201
|
Neyroud D, Laitano O, Dasgupta A, Lopez C, Schmitt RE, Schneider JZ, Hammers DW, Sweeney HL, Walter GA, Doles J, Judge SM, Judge AR. Blocking muscle wasting via deletion of the muscle-specific E3 ligase MuRF1 impedes pancreatic tumor growth. Commun Biol 2023; 6:519. [PMID: 37179425 PMCID: PMC10183033 DOI: 10.1038/s42003-023-04902-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer-induced muscle wasting reduces quality of life, complicates or precludes cancer treatments, and predicts early mortality. Herein, we investigate the requirement of the muscle-specific E3 ubiquitin ligase, MuRF1, for muscle wasting induced by pancreatic cancer. Murine pancreatic cancer (KPC) cells, or saline, were injected into the pancreas of WT and MuRF1-/- mice, and tissues analyzed throughout tumor progression. KPC tumors induces progressive wasting of skeletal muscle and systemic metabolic reprogramming in WT mice, but not MuRF1-/- mice. KPC tumors from MuRF1-/- mice also grow slower, and show an accumulation of metabolites normally depleted by rapidly growing tumors. Mechanistically, MuRF1 is necessary for the KPC-induced increases in cytoskeletal and muscle contractile protein ubiquitination, and the depression of proteins that support protein synthesis. Together, these data demonstrate that MuRF1 is required for KPC-induced skeletal muscle wasting, whose deletion reprograms the systemic and tumor metabolome and delays tumor growth.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - Orlando Laitano
- Myology Institute, University of Florida, Gainesville, FL, USA
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Aneesha Dasgupta
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca E Schmitt
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jessica Z Schneider
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - David W Hammers
- Myology Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - H Lee Sweeney
- Myology Institute, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Glenn A Walter
- Myology Institute, University of Florida, Gainesville, FL, USA
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Jason Doles
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sarah M Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
202
|
Heininen J, Erbacher C, Kotiaho T, Kostiainen R, Teppo J. Enzymatic Phosphorylation of Oxidized Tyrosine Residues. J Proteome Res 2023. [PMID: 37146082 DOI: 10.1021/acs.jproteome.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Post-translational modifications (PTMs) alter the function and fate of proteins and cells in almost every conceivable way. Protein modifications can occur as a result of specific regulating actions of enzymes, such as tyrosine kinases phosphorylating tyrosine residues or by nonenzymatic reactions, such as oxidation related to oxidative stress and diseases. While many studies have addressed the multisite, dynamic, and network-like properties of PTMs, only little is known of the interplay of the same site modifications. In this work, we studied the enzymatic phosphorylation of oxidized tyrosine (l-DOPA) residues using synthetic insulin receptor peptides, in which tyrosine residues were replaced with l-DOPA. The phosphorylated peptides were identified by liquid chromatography-high-resolution mass spectrometry and the site of phosphorylation by tandem mass spectrometry. The results clearly show that the oxidized tyrosine residues are phosphorylated, displaying a specific immonium ion peak in the MS2 spectra. Furthermore, we detected this modification in our reanalysis (MassIVE ID: MSV000090106) of published bottom-up phosphoproteomics data. The modification, where both oxidation and phosphorylation take place at the same amino acid, has not yet been published in PTM databases. Our data indicate that there can be multiple PTMs that do not exclude each other at the same modification site.
Collapse
Affiliation(s)
- Juho Heininen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Catharina Erbacher
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Tapio Kotiaho
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Risto Kostiainen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Jaakko Teppo
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
203
|
Miranda-Galvis M, Carneiro Soares C, Moretto Carnielli C, Ramalho Buttura J, Sales de Sá R, Kaminagakura E, Marchi FA, Paes Leme AF, Lópes Pinto CA, Santos-Silva AR, Moraes Castilho R, Kowalski LP, Squarize CH. New Insights into the Impact of Human Papillomavirus on Oral Cancer in Young Patients: Proteomic Approach Reveals a Novel Role for S100A8. Cells 2023; 12:cells12091323. [PMID: 37174723 PMCID: PMC10177374 DOI: 10.3390/cells12091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Human papillomavirus (HPV) infection has recently been linked to a subset of cancers affecting the oral cavity. However, the molecular mechanisms underlying HPV-driven oral squamous cell carcinoma (OSCC) onset and progression are poorly understood. METHODS We performed MS-based proteomics profiling based on HPV status in OSCC in young patients, following biological characterization and cell assays to explore the proteome functional landscape. RESULTS Thirty-nine proteins are differentially abundant between HPV (+) and HPV (-) OSCC. Among them, COPS3, DYHC1, and S100A8 are unfavorable for tumor recurrence and survival, in contrast to A2M and Serpine1, low levels of which show an association with better DFS. Remarkably, S100A8 is considered an independent prognostic factor for lower survival rates, and at high levels, it alters tumor-associated immune profiling, showing a lower proportion of M1 macrophages and dendritic cells. HPV (+) OSCC also displayed the pathogen-associated patterns receptor that, when activated, triggered the S100A8 and NFκB inflammatory responses. CONCLUSION HPV (+) OSCC has a peculiar microenvironment pattern distinctive from HPV (-), involving the expression of pathogen-associated pattern receptors, S100A8 overexpression, and NFκB activation and responses, which has important consequences in prognosis and may guide therapeutic decisions.
Collapse
Affiliation(s)
- Marisol Miranda-Galvis
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Carolina Carneiro Soares
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
- Department of Microbiology, Immune Biology, and Genetics, Center for Molecular Biology, University of Vienna, 1030 Vienna, Austria
| | - Carolina Moretto Carnielli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Jaqueline Ramalho Buttura
- Laboratory of Bioinformatics and Computational Biology, A.C.Camargo Cancer Center (CIPE), São Paulo 01508-010, SP, Brazil
| | - Raisa Sales de Sá
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Science and Technology Institute, University of São Paulo State (UNESP), São José dos Campos 01049-010, SP, Brazil
| | - Fabio Albuquerque Marchi
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), São Paulo 01246-000, SP, Brazil
- Comprehensive Center for Precision Oncology, University of São Paulo, São Paulo 05508-900, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil
| | - Clóvis A Lópes Pinto
- Department of Anatomic Pathology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Alan Roger Santos-Silva
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba 13414-903, SP, Brazil
| | - Rogerio Moraes Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luiz Paulo Kowalski
- Head and Neck Surgery Department, Medical School, University of São Paulo, São Paulo 05508-900, SP, Brazil
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C.Camargo Cancer Center, São Paulo 01509-001, SP, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
204
|
Papasergi-Scott MM, Kwarcinski FE, Yu M, Panova O, Ovrutsky AM, Skiniotis G, Tall GG. Structures of Ric-8B in complex with Gα protein folding clients reveal isoform specificity mechanisms. Structure 2023; 31:553-564.e7. [PMID: 36931277 PMCID: PMC10164081 DOI: 10.1016/j.str.2023.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Mammalian Ric-8 proteins act as chaperones to regulate the cellular abundance of heterotrimeric G protein α subunits. The Ric-8A isoform chaperones Gαi/o, Gα12/13, and Gαq/11 subunits, while Ric-8B acts on Gαs/olf subunits. Here, we determined cryoelectron microscopy (cryo-EM) structures of Ric-8B in complex with Gαs and Gαolf, revealing isoform differences in the relative positioning and contacts between the C-terminal α5 helix of Gα within the concave pocket formed by Ric-8 α-helical repeat elements. Despite the overall architectural similarity with our earlier structures of Ric-8A complexed to Gαq and Gαi1, Ric-8B distinctly accommodates an extended loop found only in Gαs/olf proteins. The structures, along with results from Ric-8 protein thermal stability assays and cell-based Gαolf folding assays, support a requirement for the Gα C-terminal region for binding specificity, and highlight that multiple structural elements impart specificity for Ric-8/G protein binding.
Collapse
Affiliation(s)
- Makaía M Papasergi-Scott
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank E Kwarcinski
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Ouliana Panova
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ann M Ovrutsky
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
205
|
Lucarelli N, Yun D, Han D, Ginley B, Moon KC, Rosenberg AZ, Tomaszewski JE, Zee J, Jen KY, Han SS, Sarder P. Discovery of Novel Digital Biomarkers for Type 2 Diabetic Nephropathy Classification via Integration of Urinary Proteomics and Pathology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.28.23289272. [PMID: 37205413 PMCID: PMC10187347 DOI: 10.1101/2023.04.28.23289272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Background The heterogeneous phenotype of diabetic nephropathy (DN) from type 2 diabetes complicates appropriate treatment approaches and outcome prediction. Kidney histology helps diagnose DN and predict its outcomes, and an artificial intelligence (AI)-based approach will maximize clinical utility of histopathological evaluation. Herein, we addressed whether AI-based integration of urine proteomics and image features improves DN classification and its outcome prediction, altogether augmenting and advancing pathology practice. Methods We studied whole slide images (WSIs) of periodic acid-Schiff-stained kidney biopsies from 56 DN patients with associated urinary proteomics data. We identified urinary proteins differentially expressed in patients who developed end-stage kidney disease (ESKD) within two years of biopsy. Extending our previously published human-AI-loop pipeline, six renal sub-compartments were computationally segmented from each WSI. Hand-engineered image features for glomeruli and tubules, and urinary protein measurements, were used as inputs to deep-learning frameworks to predict ESKD outcome. Differential expression was correlated with digital image features using the Spearman rank sum coefficient. Results A total of 45 urinary proteins were differentially detected in progressors, which was most predictive of ESKD (AUC=0.95), while tubular and glomerular features were less predictive (AUC=0.71 and AUC=0.63, respectively). Accordingly, a correlation map between canonical cell-type proteins, such as epidermal growth factor and secreted phosphoprotein 1, and AI-based image features was obtained, which supports previous pathobiological results. Conclusions Computational method-based integration of urinary and image biomarkers may improve the pathophysiological understanding of DN progression as well as carry clinical implications in histopathological evaluation.
Collapse
Affiliation(s)
- Nicholas Lucarelli
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Donghwan Yun
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Brandon Ginley
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Raritan NJ, USA
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - John E. Tomaszewski
- Department of Pathology and Anatomical Sciences, University at Buffalo – The State University of New York
| | - Jarcy Zee
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania and Children’s Hospital of Philadelphia, PA, USA
| | - Kuang-Yu Jen
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, CA, USA
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Pinaki Sarder
- Department of Medicine-Quantitative Health, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Electrical and Computer Engineering, University of Florida College of Engineering, Gainesville, FL, USA
| |
Collapse
|
206
|
Rafay A, Aziz M, Zia A, Asif AR. Automated Retrieval of Heterogeneous Proteomic Data for Machine Learning. J Pers Med 2023; 13:790. [PMID: 37240960 PMCID: PMC10222177 DOI: 10.3390/jpm13050790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Proteomics instrumentation and the corresponding bioinformatics tools have evolved at a rapid pace in the last 20 years, whereas the exploitation of deep learning techniques in proteomics is on the horizon. The ability to revisit proteomics raw data, in particular, could be a valuable resource for machine learning applications seeking new insight into protein expression and functions of previously acquired data from different instruments under various lab conditions. We map publicly available proteomics repositories (such as ProteomeXchange) and relevant publications to extract MS/MS data to form one large database that contains the patient history and mass spectrometric data acquired for the patient sample. The extracted mapped dataset should enable the research to overcome the issues attached to the dispersions of proteomics data on the internet, which makes it difficult to apply emerging new bioinformatics tools and deep learning algorithms. The workflow proposed in this study enables a linked large dataset of heart-related proteomics data, which could be easily and efficiently applied to machine learning and deep learning algorithms for futuristic predictions of heart diseases and modeling. Data scraping and crawling offer a powerful tool to harvest and prepare the training and test datasets; however, the authors advocate caution because of ethical and legal issues, as well as the need to ensure the quality and accuracy of the data that are being collected.
Collapse
Affiliation(s)
- Abdul Rafay
- Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany
- Future Networks, eScience Group, Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), 37077 Göttingen, Germany
| | - Muzzamil Aziz
- Future Networks, eScience Group, Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), 37077 Göttingen, Germany
| | - Amjad Zia
- Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany
| | - Abdul R. Asif
- Department for Clinical Chemistry/Interdisciplinary UMG Laboratories, University Medical Center, 37075 Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
207
|
Prokai L, Zaman K, Prokai-Tatrai K. Mass spectrometry-based retina proteomics. MASS SPECTROMETRY REVIEWS 2023; 42:1032-1062. [PMID: 35670041 PMCID: PMC9730434 DOI: 10.1002/mas.21786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
A subfield of neuroproteomics, retina proteomics has experienced a transformative growth since its inception due to methodological advances in enabling chemical, biochemical, and molecular biology techniques. This review focuses on mass spectrometry's contributions to facilitate mammalian and avian retina proteomics to catalog and quantify retinal protein expressions, determine their posttranslational modifications, as well as its applications to study the proteome of the retina in the context of biology, health and diseases, and therapy developments.
Collapse
Affiliation(s)
- Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Khadiza Zaman
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
208
|
Affiliation(s)
- Alejandro J Brenes
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK
- Division of Molecular, Cell & Developmental Biology, University of Dundee, Dundee, UK
| | - Angus I Lamond
- Division of Molecular, Cell & Developmental Biology, University of Dundee, Dundee, UK
| | - Doreen A Cantrell
- Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
209
|
García-Calderón M, Vignane T, Filipovic MR, Ruiz MT, Romero LC, Márquez AJ, Gotor C, Aroca A. Persulfidation protects from oxidative stress under nonphotorespiratory conditions in Arabidopsis. THE NEW PHYTOLOGIST 2023; 238:1431-1445. [PMID: 36840421 DOI: 10.1111/nph.18838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide is a signaling molecule in plants that regulates essential biological processes through protein persulfidation. However, little is known about sulfide-mediated regulation in relation to photorespiration. Here, we performed label-free quantitative proteomic analysis and observed a high impact on protein persulfidation levels when plants grown under nonphotorespiratory conditions were transferred to air, with 98.7% of the identified proteins being more persulfidated under suppressed photorespiration. Interestingly, a higher level of reactive oxygen species (ROS) was detected under nonphotorespiratory conditions. Analysis of the effect of sulfide on aspects associated with non- or photorespiratory growth conditions has demonstrated that it protects plants grown under suppressed photorespiration. Thus, sulfide amends the imbalance of carbon/nitrogen and restores ATP levels to concentrations like those of air-grown plants; balances the high level of ROS in plants under nonphotorespiratory conditions to reach a cellular redox state similar to that in air-grown plants; and regulates stomatal closure, to decrease the high guard cell ROS levels and induce stomatal aperture. In this way, sulfide signals the CO2 -dependent stomata movement, in the opposite direction of the established abscisic acid-dependent movement. Our findings suggest that the high persulfidation level under suppressed photorespiration reveals an essential role of sulfide signaling under these conditions.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227, Dortmund, Germany
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227, Dortmund, Germany
| | - M Teresa Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| | - Angeles Aroca
- Departamento de Bioquímica Vegetal y Biología Molecular, Universidad de Sevilla, Prof. García González 1, 41012, Sevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
210
|
Zhang Y, Shan L, Li D, Tang Y, Qian W, Dai J, Du M, Sun X, Zhu Y, Wang Q, Zhou L. Identification of key biomarkers associated with immune cells infiltration for myocardial injury in dermatomyositis by integrated bioinformatics analysis. Arthritis Res Ther 2023; 25:69. [PMID: 37118825 PMCID: PMC10142164 DOI: 10.1186/s13075-023-03052-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Dermatomyositis (DM) is an acquired autoimmune disease that can cause damage to various organs, including the heart muscle. However, the mechanisms underlying myocardial injury in DM are not yet fully understood. METHODS In this study, we utilized publicly available datasets from the Gene Expression Omnibus (GEO) database to identify hub-genes that are enriched in the immune system process in DM and myocarditis. Weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs) analysis, protein-protein interaction (PPI), and gene ontology (GO) analysis were employed to identify these hub-genes. We then used the CIBERSORT method to analyze immune cell infiltration in skeletal muscle specimens of DM and myocardium specimens of myocarditis respectively. Correlation analysis was performed to investigate the relationship between key genes and infiltrating immune cells. Finally, we predicted regulatory miRNAs of hub-genes through miRNet and validated their expression in online datasets and clinical samples. RESULTS Using integrated bioinformatics analysis, we identified 10 and 5 hub-genes that were enriched in the immune system process in the database of DM and myocarditis respectively. The subsequent intersections between hub-genes were IFIT3, OAS3, ISG15, and RSAD2. We found M2 macrophages increased in DM and myocarditis compared to the healthy control, associating with the expression of IFIT3, OAS3, ISG15, and RSAD2 in DM and myocarditis positively. Gene function enrichment analysis (GSEA) showed that IFIT3, OAS3, ISG15, and RSAD2 were mainly enriched in type I interferon (IFN) signaling pathway, cellular response to type I interferon, and response to type I interferon. Finally, we verified that the expression of miR-146a-5p was significantly higher in the DM with myocardial injury than those without myocardial injury (p = 0.0009). CONCLUSION Our findings suggest that IFIT3, OAS3, ISG15, and RSAD2 may play crucial roles in the underlying mechanism of myocardial injury in DM. Serum miR-146a-5p could be a potential biomarker for myocardial injury in DM.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Linwei Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongyu Li
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghong Tang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiayi Dai
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengdi Du
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxuan Sun
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinsu Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
211
|
Reilly L, Seddighi S, Singleton AB, Cookson MR, Ward ME, Qi YA. Variant biomarker discovery using mass spectrometry-based proteogenomics. FRONTIERS IN AGING 2023; 4:1191993. [PMID: 37168844 PMCID: PMC10165118 DOI: 10.3389/fragi.2023.1191993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Genomic diversity plays critical roles in risk of disease pathogenesis and diagnosis. While genomic variants-including single nucleotide variants, frameshift variants, and mis-splicing isoforms-are commonly detected at the DNA or RNA level, their translated variant protein or polypeptide products are ultimately the functional units of the associated disease. These products are often released in biofluids and could be leveraged for clinical diagnosis and patient stratification. Recent emergence of integrated analysis of genomics with mass spectrometry-based proteomics for biomarker discovery, also known as proteogenomics, have significantly advanced the understanding disease risk variants, precise medicine, and biomarker discovery. In this review, we discuss variant proteins in the context of cancers and neurodegenerative diseases, outline current and emerging proteogenomic approaches for biomarker discovery, and provide a comprehensive proteogenomic strategy for detection of putative biomarker candidates in human biospecimens. This strategy can be implemented for proteogenomic studies in any field of enquiry. Our review timely addresses the need of biomarkers for aging related diseases.
Collapse
Affiliation(s)
- Luke Reilly
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sahba Seddighi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Andrew B. Singleton
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
212
|
Xiong J, Kaleja P, Ückert L, Nezaratizadeh N, Krantz S, Krause MF, Fitschen-Oestern S, Seekamp A, Cassidy L, Tholey A, Fuchs S. Alveolar-Capillary Barrier Protection In Vitro: Lung Cell Type-Specific Effects and Molecular Mechanisms Induced by 1α, 25-Dihydroxyvitamin D3. Int J Mol Sci 2023; 24:ijms24087298. [PMID: 37108455 PMCID: PMC10138495 DOI: 10.3390/ijms24087298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Low serum levels of 1α, 25-dihydroxyvitamin D3 (VD3) are associated with a higher mortality in trauma patients with sepsis or ARDS. However, the molecular mechanisms behind this observation are not yet understood. VD3 is known to stimulate lung maturity, alveolar type II cell differentiation, or pulmonary surfactant synthesis and guides epithelial defense during infection. In this study, we investigated the impact of VD3 on the alveolar-capillary barrier in a co-culture model of alveolar epithelial cells and microvascular endothelial cells respectively in the individual cell types. After stimulation with bacterial LPS (lipopolysaccharide), gene expression of inflammatory cytokines, surfactant proteins, transport proteins, antimicrobial peptide, and doublecortin-like kinase 1 (DCLK1) were analyzed by real-time PCR, while corresponding proteins were evaluated by ELISA, immune-fluorescence, or Western blot. The effect of VD3 on the intracellular protein composition in H441 cells was analyzed by quantitative liquid chromatography-mass spectrometry-based proteomics. VD3 effectively protected the alveolar-capillary barrier against LPS treatment, as indicated by TEER measurement and morphological assessment. VD3 did not inhibit the IL-6 secretion by H441 and OEC but restricted the diffusion of IL-6 to the epithelial compartment. Further, VD3 could significantly suppress the surfactant protein A expression induced in the co-culture system by LPS treatment. VD3 induced high levels of the antimicrobial peptide LL-37, which counteracted effects by LPS and strengthened the barrier. Quantitative proteomics identified VD3-dependent protein abundance changes ranging from constitutional extracellular matrix components and surfactant-associated proteins to immune-regulatory molecules. DCLK1, as a newly described target molecule for VD3, was prominently stimulated by VD3 (10 nM) and seems to influence the alveolar-epithelial cell barrier and regeneration.
Collapse
Affiliation(s)
- Junyu Xiong
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Patrick Kaleja
- Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24015 Kiel, Germany
| | - Larissa Ückert
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Niloufar Nezaratizadeh
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Stefanie Krantz
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Martin Friedrich Krause
- Department of Pediatrics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Stefanie Fitschen-Oestern
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Liam Cassidy
- Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24015 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24015 Kiel, Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Trauma Surgery and Orthopedics, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
213
|
Gallagher EM, Rizzo GM, Dorsey R, Dhummakupt ES, Moran TS, Mach PM, Jenkins CC. Normalization of organ-on-a-Chip samples for mass spectrometry based proteomics and metabolomics via Dansylation-based assay. Toxicol In Vitro 2023; 88:105540. [PMID: 36563973 DOI: 10.1016/j.tiv.2022.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Mass spectrometry based 'omics pairs well with organ-on-a-chip-based investigations, which often have limited cellular material for sampling. However, a common issue with these chip-based platforms is well-to-well or chip-to-chip variability in the proteome and metabolome due to factors such as plate edge effects, cellular asynchronization, effluent flow, and limited cell count. This causes high variability in the quantitative multi-omics analysis of samples, potentially masking true biological changes within the system. Solutions to this have been approached via data processing tools and post-acquisition normalization strategies such as constant median, constant sum, and overall signal normalization. Unfortunately, these methods do not adequately correct for the large variations, resulting in a need for increased biological replicates. The methods in this work utilize a dansylation based assay with a subset of labeled metabolites that allow for pre-acquisition normalization to better correlate the biological perturbations that truly occur in chip-based platforms. BCA protein assays were performed in tandem with a proteomics pipeline to achieve pre-acquisition normalization. The CN Bio PhysioMimix was seeded with primary hepatocytes and challenged with VX after six days of culture, and the metabolome and proteome were analyzed using the described normalization methods. A decreased coefficient of variation percentage is achieved, significant changes are observed through the proteome and metabolome, and better classification of biological replicates acquired because of these strategies.
Collapse
Affiliation(s)
- Erin M Gallagher
- U.S. Army, Threat Agent Sciences Division, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center (CBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD 21010, USA; National Academies of Sciences, Engineering, and Medicine, NRC Research Associateship Program, 500 Fifth Street, NW, Washington, DC, 20001, USA.
| | - Gabrielle M Rizzo
- U.S. Army, BioSciences Division, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center (CBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Russell Dorsey
- U.S. Army, Threat Agent Sciences Division, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center (CBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Elizabeth S Dhummakupt
- U.S. Army, BioSciences Division, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center (CBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Theodore S Moran
- U.S. Army, Threat Agent Sciences Division, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center (CBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Phillip M Mach
- U.S. Army, BioSciences Division, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center (CBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| | - Conor C Jenkins
- U.S. Army, BioSciences Division, Combat Capabilities Development Command (DEVCOM) Chemical Biological Center (CBC), 5183 Blackhawk Rd., Aberdeen Proving Ground, Gunpowder, MD 21010, USA
| |
Collapse
|
214
|
Tilak P, Kotnik F, Née G, Seidel J, Sindlinger J, Heinkow P, Eirich J, Schwarzer D, Finkemeier I. Proteome-wide lysine acetylation profiling to investigate the involvement of histone deacetylase HDA5 in the salt stress response of Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36961081 DOI: 10.1111/tpj.16206] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023]
Abstract
Post-translational modifications (PTMs) of proteins play important roles in the acclimation of plants to environmental stress. Lysine acetylation is a dynamic and reversible PTM, which can be removed by histone deacetylases. Here we investigated the role of lysine acetylation in the response of Arabidopsis leaves to 1 week of salt stress. A quantitative mass spectrometry analysis revealed an increase in lysine acetylation of several proteins from cytosol and plastids, which was accompanied by altered histone deacetylase activities in the salt-treated leaves. While activities of HDA14 and HDA15 were decreased upon salt stress, HDA5 showed a mild and HDA19 a strong increase in activity. Since HDA5 is a cytosolic-nuclear enzyme from the class II histone deacetylase family with yet unknown protein substrates, we performed a lysine acetylome analysis on hda5 mutants and characterized its substrate proteins. Next to histone H2B, the salt stress-responsive transcription factor GT2L and the dehydration-related protein ERD7 were identified as HDA5 substrates. In addition, in protein-protein interaction studies, HDA18 was discovered, among other interacting proteins, to work in a complex together with HDA5. Altogether, this study revealed the substrate proteins of HDA5 and identified new lysine acetylation sites which are hyperacetylated upon salt stress. The identification of specific histone deacetylase substrate proteins, apart from histones, will be important to unravel the acclimation response of Arabidopsis to salt stress and their role in plant physiology.
Collapse
Affiliation(s)
- Priyadarshini Tilak
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Florian Kotnik
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Guillaume Née
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Julian Seidel
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Julia Sindlinger
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Paulina Heinkow
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, 72076, Tübingen, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, DE-48149, Münster, Germany
| |
Collapse
|
215
|
Smith RJ, Milne R, Lopez VC, Wiedemar N, Dey G, Syed AJ, Patterson S, Wyllie S. Chemical pulldown combined with mass spectrometry to identify the molecular targets of antimalarials in cell-free lysates. STAR Protoc 2023; 4:102002. [PMID: 36609153 PMCID: PMC9841287 DOI: 10.1016/j.xpro.2022.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 01/08/2023] Open
Abstract
Here, we provide a protocol using chemical pulldown combined with mass spectrometry (LC-MS/MS) to identify drug targets in Plasmodium falciparum. This approach works upon the principle that a resin-bound inhibitor selectively binds its molecular target(s) in cell-free lysates. We describe the preparation of drug beads and P. falciparum lysate, followed by chemical pulldown, sample fractionation, and LC-MS/MS analysis. We then detail how to identify specifically bound proteins by comparing protein enrichment in DMSO-treated relative to drug-treated lysates via quantitative proteomics. For complete details on the use and execution of this protocol, please refer to Milne et al. (2022).1.
Collapse
Affiliation(s)
- Robert J Smith
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Rachel Milne
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoriano Corpas Lopez
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Natalie Wiedemar
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Gourav Dey
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Aisha J Syed
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen Patterson
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| | - Susan Wyllie
- Wellcome Centre for Anti-infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
216
|
Sandmann CL, Schulz JF, Ruiz-Orera J, Kirchner M, Ziehm M, Adami E, Marczenke M, Christ A, Liebe N, Greiner J, Schoenenberger A, Muecke MB, Liang N, Moritz RL, Sun Z, Deutsch EW, Gotthardt M, Mudge JM, Prensner JR, Willnow TE, Mertins P, van Heesch S, Hubner N. Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames. Mol Cell 2023; 83:994-1011.e18. [PMID: 36806354 PMCID: PMC10032668 DOI: 10.1016/j.molcel.2023.01.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.
Collapse
Affiliation(s)
- Clara-L Sandmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| | - Jana F Schulz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | - Eleonora Adami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Maike Marczenke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Annabel Christ
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Nina Liebe
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Johannes Greiner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Aaron Schoenenberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michael B Muecke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Ning Liang
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas E Willnow
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | | | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
217
|
Rashid M, Omar M, Mohanta TK. FungiProteomeDB: a database for the molecular weight and isoelectric points of the fungal proteomes. Database (Oxford) 2023; 2023:7078806. [PMID: 36929177 PMCID: PMC10019025 DOI: 10.1093/database/baad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/01/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023]
Abstract
Proteins' molecular weight (MW) and isoelectric point (pI) are crucial for their subcellular localization and subsequent function. These are also useful in 2D gel electrophoresis, liquid chromatography-mass spectrometry and X-ray protein crystallography. Moreover, visualizations like a virtual 2D proteome map of pI vs. MW are worthwhile to discuss the proteome diversity among different species. Although the genome sequence data of the fungi kingdom improved enormously, the proteomic details have been poorly elaborated. Therefore, we have calculated the MW and pI of the fungi proteins and reported them in, FungiProteomeDB, an online database (DB) https://vision4research.com/fungidb/. We analyzed the proteome of 685 fungal species that contain 7 127 141 protein sequences. The DB provides an easy-to-use and efficient interface for various search options, summary statistics and virtual 2D proteome map visualizations. The MW and pI of a protein can be obtained by searching the name of a protein, a keyword or a list of accession numbers. It also allows querying protein sequences. The DB will be helpful in hypothesis formulation and in various biotechnological applications. Database URL https://vision4research.com/fungidb/.
Collapse
|
218
|
Kim TW, Park CH, Hsu CC, Kim YW, Ko YW, Zhang Z, Zhu JY, Hsiao YC, Branon T, Kaasik K, Saldivar E, Li K, Pasha A, Provart NJ, Burlingame AL, Xu SL, Ting AY, Wang ZY. Mapping the signaling network of BIN2 kinase using TurboID-mediated biotin labeling and phosphoproteomics. THE PLANT CELL 2023; 35:975-993. [PMID: 36660928 PMCID: PMC10015162 DOI: 10.1093/plcell/koad013] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/29/2022] [Accepted: 01/13/2022] [Indexed: 05/27/2023]
Abstract
Elucidating enzyme-substrate relationships in posttranslational modification (PTM) networks is crucial for understanding signal transduction pathways but is technically difficult because enzyme-substrate interactions tend to be transient. Here, we demonstrate that TurboID-based proximity labeling (TbPL) effectively and specifically captures the substrates of kinases and phosphatases. TbPL-mass spectrometry (TbPL-MS) identified over 400 proximal proteins of Arabidopsis thaliana BRASSINOSTEROID-INSENSITIVE2 (BIN2), a member of the GLYCOGEN SYNTHASE KINASE 3 (GSK3) family that integrates signaling pathways controlling diverse developmental and acclimation processes. A large portion of the BIN2-proximal proteins showed BIN2-dependent phosphorylation in vivo or in vitro, suggesting that these are BIN2 substrates. Protein-protein interaction network analysis showed that the BIN2-proximal proteins include interactors of BIN2 substrates, revealing a high level of interactions among the BIN2-proximal proteins. Our proteomic analysis establishes the BIN2 signaling network and uncovers BIN2 functions in regulating key cellular processes such as transcription, RNA processing, translation initiation, vesicle trafficking, and cytoskeleton organization. We further discovered significant overlap between the GSK3 phosphorylome and the O-GlcNAcylome, suggesting an evolutionarily ancient relationship between GSK3 and the nutrient-sensing O-glycosylation pathway. Our work presents a powerful method for mapping PTM networks, a large dataset of GSK3 kinase substrates, and important insights into the signaling network that controls key cellular functions underlying plant growth and acclimation.
Collapse
Affiliation(s)
- Tae-Wuk Kim
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Department of Life Science, Hanyang University, Seoul 04763, South Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Chan Ho Park
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Chuan-Chih Hsu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yeong-Woo Kim
- Department of Life Science, Hanyang University, Seoul 04763, South Korea
| | - Yeong-Woo Ko
- Department of Life Science, Hanyang University, Seoul 04763, South Korea
| | - Zhenzhen Zhang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Jia-Ying Zhu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Yu-Chun Hsiao
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Tess Branon
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Krista Kaasik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | - Evan Saldivar
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Kevin Li
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Asher Pasha
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| |
Collapse
|
219
|
Wang P, Wu X, Shi Z, Tao S, Liu Z, Qi K, Xie Z, Qiao X, Gu C, Yin H, Cheng M, Gu X, Liu X, Tang C, Cao P, Xu S, Zhou B, Gu T, Bian Y, Wu J, Zhang S. A large-scale proteogenomic atlas of pear. MOLECULAR PLANT 2023; 16:599-615. [PMID: 36733253 DOI: 10.1016/j.molp.2023.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Pear is an important fruit tree that is widely distributed around the world. The first pear genome map was reported from our laboratory approximately 10 years ago. To further study global protein expression patterns in pear, we generated pear proteome data based on 24 major tissues. The tissue-resolved profiles provided evidence of the expression of 17 953 proteins. We identified 4294 new coding events and improved the pear genome annotation via the proteogenomic strategy based on 18 090 peptide spectra with peptide spectrum matches >1. Among the eight randomly selected new short coding open reading frames that were expressed in the style, four promoted and one inhibited the growth of pear pollen tubes. Based on gene coexpression module analysis, we explored the key genes associated with important agronomic traits, such as stone cell formation in fruits. The network regulating the synthesis of lignin, a major component of stone cells, was reconstructed, and receptor-like kinases were implicated as core factors in this regulatory network. Moreover, we constructed the online database PearEXP (http://www.peardb.org.cn) to enable access to the pear proteogenomic resources. This study provides a paradigm for in-depth proteogenomic studies of woody plants.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zebin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shutian Tao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Qiao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyu Cheng
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyu Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueying Liu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Tang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Cao
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | - Tingting Gu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangyang Bian
- College of Life Sciences, Northwest University, Xi'an 710127, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
220
|
Prakash A, García-Seisdedos D, Wang S, Kundu DJ, Collins A, George N, Moreno P, Papatheodorou I, Jones AR, Vizcaíno JA. Integrated View of Baseline Protein Expression in Human Tissues. J Proteome Res 2023; 22:729-742. [PMID: 36577097 PMCID: PMC9990129 DOI: 10.1021/acs.jproteome.2c00406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The availability of proteomics datasets in the public domain, and in the PRIDE database, in particular, has increased dramatically in recent years. This unprecedented large-scale availability of data provides an opportunity for combined analyses of datasets to get organism-wide protein abundance data in a consistent manner. We have reanalyzed 24 public proteomics datasets from healthy human individuals to assess baseline protein abundance in 31 organs. We defined tissue as a distinct functional or structural region within an organ. Overall, the aggregated dataset contains 67 healthy tissues, corresponding to 3,119 mass spectrometry runs covering 498 samples from 489 individuals. We compared protein abundances between different organs and studied the distribution of proteins across these organs. We also compared the results with data generated in analogous studies. Additionally, we performed gene ontology and pathway-enrichment analyses to identify organ-specific enriched biological processes and pathways. As a key point, we have integrated the protein abundance results into the resource Expression Atlas, where they can be accessed and visualized either individually or together with gene expression data coming from transcriptomics datasets. We believe this is a good mechanism to make proteomics data more accessible for life scientists.
Collapse
Affiliation(s)
- Ananth Prakash
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - David García-Seisdedos
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Shengbo Wang
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Deepti Jaiswal Kundu
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Andrew Collins
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Pablo Moreno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| | - Andrew R Jones
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Juan Antonio Vizcaíno
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom.,Open Targets, Wellcome Genome Campus, Hinxton, CambridgeCB10 1SD, United Kingdom
| |
Collapse
|
221
|
Baichan P, Naicker P, Augustine TN, Smith M, Candy G, Devar J, Nweke EE. Proteomic analysis identifies dysregulated proteins and associated molecular pathways in a cohort of gallbladder cancer patients of African ancestry. Clin Proteomics 2023; 20:8. [PMID: 36855072 PMCID: PMC9976386 DOI: 10.1186/s12014-023-09399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a lethal cancer with a poor prognosis. The lack of specific and sensitive biomarkers results in delayed diagnosis with most patients presenting at late stages of the disease. Furthermore, there is little known about the molecular mechanisms associated with GBC, especially in patients of African ancestry. This study aimed to determine dysregulated proteins in South African GBC patients to identify potential mechanisms of the disease progression and plausible biomarkers. METHODS Tissues (27 GBC, 13 Gallstone disease, and 5 normal tissues) and blood plasma (54 GBC and 73 Benign biliary pathology) were obtained from consenting patients. Protein extraction was performed on all tissues and liquid chromatography-mass spectrometry was used for proteomic profiling. A project-specific spectral library was built using the Pulsar search algorithm. Principal component and Spearman's rank correlation analyses were performed using PAST (V4.07b). Pathway and Network analyses were conducted using REACTOME (v3.7) and stringAPP (v1.7.0), respectively. RESULTS In the tissue sample group, there were 62 and 194 dysregulated proteins in GBC compared to normal and gallstone groups, respectively. In the plasma group, there were 33 altered proteins in GBC compared to the benign biliary pathology group. We found 9 proteins (APOA1, APOA2, RET4, TTR, HEMO, HBB, HBA, PIGR, and APOE) to be commonly dysregulated in both tissue and plasma. Furthermore, a subset analysis demonstrated that 2 proteins, S100A8 and S100A9, were downregulated in GBC patients with GD history compared to those without. Pathway analysis showed that the dysregulated proteins in GBC patients were enriched in pathways involved in smooth muscle contraction, metabolism, ECM organization, and integrin cell surface interactions. CONCLUSION The identified dysregulated proteins help in understanding GBC molecular mechanisms in our patient group. Furthermore, the alteration of specific proteins in both tissue and plasma samples suggests their potential utility as biomarkers of GBC in this sample cohort.
Collapse
Affiliation(s)
- Pavan Baichan
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa
| | - Previn Naicker
- Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Martin Smith
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa
- Hepatopancreatobiliary Unit, Department of Surgery, Chris Hani-Baragwanath Academic Hospital, Soweto, Johannesburg, South Africa
| | - Geoffrey Candy
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa
| | - John Devar
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa
- Hepatopancreatobiliary Unit, Department of Surgery, Chris Hani-Baragwanath Academic Hospital, Soweto, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
222
|
Wilkinson IVL, Castro-Falcón G, Roda-Serrat MC, Purdy TN, Straetener J, Brauny MM, Maier L, Brötz-Oesterhelt H, Christensen LP, Sieber SA, Hughes CC. The Cyanobacterial "Nutraceutical" Phycocyanobilin Inhibits Cysteine Protease Legumain. Chembiochem 2023; 24:e202200455. [PMID: 36538283 DOI: 10.1002/cbic.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The blue biliprotein phycocyanin, produced by photo-autotrophic cyanobacteria including spirulina (Arthrospira) and marketed as a natural food supplement or "nutraceutical," is reported to have anti-inflammatory, antioxidant, immunomodulatory, and anticancer activity. These diverse biological activities have been specifically attributed to the phycocyanin chromophore, phycocyanobilin (PCB). However, the mechanism of action of PCB and the molecular targets responsible for the beneficial properties of PCB are not well understood. We have developed a procedure to rapidly cleave the PCB pigment from phycocyanin by ethanolysis and then characterized it as an electrophilic natural product that interacts covalently with thiol nucleophiles but lacks any appreciable cytotoxicity or antibacterial activity against common pathogens and gut microbes. We then designed alkyne-bearing PCB probes for use in chemical proteomics target deconvolution studies. Target identification and validation revealed the cysteine protease legumain (also known as asparaginyl endopeptidase, AEP) to be a target of PCB. Inhibition of this target may account for PCB's diverse reported biological activities.
Collapse
Affiliation(s)
- Isabel V L Wilkinson
- Center for Protein Assemblies (CPA), Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - Maria C Roda-Serrat
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Trevor N Purdy
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Melanie M Brauny
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076, Tübingen, Germany
- Microbiome-Host-Interaction Lab, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Lisa Maier
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076, Tübingen, Germany
- Microbiome-Host-Interaction Lab, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076, Tübingen, Germany
| | - Lars P Christensen
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Stephan A Sieber
- Center for Protein Assemblies (CPA), Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Chambers C Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076, Tübingen, Germany
- Cluster of Excellence EXC 2124, Controlling Microbes to Fight Infection, University of Tübingen, 72076, Tübingen, Germany
- German Center for Infection Research, Partner Site Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
223
|
Gasparri R, Noberini R, Cuomo A, Yadav A, Tricarico D, Salvetto C, Maisonneuve P, Caminiti V, Sedda G, Sabalic A, Bonaldi T, Spaggiari L. Serum proteomics profiling identifies a preliminary signature for the diagnosis of early-stage lung cancer. Proteomics Clin Appl 2023; 17:e2200093. [PMID: 36645712 DOI: 10.1002/prca.202200093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 01/17/2023]
Abstract
PURPOSE Lung cancer is the most common cause of death from cancer worldwide, largely due to late diagnosis. Thus, there is an urgent need to develop new approaches to improve the detection of early-stage lung cancer, which would greatly improve patient survival. EXPERIMENTAL DESIGN The quantitative protein expression profiles of microvesicles isolated from the sera from 46 lung cancer patients and 41 high-risk non-cancer subjects were obtained using a mass spectrometry method based on a peptide library matching approach. RESULTS We identified 33 differentially expressed proteins that allow discriminating the two groups. We also built a machine learning model based on serum protein expression profiles that can correctly classify the majority of lung cancer cases and that highlighted a decrease in the levels of Arysulfatase A (ARSA) as the most discriminating factor found in tumors. CONCLUSIONS AND CLINICAL RELEVANCE Our study identified a preliminary, non-invasive protein signature able to discriminate with high specificity and selectivity early-stage lung cancer patients from high-risk healthy subjects. These results provide the basis for future validation studies for the development of a non-invasive diagnostic tool for lung cancer.
Collapse
Affiliation(s)
- Roberto Gasparri
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Avinash Yadav
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Davide Tricarico
- AITEM Artificial Intelligence Technologies Multipurpose s.r.l., Turin, Italy.,Department of Mathematics "G. Peano", University of Turin, Turin, Italy
| | - Carola Salvetto
- Department of Mathematics "G. Peano", University of Turin, Turin, Italy
| | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Caminiti
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Sedda
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Angela Sabalic
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
224
|
Wheeler AM, Eberhard CD, Mosher EP, Yuan Y, Wilkins HN, Seneviratne HK, Orsburn BC, Bumpus NN. Achieving a Deeper Understanding of Drug Metabolism and Responses Using Single-Cell Technologies. Drug Metab Dispos 2023; 51:350-359. [PMID: 36627162 PMCID: PMC10029823 DOI: 10.1124/dmd.122.001043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Yuting Yuan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Hannah N Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Herana Kamal Seneviratne
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| |
Collapse
|
225
|
van Tienderen GS, Rosmark O, Lieshout R, Willemse J, de Weijer F, Elowsson Rendin L, Westergren-Thorsson G, Doukas M, Groot Koerkamp B, van Royen ME, van der Laan LJ, Verstegen MM. Extracellular matrix drives tumor organoids toward desmoplastic matrix deposition and mesenchymal transition. Acta Biomater 2023; 158:115-131. [PMID: 36427688 DOI: 10.1016/j.actbio.2022.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Patient-derived tumor organoids have been established as promising tools for in vitro modelling of multiple tumors, including cholangiocarcinoma (CCA). However, organoids are commonly cultured in basement membrane extract (BME) which does not recapitulate the intricacies of the extracellular matrix (ECM). We combined CCA organoids (CCAOs) with native tumor and liver scaffolds, obtained by decellularization, to effectuate a model to study the interaction between epithelial tumor cells and their surrounding ECM. Decellularization resulted in removal of cells while preserving ECM structure and retaining important characteristics of the tissue origin, including stiffness and presence of desmoplasia. The transcriptome of CCAOs in a tumor scaffold much more resembled that of patient-paired CCA tissue in vivo compared to CCAOs cultured in BME or liver scaffolds. This was accompanied by an increase in chemoresistance to clinically-relevant chemotherapeutics. CCAOs in decellularized scaffolds revealed environment-dependent proliferation dynamics, driven by the occurrence of epithelial-mesenchymal transition. Furthermore, CCAOs initiated an environment-specific desmoplastic reaction by increasing production of multiple collagen types. In conclusion, convergence of organoid-based models with native ECM scaffolds will lead to better understanding of the in vivo tumor environment. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) influences various facets of tumor behavior. Understanding the exact role of the ECM in controlling tumor cell fate is pertinent to understand tumor progression and develop novel therapeutics. This is particularly the case for cholangiocarcinoma (CCA), whereby the ECM displays a distinct tumor environment, characterized by desmoplasia. However, current models to study the interaction between epithelial tumor cells and the environment are lacking. We have developed a fully patient-derived model encompassing CCA organoids (CCAOs) and human decellularized tumor and tumor-free liver ECM. The tumor ECM induced recapitulation of various aspects of CCA, including migration dynamics, transcriptome and proteome profiles, and chemoresistance. Lastly, we uncover that epithelial tumor cells contribute to matrix deposition, and that this phenomenon is dependent on the level of desmoplasia already present.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Oskar Rosmark
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ruby Lieshout
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jorke Willemse
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Floor de Weijer
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Michail Doukas
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Luc Jw van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Monique Ma Verstegen
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
226
|
Mylonas R, Potts A, Waridel P, Barblan J, Conde Rubio MDC, Widmann C, Quadroni M. A Database of Accurate Electrophoretic Migration Patterns for Human Proteins. J Mol Biol 2023; 435:167933. [PMID: 36581244 DOI: 10.1016/j.jmb.2022.167933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Native molecular weight (MW) is one of the defining features of proteins. Denaturing gel electrophoresis (SDS-PAGE) is a very popular technique for separating proteins and determining their MW. Coupled with antibody-based detection, SDS-PAGE is widely applied for protein identification and quantitation. Yet, electrophoresis is poorly reproducible and the MWs obtained are often inaccurate. This hampers antibody validation and negatively impacts the reliability of western blot data, resulting worldwide in a considerable waste of reagents and labour. We argue that, to alleviate these problems there is a need to establish a database of reference MWs measured by SDS-PAGE. Using mass spectrometry as an orthogonal detection method, we acquired electrophoretic migration patterns for approximately 10'000 human proteins in five commonly used cell lines. We applied a robust internal calibration of migration to determine accurate and reproducible molecular weights. This in turn allows merging replicates to increase accuracy, but also enables comparing different cell lines. Mining of the data obtained highlights structural factors that affect migration of distinct classes of proteins. When combined with peptide coverage, the data produced recapitulates known post-translational modifications and differential splicing and can be used to formulate hypotheses on new or poorly known processing events. The full information is freely accessible as a web resource through a user friendly graphical interface (https://pumba.dcsr.unil.ch/). We anticipate that this database will be useful to investigators worldwide for troubleshooting western blot experiments, but could also contribute to the characterization of human proteoforms.
Collapse
Affiliation(s)
- Roman Mylonas
- Protein Analysis Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Potts
- Protein Analysis Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jachen Barblan
- Protein Analysis Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Maria Del Carmen Conde Rubio
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
227
|
Dolata KM, Fuchs W, Caignard G, Dupré J, Pannhorst K, Blome S, Mettenleiter TC, Karger A. CP204L Is a Multifunctional Protein of African Swine Fever Virus That Interacts with the VPS39 Subunit of the Homotypic Fusion and Vacuole Protein Sorting Complex and Promotes Lysosome Clustering. J Virol 2023; 97:e0194322. [PMID: 36722971 PMCID: PMC9972913 DOI: 10.1128/jvi.01943-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/06/2023] [Indexed: 02/02/2023] Open
Abstract
Virus replication depends on a complex interplay between viral and host proteins. In the case of African swine fever virus (ASFV), a large DNA virus, only a few virus-host protein-protein interactions have been identified to date. In this study, we demonstrate that the ASFV protein CP204L interacts with the cellular homotypic fusion and protein sorting (HOPS) protein VPS39, blocking its association with the lysosomal HOPS complex, which modulates endolysosomal trafficking and promotes lysosome clustering. Instead, CP204L and VPS39 are targeted to virus factories and localized at the periphery of the virus DNA replication sites. Furthermore, we show that loss of VPS39 reduces the levels of virus proteins synthesized in the early phase of infection and delays ASFV replication but does not completely inhibit it. Collectively, these results identify a novel virus-host protein interaction that modulates host membrane rearrangement during infection and provide evidence that CP204L is a multifunctional protein engaged in distinct steps of the ASFV life cycle. IMPORTANCE African swine fever virus (ASFV) was first identified over a hundred years ago. Since then, much effort has been made to understand the pathogenesis of ASFV. However, the specific roles of many individual ASFV proteins during the infection remain enigmatic. This study provides evidence that CP204L, one of the most abundant ASFV proteins, modulates endosomal trafficking during virus infection. Through protein-protein interaction, CP204L prevents the recruitment of VPS39 to the endosomal and lysosomal membranes, resulting in their accumulation. Consequently, CP204L and VPS39 become sequestered in the ASFV replication and assembly site, known as the virus factory. These results uncover a novel function of viral protein CP204L and extend our understanding of complex interaction between virus and host.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Grégory Caignard
- UMR Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, Anses, Université Paris-Est, Maisons-Alfort, France
| | - Juliette Dupré
- UMR Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, Anses, Université Paris-Est, Maisons-Alfort, France
| | - Katrin Pannhorst
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
228
|
Dhital B, Santasusagna S, Kirthika P, Xu M, Li P, Carceles-Cordon M, Soni RK, Li Z, Hendrickson RC, Schiewer MJ, Kelly WK, Sternberg CN, Luo J, Lujambio A, Cordon-Cardo C, Alvarez-Fernandez M, Malumbres M, Huang H, Ertel A, Domingo-Domenech J, Rodriguez-Bravo V. Harnessing transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer. Cell Rep Med 2023; 4:100937. [PMID: 36787737 PMCID: PMC9975292 DOI: 10.1016/j.xcrm.2023.100937] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.
Collapse
Affiliation(s)
- Brittiny Dhital
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA; Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Sandra Santasusagna
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Perumalraja Kirthika
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Xu
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Peiyao Li
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | | | - Rajesh K Soni
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Schiewer
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - William K Kelly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Department of Medicine, Meyer Cancer Center, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Jun Luo
- Urology Department, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amaia Lujambio
- Oncological Sciences Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Cordon-Cardo
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monica Alvarez-Fernandez
- Head & Neck Cancer Department, Institute de Investigación Sanitaria Principado de Asturias (ISPA), Institute Universitario de Oncología Principado de Asturias (IUOPA), 33011 Oviedo, Spain
| | - Marcos Malumbres
- Cell Division & Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Cancer Cell Cycle group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Haojie Huang
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Adam Ertel
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Josep Domingo-Domenech
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| | - Veronica Rodriguez-Bravo
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
229
|
Wilkinson IVL, Bottlinger M, El Harraoui Y, Sieber SA. Profiling the Heme-Binding Proteomes of Bacteria Using Chemical Proteomics. Angew Chem Int Ed Engl 2023; 62:e202212111. [PMID: 36495310 DOI: 10.1002/anie.202212111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Heme is a cofactor with myriad roles and essential to almost all living organisms. Beyond classical gas transport and catalytic functions, heme is increasingly appreciated as a tightly controlled signalling molecule regulating protein expression. However, heme acquisition, biosynthesis and regulation is poorly understood beyond a few model organisms, and the heme-binding proteome has not been fully characterised in bacteria. Yet as heme homeostasis is critical for bacterial survival, heme-binding proteins are promising drug targets. Herein we report a chemical proteomics method for global profiling of heme-binding proteins in live cells for the first time. Employing a panel of heme-based clickable and photoaffinity probes enabled the profiling of 32-54 % of the known heme-binding proteomes in Gram-positive and Gram-negative bacteria. This simple-to-implement profiling strategy could be interchangeably applied to different cell types and systems and fuel future research into heme biology.
Collapse
Affiliation(s)
- Isabel V L Wilkinson
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Max Bottlinger
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Yassmine El Harraoui
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| | - Stephan A Sieber
- Centre for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85748, Garching, Germany
| |
Collapse
|
230
|
Cheng LC, Zhang X, Baboo S, Nguyen JA, Martinez-Bartolomé S, Loose E, Diedrich J, Yates JR, Gerace L. Comparative membrane proteomics reveals diverse cell regulators concentrated at the nuclear envelope. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528342. [PMID: 36824861 PMCID: PMC9949040 DOI: 10.1101/2023.02.13.528342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The nuclear envelope (NE) is a subdomain of the ER with prominent roles in nuclear organization, largely mediated by its distinctive protein composition. We developed methods to reveal novel, low abundance transmembrane (TM) proteins concentrated at the NE relative to the peripheral ER. Using label-free proteomics that compared isolated NEs to cytoplasmic membranes, we first identified proteins with apparent NE enrichment. In subsequent authentication, ectopically expressed candidates were analyzed by immunofluorescence microscopy to quantify their targeting to the NE in cultured cells. Ten proteins from a validation set were found to associate preferentially with the NE, including oxidoreductases, enzymes for lipid biosynthesis and regulators of cell growth and survival. We determined that one of the validated candidates, the palmitoyltransferase Zdhhc6, modifies the NE oxidoreductase Tmx4 and thereby modulates its NE levels. This provides a functional rationale for the NE concentration of Zdhhc6. Overall, our methodology has revealed a group of previously unrecognized proteins concentrated at the NE and additional candidates. Future analysis of these can potentially unveil new mechanistic pathways associated with the NE.
Collapse
Affiliation(s)
- Li-Chun Cheng
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Xi Zhang
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Julie A Nguyen
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | | | - Esther Loose
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Jolene Diedrich
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| | - Larry Gerace
- Department of Molecular Medicine, Scripps Research, 10550 N Torrey Pines Rd, La Jolla CA, USA
| |
Collapse
|
231
|
Neyroud D, Laitano O, Daguspta A, Lopez C, Schmitt RE, Schneider JZ, Hammers DW, Sweeney HL, Walter GA, Doles J, Judge SM, Judge AR. Blocking muscle wasting via deletion of the muscle-specific E3 ubiquitin ligase MuRF1 impedes pancreatic tumor growth. RESEARCH SQUARE 2023:rs.3.rs-2524562. [PMID: 36798266 PMCID: PMC9934780 DOI: 10.21203/rs.3.rs-2524562/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cancer-induced muscle wasting reduces quality of life, complicates or precludes cancer treatments, and predicts early mortality. Herein, we investigated the requirement of the muscle-specific E3 ubiquitin ligase, MuRF1, for muscle wasting induced by pancreatic cancer. Murine pancreatic cancer (KPC) cells, or saline, were injected into the pancreas of WT and MuRF1-/- mice, and tissues analyzed throughout tumor progression. KPC tumors induced progressive wasting of skeletal muscle and systemic metabolic reprogramming in WT mice, but not MuRF1-/- mice. KPC tumors from MuRF1-/- mice also grew slower, and showed an accumulation of metabolites normally depleted by rapidly growing tumors. Mechanistically, MuRF1 was necessary for the KPC-induced increases in cytoskeletal and muscle contractile protein ubiquitination, and the depression of proteins that support protein synthesis. Together, these data demonstrate that MuRF1 is required for KPC-induced skeletal muscle wasting, whose deletion reprograms the systemic and tumor metabolome and delays tumor growth.
Collapse
Affiliation(s)
- Daria Neyroud
- Department of Physical Therapy, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
- Institute of Sports Sciences, University of Lausanne, Lausanne, Switzerland
| | - Orlando Laitano
- Myology Institute, University of Florida, Gainesville, USA
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, USA
| | - Aneesha Daguspta
- Department of Anatomy, Cell Biology and Physiology, Indiana university school of medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Christopher Lopez
- Department of Physical Therapy, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
| | - Rebecca E. Schmitt
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Jessica Z. Schneider
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - David W. Hammers
- Myology Institute, University of Florida, Gainesville, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, USA
| | - H. Lee Sweeney
- Myology Institute, University of Florida, Gainesville, USA
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, USA
| | - Glenn A Walter
- Myology Institute, University of Florida, Gainesville, USA
- Department of Physiology and Aging, University of Florida, Gainesville, USA
| | - Jason Doles
- Department of Anatomy, Cell Biology and Physiology, Indiana university school of medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida, Gainesville, USA
- Myology Institute, University of Florida, Gainesville, USA
| |
Collapse
|
232
|
Kleiner M, Kouris A, Violette M, D'Angelo G, Liu Y, Korenek A, Tolić N, Sachsenberg T, McCalder J, Lipton MS, Strous M. Ultra-sensitive isotope probing to quantify activity and substrate assimilation in microbiomes. MICROBIOME 2023; 11:24. [PMID: 36755313 PMCID: PMC9909930 DOI: 10.1186/s40168-022-01454-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Stable isotope probing (SIP) approaches are a critical tool in microbiome research to determine associations between species and substrates, as well as the activity of species. The application of these approaches ranges from studying microbial communities important for global biogeochemical cycling to host-microbiota interactions in the intestinal tract. Current SIP approaches, such as DNA-SIP or nanoSIMS allow to analyze incorporation of stable isotopes with high coverage of taxa in a community and at the single cell level, respectively, however they are limited in terms of sensitivity, resolution or throughput. RESULTS Here, we present an ultra-sensitive, high-throughput protein-based stable isotope probing approach (Protein-SIP), which cuts cost for labeled substrates by 50-99% as compared to other SIP and Protein-SIP approaches and thus enables isotope labeling experiments on much larger scales and with higher replication. The approach allows for the determination of isotope incorporation into microbiome members with species level resolution using standard metaproteomics liquid chromatography-tandem mass spectrometry (LC-MS/MS) measurements. At the core of the approach are new algorithms to analyze the data, which have been implemented in an open-source software ( https://sourceforge.net/projects/calis-p/ ). We demonstrate sensitivity, precision and accuracy using bacterial cultures and mock communities with different labeling schemes. Furthermore, we benchmark our approach against two existing Protein-SIP approaches and show that in the low labeling range used our approach is the most sensitive and accurate. Finally, we measure translational activity using 18O heavy water labeling in a 63-species community derived from human fecal samples grown on media simulating two different diets. Activity could be quantified on average for 27 species per sample, with 9 species showing significantly higher activity on a high protein diet, as compared to a high fiber diet. Surprisingly, among the species with increased activity on high protein were several Bacteroides species known as fiber consumers. Apparently, protein supply is a critical consideration when assessing growth of intestinal microbes on fiber, including fiber-based prebiotics. CONCLUSIONS We demonstrate that our Protein-SIP approach allows for the ultra-sensitive (0.01 to 10% label) detection of stable isotopes of elements found in proteins, using standard metaproteomics data.
Collapse
Affiliation(s)
- Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| | - Angela Kouris
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marlene Violette
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Grace D'Angelo
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yihua Liu
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
- Max Planck Institute for Biology, Tübingen, Germany
| | - Abigail Korenek
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Nikola Tolić
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
| | - Janine McCalder
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Mary S Lipton
- Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
233
|
A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis. Nat Commun 2023; 14:691. [PMID: 36754962 PMCID: PMC9908943 DOI: 10.1038/s41467-023-36257-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Although elevated levels of anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA), the in vivo functions of these antibodies remain unclear. Here, we have expressed monoclonal ACPAs derived from patients with RA, and analyzed their functions in mice, as well as their specificities. None of the ACPAs showed arthritogenicity nor induced pain-associated behavior in mice. However, one of the antibodies, clone E4, protected mice from antibody-induced arthritis. E4 showed a binding pattern restricted to skin, macrophages and dendritic cells in lymphoid tissue, and cartilage derived from mouse and human arthritic joints. Proteomic analysis confirmed that E4 strongly binds to macrophages and certain RA synovial fluid proteins such as α-enolase. The protective effect of E4 was epitope-specific and dependent on the interaction between E4-citrullinated α-enolase immune complexes with FCGR2B on macrophages, resulting in increased IL-10 secretion and reduced osteoclastogenesis. These findings suggest that a subset of ACPAs have therapeutic potential in RA.
Collapse
|
234
|
Schloesser D, Lindenthal L, Sauer J, Chung KJ, Chavakis T, Griesser E, Baskaran P, Maier-Habelsberger U, Fundel-Clemens K, Schlotthauer I, Watson CK, Swee LK, Igney F, Park JE, Huber-Lang MS, Thomas MJ, El Kasmi KC, Murray PJ. Senescent cells suppress macrophage-mediated corpse removal via upregulation of the CD47-QPCT/L axis. J Cell Biol 2023; 222:213731. [PMID: 36459066 PMCID: PMC9723804 DOI: 10.1083/jcb.202207097] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
Progressive accrual of senescent cells in aging and chronic diseases is associated with detrimental effects in tissue homeostasis. We found that senescent fibroblasts and epithelia were not only refractory to macrophage-mediated engulfment and removal, but they also paralyzed the ability of macrophages to remove bystander apoptotic corpses. Senescent cell-mediated efferocytosis suppression (SCES) was independent of the senescence-associated secretory phenotype (SASP) but instead required direct contact between macrophages and senescent cells. SCES involved augmented senescent cell expression of CD47 coinciding with increased CD47-modifying enzymes QPCT/L. SCES was reversible by interfering with the SIRPα-CD47-SHP-1 axis or QPCT/L activity. While CD47 expression increased in human and mouse senescent cells in vitro and in vivo, another ITIM-containing protein, CD24, contributed to SCES specifically in human epithelial senescent cells where it compensated for genetic deficiency in CD47. Thus, CD47 and CD24 link the pathogenic effects of senescent cells to homeostatic macrophage functions, such as efferocytosis, which we hypothesize must occur efficiently to maintain tissue homeostasis.
Collapse
Affiliation(s)
| | | | - Julia Sauer
- Boehringer Ingelheim, Biberach an der Riß, Germany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory of Medicine, Faculty of Medicine at University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory of Medicine, Faculty of Medicine at University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Eva Griesser
- Boehringer Ingelheim, Biberach an der Riß, Germany
| | | | | | | | | | | | - Lee Kim Swee
- Boehringer Ingelheim, Biberach an der Riß, Germany
| | | | | | - Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | | | | | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
235
|
Deutsch EW, Mendoza L, Shteynberg DD, Hoopmann MR, Sun Z, Eng JK, Moritz RL. Trans-Proteomic Pipeline: Robust Mass Spectrometry-Based Proteomics Data Analysis Suite. J Proteome Res 2023; 22:615-624. [PMID: 36648445 PMCID: PMC10166710 DOI: 10.1021/acs.jproteome.2c00624] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Trans-Proteomic Pipeline (TPP) mass spectrometry data analysis suite has been in continual development and refinement since its first tools, PeptideProphet and ProteinProphet, were published 20 years ago. The current release provides a large complement of tools for spectrum processing, spectrum searching, search validation, abundance computation, protein inference, and more. Many of the tools include machine-learning modeling to extract the most information from data sets and build robust statistical models to compute the probabilities that derived information is correct. Here we present the latest information on the many TPP tools, and how TPP can be deployed on various platforms from personal Windows laptops to Linux clusters and expansive cloud computing environments. We describe tutorials on how to use TPP in a variety of ways and describe synergistic projects that leverage TPP. We conclude with plans for continued development of TPP.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Luis Mendoza
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | | | | | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jimmy K Eng
- Proteomics Resource, University of Washington, Seattle, Washington 98195, United States
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| |
Collapse
|
236
|
Bittremieux W, Levitsky L, Pilz M, Sachsenberg T, Huber F, Wang M, Dorrestein PC. Unified and Standardized Mass Spectrometry Data Processing in Python Using spectrum_utils. J Proteome Res 2023; 22:625-631. [PMID: 36688502 DOI: 10.1021/acs.jproteome.2c00632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
spectrum_utils is a Python package for mass spectrometry data processing and visualization. Since its introduction, spectrum_utils has grown into a fundamental software solution that powers various applications in proteomics and metabolomics, ranging from spectrum preprocessing prior to spectrum identification and machine learning applications to spectrum plotting from online data repositories and assisting data analysis tasks for dozens of other projects. Here, we present updates to spectrum_utils, which include new functionality to integrate mass spectrometry community data standards, enhanced mass spectral data processing, and unified mass spectral data visualization in Python. spectrum_utils is freely available as open source at https://github.com/bittremieux/spectrum_utils.
Collapse
Affiliation(s)
- Wout Bittremieux
- Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium.,Biomedical Informatics Network Antwerpen (biomina), 2020 Antwerp, Belgium
| | - Lev Levitsky
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Matteo Pilz
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Timo Sachsenberg
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Florian Huber
- Centre for Digitalisation and Digitality, University of Applied Sciences Düsseldorf, 40476 Düsseldorf, Germany
| | - Mingxun Wang
- Department of Computer Science, University of California─Riverside, Riverside, California 92507, United States
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, University of California─San Diego, La Jolla, California 92093, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California─San Diego, La Jolla California 92093, United States
| |
Collapse
|
237
|
Deutsch EW, Vizcaíno JA, Jones AR, Binz PA, Lam H, Klein J, Bittremieux W, Perez-Riverol Y, Tabb DL, Walzer M, Ricard-Blum S, Hermjakob H, Neumann S, Mak TD, Kawano S, Mendoza L, Van Den Bossche T, Gabriels R, Bandeira N, Carver J, Pullman B, Sun Z, Hoffmann N, Shofstahl J, Zhu Y, Licata L, Quaglia F, Tosatto SCE, Orchard SE. Proteomics Standards Initiative at Twenty Years: Current Activities and Future Work. J Proteome Res 2023; 22:287-301. [PMID: 36626722 PMCID: PMC9903322 DOI: 10.1021/acs.jproteome.2c00637] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
The Human Proteome Organization (HUPO) Proteomics Standards Initiative (PSI) has been successfully developing guidelines, data formats, and controlled vocabularies (CVs) for the proteomics community and other fields supported by mass spectrometry since its inception 20 years ago. Here we describe the general operation of the PSI, including its leadership, working groups, yearly workshops, and the document process by which proposals are thoroughly and publicly reviewed in order to be ratified as PSI standards. We briefly describe the current state of the many existing PSI standards, some of which remain the same as when originally developed, some of which have undergone subsequent revisions, and some of which have become obsolete. Then the set of proposals currently being developed are described, with an open call to the community for participation in the forging of the next generation of standards. Finally, we describe some synergies and collaborations with other organizations and look to the future in how the PSI will continue to promote the open sharing of data and thus accelerate the progress of the field of proteomics.
Collapse
Affiliation(s)
- Eric W. Deutsch
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Juan Antonio Vizcaíno
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Andrew R. Jones
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Pierre-Alain Binz
- Clinical
Chemistry Service, Lausanne University Hospital, 1011 976 Lausanne, Switzerland
| | - Henry Lam
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, P. R. China.
| | - Joshua Klein
- Program for
Bioinformatics, Boston University, Boston, Massachusetts 02215, United States
| | - Wout Bittremieux
- Skaggs
School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Computer Science, University of Antwerp, 2020 Antwerpen, Belgium
| | - Yasset Perez-Riverol
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - David L. Tabb
- SA MRC
Centre for TB Research, DST/NRF Centre of Excellence for Biomedical
TB Research, Division of Molecular Biology and Human Genetics, Faculty
of Medicine and Health Sciences, Stellenbosch
University, Cape Town 7602, South Africa
| | - Mathias Walzer
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sylvie Ricard-Blum
- Univ.
Lyon, Université Lyon 1, ICBMS, UMR 5246, 69622 Villeurbanne, France
| | - Henning Hermjakob
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Steffen Neumann
- Bioinformatics
and Scientific Data, Leibniz Institute of
Plant Biochemistry, 06120 Halle, Germany
- German
Centre for Integrative Biodiversity Research (iDiv), 04103 Halle-Jena-Leipzig, Germany
| | - Tytus D. Mak
- Mass Spectrometry
Data Center, National Institute of Standards
and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United
States
| | - Shin Kawano
- Database
Center for Life Science, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Chiba 277-0871, Japan
- Faculty
of Contemporary Society, Toyama University
of International Studies, Toyama 930-1292, Japan
- School
of Frontier Engineering, Kitasato University, Sagamihara 252-0373, Japan
| | - Luis Mendoza
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Tim Van Den Bossche
- VIB-UGent
Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent
Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department
of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9052 Ghent, Belgium
| | - Nuno Bandeira
- Skaggs
School
of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Jeremy Carver
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Benjamin Pullman
- Center
for Computational Mass Spectrometry, Department of Computer Science
and Engineering, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego 92093-0404, United States
| | - Zhi Sun
- Institute
for Systems Biology, Seattle, Washington 98109, United States
| | - Nils Hoffmann
- Institute
for Bio- and Geosciences (IBG-5), Forschungszentrum
Jülich GmbH, 52428 Jülich, Germany
| | - Jim Shofstahl
- Thermo
Fisher Scientific, 355 River Oaks Parkway, San Jose, California 95134, United States
| | - Yunping Zhu
- National
Center for Protein Sciences (Beijing), Beijing
Institute of Lifeomics, #38, Life Science Park, Changping District, Beijing 102206, China
| | - Luana Licata
- Fondazione
Human Technopole, 20157 Milan, Italy
- Department
of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Federica Quaglia
- Institute
of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council (CNR-IBIOM), 70126 Bari, Italy
- Department
of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Sandra E. Orchard
- European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
238
|
Deberneh HM, Sadygov RG. Retention Time Alignment for Protein Turnover Studies Using Heavy Water Metabolic Labeling. J Proteome Res 2023; 22:410-419. [PMID: 36692003 PMCID: PMC10233748 DOI: 10.1021/acs.jproteome.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Retention time (RT) alignment has been important for robust protein identification and quantification in proteomics. In data-dependent acquisition mode, whereby the precursor ions are semistochastically chosen for fragmentation in MS/MS, the alignment is used in an approach termed matched between runs (MBR). MBR transfers peptides, which were fragmented and identified in one experiment, to a replicate experiment where they were not identified. Before the MBR transfer, the RTs of experiments are aligned to reduce the chance of erroneous transfers. Despite its widespread use in other areas of quantitative proteomics, RT alignment has not been applied in data analyses for protein turnover using an atom-based stable isotope-labeling agent such as metabolic labeling with deuterium oxide, D2O. Deuterium incorporation changes isotope profiles of intact peptides in full scans and their fragment ions in tandem mass spectra. It reduces the peptide identification rates in current database search engines. Therefore, the MBR becomes more important. Here, we report on an approach to incorporate RT alignment with peptide quantification in studies of proteome turnover using heavy water metabolic labeling and LC-MS. The RT alignment uses correlation-optimized time warping. The alignment, followed by the MBR, improves labeling time point coverage, especially for long labeling durations.
Collapse
Affiliation(s)
- Henock M. Deberneh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University of Blvd, Galveston, TX 77555
| | - Rovshan G. Sadygov
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, 301 University of Blvd, Galveston, TX 77555
| |
Collapse
|
239
|
Chang HY, Haynes SE, Yu F, Nesvizhskii AI. Implementing the MSFragger Search Engine as a Node in Proteome Discoverer. J Proteome Res 2023; 22:520-525. [PMID: 36475762 DOI: 10.1021/acs.jproteome.2c00485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe the implementation of the fast proteomics search engine MSFragger as a processing node in the widely used Proteome Discoverer (PD) software platform. PeptideProphet (via the Philosopher tool kit) is also implemented as an additional PD node to allow validation of MSFragger open (mass-tolerant) search results. These two nodes, along with the existing Percolator validation module, allow users to employ different search strategies and conveniently inspect search results through PD. Our results have demonstrated the improved numbers of PSMs, peptides, and proteins identified by MSFragger coupled with Percolator and significantly faster search speed compared to the conventional SEQUEST/Percolator PD workflows. The MSFragger-PD node is available at https://github.com/nesvilab/PD-Nodes/releases/.
Collapse
Affiliation(s)
- Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48105, United States.,Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan 320317
| | - Sarah E Haynes
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Fengchao Yu
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48105, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
240
|
Barente AS, Villén J. A Python Package for the Localization of Protein Modifications in Mass Spectrometry Data. J Proteome Res 2023; 22:501-507. [PMID: 36315500 PMCID: PMC9898206 DOI: 10.1021/acs.jproteome.2c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Determining the correct localization of post-translational modifications (PTMs) on peptides aids in interpreting their effect on protein function. While most algorithms for this task are available as standalone applications or incorporated into software suites, improving their versatility through access from popular scripting languages facilitates experimentation and incorporation into novel workflows. Here we describe pyAscore, an efficient and versatile implementation of the Ascore algorithm in Python for scoring the localization of user defined PTMs in data dependent mass spectrometry. pyAscore can be used from the command line or imported into Python scripts and accepts standard file formats from popular software tools used in bottom-up proteomics. Access to internal objects for scoring and working with modified peptides adds to the toolbox for working with PTMs in Python. pyAscore is available as an open source package for Python 3.6+ on all major operating systems and can be found at pyascore.readthedocs.io.
Collapse
Affiliation(s)
- Anthony S. Barente
- Department of Genome Sciences, University of Washington Seattle, Washington 98195, USA
| | - Judit Villén
- Department of Genome Sciences, University of Washington Seattle, Washington 98195, USA
| |
Collapse
|
241
|
Mamone G, Picariello G. Optimized extraction and large-scale proteomics of pig jejunum brush border membranes for use in in vitro digestion models. Food Res Int 2023; 164:112326. [PMID: 36737918 DOI: 10.1016/j.foodres.2022.112326] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/31/2022] [Accepted: 12/07/2022] [Indexed: 12/16/2022]
Abstract
Despite the physiological importance of the hydrolases from the intestinal brush border membrane (BBM), a step simulating the intestinal digestion has not been included yet in the harmonized protocols of in vitro digestion, due to commercial unavailability of these enzymes and lack of consensus for the conditions of use. The proper utilize of BBM requires a detailed investigation of their enzymatic composition. BBM vesicles were purified from specimens of pig jejunum optimizing previously described methods and assayed for aminopeptidase N and dipeptidyl peptidase IV activity. Large-scale proteomics was carried out with a bottom-up shotgun approach, also performing a rough quantification with the iBAQ (intensity Based Absolute Quantification). Overall, 1428 proteins were identified and functionally classified by gene ontology enrichment analysis. The predominant enzyme fraction (220 gene products) was represented by hydrolases, including peptidases, glycosidases, and lipases. Aminopeptidase N and sucrase-isomaltase represented 52.9 % and 50.2 % of the peptidase and glycosidase abundance, respectively. In addition to expected transporters and cytoskeletal actin-binding proteins, purified BBM vesicles also contains a complex array of protease inhibitors, here described for the first time, that may modulate the activity of hydrolases. Considering the similarity with the human counterpart, intestinal porcine BBM are suited for simulating the human small intestinal digestion.
Collapse
Affiliation(s)
- Gianfranco Mamone
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 - Avellino, Italy.
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council, Via Roma 64, 83100 - Avellino, Italy.
| |
Collapse
|
242
|
Di Nisio E, Licursi V, Mannironi C, Buglioni V, Paiardini A, Robusti G, Noberini R, Bonaldi T, Negri R. A truncated and catalytically inactive isoform of KDM5B histone demethylase accumulates in breast cancer cells and regulates H3K4 tri-methylation and gene expression. Cancer Gene Ther 2023:10.1038/s41417-022-00584-w. [PMID: 36697763 DOI: 10.1038/s41417-022-00584-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023]
Abstract
KDM5B histone demethylase is overexpressed in many cancers and plays an ambivalent role in oncogenesis, depending on the specific context. This ambivalence could be explained by the expression of KDM5B protein isoforms with diverse functional roles, which could be present at different levels in various cancer cell lines. We show here that one of these isoforms, namely KDM5B-NTT, accumulates in breast cancer cell lines due to remarkable protein stability relative to the canonical PLU-1 isoform, which shows a much faster turnover. This isoform is the truncated and catalytically inactive product of an mRNA with a transcription start site downstream of the PLU-1 isoform, and the consequent usage of an alternative ATG for translation initiation. It also differs from the PLU-1 transcript in the inclusion of an additional exon (exon-6), previously attributed to other putative isoforms. Overexpression of this isoform in MCF7 cells leads to an increase in bulk H3K4 methylation and induces derepression of a gene cluster, including the tumor suppressor Cav1 and several genes involved in the interferon-alpha and -gamma response. We discuss the relevance of this finding considering the hypothesis that KDM5B may possess regulatory roles independent of its catalytic activity.
Collapse
Affiliation(s)
- Elena Di Nisio
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, DD1 5EH, Dundee, Scotland, UK
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Cecilia Mannironi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Valentina Buglioni
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, p.le Aldo Moro 5, 00185, Rome, Italy
| | - Giulia Robusti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.,Department of Oncology and Hematology-Oncology, University of Milan, Milan, 20122, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin", Sapienza University of Rome, via dei Sardi 70, 00185, Rome, Italy. .,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy, Via degli Apuli 4, 00185, Rome, Italy.
| |
Collapse
|
243
|
Daitch AK, Orsburn BC, Chen Z, Alvarez L, Eberhard CD, Sundararajan K, Zeinert R, Kreitler DF, Jakoncic J, Chien P, Cava F, Gabelli SB, Goley ED. EstG is a novel esterase required for cell envelope integrity in Caulobacter. Curr Biol 2023; 33:228-240.e7. [PMID: 36516849 PMCID: PMC9877181 DOI: 10.1016/j.cub.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Proper regulation of the bacterial cell envelope is critical for cell survival. Identification and characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG, whose activity protects cells from a variety of lethal assaults in the ⍺-proteobacterium Caulobacter crescentus. Despite homology to transpeptidase family cell wall enzymes and an ability to protect against cell-wall-targeting antibiotics, EstG does not demonstrate biochemical activity toward cell wall substrates. Instead, EstG is genetically connected to the periplasmic enzymes OpgH and BglX, responsible for synthesis and hydrolysis of osmoregulated periplasmic glucans (OPGs), respectively. The crystal structure of EstG revealed similarities to esterases and transesterases, and we demonstrated esterase activity of EstG in vitro. Using biochemical fractionation, we identified a cyclic hexamer of glucose as a likely substrate of EstG. This molecule is the first OPG described in Caulobacter and establishes a novel class of OPGs, the regulation and modification of which are important for stress survival and adaptation to fluctuating environments. Our data indicate that EstG, BglX, and OpgH comprise a previously unknown OPG pathway in Caulobacter. Ultimately, we propose that EstG is a novel enzyme that instead of acting on the cell wall, acts on cyclic OPGs to provide resistance to a variety of cellular stresses.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Jean Jakoncic
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
244
|
Hadjeras L, Bartel J, Maier LK, Maaß S, Vogel V, Svensson SL, Eggenhofer F, Gelhausen R, Müller T, Alkhnbashi OS, Backofen R, Becher D, Sharma CM, Marchfelder A. Revealing the small proteome of Haloferax volcanii by combining ribosome profiling and small-protein optimized mass spectrometry. MICROLIFE 2023; 4:uqad001. [PMID: 37223747 PMCID: PMC10117724 DOI: 10.1093/femsml/uqad001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 05/25/2023]
Abstract
In contrast to extensively studied prokaryotic 'small' transcriptomes (encompassing all small noncoding RNAs), small proteomes (here defined as including proteins ≤70 aa) are only now entering the limelight. The absence of a complete small protein catalogue in most prokaryotes precludes our understanding of how these molecules affect physiology. So far, archaeal genomes have not yet been analyzed broadly with a dedicated focus on small proteins. Here, we present a combinatorial approach, integrating experimental data from small protein-optimized mass spectrometry (MS) and ribosome profiling (Ribo-seq), to generate a high confidence inventory of small proteins in the model archaeon Haloferax volcanii. We demonstrate by MS and Ribo-seq that 67% of the 317 annotated small open reading frames (sORFs) are translated under standard growth conditions. Furthermore, annotation-independent analysis of Ribo-seq data showed ribosomal engagement for 47 novel sORFs in intergenic regions. A total of seven of these were also detected by proteomics, in addition to an eighth novel small protein solely identified by MS. We also provide independent experimental evidence in vivo for the translation of 12 sORFs (annotated and novel) using epitope tagging and western blotting, underlining the validity of our identification scheme. Several novel sORFs are conserved in Haloferax species and might have important functions. Based on our findings, we conclude that the small proteome of H. volcanii is larger than previously appreciated, and that combining MS with Ribo-seq is a powerful approach for the discovery of novel small protein coding genes in archaea.
Collapse
Affiliation(s)
- Lydia Hadjeras
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | | | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Verena Vogel
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Sarah L Svensson
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Teresa Müller
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Omer S Alkhnbashi
- Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Straße 2 / D15, 97080 Würzburg, Germany
| | - Anita Marchfelder
- Biology II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
245
|
Carrillo-Rodriguez P, Selheim F, Hernandez-Valladares M. Mass Spectrometry-Based Proteomics Workflows in Cancer Research: The Relevance of Choosing the Right Steps. Cancers (Basel) 2023; 15:555. [PMID: 36672506 PMCID: PMC9856946 DOI: 10.3390/cancers15020555] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The qualitative and quantitative evaluation of proteome changes that condition cancer development can be achieved with liquid chromatography-mass spectrometry (LC-MS). LC-MS-based proteomics strategies are carried out according to predesigned workflows that comprise several steps such as sample selection, sample processing including labeling, MS acquisition methods, statistical treatment, and bioinformatics to understand the biological meaning of the findings and set predictive classifiers. As the choice of best options might not be straightforward, we herein review and assess past and current proteomics approaches for the discovery of new cancer biomarkers. Moreover, we review major bioinformatics tools for interpreting and visualizing proteomics results and suggest the most popular machine learning techniques for the selection of predictive biomarkers. Finally, we consider the approximation of proteomics strategies for clinical diagnosis and prognosis by discussing current barriers and proposals to circumvent them.
Collapse
Affiliation(s)
- Paula Carrillo-Rodriguez
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
246
|
Griesser E, Gesell M, Veyel D, Lamla T, Geillinger-Kästle K, Rist W. Whole lung proteome of an acute epithelial injury mouse model in comparison to spatially resolved proteomes. Proteomics 2023; 23:e2100414. [PMID: 36641648 DOI: 10.1002/pmic.202100414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Epithelial injury is one of the major drivers of acute pulmonary diseases. Recurring injury followed by aberrant repair is considered as the primary cause of chronic lung diseases, such as idiopathic pulmonary fibrosis (IPF). Preclinical in vivo models allow studying early disease-driving mechanisms like the recently established adeno-associated virus-diphtheria toxin receptor (AAV-DTR) mouse model of acute epithelial lung injury, which utilises AAV mediated expression of the human DTR. We performed quantitative proteomics of homogenised lung samples from this model and compared the results to spatially resolved proteomics data of epithelial cell regions from the same animals. In whole lung tissue proteins involved in cGAS-STING and interferon pathways, proliferation, DNA replication and the composition of the provisional extracellular matrix were upregulated upon injury. Besides epithelial cell markers SP-A, SP-C and Scgb1a1, proteins involved in cilium assembly, lipid metabolism and redox pathways were among downregulated proteins. Comparison of the bulk to spatially resolved proteomics data revealed a large overlap of protein changes and striking differences. Together our study underpins the broad usability of bulk proteomics and pinpoints to the benefit of sophisticated proteomic analyses of specific tissue regions or single cell types.
Collapse
Affiliation(s)
- Eva Griesser
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Martin Gesell
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Daniel Veyel
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Thorsten Lamla
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Kerstin Geillinger-Kästle
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Wolfgang Rist
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
247
|
Ashkarran AA, Gharibi H, Zeki DA, Radu I, Khalighinejad F, Keyhanian K, Abrahamsson CK, Ionete C, Saei AA, Mahmoudi M. Multi-omics analysis of magnetically levitated plasma biomolecules. Biosens Bioelectron 2023; 220:114862. [PMID: 36403493 PMCID: PMC9750732 DOI: 10.1016/j.bios.2022.114862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
We recently discovered that superparamagnetic iron oxide nanoparticles (SPIONs) can levitate plasma biomolecules in the magnetic levitation (MagLev) system and cause formation of ellipsoidal biomolecular bands. To better understand the composition of the levitated biomolecules in various bands, we comprehensively characterized them by multi-omics analyses. To probe whether the biomolecular composition of the levitated ellipsoidal bands correlates with the health of plasma donors, we used plasma from individuals who had various types of multiple sclerosis (MS), as a model disease with significant clinical importance. Our findings reveal that, while the composition of proteins does not show much variability, there are significant differences in the lipidome and metabolome profiles of each magnetically levitated ellipsoidal band. By comparing the lipidome and metabolome compositions of various plasma samples, we found that the levitated biomolecular ellipsoidal bands do contain information on the health status of the plasma donors. More specifically, we demonstrate that there are particular lipids and metabolites in various layers of each specific plasma pattern that significantly contribute to the discrimination of different MS subtypes, i.e., relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS), and primary-progressive MS (PPMS). These findings will pave the way for utilization of MagLev of biomolecules in biomarker discovery for identification of diseases and discrimination of their subtypes.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177, Stockholm, Sweden
| | - Dalia Abou Zeki
- Department of Neurology, University of Massachusetts, Worcester, MA, USA
| | - Irina Radu
- Department of Neurology, University of Massachusetts, Worcester, MA, USA
| | | | - Kiandokht Keyhanian
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Carolina Ionete
- Department of Neurology, University of Massachusetts, Worcester, MA, USA.
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177, Stockholm, Sweden.
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
248
|
Ma W, Ang IL, Lei KMK, Lam MMT, Zhang P, Poon TCW. Pitfalls and Solutions in Mass Spectrometry-Based Identification of Protein Glycation. Anal Chem 2023; 95:1829-1837. [PMID: 36630282 DOI: 10.1021/acs.analchem.2c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Emerging evidence suggests that advanced glycation end-products (AGEs) such as Nε-(carboxymethyl)lysine (CML) and Nε-(carboxymethyl)lysine (CEL) may play important roles in certain human diseases. Reliable analytical methods are needed for their characterizations and measurements. Pitfalls have been reported for applications of LC-MS/MS to identify various types of post-translational modifications, but not yet for the case of AGEs. Here, we showed that in the absence of manual inspection, cysteine alkylation with 2-iodoacetamide (IAA) can result in false-positive/ambiguous identifications of CML >20%. They were attributed to offsite alkylation together with incorrect monoisotopic peak assignment (pitfall 1) or together with deamidation (pitfall 2). For pitfall 1, false-positive identifications can be alleviated using a peptide mass error tolerance ≤5 ppm during the database search. Pitfall 2 results in ambiguous modification assignments, which may be overcome by using other alkylation reagents. According to calculations of theoretical mass shifts, the use of other common alkylation reagents (iodoacetic acid, 2-chloroacetamide, and acrylamide) should face similar pitfalls. The use of acrylamide can result in false-positive identifications of CEL instead of CML. Subsequently, we showed that compared to IAA, the use of N-isopropylacrylamide (NIPAM) as an alkylation reagent achieved similar levels of proteome coverage, while reducing the offsite alkylation reactions at lysine by more than five times. Furthermore, false-positive/ambiguous identifications of CML due to the two types of pitfalls were absent when using NIPAM. NIPAM alkylation results in a unique mass shift that allows reliable identifications of CML and most likely other AGEs, such as CEL.
Collapse
Affiliation(s)
- Wendong Ma
- Pilot Laboratory, MOE Frontier Science Centre for Precision Oncology, Centre for Precision Medicine Research and Training, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Irene Ling Ang
- Pilot Laboratory, MOE Frontier Science Centre for Precision Oncology, Centre for Precision Medicine Research and Training, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Kate M K Lei
- Pilot Laboratory, MOE Frontier Science Centre for Precision Oncology, Centre for Precision Medicine Research and Training, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Melody Man Ting Lam
- Proteomics Core, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Pengwei Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China
| | - Terence Chuen Wai Poon
- Pilot Laboratory, MOE Frontier Science Centre for Precision Oncology, Centre for Precision Medicine Research and Training, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
249
|
Retinal Proteome Analysis Reveals a Region-Specific Change in the Rabbit Myopia Model. Int J Mol Sci 2023; 24:ijms24021286. [PMID: 36674802 PMCID: PMC9863771 DOI: 10.3390/ijms24021286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Uncovering region-specific changes in the myopic retina can provide clues to the pathogenesis of myopia progression. After imposing form deprivation myopia in the right eye of 6-week-old rabbits, we investigated the proteome profile of each retinal region (central, mid-periphery, and far-periphery retina), using accurate high-resolution mass spectrometry. Protein expression was analyzed using gene ontology and network analysis compared with that of the control, the left eyes. Among 2065 proteins detected from whole retinal samples, 249 differentially expressed proteins (DEPs) were identified: 164 DEPs in the far-periphery, 39 in the mid-periphery, and 83 in the central retina. In network analysis, the far-periphery retina showed the most significant connectivity between DEPs. The regulation of coagulation was the most significant biological process in upregulated DEPs in the far-periphery retina. Proteasome was the most significant Kyoto Encyclopedia of Genes and Genomes pathway in downregulated DEPs in the central retina. Antithrombin-III, fibrinogen gamma chain, and fibrinogen beta chain were identified as hub proteins for myopia progression, which were upregulated in the far-periphery retina. Proteomic analysis in this study suggested that oxidative stress can be the primary pathogenesis of myopia progression and that the far-periphery retina plays a role as the key responder.
Collapse
|
250
|
Zhou C, Dai S, Lin Y, Lian S, Fan X, Li N, Yu W. Exhaustive Cross-Linking Search with Protein Feedback. J Proteome Res 2023; 22:101-113. [PMID: 36480279 DOI: 10.1021/acs.jproteome.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Improving the sensitivity of protein-protein interaction detection and protein structure probing is a principal challenge in cross-linking mass spectrometry (XL-MS) data analysis. In this paper, we propose an exhaustive cross-linking search method with protein feedback (ECL-PF) for cleavable XL-MS data analysis. ECL-PF adopts an optimized α/β mass detection scheme and establishes protein-peptide association during the identification of cross-linked peptides. Existing major scoring functions can all benefit from the ECL-PF workflow to a great extent. In comparisons using synthetic data sets and hybrid simulated data sets, ECL-PF achieved 3-fold higher sensitivity over standard techniques. In experiments using real data sets, it also identified 65.6% more cross-link spectrum matches and 48.7% more unique cross-links.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Shuaijian Dai
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yuanqiao Lin
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Sheng Lian
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Xiaodan Fan
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China.,HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518000, China
| | - Weichuan Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China.,HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518000, China
| |
Collapse
|