far UV-circular dichroism (CD) measurements revealed that mercury, chromium, and cadmium disrupt Ubiquitin's secondary and tertiary structure. The effect of chromium, even at low concentrations, was significantly deleterious compared to cadmium and mercury chloride. Ubiquitin's far-UV circular dichroism spectra subjected to heavy metals were recorded in several osmo-protectants, such as ascorbic acid, Glycine, gallic acid, and Sesamol, which offset the adverse effects of heavy metals. DLS studies revealed a noteworthy change in the hydrodynamic radius of Ubiquitin in the presence of heavy metals. Docking analysis revealed a significant binding affinity of mercury and cadmium ions with Ubiquitin. This study can infer the heavy metals' disruption of Ubiquitin's secondary and tertiary structure. Osmo-protectants produced by animal cells are more effective against heavy metals than plant antioxidants.
Collapse
Affiliation(s)
- Khadega Khamis Moh Alazoumi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
211
|
Ma X, Yin Z, Li H, Guo J. HSP gene superfamily in Aspongopus chinensis Dallas: unravelling identification, characterisation and expression patterns during diapause and non-diapause stages. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-11. [PMID: 38425077 DOI: 10.1017/s0007485324000075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Aspongopus chinensis Dallas 1851, an insect of important economic value, faces challenges in artificial breeding due to mandatory diapause and limited access to wild resources. Heat shock proteins (Hsps) are thought to influence diapause in insects, but little is known about their role in A. chinensis during diapause. This study used genomic methods to identify 25 Hsp genes in A. chinensis, including two Hsp90, 14 Hsp70, four Hsp60 and five small Hsp genes, were located on seven chromosomes, respectively. The gene structures among the same families are relatively conserved. Meanwhile, the motif compositions and secondary structures of A. chinensis Hsps (AcHsps) were predicted. RNA-seq data and fluorescence quantitative PCR analysis showed that there were differences in the expression patterns of AcHsps in diapause and non-diapause stages, and AcHsp70-5 was significantly differentially expressed in both analysis, which was enriched in the pathway of response to hormone. All the results showed that Hsps play an important role in the diapause mechanism of A. chinensis. Our observations highlight the molecular evolution of the Hsp gene and their effect on diapause in A. chinensis.
Collapse
Affiliation(s)
- Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, P. R. China
| | - Zhiyong Yin
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, P. R. China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, P. R. China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang, P. R. China
| |
Collapse
|
212
|
Meisl G. The thermodynamics of neurodegenerative disease. BIOPHYSICS REVIEWS 2024; 5:011303. [PMID: 38525484 PMCID: PMC10957229 DOI: 10.1063/5.0180899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
The formation of protein aggregates in the brain is a central aspect of the pathology of many neurodegenerative diseases. This self-assembly of specific proteins into filamentous aggregates, or fibrils, is a fundamental biophysical process that can easily be reproduced in the test tube. However, it has been difficult to obtain a clear picture of how the biophysical insights thus obtained can be applied to the complex, multi-factorial diseases and what this means for therapeutic strategies. While new, disease-modifying therapies are now emerging, for the most devastating disorders, such as Alzheimer's and Parkinson's disease, they still fall well short of offering a cure, and few drug design approaches fully exploit the wealth of mechanistic insights that has been obtained in biophysical studies. Here, I attempt to provide a new perspective on the role of protein aggregation in disease, by phrasing the problem in terms of a system that, under constant energy consumption, attempts to maintain a healthy, aggregate-free state against the thermodynamic driving forces that inexorably push it toward pathological aggregation.
Collapse
Affiliation(s)
- Georg Meisl
- WaveBreak Therapeutics Ltd., Chemistry of Health, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
213
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
214
|
Campisi M, Cannella L, Pavanello S. Cosmic chronometers: Is spaceflight a catalyst for biological ageing? Ageing Res Rev 2024; 95:102227. [PMID: 38346506 DOI: 10.1016/j.arr.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Astronauts returning from space missions often exhibit health issues mirroring age-related conditions, suggesting spaceflight as a potential driver of biological ageing and age-related diseases. To unravel the underlying mechanisms of these conditions, this comprehensive review explores the impact of the space "exposome" on the twelve hallmarks of ageing. Through a meticulous analysis encompassing both space environments and terrestrial analogs, we aim to decipher how different conditions influence ageing hallmarks. Utilizing PubMed, we identified 189 studies and 60 meet screening criteria. Research on biological ageing in space has focused on genomic instability, chronic inflammation, and deregulated nutrient sensing. Spaceflight consistently induces genomic instability, linked to prolonged exposure to ionizing radiation, triggers pro-inflammatory and immune alterations, resembling conditions in isolated simulations. Nutrient sensing pathways reveal increased systemic insulin-like growth-factor-1. Microbiome studies indicate imbalances favoring opportunistic species during spaceflight. Telomere dynamics present intriguing patterns, with lengthening during missions and rapid shortening upon return. Despite a pro-ageing trend, some protective mechanisms emerge. Countermeasures, encompassing dietary adjustments, prebiotics, postbiotics, symbiotics, tailored exercises, meditation, and anti-inflammatory supplements, exhibit potential. Spaceflight's impact on ageing is intricate, with diverse findings challenging established beliefs. Multidisciplinary studies provide guidance for future research in this field.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| |
Collapse
|
215
|
Demyanenko SV, Kalyuzhnaya YN, Bachurin SS, Khaitin AM, Kunitsyna AE, Batalshchikova SA, Evgen'ev MB, Garbuz DG. Exogenous Hsp70 exerts neuroprotective effects in peripheral nerve rupture model. Exp Neurol 2024; 373:114670. [PMID: 38158007 DOI: 10.1016/j.expneurol.2023.114670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Hsp70 is the main molecular chaperone responsible for cellular proteostasis under normal conditions and for restoring the conformation or utilization of proteins damaged by stress. Increased expression of endogenous Hsp70 or administration of exogenous Hsp70 is known to exert neuroprotective effects in models of many neurodegenerative diseases. In this study, we have investigated the effect of exogenous Hsp70 on recovery from peripheral nerve injury in a model of sciatic nerve transection in rats. It was shown that recombinant Hsp70 after being added to the conduit connecting the ends of the nerve at the site of its extended severance, migrates along the nerve into the spinal ganglion and is retained there at least three days. In animals with the addition of recombinant Hsp70 to the conduit, a decrease in apoptosis in the spinal ganglion cells after nerve rupture, an increase in the level of PTEN-induced kinase 1 (PINK1), an increase in markers of nerve tissue regeneration and a decrease in functional deficit were observed compared to control animals. The obtained data indicate the possibility of using recombinant Hsp70 preparations to accelerate the recovery of patients after neurotrauma.
Collapse
Affiliation(s)
- Svetlana V Demyanenko
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; Department of General and Clinical Biochemistry no. 2, Rostov State Medical University, Rostov-on-Don, Russia
| | - Yuliya N Kalyuzhnaya
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Stanislav S Bachurin
- Department of General and Clinical Biochemistry no. 2, Rostov State Medical University, Rostov-on-Don, Russia
| | - Andrey M Khaitin
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Anastasia E Kunitsyna
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Svetlana A Batalshchikova
- Laboratory «Molecular Neurobiology», Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
216
|
Jing J, Wang J, Xiang X, Yin S, Tang J, Wang L, Jia G, Liu G, Chen X, Tian G, Cai J, Kang B, Che L, Zhao H. Selenomethionine alleviates chronic heat stress-induced breast muscle injury and poor meat quality in broilers via relieving mitochondrial dysfunction and endoplasmic reticulum stress. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:363-375. [PMID: 38362514 PMCID: PMC10867585 DOI: 10.1016/j.aninu.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 02/17/2024]
Abstract
In the present study, the chronic heat stress (CHS) broiler model was developed to investigate the potential protection mechanism of organic selenium (selenomethionine, SeMet) on CHS-induced skeletal muscle growth retardation and poor meat quality. Four hundred Arbor Acres male broilers (680 ± 70 g, 21 d old) were grouped into 5 treatments with 8 replicates of 10 broilers per replicate. Broilers in the control group were raised in a thermoneutral environment (22 ± 2 °C) and fed with a basal diet. The other four treatments were exposed to hyperthermic conditions (33 ± 2 °C, 24 h in each day) and fed on the basal diet supplied with SeMet at 0.0, 0.2, 0.4, and 0.6 mg Se/kg, respectively, for 21 d. Results showed that CHS reduced (P < 0.05) the growth performance, decreased (P < 0.05) the breast muscle weight and impaired the meat quality of breast muscle in broilers. CHS induced protein metabolic disorder in breast muscle, which increased (P < 0.05) the expression of caspase 3, caspase 8, caspase 9 and ubiquitin proteasome system related genes, while decreased the protein expression of P-4EBP1. CHS also decreased the antioxidant capacity and induced mitochondrial stress and endoplasmic reticulum (ER) stress in breast muscle, which increased (P < 0.05) the ROS levels, decreased the concentration of ATP, increased the protein expression of HSP60 and CLPX, and increased (P < 0.05) the expression of ER stress biomarkers. Dietary SeMet supplementation linearly increased (P < 0.05) breast muscle Se concentration and exhibited protective effects via up-regulating the expression of the selenotranscriptome and several key selenoproteins, which increased (P < 0.05) body weight, improved meat quality, enhanced antioxidant capacity and mitigated mitochondrial stress and ER stress. What's more, SeMet suppressed protein degradation and improved protein biosynthesis though inhibiting the caspase and ubiquitin proteasome system and promoting the mTOR-4EBP1 pathway. In conclusion, dietary SeMet supplementation increases the expression of several key selenoproteins, alleviates mitochondrial dysfunction and ER stress, improves protein biosynthesis, suppresses protein degradation, thus increases the body weight and improves meat quality of broilers exposed to CHS.
Collapse
Affiliation(s)
- Jinzhong Jing
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayi Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoyu Xiang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shenggang Yin
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Longqiong Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Jia
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, of China Ministry of Agriculture and Rural Affairs, of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
217
|
Mühlhofer M, Offensperger F, Reschke S, Wallmann G, Csaba G, Berchtold E, Riedl M, Blum H, Haslbeck M, Zimmer R, Buchner J. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress. FEBS Lett 2024; 598:635-657. [PMID: 38366111 DOI: 10.1002/1873-3468.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
The response to proteotoxic stresses such as heat shock allows organisms to maintain protein homeostasis under changing environmental conditions. We asked what happens if an organism can no longer react to cytosolic proteotoxic stress. To test this, we deleted or depleted, either individually or in combination, the stress-responsive transcription factors Msn2, Msn4, and Hsf1 in Saccharomyces cerevisiae. Our study reveals a combination of survival strategies, which together protect essential proteins. Msn2 and 4 broadly reprogram transcription, triggering the response to oxidative stress, as well as biosynthesis of the protective sugar trehalose and glycolytic enzymes, while Hsf1 mainly induces the synthesis of molecular chaperones and reverses the transcriptional response upon prolonged mild heat stress (adaptation).
Collapse
Affiliation(s)
- Moritz Mühlhofer
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Felix Offensperger
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Georg Wallmann
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Gergely Csaba
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Evi Berchtold
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Maximilian Riedl
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis at the Gene Center, LMU München, München, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| | - Ralf Zimmer
- Institute of Bioinformatics, Department of Informatics, Ludwig-Maximilians-Universität München, München, Germany
| | - Johannes Buchner
- Center for Protein Assemblies, Department of Bioscience, Technische Universität München, Garching, Germany
| |
Collapse
|
218
|
Yan J, Liu D, Wang J, You W, Yang W, Yan S, He W. Rewiring chaperone-mediated autophagy in cancer by a prion-like chemical inducer of proximity to counteract adaptive immune resistance. Drug Resist Updat 2024; 73:101037. [PMID: 38171078 DOI: 10.1016/j.drup.2023.101037] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Chaperone-mediated autophagy (CMA), a proteolytic system contributing to the degradation of intracellular proteins in lysosomes, is upregulated in tumors for pro-tumorigenic and pro-survival purposes. In this study, bioinformatics analysis revealed the co-occurrence of upregulated CMA and PD-L1 accumulation in metastatic melanoma with adaptive immune resistance (AIR) to anti-PD1 treatment, suggesting the potential therapeutic effects of rewiring CMA for PD-L1 degradation. Furthermore, this co-occurrence is attributed to IFN-γ-mediated compensatory up-regulation of PD-L1 and CMA, accompanied by enhanced macropinocytosis. Drawing inspiration from the cellular uptake of prions via macropinocytosis, a prion-like chemical inducer of proximity called SAP was engineered using self-assembly of the designed chiral peptide PHA. By exploiting sensitized macropinocytosis, SAP clandestinely infiltrates tumor cells and subsequently disintegrates into PHA, which reprograms CMA by inducing PD-L1 close to HSPA8. SAP degrades PD-L1 in a CMA-dependent manner and effectively restores the anti-tumor immune response in both allografting and Hu-PDX melanoma mouse models with AIR while upholding a high safety profile. Collectively, the reported SAP not only presents an immune reactivation strategy with clinical translational potential for overcoming AIR in cutaneous melanomas but serves as a reproducible example of precision-medicine-guided drug development that fully leverages specific cellular indications in pathological states.
Collapse
Affiliation(s)
- Jin Yan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China.
| | - Dan Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jingmei Wang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Siqi Yan
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Wangxiao He
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China; Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
219
|
Bedoya-Urrego K, Alzate JF. Phylogenomic discernments into Anaerolineaceae thermal adaptations and the proposal of a candidate genus Mesolinea. Front Microbiol 2024; 15:1349453. [PMID: 38486696 PMCID: PMC10937449 DOI: 10.3389/fmicb.2024.1349453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
This study delves into the evolutionary history of Anaerolineaceae, a diverse bacterial family within the Chloroflexota phylum. Employing a multi-faceted approach, including phylogenetic analyses, genomic comparisons, and exploration of adaptive features, the research unveils novel insights into the family's taxonomy and evolutionary dynamics. The investigation employs metagenome-assembled genomes (MAGs), emphasizing their prevalence in anaerobic environments. Notably, a novel mesophilic lineage, tentatively named Mesolinea, emerges within Anaerolineaceae, showcasing a distinctive genomic profile and apparent adaptation to a mesophilic lifestyle. The comprehensive genomic analyses shed light on the family's complex evolutionary patterns, including the conservation of key operons in thermophiles, providing a foundation for understanding the diverse ecological roles and adaptive strategies of Anaerolineaceae members.
Collapse
Affiliation(s)
- Katherine Bedoya-Urrego
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
220
|
Gracia B, Montes P, Gutierrez AM, Arun B, Karras GI. Protein-folding chaperones predict structure-function relationships and cancer risk in BRCA1 mutation carriers. Cell Rep 2024; 43:113803. [PMID: 38368609 PMCID: PMC10941025 DOI: 10.1016/j.celrep.2024.113803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
Predicting the risk of cancer mutations is critical for early detection and prevention, but differences in allelic severity of human carriers confound risk predictions. Here, we elucidate protein folding as a cellular mechanism driving differences in mutation severity of tumor suppressor BRCA1. Using a high-throughput protein-protein interaction assay, we show that protein-folding chaperone binding patterns predict the pathogenicity of variants in the BRCA1 C-terminal (BRCT) domain. HSP70 selectively binds 94% of pathogenic BRCA1-BRCT variants, most of which engage HSP70 more than HSP90. Remarkably, the magnitude of HSP70 binding linearly correlates with loss of folding and function. We identify a prevalent class of human hypomorphic BRCA1 variants that bind moderately to chaperones and retain partial folding and function. Furthermore, chaperone binding signifies greater mutation penetrance and earlier cancer onset in the clinic. Our findings demonstrate the utility of chaperones as quantitative cellular biosensors of variant folding, phenotypic severity, and cancer risk.
Collapse
Affiliation(s)
- Brant Gracia
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia Montes
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Angelica Maria Gutierrez
- Department of Breast Medical Oncology and Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Banu Arun
- Department of Breast Medical Oncology and Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Georgios Ioannis Karras
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
221
|
Deng T, Liang M, Du L, Li K, Li J, Qian L, Xue Q, Qiu S, Xu L, Zhang L, Gao X, Li J, Lan X, Gao H. Transcriptome Analysis of Compensatory Growth and Meat Quality Alteration after Varied Restricted Feeding Conditions in Beef Cattle. Int J Mol Sci 2024; 25:2704. [PMID: 38473950 DOI: 10.3390/ijms25052704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Compensatory growth (CG) is a physiological response that accelerates growth following a period of nutrient limitation, with the potential to improve growth efficiency and meat quality in cattle. However, the underlying molecular mechanisms remain poorly understood. In this study, 60 Huaxi cattle were divided into one ad libitum feeding (ALF) group and two restricted feeding groups (75% restricted, RF75; 50% restricted, RF50) undergoing a short-term restriction period followed by evaluation of CG. Detailed comparisons of growth performance during the experimental period, as well as carcass and meat quality traits, were conducted, complemented by a comprehensive transcriptome analysis of the longissimus dorsi muscle using differential expression analysis, gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and weighted correlation network analysis (WGCNA). The results showed that irrespective of the restriction degree, the restricted animals exhibited CG, achieving final body weights comparable to the ALF group. Compensating animals showed differences in meat quality traits, such as pH, cooking loss, and fat content, compared to the ALF group. Transcriptomic analysis revealed 57 genes and 31 pathways differentially regulated during CG, covering immune response, acid-lipid metabolism, and protein synthesis. Notably, complement-coagulation-fibrinolytic system synergy was identified as potentially responsible for meat quality optimization in RF75. This study provides novel and valuable genetic insights into the regulatory mechanisms of CG in beef cattle.
Collapse
Affiliation(s)
- Tianyu Deng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mang Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Keanning Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinnan Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Qian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingqing Xue
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shiyuan Qiu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingyang Xu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lupei Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huijiang Gao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
222
|
Song T, Zhang H, Zhao Q, Hu Z, Wang Z, Song Y, Zhang Z. Small molecule inhibitor targeting the Hsp70-Bim protein-protein interaction in estrogen receptor-positive breast cancer overcomes tamoxifen resistance. Breast Cancer Res 2024; 26:33. [PMID: 38409088 PMCID: PMC10895875 DOI: 10.1186/s13058-024-01790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
INTRODUCTION Estrogen receptor (ER) positive patients compromise about 70% of breast cancers. Tamoxifen, an antagonist of ERα66 (the classic ER), is the most effective and the standard first-line drug. However, its efficacy is limited by the development of acquired resistance. METHODS A specific inhibitor of Hsp70-Bim protein-protein interaction (PPI), S1g-2, together with an inhibitor of Hsp70-Bag3 PPI, MKT-077 and an ATP-competitive inhibitor VER155008, were used as chemical tools. Cell viability assays, co-immunoprecipitation and gene knockdown were used to investigate the role of Hsp70 in tamoxifen resistance. A xenograft model was established in which tamoxifen-resistant breast cancer (MCF-7/TAM-R) cells maintained in the presence of 5 μM tamoxifen were subcutaneously inoculated. The anti-tumor efficiency of S1g-2 was measured after a daily injection of 0.8 mg/kg for 14 days. RESULTS It was revealed that Hsp70-Bim PPI protects ERα-positive breast cancer from tamoxifen-induced apoptosis through binding and stabilizing ERα36, rather than ERα66, resulting in sustained EGFR mRNA and protein expression. Disruption of Hsp70-Bim PPI and downregulation of ERα36 expression in tumor samples are consistent with the in vitro functions of S1g-2, resulting in about a three-fold reduction in tumor volume. CONCLUSIONS The in vivo activity and safety of S1g-2 illustrated that it is a potential strategy for Hsp70-Bim disruption to overcome tamoxifen-resistant ER-positive breast cancer.
Collapse
Affiliation(s)
- Ting Song
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China.
| | - Hong Zhang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Qicheng Zhao
- Cancer Rehabilitation Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tong Ji University, Shanghai, China
| | - Zhiyuan Hu
- School of Life Science and Technology, Dalian University of Technology, Dalian, Liaoning, China
| | - Ziqian Wang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Yang Song
- Central Hospital of Dalian University of Technology, Dalian, Liaoning, China
| | - Zhichao Zhang
- Cancer Hospital of Dalian University of Technology, School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China.
| |
Collapse
|
223
|
He J, Han X, Sun S, Jin S, Liu M, Han Z. Genome-Wide Identification and Transcriptome Analysis of the Hsp70 Gene Family in Monodonta labio Reveals Its Role in Response to Nanoplastics Stress. Genes (Basel) 2024; 15:291. [PMID: 38540349 PMCID: PMC10969875 DOI: 10.3390/genes15030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 06/14/2024] Open
Abstract
For marine invertebrates, the disruption of organismal physiology and behavior by nanoplastics (NPs) has been extensively reported. Heat shock proteins (Hsps) are important for redundant protein breakdown, environmental changes, and intracellular protein transport. An exhaustive identification of Hsp70 genes and an experiment where different concentrations of NPs were stressed were performed to study how Hsp70 genes respond to NPs stress in Monodonta labio. Our results identified 15 members of Hsp70 within the genome of M. labio and provided insights into their responses to different concentrations of acute NP stress. Phylogenetic analyses revealed extensive amplification of the Hsp70 genes from the Hsc70 subfamily, with gene duplication events. As a result of NP stress, five of fifteen genes showed significant upregulation or downregulation. Three Hsp70 genes were highly expressed at an NP concentration of 0.1 mg/L, and no genes were downregulated. At 10 mg/L, they showed significant upregulation of two genes and significant downregulation of two genes. At 1 mg/L treatment, three genes were significantly downregulated, and no genes were significantly upregulated. Moreover, a purifying selection was revealed using a selection test conducted on duplicate gene pairs, indicating functional redundancy. This work is the first thorough examination of the Hsp70s in Archaeogastropoda. The findings improve knowledge of Hsp70s in molluscan adaptation to NP stress and intertidal living and offer essential data for the biological study of M. labio.
Collapse
Affiliation(s)
- Jingjing He
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| | - Xiaolu Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| | - Shaolei Sun
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| | - Shihuai Jin
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mengyuan Liu
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; (J.H.); (X.H.); (S.S.); (M.L.)
| |
Collapse
|
224
|
Wang X, Liu J, Mao C, Mao Y. Phase separation-mediated biomolecular condensates and their relationship to tumor. Cell Commun Signal 2024; 22:143. [PMID: 38383403 PMCID: PMC10880379 DOI: 10.1186/s12964-024-01518-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Phase separation is a cellular phenomenon where macromolecules aggregate or segregate, giving rise to biomolecular condensates resembling "droplets" and forming distinct, membrane-free compartments. This process is pervasive in biological cells, contributing to various essential cellular functions. However, when phase separation goes awry, leading to abnormal molecular aggregation, it can become a driving factor in the development of diseases, including tumor. Recent investigations have unveiled the intricate connection between dysregulated phase separation and tumor pathogenesis, highlighting its potential as a novel therapeutic target. This article provides an overview of recent phase separation research, with a particular emphasis on its role in tumor, its therapeutic implications, and outlines avenues for further exploration in this intriguing field.
Collapse
Affiliation(s)
- Xi Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jiameng Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chaoming Mao
- Department of Nuclear Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Yufei Mao
- Department of Ultrasound Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
225
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
226
|
Lei ZC, Wang X, Yang L, Qu H, Sun Y, Yang Y, Li W, Zhang WB, Cao XY, Fan C, Li G, Wu J, Tian ZQ. What can molecular assembly learn from catalysed assembly in living organisms? Chem Soc Rev 2024; 53:1892-1914. [PMID: 38230701 DOI: 10.1039/d3cs00634d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Molecular assembly is the process of organizing individual molecules into larger structures and complex systems. The self-assembly approach is predominantly utilized in creating artificial molecular assemblies, and was believed to be the primary mode of molecular assembly in living organisms as well. However, it has been shown that the assembly of many biological complexes is "catalysed" by other molecules, rather than relying solely on self-assembly. In this review, we summarize these catalysed-assembly (catassembly) phenomena in living organisms and systematically analyse their mechanisms. We then expand on these phenomena and discuss related concepts, including catalysed-disassembly and catalysed-reassembly. Catassembly proves to be an efficient and highly selective strategy for synergistically controlling and manipulating various noncovalent interactions, especially in hierarchical molecular assemblies. Overreliance on self-assembly may, to some extent, hinder the advancement of artificial molecular assembly with powerful features. Furthermore, inspired by the biological catassembly phenomena, we propose guidelines for designing artificial catassembly systems and developing characterization and theoretical methods, and review pioneering works along this new direction. Overall, this approach may broaden and deepen our understanding of molecular assembly, enabling the construction and control of intelligent assembly systems with advanced functionality.
Collapse
Affiliation(s)
- Zhi-Chao Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinchang Wang
- School of Electronic Science and Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P. R. China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Yibin Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Wei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science, Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
227
|
Yang Y, Zhang G, Su M, Shi Q, Chen Q. Prefoldin Subunits and Its Associate Partners: Conservations and Specificities in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:556. [PMID: 38498526 PMCID: PMC10893143 DOI: 10.3390/plants13040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/20/2024]
Abstract
Prefoldins (PFDs) are ubiquitous co-chaperone proteins that originated in archaea during evolution and are present in all eukaryotes, including yeast, mammals, and plants. Typically, prefoldin subunits form hexameric PFD complex (PFDc) that, together with class II chaperonins, mediate the folding of nascent proteins, such as actin and tubulin. In addition to functioning as a co-chaperone in cytoplasm, prefoldin subunits are also localized in the nucleus, which is essential for transcription and post-transcription regulation. However, the specific and critical roles of prefoldins in plants have not been well summarized. In this review, we present an overview of plant prefoldin and its related proteins, summarize the structure of prefoldin/prefoldin-like complex (PFD/PFDLc), and analyze the versatile landscape by prefoldin subunits, from cytoplasm to nucleus regulation. We also focus the specific role of prefoldin-mediated phytohormone response and global plant development. Finally, we overview the emerging prefoldin-like (PFDL) subunits in plants and the novel roles in related processes, and discuss the next direction in further studies.
Collapse
Affiliation(s)
- Yi Yang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Gang Zhang
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Mengyu Su
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| | - Qingbiao Shi
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China; (G.Z.); (M.S.)
| |
Collapse
|
228
|
Muraoka T, Okumura M, Saio T. Enzymatic and synthetic regulation of polypeptide folding. Chem Sci 2024; 15:2282-2299. [PMID: 38362427 PMCID: PMC10866363 DOI: 10.1039/d3sc05781j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Proper folding is essential for the biological functions of all proteins. The folding process is intrinsically error-prone, and the misfolding of a polypeptide chain can cause the formation of toxic aggregates related to pathological outcomes such as neurodegenerative disease and diabetes. Chaperones and some enzymes are involved in the cellular proteostasis systems that assist polypeptide folding to diminish the risk of aggregation. Elucidating the molecular mechanisms of chaperones and related enzymes is important for understanding proteostasis systems and protein misfolding- and aggregation-related pathophysiology. Furthermore, mechanistic studies of chaperones and related enzymes provide important clues to designing chemical mimics, or chemical chaperones, that are potentially useful for recovering proteostasis activities as therapeutic approaches for treating and preventing protein misfolding-related diseases. In this Perspective, we provide a comprehensive overview of the latest understanding of the folding-promotion mechanisms by chaperones and oxidoreductases and recent progress in the development of chemical mimics that possess activities comparable to enzymes, followed by a discussion of future directions.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) Kanagawa 243-0435 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University Sendai Miyagi 980-8578 Japan
| | - Tomohide Saio
- Division of Molecular Life Science, Institute of Advanced Medical Sciences, Tokushima University Tokushima 770-8503 Japan
| |
Collapse
|
229
|
Mendonça LS, Henriques D, Fernandes V, Moreira R, Brás J, Duarte S, Schwamborn JC, de Almeida LP. Graft-derived neurons and bystander effects are maintained for six months after human iPSC-derived NESC transplantation in mice's cerebella. Sci Rep 2024; 14:3236. [PMID: 38332227 PMCID: PMC10853537 DOI: 10.1038/s41598-024-53542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Machado-Joseph disease (MJD) is a neurodegenerative disorder characterized by widespread neuronal death affecting the cerebellum. Cell therapy can trigger neuronal replacement and neuroprotection through bystander effects providing a therapeutic option for neurodegenerative diseases. Here, human control (CNT) and MJD iPSC-derived neuroepithelial stem cells (NESC) were established and tested for their therapeutic potential. Cells' neuroectodermal phenotype was demonstrated. Brain organoids obtained from the Control NESC showed higher mRNA levels of genes related to stem cells' bystander effects, such as BDNF, NEUROD1, and NOTCH1, as compared with organoids produced from MJD NESC, suggesting that Control NESC have a higher therapeutic potential. Graft-derived glia and neurons, such as cells positive for markers of cerebellar neurons, were detected six months after NESC transplantation in mice cerebella. The graft-derived neurons established excitatory and inhibitory synapses in the host cerebella, although CNT neurons exhibited higher excitatory synapse numbers compared with MJD neurons. Cell grafts, mainly CNT NESC, sustained the bystander effects through modulation of inflammatory interleukins (IL1B and IL10), neurotrophic factors (NGF), and neurogenesis-related proteins (Msi1 and NeuroD1), for six months in the mice cerebella. Altogether this study demonstrates the long-lasting therapeutic potential of human iPSC-derived NESC in the cerebellum.
Collapse
Affiliation(s)
- Liliana S Mendonça
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.
| | - Daniel Henriques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Vanessa Fernandes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Brás
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sónia Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
230
|
Wang Q, Wu Y, Wu W, Lyu L, Li W. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures. PLANTA 2024; 259:57. [PMID: 38307982 DOI: 10.1007/s00425-023-04320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/23/2023] [Indexed: 02/04/2024]
Abstract
MAIN CONCLUSION This review summarizes the physiological, biochemical, and molecular regulatory network changes in plants in response to high temperature. With the continuous rise in temperature, high temperature has become an important issue limiting global plant growth and development, affecting the phenotype and physiological and biochemical processes of plants and seriously restricting crop yield and tree growth speed. As sessile organisms, plants inevitably encounter high temperatures and improve their heat tolerance by activating molecular networks related to heat stress, such as signal transduction, synthesis of metabolites, and gene expression. Heat tolerance is a polygenic trait regulated by a variety of genes, transcription factors, proteins, and metabolites. Therefore, this review summarizes the changes in physiological, biochemical and molecular regulatory networks in plants under high-temperature conditions to lay a foundation for an in-depth understanding of the mechanisms involved in plant heat tolerance responses.
Collapse
Affiliation(s)
- Que Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China.
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
231
|
Carter Z, Creamer D, Kouvidi A, Grant CM. Sequestrase chaperones protect against oxidative stress-induced protein aggregation and [PSI+] prion formation. PLoS Genet 2024; 20:e1011194. [PMID: 38422160 DOI: 10.1371/journal.pgen.1011194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
Misfolded proteins are usually refolded to their functional conformations or degraded by quality control mechanisms. When misfolded proteins evade quality control, they can be sequestered to specific sites within cells to prevent the potential dysfunction and toxicity that arises from protein aggregation. Btn2 and Hsp42 are compartment-specific sequestrases that play key roles in the assembly of these deposition sites. Their exact intracellular functions and substrates are not well defined, particularly since heat stress sensitivity is not observed in deletion mutants. We show here that Btn2 and Hsp42 are required for tolerance to oxidative stress conditions induced by exposure to hydrogen peroxide. Btn2 and Hsp42 act to sequester oxidized proteins into defined PQC sites following ROS exposure and their absence leads to an accumulation of protein aggregates. The toxicity of protein aggregate accumulation causes oxidant sensitivity in btn2 hsp42 sequestrase mutants since overexpression of the Hsp104 disaggregase rescues oxidant tolerance. We have identified the Sup35 translation termination factor as an in vivo sequestrase substrate and show that Btn2 and Hsp42 act to suppress oxidant-induced formation of the yeast [PSI+] prion, which is the amyloid form of Sup35. [PSI+] prion formation in sequestrase mutants does not require IPOD (insoluble protein deposit) localization which is the site where amyloids are thought to undergo fragmentation and seeding to propagate their heritable prion form. Instead, both amorphous and amyloid Sup35 aggregates are increased in btn2 hsp42 mutants consistent with the idea that prion formation occurs at multiple intracellular sites during oxidative stress conditions in the absence of sequestrase activity. Taken together, our data identify protein sequestration as a key antioxidant defence mechanism that functions to mitigate the damaging consequences of protein oxidation-induced aggregation.
Collapse
Affiliation(s)
- Zorana Carter
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Declan Creamer
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Aikaterini Kouvidi
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
232
|
Jiménez AG. A revisiting of "the hallmarks of aging" in domestic dogs: current status of the literature. GeroScience 2024; 46:241-255. [PMID: 37594598 PMCID: PMC10828135 DOI: 10.1007/s11357-023-00911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023] Open
Abstract
A progressive decline in biological function and fitness is, generally, how aging is defined. However, in 2013, a description on the "hallmarks of aging" in mammals was published, and within it, it described biological processes that are known to alter the aging phenotype. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication (inflammation), and changes within the microbiome. This mini-review provides a detailed account of the progress on each of these hallmarks of aging in the domestic dog within the last 5 years. Additionally, when there are gaps in the literature between other mammalian species and dogs, I highlight the aging biomarkers that may be missing for dogs as aging models. I also argue for the importance of dog aging studies to include several breeds of dogs at differing ages and for age corrections for breeds with differing mean lifespans throughout.
Collapse
Affiliation(s)
- Ana Gabriela Jiménez
- Department of Biology, Colgate University, 13 Oak Dr, Hamilton, NY, 133546, USA.
| |
Collapse
|
233
|
Kim J, Kim HJ, Choi E, Cho M, Choi S, Jeon MA, Lee JS, Park H. Expansion of the HSP70 gene family in Tegillarca granosa and expression profiles in response to zinc toxicity. Cell Stress Chaperones 2024; 29:97-112. [PMID: 38272254 PMCID: PMC10939072 DOI: 10.1016/j.cstres.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Zinc (Zn) is an essential micronutrient in organisms and an abundant element in the Earth's crust. Trace amounts of Zn released from natural sources can enter aquatic ecosystems through weathering and erosion. Zn accumulates in organisms, and when its intracellular concentration exceeds a certain level, it can induce oxidative stress and trigger oxidative stress-mediated heat shock protein (HSP) modulation. HSP70 is the most evolutionarily conserved among the HSP families. Despite extensive research on HSP70 genes in bivalves, the HSP70 gene family of Tegillarca granosa is still poorly characterized. We identified 65 HSP70 genes belonging to 6 families in the T. granosa genome, with 50 HSPa12 and 11 HSPa B2 genes highly expanded. On chromosome 11, 39 HSP70 (60%) genes were identified, and the HSPa12A genes were highly duplicated. A total of 527 and 538 differentially expressed genes were identified in the gills and mantle based on Zn exposure, respectively. The Gene Ontology of cellular anatomical entities was significantly enriched with upregulated differentially expressed genes in the gills and mantle. Eight of the 11 HSPa B2 genes were upregulated in both tissues. Most of the genes identified in both tissues were involved in "protein homeostasis" and "inhibition of apoptosis," which are associated with the HSP70 family's resistance to extrinsic and intrinsic stress. Hence, this study identified that the HSP70 gene family plays a vital role in the adaptation of aquatic organisms to heavy metal (e.g., Zn) stress in contaminated environments by compiling the different physiological responses to preserve homeostasis.
Collapse
Affiliation(s)
- Jinmu Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyeon Jin Kim
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea
| | - Eunkyung Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Minjoo Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Soyun Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Mi Ae Jeon
- Aquaculture Management Division, South Sea Fisheries Research Institute, NIFS, Yeosu, Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Yeosu, Korea.
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|
234
|
Somu P, Mohanty S, Basavegowda N, Yadav AK, Paul S, Baek KH. The Interplay between Heat Shock Proteins and Cancer Pathogenesis: A Novel Strategy for Cancer Therapeutics. Cancers (Basel) 2024; 16:638. [PMID: 38339390 PMCID: PMC10854888 DOI: 10.3390/cancers16030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Heat shock proteins (HSPs) are developmentally conserved families of protein found in both prokaryotic and eukaryotic organisms. HSPs are engaged in a diverse range of physiological processes, including molecular chaperone activity to assist the initial protein folding or promote the unfolding and refolding of misfolded intermediates to acquire the normal or native conformation and its translocation and prevent protein aggregation as well as in immunity, apoptosis, and autophagy. These molecular chaperonins are classified into various families according to their molecular size or weight, encompassing small HSPs (e.g., HSP10 and HSP27), HSP40, HSP60, HSP70, HSP90, and the category of large HSPs that include HSP100 and ClpB proteins. The overexpression of HSPs is induced to counteract cell stress at elevated levels in a variety of solid tumors, including anticancer chemotherapy, and is closely related to a worse prognosis and therapeutic resistance to cancer cells. HSPs are also involved in anti-apoptotic properties and are associated with processes of cancer progression and development, such as metastasis, invasion, and cell proliferation. This review outlines the previously mentioned HSPs and their significant involvement in diverse mechanisms of tumor advancement and metastasis, as well as their contribution to identifying potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil & Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India;
| | - Sonali Mohanty
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| | - Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan;
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| |
Collapse
|
235
|
Apostolidou D, Zhang P, Pandya D, Bock K, Liu Q, Yang W, Marszalek PE. Tandem repeats of highly bioluminescent NanoLuc are refolded noncanonically by the Hsp70 machinery. Protein Sci 2024; 33:e4895. [PMID: 38284490 PMCID: PMC10804678 DOI: 10.1002/pro.4895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc-based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat-denatured Nluc dyads and triads can be efficiently refolded by the E. coli Hsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co-chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins.
Collapse
Affiliation(s)
- Dimitra Apostolidou
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUnited States
| | - Pan Zhang
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUnited States
| | - Devanshi Pandya
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNorth CarolinaUnited States
| | - Kaden Bock
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUnited States
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUnited States
| | - Weitao Yang
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUnited States
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUnited States
| |
Collapse
|
236
|
Che R, Liu Y, Yan S, Yang C, Sun Y, Liu C, Ma F. Elongation factor MdEF-Tu coordinates with heat shock protein MdHsp70 to enhance apple thermotolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1250-1263. [PMID: 37991990 DOI: 10.1111/tpj.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/08/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
High-temperature stress results in protein misfolding/unfolding and subsequently promotes the accumulation of cytotoxic protein aggregates that can compromise cell survival. Heat shock proteins (HSPs) function as molecular chaperones that coordinate the refolding and degradation of aggregated proteins to mitigate the detrimental effects of high temperatures. However, the relationship between HSPs and protein aggregates in apples under high temperatures remains unclear. Here, we show that an apple (Malus domestica) chloroplast-localized, heat-sensitive elongation factor Tu (MdEF-Tu), positively regulates apple thermotolerance when it is overexpressed. Transgenic apple plants exhibited higher photosynthetic capacity and better integrity of chloroplasts during heat stress. Under high temperatures, MdEF-Tu formed insoluble aggregates accompanied by ubiquitination modifications. Furthermore, we identified a chaperone heat shock protein (MdHsp70), as an interacting protein of MdEF-Tu. Moreover, we observed obviously elevated MdHsp70 levels in 35S: MdEF-Tu apple plants that prevented the accumulation of ubiquitinated MdEF-Tu aggregates, which positively contributes to the thermotolerance of the transgenic plants. Overall, our results provide new insights into the molecular chaperone function of MdHsp70, which mediates the homeostasis of thermosensitive proteins under high temperatures.
Collapse
Affiliation(s)
- Runmin Che
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuerong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengqi Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yubo Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
237
|
Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci 2024; 49:105-118. [PMID: 37919225 DOI: 10.1016/j.tibs.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
238
|
Egly CL, Barny L, Do T, McDonald EF, Plate L, Knollmann BC. The proteostasis interactomes of trafficking-deficient K V 11.1 variants associated with Long QT Syndrome and pharmacological chaperone rescue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.574410. [PMID: 38352392 PMCID: PMC10862811 DOI: 10.1101/2024.01.31.574410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Introduction The voltage gated potassium ion channel K V 11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause Long QT Syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which can be rescued by pharmacological chaperones like E-4031. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery, comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants, and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. Methods We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes in human embryonic kidney (HEK293) cells expressing wild-type (WT) K V 11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. Resultsa We identified 573 core K V 11.1 protein interactors. Both variants K V 11.1-G601S and K V 11.1-G601S-G965* had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We found that proteasomal degradation is a key component for K V 11.1 degradation and that the K V 11.1-G601S-G965* variant was more responsive to E-4031 treatment. This suggests a role in the C-terminal domain and the ER retention motif of K V 11.1 in regulating trafficking. Conclusion Our report characterizes the proteostasis network of K V 11.1, two trafficking deficient K V 11.1 variants, and variants treated with a pharmacological chaperone. The identified protein interactions could be targeted therapeutically to improve K V 11.1 trafficking and treat Long QT Syndrome.
Collapse
|
239
|
Vogelsang TLR, Schmoeckel E, Topalov NE, Ganster F, Mahner S, Jeschke U, Vattai A. Prognostic Impact of Heat Shock Protein 90 Expression in Women Diagnosed with Cervical Cancer. Int J Mol Sci 2024; 25:1571. [PMID: 38338850 PMCID: PMC10855426 DOI: 10.3390/ijms25031571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Heat Shock Protein 90 (HSP90), a major molecular chaperone, plays a crucial role in cell function by folding and stabilizing proteins and maintaining proteostasis. This study aimed to elucidate the prognostic impact of HSP90 in cervical cancer. We analyzed HSP90 expression using immunohistochemistry in cervical cancer tissue microarrays from 250 patients. This study investigated correlations between HSP90 expression levels and key clinical outcomes, including overall survival (OS), progression-free survival (PFS), and FIGO classification. The statistical analyses employed included the Kruskal-Wallis-H test, log-rank (Mantel-Cox), and Cox regression. Our findings indicate that high nuclear HSP90 expression is associated with improved OS, while high cytoplasmic HSP90 expression correlates with better PFS and a lower FIGO classification in cervical squamous cell carcinoma patients. These results suggest that HSP90 could serve as a positive prognostic factor in patients diagnosed with cervical squamous cell carcinoma, underlining its potential as a biomarker for patient prognosis and as a target for therapeutic strategies.
Collapse
Affiliation(s)
- Tilman L. R. Vogelsang
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337 Munich, Germany
- Department of Obstetrics and Gynecology, Medical University of Graz, 8010 Graz, Austria
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, LMU Munich, 80337 Munich, Germany;
| | | | - Franziska Ganster
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337 Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, 80337 Munich, Germany
| |
Collapse
|
240
|
Liu S, Huang Y, Jensen S, Laman P, Kramer G, Zaat SAJ, Brul S. Molecular physiological characterization of the dynamics of persister formation in Staphylococcus aureus. Antimicrob Agents Chemother 2024; 68:e0085023. [PMID: 38051079 PMCID: PMC10777834 DOI: 10.1128/aac.00850-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
Bacteria possess the ability to enter a growth-arrested state known as persistence in order to survive antibiotic exposure. Clinically, persisters are regarded as the main causative agents for chronic and recurrent infectious diseases. To combat this antibiotic-tolerant population, a better understanding of the molecular physiology of persisters is required. In this study, we collected samples at different stages of the biphasic kill curve to reveal the dynamics of the cellular molecular changes that occur in the process of persister formation. After exposure to antibiotics with different modes of action, namely, vancomycin and enrofloxacin, similar persister levels were obtained. Both shared and distinct stress responses were enriched for the respective persister populations. However, the dynamics of the presence of proteins linked to the persister phenotype throughout the biphasic kill curve and the molecular profiles in a stable persistent population did show large differences, depending on the antibiotic used. This suggests that persisters at the molecular level are highly stress specific, emphasizing the importance of characterizing persisters generated under different stress conditions. Additionally, although generated persisters exhibited cross-tolerance toward tested antibiotics, combined therapies were demonstrated to be a promising approach to reduce persister levels. In conclusion, this investigation sheds light on the stress-specific nature of persisters, highlighting the necessity of tailored treatment approaches and the potential of combined therapy.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Yixuan Huang
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Sean Jensen
- Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Paul Laman
- Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, Swammerdam Institute for Life Sciences, Amsterdam, the Netherlands
| |
Collapse
|
241
|
Yuan R, Zhang Z, Wu G, Zhang Y, Sha J, Chen Y, Si W. Unfolding of protein using MoS 2/SnS 2heterostructure for nanopore-based sequencing. NANOTECHNOLOGY 2024; 35:135501. [PMID: 38118165 DOI: 10.1088/1361-6528/ad177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Protein sequencing is crucial for understanding the complex mechanisms driving biological functions. However, proteins are usually folded in their native state and the mechanism of fast protein conformation transitions still remains unclear, which make protein sequencing challenging. Molecular dynamics simulations with accurate force field are now able to observe the entire folding/unfolding process, providing valuable insights into protein folding mechanisms. Given that proteins can be unfolded, nanopore technology shows great potential for protein sequencing. In this study, we proposed to use MoS2/SnS2heterostructures to firstly unfold proteins and then detect them by a nanopore in the heterostructural membrane. All-atom molecular dynamics simulations performed in this work provided rich atomic-level information for a comprehensive understanding of protein unfolding process and mechanism on the MoS2/SnS2heterostructure, it was found that the strong binding of protein to SnS2nanostripe and hydrogen bond breaking were the main reasons for unfolding the protein on the heterostructure. After the protein was fully unfolded, it was restrained on the nanostripe because of the affinity of protein to the SnS2nanostripe. Thus by integrating the proposed unfolding technique with nanopore technology, detection of linear unfolded peptide was realized in this work, allowing for the identification of protein components, which is essential for sequencing proteins in the near future.
Collapse
Affiliation(s)
- Runyi Yuan
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Zhen Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Gensheng Wu
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yin Zhang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, People's Republic of China
| |
Collapse
|
242
|
Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein Quality Control Systems and ER Stress as Key Players in SARS-CoV-2-Induced Neurodegeneration. Cells 2024; 13:123. [PMID: 38247815 PMCID: PMC10814689 DOI: 10.3390/cells13020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought to the forefront the intricate relationship between SARS-CoV-2 and its impact on neurological complications, including potential links to neurodegenerative processes, characterized by a dysfunction of the protein quality control systems and ER stress. This review article explores the role of protein quality control systems, such as the Unfolded Protein Response (UPR), the Endoplasmic Reticulum-Associated Degradation (ERAD), the Ubiquitin-Proteasome System (UPS), autophagy and the molecular chaperones, in SARS-CoV-2 infection. Our hypothesis suggests that SARS-CoV-2 produces ER stress and exploits the protein quality control systems, leading to a disruption in proteostasis that cannot be solved by the host cell. This disruption culminates in cell death and may represent a link between SARS-CoV-2 and neurodegeneration.
Collapse
Affiliation(s)
- Elena Gavilán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
| | - Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| | - Diego Ruano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla (US), 41012 Sevilla, Spain; (R.M.-G.); (B.B.-K.); (D.R.)
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Junta de Andalucía, CSIC, University of Seville (US), 41013 Sevilla, Spain
| |
Collapse
|
243
|
Mehta D, Gupta D, Kafle A, Kaur S, Nagaiah TC. Advances and Challenges in Nanomaterial-Based Electrochemical Immunosensors for Small Cell Lung Cancer Biomarker Neuron-Specific Enolase. ACS OMEGA 2024; 9:33-51. [PMID: 38222505 PMCID: PMC10785636 DOI: 10.1021/acsomega.3c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Early and rapid detection of neuron-specific enolase (NSE) is highly significant, as it is putative biomarker for small-cell lung cancer as well as COVID-19. Electrochemical techniques have attracted substantial attention for the early detection of cancer biomarkers due to the important properties of simplicity, high sensitivity, specificity, low cost, and point-of-care detection. This work reviews the clinically relevant labeled and label-free electrochemical immunosensors developed so far for the analysis of NSE. The prevailing role of nanostructured materials as electrode matrices is thoroughly discussed. Subsequently, the key performances of various immunoassays are critically evaluated in terms of limit of detection, linear ranges, and incubation time for clinical translation. Electrochemical techniques coupled with screen-printed electrodes developing market level commercialization of NSE sensors is also discussed. Finally, the review concludes with the current challenges associated with available methods and provides a future outlook toward commercialization opportunities for easy detection of NSE.
Collapse
Affiliation(s)
- Daisy Mehta
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Divyani Gupta
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Alankar Kafle
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sukhjot Kaur
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Tharamani C. Nagaiah
- Department of Chemistry, Indian
Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
244
|
Ayuda-Durán B, Garzón-García L, González-Manzano S, Santos-Buelga C, González-Paramás AM. Insights into the Neuroprotective Potential of Epicatechin: Effects against Aβ-Induced Toxicity in Caenorhabditis elegans. Antioxidants (Basel) 2024; 13:79. [PMID: 38247503 PMCID: PMC10812808 DOI: 10.3390/antiox13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Medical therapies to avoid the progression of Alzheimer's disease (AD) are limited to date. Certain diets have been associated with a lower incidence of neurodegenerative diseases. In particular, the regular intake of foods rich in polyphenols, such as epicatechin (EC), could help prevent or mitigate AD progression. This work aims to explore the neuroprotective effects of EC using different transgenic strains of Caenorhabditis elegans, which express human Aβ1-42 peptides and contribute to elucidating the mechanisms involved in the effects of EC in AD. The performed assays indicate that this flavan-3-ol was able to reduce the signs of β-amyloid accumulation in C. elegans, improving motility and chemotaxis and increasing survival in transgenic strain peptide producers compared to nematodes not treated with EC. The neuroprotective effects exhibited by EC in C. elegans could be explained by the modulation of inflammation and stress-associated genes, as well as autophagy, microgliosis, and heat shock signaling pathways, involving the regulation of cpr-5, epg-8, ced-7, ZC239.12, and hsp-16 genes. Overall, the results obtained in this study support the protective effects of epicatechin against Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (B.A.-D.); (L.G.-G.); (S.G.-M.)
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (B.A.-D.); (L.G.-G.); (S.G.-M.)
| |
Collapse
|
245
|
Lu H, Yang X, Wang H. Tuning Phase Transition of Molecular Self-Assembly by Artificial Chaperones through Aromatic-Aromatic Interactions. Biomacromolecules 2024; 25:466-473. [PMID: 38147794 DOI: 10.1021/acs.biomac.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The molecular chaperones are essential and play significant roles in controlling the protein phase transition and maintaining physiological homeostasis. However, manipulating phase transformation in biomimetic peptide self-assembly is still challenging. This work shows that an artificial chaperone modulates the energy landscape of supramolecular polymerization, thus controlling the phase transition of amyloid-like assemblies from crystals to hydrogels to solution. The absence of a chaperone allows the NapP to form crystals, while the presence of the chaperone biases the pathway to form nanofibrous hydrogels to soluble oligomers by adjusting the chaperone ratios. Mechanistic studies reveal that the aromatic-aromatic interaction is the key to trapping the molecules in a higher energy fold. Adding the chaperone relieves this restriction, lowers the energy barrier, and transforms the crystal into a hydrogel. This phase transformation can also be achieved in the macromolecular crowding environment, thus providing new insights into understanding molecular self-assembly in multiple component systems.
Collapse
Affiliation(s)
- Honglei Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
| | - Xuejiao Yang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
246
|
Kohler V, Kohler A, Berglund LL, Hao X, Gersing S, Imhof A, Nyström T, Höög JL, Ott M, Andréasson C, Büttner S. Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 2024; 15:315. [PMID: 38182580 PMCID: PMC10770042 DOI: 10.1038/s41467-023-44538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andreas Kohler
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
247
|
Doytchinova I, Atanasova M, Fernandez A, Moreno FJ, Koning F, Dimitrov I. Modeling Peptide-Protein Interactions by a Logo-Based Method: Application in Peptide-HLA Binding Predictions. Molecules 2024; 29:284. [PMID: 38257197 PMCID: PMC10818588 DOI: 10.3390/molecules29020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Peptide-protein interactions form a cornerstone in molecular biology, governing cellular signaling, structure, and enzymatic activities in living organisms. Improving computational models and experimental techniques to describe and predict these interactions remains an ongoing area of research. Here, we present a computational method for peptide-protein interactions' description and prediction based on leveraged amino acid frequencies within specific binding cores. Utilizing normalized frequencies, we construct quantitative matrices (QMs), termed 'logo models' derived from sequence logos. The method was developed to predict peptide binding to HLA-DQ2.5 and HLA-DQ8.1 proteins associated with susceptibility to celiac disease. The models were validated by more than 17,000 peptides demonstrating their efficacy in discriminating between binding and non-binding peptides. The logo method could be applied to diverse peptide-protein interactions, offering a versatile tool for predictive analysis in molecular binding studies.
Collapse
Affiliation(s)
- Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (M.A.); (I.D.)
| | - Mariyana Atanasova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (M.A.); (I.D.)
| | | | - F. Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain;
| | - Frits Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands;
| | - Ivan Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (M.A.); (I.D.)
| |
Collapse
|
248
|
Cho H, Liu Y, Chung S, Chandrasekar S, Weiss S, Shan SO. Dynamic stability of Sgt2 enables selective and privileged client handover in a chaperone triad. Nat Commun 2024; 15:134. [PMID: 38167697 PMCID: PMC10761869 DOI: 10.1038/s41467-023-44260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Membrane protein biogenesis poses acute challenges to protein homeostasis, and how they are selectively escorted to the target membrane is not well understood. Here we address this question in the guided-entry-of-tail-anchored protein (GET) pathway, in which tail-anchored membrane proteins (TAs) are relayed through an Hsp70-Sgt2-Get3 chaperone triad for targeting to the endoplasmic reticulum. We show that the Hsp70 ATPase cycle and TA substrate drive dimeric Sgt2 from a wide-open conformation to a closed state, in which TAs are protected by both substrate binding domains of Sgt2. Get3 is privileged to receive TA from closed Sgt2, whereas off-pathway chaperones remove TAs from open Sgt2. Sgt2 closing is less favorable with suboptimal GET substrates, which are rejected during or after the Hsp70-to-Sgt2 handover. Our results demonstrate how fine-tuned conformational dynamics in Sgt2 enable hydrophobic TAs to be effectively funneled onto their dedicated targeting factor while also providing a mechanism for substrate selection.
Collapse
Affiliation(s)
- Hyunju Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Yumeng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Biochemistry and Molecular Biotechnology Department, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
249
|
Dabravolski SA. Chaperone Activators. Subcell Biochem 2024; 107:43-62. [PMID: 39693019 DOI: 10.1007/978-3-031-66768-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Ageing is a complex yet universal and inevitable degenerative process that results in a decline in the cellular capacity for repair and adaptation to external stresses. Therefore, maintaining the appropriate balance of the cellular proteome is crucial. In addition to the ubiquitin-proteasome and autophagy-lysosomal systems, molecular chaperones play a vital role in a sophisticated protein quality control system. Chaperones are responsible for the correct protein assembly, folding, and translocation of other proteins when cells are subjected to various stresses. The equilibrium of chaperones is pivotal for maintaining health and longevity, as a deficiency in their function and quantity can contribute to the development of various diseases and accelerate the ageing processes. Conversely, their overexpression has been associated with tumour growth and progression. In this work, we discuss recent research focused on the application of various natural and artificial substances, as well as physical and nutritional stresses, to activate molecular chaperones and prolong both life- and healthspan. Furthermore, we emphasise the significance of autophagy, apoptosis, mTOR and inflammation signalling pathways in chaperone-mediated extension of life- and healthspan.
Collapse
|
250
|
Nystuen KL, McNamee SM, Akula M, Holton KM, DeAngelis MM, Haider NB. Alzheimer's Disease: Models and Molecular Mechanisms Informing Disease and Treatments. Bioengineering (Basel) 2024; 11:45. [PMID: 38247923 PMCID: PMC10813760 DOI: 10.3390/bioengineering11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's Disease (AD) is a complex neurodegenerative disease resulting in progressive loss of memory, language and motor abilities caused by cortical and hippocampal degeneration. This review captures the landscape of understanding of AD pathology, diagnostics, and current therapies. Two major mechanisms direct AD pathology: (1) accumulation of amyloid β (Aβ) plaque and (2) tau-derived neurofibrillary tangles (NFT). The most common variants in the Aβ pathway in APP, PSEN1, and PSEN2 are largely responsible for early-onset AD (EOAD), while MAPT, APOE, TREM2 and ABCA7 have a modifying effect on late-onset AD (LOAD). More recent studies implicate chaperone proteins and Aβ degrading proteins in AD. Several tests, such as cognitive function, brain imaging, and cerebral spinal fluid (CSF) and blood tests, are used for AD diagnosis. Additionally, several biomarkers seem to have a unique AD specific combination of expression and could potentially be used in improved, less invasive diagnostics. In addition to genetic perturbations, environmental influences, such as altered gut microbiome signatures, affect AD. Effective AD treatments have been challenging to develop. Currently, there are several FDA approved drugs (cholinesterase inhibitors, Aß-targeting antibodies and an NMDA antagonist) that could mitigate AD rate of decline and symptoms of distress.
Collapse
Affiliation(s)
- Kaden L. Nystuen
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shannon M. McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Monica Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Kristina M. Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Margaret M. DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B. Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|