201
|
Borsari C, Keles E, Rageot D, Treyer A, Bohnacker T, Bissegger L, De Pascale M, Melone A, Sriramaratnam R, Beaufils F, Hamburger M, Hebeisen P, Löscher W, Fabbro D, Hillmann P, Wymann MP. 4-(Difluoromethyl)-5-(4-((3 R,5 S)-3,5-dimethylmorpholino)-6-(( R)-3-methylmorpholino)-1,3,5-triazin-2-yl)pyridin-2-amine (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. J Med Chem 2020; 63:13595-13617. [PMID: 33166139 DOI: 10.1021/acs.jmedchem.0c00620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is hyperactivated in cancer and neurological disorders. Rapalogs and mTOR kinase inhibitors (TORKi) have recently been applied to alleviate epileptic seizures in tuberous sclerosis complex (TSC). Herein, we describe a pharmacophore exploration to identify a highly potent, selective, brain penetrant TORKi. An extensive investigation of the morpholine ring engaging the mTOR solvent exposed region led to the discovery of PQR626 (8). 8 displayed excellent brain penetration and was well-tolerated in mice. In mice with a conditionally inactivated Tsc1 gene in glia, 8 significantly reduced the loss of Tsc1-induced mortality at 50 mg/kg p.o. twice a day. 8 overcomes the metabolic liabilities of PQR620 (52), the first-in-class brain penetrant TORKi showing efficacy in a TSC mouse model. The improved stability in human hepatocytes, excellent brain penetration, and efficacy in Tsc1GFAPCKO mice qualify 8 as a potential therapeutic candidate for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Denise Rageot
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Thomas Bohnacker
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Lukas Bissegger
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Anna Melone
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Florent Beaufils
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Paul Hebeisen
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Doriano Fabbro
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Petra Hillmann
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
202
|
Grädler U, Busch M, Leuthner B, Raba M, Burgdorf L, Lehmann M, Linde N, Esdar C. Biochemical, cellular and structural characterization of novel and selective ERK3 inhibitors. Bioorg Med Chem Lett 2020; 30:127551. [DOI: 10.1016/j.bmcl.2020.127551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
|
203
|
Small Molecules Targeting Biological Clock; A Novel Prospective for Anti-Cancer Drugs. Molecules 2020; 25:molecules25214937. [PMID: 33114496 PMCID: PMC7663518 DOI: 10.3390/molecules25214937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian rhythms are an intrinsic timekeeping system that regulates numerous physiological, biochemical, and behavioral processes at intervals of approximately 24 h. By regulating such processes, the circadian rhythm allows organisms to anticipate and adapt to continuously changing environmental conditions. A growing body of evidence shows that disruptions to the circadian rhythm can lead to various disorders, including cancer. Recently, crucial knowledge has arisen regarding the essential features that underlie the overt circadian rhythm and its influence on physiological outputs. This knowledge suggests that specific small molecules can be utilized to control the circadian rhythm. It has been discovered that these small molecules can regulate circadian-clock-related disorders such as metabolic, cardiovascular, inflammatory, as well as cancer. This review examines the potential use of small molecules for developing new drugs, with emphasis placed on recent progress that has been made regarding the identification of small-molecule clock modulators and their potential use in treating cancer.
Collapse
|
204
|
Klövekorn P, Pfaffenrot B, Juchum M, Selig R, Albrecht W, Zender L, Laufer SA. From off-to on-target: New BRAF-inhibitor-template-derived compounds selectively targeting mitogen activated protein kinase kinase 4 (MKK4). Eur J Med Chem 2020; 210:112963. [PMID: 33199152 DOI: 10.1016/j.ejmech.2020.112963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/17/2022]
Abstract
The mitogen-activated protein kinase (MAP) kinase 4 (MKK4) was found to be a major regulator of liver regeneration and could be a valuable drug target addressing liver related diseases by restoring its intrinsic regenerative capacity. We report on the synthesis and optimization of novel MKK4 inhibitors following a target-hopping strategy from the FDA-approved BRAFV600E inhibitor PLX4032 (8). Applying an iterative multi-parameter optimization process we carved out essential structural features yielding in compounds with a low nanomolar affinity for MKK4 and excellent selectivity profiles against the main off-targets MKK7 and JNK1, which, upon relevant inhibition, would totally abrogate the pro-regenerative effect of MKK4 inhibition, as well as against the off-targets MAP4K5, ZAK and BRAF with selectivity factors ranging from 40 to 430 for our best-balanced compounds 70 and 73.
Collapse
Affiliation(s)
- Philip Klövekorn
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Bent Pfaffenrot
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Michael Juchum
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany
| | - Roland Selig
- HepaRegenix GmbH, Eisenbahnstraße 63, 72072, Tuebingen, Germany
| | | | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, 72076, Tübingen, DE, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Tuebingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076, Tübingen, DE, Germany.
| |
Collapse
|
205
|
Abstract
A routine synthesis was performed to furnish the title compound which incorporates a versatile difluoromethyl group on the aniline substitution of a 4-anilinoquinoline kinase inhibitor motif. In addition, the small molecule crystal structure (of the HCl salt) was solved, which uncovered that the difluoromethyl group was disordered within the packing arrangement and also a 126.08(7)° out of plane character between the respective ring systems within the molecule. The compound was fully characterized with 1H/13C-NMR and high-resolution mass spectra (HRMS), with the procedures described.
Collapse
|
206
|
Pierotti CL, Tanzer MC, Jacobsen AV, Hildebrand JM, Garnier JM, Sharma P, Lucet IS, Cowan AD, Kersten WJA, Luo MX, Liang LY, Fitzgibbon C, Garnish SE, Hempel A, Nachbur U, Huang DCS, Czabotar PE, Silke J, van Delft MF, Murphy JM, Lessene G. Potent Inhibition of Necroptosis by Simultaneously Targeting Multiple Effectors of the Pathway. ACS Chem Biol 2020; 15:2702-2713. [PMID: 32902249 DOI: 10.1021/acschembio.0c00482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Necroptosis is an inflammatory form of programmed cell death that has been implicated in various human diseases. Compound 2 is a more potent analogue of the published compound 1 and inhibits necroptosis in human and murine cells at nanomolar concentrations. Several target engagement strategies were employed, including cellular thermal shift assays (CETSA) and diazirine-mediated photoaffinity labeling via a bifunctional photoaffinity probe derived from compound 2. These target engagement studies demonstrate that compound 2 binds to all three necroptotic effector proteins (mixed lineage kinase domain-like protein (MLKL), receptor-interacting serine/threonine protein kinase 1 (RIPK1) and receptor-interacting serine/threonine protein kinase 3 (RIPK3)) at different levels in vitro and in cells. Compound 2 also shows efficacy in vivo in a murine model of systemic inflammatory response syndrome (SIRS).
Collapse
Affiliation(s)
- Catia L. Pierotti
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Maria C. Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Annette V. Jacobsen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joanne M. Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Jean-Marc Garnier
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Pooja Sharma
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Isabelle S. Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Angus D. Cowan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Meng-Xiao Luo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Lung-Yu Liang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Cheree Fitzgibbon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Sarah E. Garnish
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Anne Hempel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Ueli Nachbur
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter E. Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark F. van Delft
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
207
|
Kircher T, Pantsar T, Oder A, Peter von Kries J, Juchum M, Pfaffenrot B, Kloevekorn P, Albrecht W, Selig R, Laufer S. Design and synthesis of novel fluorescently labeled analogs of vemurafenib targeting MKK4. Eur J Med Chem 2020; 209:112901. [PMID: 33092905 DOI: 10.1016/j.ejmech.2020.112901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The mitogen-activated protein kinase kinase 4 (MKK4) plays a key role in liver regeneration and is under investigation as a target for stimulating hepatocytes to increased proliferation. Therefore, new small molecules inhibiting MKK4 may represent a promising approach for treating acute and chronic liver diseases. Fluorescently labeled compounds are useful tools for high-throughput screenings of large compound libraries. Here we utilized the azaindole-based scaffold of FDA-approved BRAF inhibitor vemurafenib 1, which displays off-target activity on MKK4, as a starting point in our fluorescent compound design. Chemical variation of the scaffold and optimization led to a selection of fluorescent 5-TAMRA derivatives which possess high binding affinities on MKK4. Compound 45 represents a suitable tool compound for Fluorescence polarization assays to identify new small-molecule inhibitors of MKK4.
Collapse
Affiliation(s)
- Theresa Kircher
- Institute of Pharmaceutical Chemistry, Eberhard Karls University of Tuebingen, Morgenstelle 8, 72076, Tuebingen, Germany
| | - Tatu Pantsar
- Institute of Pharmaceutical Chemistry, Eberhard Karls University of Tuebingen, Morgenstelle 8, 72076, Tuebingen, Germany; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - Andreas Oder
- Leibniz-Forschungsinstitut Fuer Molekulare Pharmakologie, FMP, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut Fuer Molekulare Pharmakologie, FMP, Robert-Rössle-Straße 10, 13125, Berlin, Germany
| | - Michael Juchum
- Institute of Pharmaceutical Chemistry, Eberhard Karls University of Tuebingen, Morgenstelle 8, 72076, Tuebingen, Germany
| | - Bent Pfaffenrot
- Institute of Pharmaceutical Chemistry, Eberhard Karls University of Tuebingen, Morgenstelle 8, 72076, Tuebingen, Germany
| | - Philip Kloevekorn
- Institute of Pharmaceutical Chemistry, Eberhard Karls University of Tuebingen, Morgenstelle 8, 72076, Tuebingen, Germany
| | | | - Roland Selig
- Institute of Pharmaceutical Chemistry, Eberhard Karls University of Tuebingen, Morgenstelle 8, 72076, Tuebingen, Germany; HepaRegeniX GmbH, Eisenbahnstraße 63, 72072, Tuebingen, Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Chemistry, Eberhard Karls University of Tuebingen, Morgenstelle 8, 72076, Tuebingen, Germany; Tuebingen Center for Academic Drug Discovery, Morgenstelle 8, 72076, Tuebingen, Germany.
| |
Collapse
|
208
|
S CJ, A MFB, K K. Vibrational, spectroscopic, chemical reactivity, molecular docking and in vitro anticancer activity studies against A549 lung cancer cell lines of 5-Bromo-indole-3-carboxaldehyde. J Mol Recognit 2020; 34:e2873. [PMID: 33006415 DOI: 10.1002/jmr.2873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/26/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Spectroscopic investigations are performed for 5-Bromo-1H-indole-carboxaldehyde by using experimental (FT-IR, FT-Raman) and theoretical (DFT) calculations. Vibrational assignments of the fundamental modes were assigned on the basis of Potential energy distribution (PED) calculations. Electron Localization Function (ELF) and Local Orbital Localizer (LOL) studies were performed to visualize the electron delocalization in the molecule. Frontier molecular orbitals (FMOs) and related molecular properties were computed. The electron-hole distribution of the molecule was also computed using Multiwfn 3.3.9 software to predict the charge transfer within the molecule. The total and partial density of states (TDOS and PDOS) and also the overlap population density of states (OPDOS) spectra were simulated. UV-Vis spectrum of the compound was also recorded. The reactive sites of the compound were studied from the MEP and Fukui function analysis. The charge delocalization and stability of the title molecule were investigated using natural bond orbital (NBO) analysis. The lung cancer activity of the title compound against p53 tumor suppressor proteins was studied using molecular docking analysis. The in-vitro cytotoxic activity of the molecule against human pulmonary lung cancer cell lines (A549) was determined by MTT assay.
Collapse
Affiliation(s)
| | | | - Kaviyarasu K
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa.,Nanosciences African network (NANOAFNET), Materials Research Department (MRD), iThemba LABS-National Research Foundation (NRF), Somerset West, South Africa
| |
Collapse
|
209
|
Design, synthesis, and Structure–Activity Relationships (SAR) of 3-vinylindazole derivatives as new selective tropomyosin receptor kinases (Trk) inhibitors. Eur J Med Chem 2020; 203:112552. [DOI: 10.1016/j.ejmech.2020.112552] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
|
210
|
Identifying representative kinases for inhibitor evaluation via systematic analysis of compound-based target relationships. Eur J Med Chem 2020; 204:112641. [DOI: 10.1016/j.ejmech.2020.112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
|
211
|
Grimster NP, Gingipalli L, Barlaam B, Su Q, Zheng X, Watson D, Wang H, Simpson I, Pike A, Balazs A, Boiko S, Ikeda TP, Impastato AC, Jones NH, Kawatkar S, Kemmitt P, Lamont S, Patel J, Read J, Sarkar U, Sha L, Tomlinson RC, Wang H, Wilson DM, Zehnder TE, Wang L, Wang P, Goldberg FW, Shao W, Fawell S, Dry H, Dowling JE, Edmondson SD. Optimization of a series of potent, selective and orally bioavailable SYK inhibitors. Bioorg Med Chem Lett 2020; 30:127433. [DOI: 10.1016/j.bmcl.2020.127433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
|
212
|
Galati G, Massimo Vainieri AF, Maria Fulgenzi CA, Di Donato S, Silletta M, Gallo P, Onorato A, Vespasiani-Gentilucci U, Picardi A. Current Treatment Options for HCC: From Pharmacokinetics to Efficacy and Adverse Events in Liver Cirrhosis. Curr Drug Metab 2020; 21:866-884. [PMID: 32957880 DOI: 10.2174/1389200221999200918141239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/09/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is among the world's most common cancers. For over ten years, the only medical treatment for it has been the multikinase inhibitor Sorafenib. Currently, however, other first or second-line therapeutic options have also shown efficacy against HCC, such as multikinase inhibitors (Regorafenib, Lenvatinib, and Cabozantinib), a monoclonal antibody against the vascular endothelial growth factor receptor 2 (Ramucirumab), and immune-checkpoint inhibitors (Nivolumab, Pembrolizumab, Ipilimumab). AIM The aim of this paper is to review the metabolic pathways of drugs that have been tested for the treatment of HCC and the potential influence of liver failure over those pathways. METHODS The Food and Drug Administration (FDA)'s and European Medicines Agency (EMA)'s datasheets, results from clinical trials and observational studies have been reviewed. RESULTS This review summarizes the current knowledge regarding targets, metabolic pathways, drug interactions, and adverse events of medical treatments for HCC in cirrhotic patients. CONCLUSION The new scenario of systemic HCC therapy includes more active drugs with different metabolic pathways and different liver adverse events. Clinical and pharmacological studies providing more data on the safety of these molecules are urgently needed.
Collapse
Affiliation(s)
- Giovanni Galati
- Unit of Clinical Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| | | | | | - Stefano Di Donato
- Unit of Clinical Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| | | | - Paolo Gallo
- Unit of Clinical Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| | - Angelo Onorato
- Medical Oncology Unit, University Campus Bio-Medico, Rome, Italy
| | | | - Antonio Picardi
- Unit of Clinical Medicine and Hepatology, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
213
|
CH7233163 Overcomes Osimertinib-Resistant EGFR-Del19/T790M/C797S Mutation. Mol Cancer Ther 2020; 19:2288-2297. [DOI: 10.1158/1535-7163.mct-20-0229] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/17/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
|
214
|
Peerzada M, Khan P, Khan NS, Avecilla F, Siddiqui SM, Hassan MI, Azam A. Design and Development of Small-Molecule Arylaldoxime/5-Nitroimidazole Hybrids as Potent Inhibitors of MARK4: A Promising Approach for Target-Based Cancer Therapy. ACS OMEGA 2020; 5:22759-22771. [PMID: 32954123 PMCID: PMC7495461 DOI: 10.1021/acsomega.0c01703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/17/2020] [Indexed: 05/28/2023]
Abstract
Microtubule affinity-regulating kinase 4 (MARK4), a member of the serine/threonine kinase family, is an emerging therapeutic target in anticancer drug discovery paradigm due to its involvement in regulation of microtubule dynamics, cell cycle regulation, and cancer progression. Therefore, to identify the novel chemical architecture for the design and development of novel MARK4 inhibitors with concomitant radical scavenging property, a series of small-molecule arylaldoxime/5-nitroimidazole conjugates were designed and synthesized via multistep chemical reactions following the pharmacophoric hybridization approach. Compound 4h was identified as a promising MARK4 inhibitor with high selectivity toward MARK4 inhibition as compared to the panel of screened 30 kinases pertaining to the serine/threonine family, which was validated by molecular docking and fluorescence binding studies. The comprehensive cell-based examination divulged the promising apoptotic, antiproliferative, and antioxidant potential for the chemotype 4h. The compound 4h was endowed with the K a value of 3.6 × 103 M-1 for human serum albumin, which reflects its remarkable transportation and delivery properties to the target site via blood. The present study impedes that in the future, such compounds may stand as optimized pharmacological lead candidates in drug discovery for targeting cancer via MARK4 inhibition with a remarkable anticancer profile.
Collapse
Affiliation(s)
- Mudasir
Nabi Peerzada
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Parvez Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Nashrah Sharif Khan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Department
of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fernando Avecilla
- Grupo
Xenomar, Centro de Investigacións Científicas Avanzadas
(CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus A Coruña, 15071 A Coruña, Spain
| | - Shadab Miyan Siddiqui
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Amir Azam
- Medicinal
Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
215
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
216
|
Falcicchia C, Tozzi F, Arancio O, Watterson DM, Origlia N. Involvement of p38 MAPK in Synaptic Function and Dysfunction. Int J Mol Sci 2020; 21:ijms21165624. [PMID: 32781522 PMCID: PMC7460549 DOI: 10.3390/ijms21165624] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Many studies have revealed a central role of p38 MAPK in neuronal plasticity and the regulation of long-term changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). However, p38 MAPK is classically known as a responsive element to stress stimuli, including neuroinflammation. Specific to the pathophysiology of Alzheimer’s disease (AD), several studies have shown that the p38 MAPK cascade is activated either in response to the Aβ peptide or in the presence of tauopathies. Here, we describe the role of p38 MAPK in the regulation of synaptic plasticity and its implication in an animal model of neurodegeneration. In particular, recent evidence suggests the p38 MAPK α isoform as a potential neurotherapeutic target, and specific inhibitors have been developed and have proven to be effective in ameliorating synaptic and memory deficits in AD mouse models.
Collapse
Affiliation(s)
- Chiara Falcicchia
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
| | - Francesca Tozzi
- Bio@SNS laboratory, Scuola Normale Superiore, 56124 Pisa, Italy;
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY 10032, USA;
| | | | - Nicola Origlia
- Institute of Neuroscience, Italian National Research Council, 56124 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-3153193
| |
Collapse
|
217
|
Wellaway CR, Bamborough P, Bernard SG, Chung CW, Craggs PD, Cutler L, Demont EH, Evans JP, Gordon L, Karamshi B, Lewis AJ, Lindon MJ, Mitchell DJ, Rioja I, Soden PE, Taylor S, Watson RJ, Willis R, Woolven JM, Wyspiańska BS, Kerr WJ, Prinjha RK. Structure-Based Design of a Bromodomain and Extraterminal Domain (BET) Inhibitor Selective for the N-Terminal Bromodomains That Retains an Anti-inflammatory and Antiproliferative Phenotype. J Med Chem 2020; 63:9020-9044. [DOI: 10.1021/acs.jmedchem.0c00566] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher R. Wellaway
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Paul Bamborough
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Sharon G. Bernard
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Chun-wa Chung
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter D. Craggs
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Leanne Cutler
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Emmanuel H. Demont
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - John P. Evans
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Laurie Gordon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Bhumika Karamshi
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Antonia J. Lewis
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Matthew J. Lindon
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Darren J. Mitchell
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Inmaculada Rioja
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Peter E. Soden
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Simon Taylor
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Robert J. Watson
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Rob Willis
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - James M. Woolven
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Beata S. Wyspiańska
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Rab K. Prinjha
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| |
Collapse
|
218
|
Mitchell R, Mikolajczak M, Kersten C, Fleetwood-Walker S. ErbB1-dependent signalling and vesicular trafficking in primary afferent nociceptors associated with hypersensitivity in neuropathic pain. Neurobiol Dis 2020; 142:104961. [DOI: 10.1016/j.nbd.2020.104961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
|
219
|
Durai P, Ko YJ, Pan CH, Park K. Evolutionary chemical binding similarity approach integrated with 3D-QSAR method for effective virtual screening. BMC Bioinformatics 2020; 21:309. [PMID: 32664863 PMCID: PMC7362480 DOI: 10.1186/s12859-020-03643-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite continued efforts using chemical similarity methods in virtual screening, currently developed approaches suffer from time-consuming multistep procedures and low success rates. We recently developed a machine learning-based chemical binding similarity model considering common structural features from molecules binding to the same, or evolutionarily related targets. The chemical binding similarity measures the resemblance of chemical compounds in terms of binding site similarity to better describe functional similarities that arise from target binding. In this study, we have shown how the chemical binding similarity could be used in virtual screening together with the conventional structure-based methods. RESULTS The chemical binding similarity, receptor-based pharmacophore, chemical structure similarity, and molecular docking methods were evaluated to identify an effective virtual screening procedure for desired target proteins. When we tested the chemical binding similarity method with test sets of 51 kinases, it outperformed the traditional structural similarity-based methods as well as structure-based methods, such as molecular docking and receptor-based pharmacophore modeling, in terms of finding active compounds. We further validated the results by performing virtual screening (using the chemical binding similarity and receptor-based pharmacophore methods) against a completely blind dataset for mitogen-activated protein kinase kinase 1 (MEK1), ephrin type-B receptor 4 (EPHB4) and wee1-like protein kinase (WEE1). The in vitro kinase binding assay confirmed that 6 out of 13 (46.2%) for MEK1 and 2 out of 12 (16.7%) for EPHB4 were newly identified only by the chemical binding similarity model. CONCLUSIONS We report that the virtual screening results could further be improved by combining the chemical binding similarity model with 3D-QSAR pharmacophore and molecular docking models. Not only the new inhibitors are identified in this study, but also many of the identified molecules have low structural similarity scores against already reported inhibitors and that show the revelation of novel scaffolds.
Collapse
Affiliation(s)
- Prasannavenkatesh Durai
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Young-Joon Ko
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
220
|
Rocha MI, Dias F, Resende M, Sousa M, Duarte M, Tomás AM, Castro H. Leishmania infantum Enhances Migration of Macrophages via a Phosphoinositide 3-Kinase γ-Dependent Pathway. ACS Infect Dis 2020; 6:1643-1649. [PMID: 32369694 DOI: 10.1021/acsinfecdis.0c00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leishmania infantum (L. infantum) and Leishmania major (L. major) are phylogenetically related protozoan parasites that cause different pathologies in humans (visceral and cutaneous infections, respectively). Here, we report on how these obligatory intracellular pathogens differentially affect the migration of macrophages. Resorting to gap closure assays of infected murine bone marrow derived macrophages, we observed that L. infantum enhances the mobility of these cells. This is not the case of L. major, whose impact on macrophage migration is null. Resorting to kinase inhibition assays, we witnessed that chemical inhibition of phosphoinositide 3-kinase-γ (PI3Kγ) critically impairs cell mobility in all experimental conditions. Importantly, the blockade of tyrosine kinases with dasatinib also slows down naı̈ve and L. major-parasitized cells but not macrophages exposed to L. infantum. The dasatinib-resistant phenotype of L. infantum-infected macrophages aligns with the hypothesis that this parasite invokes a tyrosine kinase-independent pathway to increase the PI3Kγ activity of macrophages and enhance migration.
Collapse
Affiliation(s)
- Maria Inês Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Filipa Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mariana Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mafalda Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Margarida Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana Maria Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Helena Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| |
Collapse
|
221
|
J. Solum E, Liekens S, Hansen TV. Synthesis and Biological Evaluation of Analogs of Didehydroepiandrosterone as Potential New Anticancer Agents. Molecules 2020; 25:molecules25133052. [PMID: 32635325 PMCID: PMC7412091 DOI: 10.3390/molecules25133052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/01/2022] Open
Abstract
The synthesis, cytotoxicity and inhibition of CDK8 by thirteen analogs of cortistatin A are reported. These efforts revealed that the analogs with either a 6- or 7-isoquinoline or 5-indole side chain in the 17-position are the most promising anti-proliferative agents. These compounds showed potent cytotoxic effects in CEM, HeLa and HMEC-1 cells. All three compounds exhibited IC50 values < 10µM. The most interesting 10l analog exhibited an IC50 value of 0.59 µM towards the human dermal microvascular endothelial cell line (HMEC-1), significantly lower than the reference standard 2-methoxyestradiol. At a concentration at 50 nM the most potent 10h compound reduced the activity of CDK8 to 35%.
Collapse
Affiliation(s)
- Eirik J. Solum
- Faculty of Health Sciences, Nord University, 7801 Namsos, Norway
- Correspondence:
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, Postbus 1043, B-3000 Leuven, Belgium;
| | - Trond Vidar Hansen
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway;
| |
Collapse
|
222
|
Maruyama T, Sasaki A, Iijima S, Ayukawa S, Goda N, Tazuru K, Hashimoto N, Hayashi T, Kozawa K, Sato N, Ishikawa S, Morita T, Fujita Y. ZAK Inhibitor PLX4720 Promotes Extrusion of Transformed Cells via Cell Competition. iScience 2020; 23:101327. [PMID: 32688284 PMCID: PMC7371749 DOI: 10.1016/j.isci.2020.101327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies have revealed that, at the initial step of carcinogenesis, transformed cells are often eliminated from epithelia via cell competition with the surrounding normal cells. In this study, we performed cell competition-based high-throughput screening for chemical compounds using cultured epithelial cells and confocal microscopy. PLX4720 was identified as a hit compound that promoted apical extrusion of RasV12-transformed cells surrounded by normal epithelial cells. Knockdown/knockout of ZAK, a target of PLX4720, substantially enhanced the apical elimination of RasV12 cells in vitro and in vivo. ZAK negatively modulated the accumulation or activation of multiple cell competition regulators. Moreover, PLX4720 treatment promoted apical elimination of RasV12-transformed cells in vivo and suppressed the formation of potentially precancerous tumors. This is the first report demonstrating that a cell competition-promoting chemical drug facilitates apical elimination of transformed cells in vivo, providing a new dimension in cancer preventive medicine.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan; Waseda Institute for Advanced Study, Waseda University, Tokyo 169-8050, Japan.
| | - Ayana Sasaki
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Sayuri Iijima
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Shiyu Ayukawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo 162-8480, Japan
| | - Keisuke Tazuru
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Shiga 520-0106, Japan
| | - Norikazu Hashimoto
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Shiga 520-0106, Japan
| | - Takashi Hayashi
- Biomedical Technology Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0192, Japan
| | - Kei Kozawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Nanami Sato
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Susumu Ishikawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Tomoko Morita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan
| | - Yasuyuki Fujita
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Sapporo 060-0815, Japan; Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
223
|
Liu Y, Hao M, Leggett AL, Gao Y, Ficarro SB, Che J, He Z, Olson CM, Marto JA, Kwiatkowski NP, Zhang T, Gray NS. Discovery of MFH290: A Potent and Highly Selective Covalent Inhibitor for Cyclin-Dependent Kinase 12/13. J Med Chem 2020; 63:6708-6726. [DOI: 10.1021/acs.jmedchem.9b01929] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yao Liu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Mingfeng Hao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Alan L. Leggett
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Yang Gao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Scott B. Ficarro
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Blais Proteomics Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Jianwei Che
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Zhixiang He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Calla M. Olson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Jarrod A. Marto
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
- Blais Proteomics Center, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Nicholas P. Kwiatkowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Tinghu Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Nathanael S. Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
224
|
Unzue A, Jessen-Trefzer C, Spiliotopoulos D, Gaudio E, Tarantelli C, Dong J, Zhao H, Pachmayr J, Zahler S, Bernasconi E, Sartori G, Cascione L, Bertoni F, Śledź P, Caflisch A, Nevado C. Understanding the mechanism of action of pyrrolo[3,2- b]quinoxaline-derivatives as kinase inhibitors. RSC Med Chem 2020; 11:665-675. [PMID: 33479666 PMCID: PMC7557569 DOI: 10.1039/d0md00049c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Two novel quinoxaline-based EphA3 tyrosine kinase inhibitors have been designed and characterized in vivo in a relevant lymphoma model, showing high efficacy in the control of tumor size.
The X-ray structure of the catalytic domain of the EphA3 tyrosine kinase in complex with a previously reported type II inhibitor was used to design two novel quinoxaline derivatives, inspired by kinase inhibitors that have reached clinical development. These two new compounds were characterized by an array of cell-based assays and gene expression profiling experiments. A global chemical proteomics approach was used to generate the drug-protein interaction profile, which suggested suitable therapeutic indications. Both inhibitors, studied in the context of angiogenesis and in vivo in a relevant lymphoma model, showed high efficacy in the control of tumor size.
Collapse
Affiliation(s)
- Andrea Unzue
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 , Zürich , Switzerland . ; ; Tel: (+41) 446353945
| | - Claudia Jessen-Trefzer
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 , Zürich , Switzerland . ; ; Tel: (+41) 446353945
| | - Dimitrios Spiliotopoulos
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 , Zürich , Switzerland
| | - Eugenio Gaudio
- Institute of Oncology Research , Faculty of Biomedical Sciences , USI , Bellinzona , Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research , Faculty of Biomedical Sciences , USI , Bellinzona , Switzerland
| | - Jing Dong
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 , Zürich , Switzerland
| | - Hongtao Zhao
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 , Zürich , Switzerland
| | - Johanna Pachmayr
- Department of Pharmacy , University of Munich , Butenandstrasse 5-13 , 81377 Munich , Germany
| | - Stefan Zahler
- Department of Pharmacy , University of Munich , Butenandstrasse 5-13 , 81377 Munich , Germany
| | - Elena Bernasconi
- Institute of Oncology Research , Faculty of Biomedical Sciences , USI , Bellinzona , Switzerland
| | - Giulio Sartori
- Institute of Oncology Research , Faculty of Biomedical Sciences , USI , Bellinzona , Switzerland
| | - Luciano Cascione
- Institute of Oncology Research , Faculty of Biomedical Sciences , USI , Bellinzona , Switzerland.,SIB Swiss Institute of Bioinformatics , Lausanne , Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research , Faculty of Biomedical Sciences , USI , Bellinzona , Switzerland.,Oncology Institute of Southern Switzerland (IOSI) , Bellinzona , Switzerland
| | - Paweł Śledź
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 , Zürich , Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 , Zürich , Switzerland
| | - Cristina Nevado
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 , Zürich , Switzerland . ; ; Tel: (+41) 446353945
| |
Collapse
|
225
|
Asquith CRM, Tizzard GJ, Bennett JM, Wells CI, Elkins JM, Willson TM, Poso A, Laitinen T. Targeting the Water Network in Cyclin G‐Associated Kinase (GAK) with 4‐Anilino‐quin(az)oline Inhibitors. ChemMedChem 2020; 15:1200-1215. [DOI: 10.1002/cmdc.202000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher R. M. Asquith
- Department of Pharmacology, School of MedicineUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Graham J. Tizzard
- UK National Crystallography Service, School of ChemistryUniversity of Southampton Southampton SO17 1BJ UK
| | - James M. Bennett
- Structural Genomics Consortium and Target Discovery Institute Nuffield Department of Clinical MedicineUniversity of Oxford Old Road Campus Research Building Oxford OX3 7DQ UK)
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Jonathan M. Elkins
- Structural Genomics Consortium and Target Discovery Institute Nuffield Department of Clinical MedicineUniversity of Oxford Old Road Campus Research Building Oxford OX3 7DQ UK)
- Structural Genomics ConsortiumUniversidade Estadual de Campinas – UNICAMP Campinas São Paulo 13083-886 Brazil
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Antti Poso
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern Finland 70211 Kuopio Finland
- University Hospital Tübingen Department of Internal Medicine VIIIUniversity of Tübingen 72076 Tübingen Germany
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern Finland 70211 Kuopio Finland
| |
Collapse
|
226
|
Li W, Feng C, Di W, Hong S, Chen H, Ejaz M, Yang Y, Xu TR. Clinical use of vascular endothelial growth factor receptor inhibitors for the treatment of renal cell carcinoma. Eur J Med Chem 2020; 200:112482. [PMID: 32492594 DOI: 10.1016/j.ejmech.2020.112482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been increased incidences of metastatic renal cell carcinoma (RCC), which is refractory to conventional chemotherapy. Owing to the insensitivity to traditional therapy, targeted therapy becomes a possible alternative strategy. Over the past decade, the development of targeted treatments for metastatic RCC has advanced considerably. Several studies have shown that the vascular endothelial growth factor pathway is an important mediator for the occurrence and development of RCC, and tyrosine kinase inhibitors (TKIs) that target vascular endothelial growth factor receptors (VEGFRs) have been considered optimal therapeutic options for RCC. Six small molecules that inhibit VEGFR1/2/3, namely, sunitinib, sorafenib, axitinib, pazopanib, cabozantinib, and lenvatinib, have been approved by the Food and Drug Administration (FDA) for the treatment of RCC. Additionally, clinical trials assessing seven TKIs that target VEGFRs are currently in progress. To some extent, these drugs improve quality of life and prolong the survival of patients. This paper presents a review of the systemic targeted therapies against VEGFRs that have been approved so far or are undergoing trials as treatments for RCC.
Collapse
Affiliation(s)
- Wei Li
- Department of Urology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, PR China
| | - Chengguan Feng
- Department of Urology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, PR China; Faculty of Life Science and Technology, Kunming University of Science and Technology, PR China
| | - Weihong Di
- Department of Urology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, PR China
| | - Shanwen Hong
- Department of Urology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, PR China
| | - Hui Chen
- Department of Urology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, PR China; Faculty of Life Science and Technology, Kunming University of Science and Technology, PR China
| | - Mubashir Ejaz
- Faculty of Life Science and Technology, Kunming University of Science and Technology, PR China
| | - Yang Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, PR China.
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, PR China.
| |
Collapse
|
227
|
Huang K, Huo B, Li D, Xue J, Chen J. Enhanced Efficacy of Gefitinib in Drug-Sensitive and Drug-Resistant Cancer Cell Lines after Arming with a Singlet Oxygen Releasing Moiety. ChemMedChem 2020; 15:794-798. [PMID: 32162481 DOI: 10.1002/cmdc.202000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Indexed: 12/24/2022]
Abstract
Attractive results have been achieved with small-molecule target-based drugs in the anticancer field; however, enhancing their treatment effect and solving the problem of drug resistance remain key concerns worldwide. Inspired by the specific affinity of gefitinib for tumour cells and the strong oxidation capacity of singlet oxygen, we combined a chemically generated singlet oxygen moiety with the small-molecule targeted drug gefitinib to improve its anticancer effect. We designed and synthesised a novel compound (Y5-1), in which a small-molecule targeted therapy agent (gefitinib) and a singlet oxygen (provided by an in vitro photodynamic reaction) thermally controlled releasing moiety are covalently conjugated. We demonstrated that the introduction of the singlet oxygen thermally controlled releasing moiety enhanced the anticancer activities of gefitinib. The results of this study are expected to provide a novel strategy to enhance the effect of chemotherapy drugs on drug-resistant cell lines.
Collapse
Affiliation(s)
- Kunshan Huang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Beibei Huo
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Dongyao Li
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Jinping Xue
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Juanjuan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| |
Collapse
|
228
|
New Insights into 4-Anilinoquinazolines as Inhibitors of Cardiac Troponin I-Interacting Kinase (TNNi3K). Molecules 2020; 25:molecules25071697. [PMID: 32272798 PMCID: PMC7180948 DOI: 10.3390/molecules25071697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
We report the synthesis of several related 4-anilinoquinazolines as inhibitors of cardiac troponin I-interacting kinase (TNNi3K). These close structural analogs of 3-((6,7-dimethoxyquinazolin-4-yl)amino)-4-(dimethylamino)-N-methylbenzenesulfonamide (GSK114) provide new understanding of structure-activity relationships between the 4-anilinoquinazoline scaffold and TNNi3K inhibition. Through a small focused library of inhibitors, we observed that the N-methylbenzenesulfonamide was driving the potency in addition to the more traditional quinazoline hinge-binding motif. We also identified a compound devoid of TNNi3K kinase activity due to the addition of a methyl group in the hinge binding region. This compound could serve as a negative control in the study of TNNi3K biology. Small molecule crystal structures of several quinazolines have been solved, supporting observations made about overall conformation and TNNi3K inhibition.
Collapse
|
229
|
Hijazi M, Smith R, Rajeeve V, Bessant C, Cutillas PR. Reconstructing kinase network topologies from phosphoproteomics data reveals cancer-associated rewiring. Nat Biotechnol 2020; 38:493-502. [PMID: 31959955 DOI: 10.1038/s41587-019-0391-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Understanding how oncogenic mutations rewire regulatory-protein networks is important for rationalizing the mechanisms of oncogenesis and for individualizing anticancer treatments. We report a chemical phosphoproteomics method to elucidate the topology of kinase-signaling networks in mammalian cells. We identified >6,000 protein phosphorylation sites that can be used to infer >1,500 kinase-kinase interactions and devised algorithms that can reconstruct kinase network topologies from these phosphoproteomics data. Application of our methods to primary acute myeloid leukemia and breast cancer tumors quantified the relationship between kinase expression and activity, and enabled the identification of hitherto unknown kinase network topologies associated with drug-resistant phenotypes or specific genetic mutations. Using orthogonal methods we validated that PIK3CA wild-type cells adopt MAPK-dependent circuitries in breast cancer cells and that the kinase TTK is important in acute myeloid leukemia. Our phosphoproteomic signatures of network circuitry can identify kinase topologies associated with both phenotypes and genotypes of cancer cells.
Collapse
Affiliation(s)
- Maruan Hijazi
- Signalling and Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ryan Smith
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Vinothini Rajeeve
- Signalling and Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Conrad Bessant
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- The Alan Turing Institute, British Library, London, UK
| | - Pedro R Cutillas
- Signalling and Proteomics Group, Barts Cancer Institute, Queen Mary University of London, London, UK.
- The Alan Turing Institute, British Library, London, UK.
| |
Collapse
|
230
|
Bouley RA, Weinberg ZY, Waldschmidt HV, Yen YC, Larsen SD, Puthenveedu MA, Tesmer JJG. A New Paroxetine-Based GRK2 Inhibitor Reduces Internalization of the μ-Opioid Receptor. Mol Pharmacol 2020; 97:392-401. [PMID: 32234810 DOI: 10.1124/mol.119.118661] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) play a key role in terminating signals initiated by agonist-bound GPCRs. However, chronic stimulation of GPCRs, such as that which occurs during heart failure, leads to the overexpression of GRKs and maladaptive downregulation of GPCRs on the cell surface. We previously reported the discovery of potent and selective families of GRK inhibitors based on either the paroxetine or GSK180736A scaffold. A new inhibitor, CCG258747, which is based on paroxetine, demonstrates increased potency against the GRK2 subfamily and favorable pharmacokinetic parameters in mice. CCG258747 and the closely related compound CCG258208 also showed high selectivity for the GRK2 subfamily in a kinome panel of 104 kinases. We developed a cell-based assay to screen the ability of CCG258747 and 10 other inhibitors with different GRK subfamily selectivities and with either the paroxetine or GSK180736A scaffold to block internalization of the μ-opioid receptor (MOR). CCG258747 showed the best efficacy in blocking MOR internalization among the compounds tested. Furthermore, we show that compounds based on paroxetine had much better cell permeability than those based on GSK180736A, which explains why GSK180736A-based inhibitors, although being potent in vitro, do not always show efficacy in cell-based assays. This study validates the paroxetine scaffold as the most effective for GRK inhibition in living cells, confirming that GRK2 predominantly drives internalization of MOR in the cell lines we tested and underscores the utility of high-resolution cell-based assays for assessment of compound efficacy. SIGNIFICANCE STATEMENT: G protein-coupled receptor kinases (GRKs) are attractive targets for developing therapeutics for heart failure. We have synthesized a new GRK2 subfamily-selective inhibitor, CCG258747, which has nanomolar potency against GRK2 and excellent selectivity over other kinases. A live-cell receptor internalization assay was used to test the ability of GRK2 inhibitors to impart efficacy on a GRK-dependent process in cells. Our data indicate that CCG258747 blocked the internalization of the μ-opioid receptor most efficaciously because it has the ability to cross cell membranes.
Collapse
Affiliation(s)
- Renee A Bouley
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Zara Y Weinberg
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Helen V Waldschmidt
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Yu-Chen Yen
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Scott D Larsen
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Manojkumar A Puthenveedu
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Life Sciences Institute (R.A.B., H.V.W.), Departments of Medicinal Chemistry (H.V.W., S.D.L.) and Pharmacology (R.A.B., Z.Y.W., M.A.P.), and Vahlteich Medicinal Chemistry Core, College of Pharmacy (H.V.W., S.D.L.), University of Michigan, Ann Arbor, Michigan; and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology (Y.-C.Y., J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
231
|
Solum E, Hansen TV, Aesoy R, Herfindal L. New CDK8 inhibitors as potential anti-leukemic agents - Design, synthesis and biological evaluation. Bioorg Med Chem 2020; 28:115461. [PMID: 32245563 DOI: 10.1016/j.bmc.2020.115461] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase 8 (CDK8) plays a vital role in regulating cell transcription either through its association with the mediator complex or by the phosphorylation of transcription factors. CDK8-mediated activation of oncogenes has proved to be important in a variety of cancer types including hematological malignancies. We have designed and synthesized a series of new synthetic steroids. The compounds were evaluated as CDK8 inhibitors in vitro. The three most potent compounds exhibit Kd-values towards CDK8 in the low nanomolar range (3.5-18 nM). Furthermore, the compounds displayed selectivity for CDK8 in a panel of 465 different kinases. The cell studies indicated a selectivity to kill AML-cancer cell lines compared to normal cell lines.
Collapse
Affiliation(s)
- Eirik Solum
- Faculty of Health Sciences, Nord University, 7801 Namsos, Norway; University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway.
| | | | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, PO Box 7800, N-5007 Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, PO Box 7800, N-5007 Bergen, Norway
| |
Collapse
|
232
|
Kumar K, Wang P, Wilson J, Zlatanic V, Berrouet C, Khamrui S, Secor C, Swartz EA, Lazarus MB, Sanchez R, Stewart AF, Garcia-Ocana A, DeVita RJ. Synthesis and Biological Validation of a Harmine-Based, Central Nervous System (CNS)-Avoidant, Selective, Human β-Cell Regenerative Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase A (DYRK1A) Inhibitor. J Med Chem 2020; 63:2986-3003. [PMID: 32003560 PMCID: PMC7388697 DOI: 10.1021/acs.jmedchem.9b01379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, our group identified that harmine is able to induce β-cell proliferation both in vitro and in vivo, mediated via the DYRK1A-NFAT pathway. Since, harmine suffers from a lack of selectivity, both against other kinases and CNS off-targets, we therefore sought to expand structure-activity relationships for harmine's DYRK1A activity, to enhance selectivity for off-targets while retaining human β-cell proliferation activity. We carried out optimization of the 9-N-position of harmine to synthesize 29 harmine-based analogs. Several novel inhibitors showed excellent DYRK1A inhibition and human β-cell proliferation capability. An optimized DYRK1A inhibitor, 2-2c, was identified as a novel, efficacious in vivo lead candidate. 2-2c also demonstrates improved selectivity for kinases and CNS off-targets, as well as in vivo efficacy for β-cell proliferation and regeneration at lower doses than harmine. Collectively, these findings demonstrate that 2-2c is a much improved in vivo lead candidate as compared to harmine for the treatment of diabetes.
Collapse
Affiliation(s)
- Kunal Kumar
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Wang
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jessica Wilson
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viktor Zlatanic
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cecilia Berrouet
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ethan A. Swartz
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roberto Sanchez
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew F. Stewart
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcia-Ocana
- Diabetes, Obesity, and Metabolism Institute, Icahn School
of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Drug Discovery Institute, Icahn School of Medicine at Mount
Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of
Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
233
|
Aikawa T, Togashi N, Iwanaga K, Okada H, Nishiya Y, Inoue S, Levis MJ, Isoyama T. Quizartinib, a selective FLT3 inhibitor, maintains antileukemic activity in preclinical models of RAS-mediated midostaurin-resistant acute myeloid leukemia cells. Oncotarget 2020; 11:943-955. [PMID: 32215183 PMCID: PMC7082118 DOI: 10.18632/oncotarget.27489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/29/2020] [Indexed: 12/29/2022] Open
Abstract
FLT3 internal tandem duplication (ITD) mutations are associated with poor prognosis in patients with acute myeloid leukemia (AML). In this preclinical study, we characterized the binding affinity and selectivity of quizartinib, a small-molecule inhibitor of FLT3, and AC886, the active metabolite of quizartinib, compared with those of other FLT3 inhibitors. Selectivity profiling against >400 kinases showed that quizartinib and AC886 were highly selective against FLT3. Quizartinib and AC886 inhibited FLT3 signaling pathways in FLT3-ITD–mutated AML cells, leading to potent growth inhibition with IC50 values of <1 nM. When quizartinib was administered to mice bearing FLT3-ITD mutated tumors, AC886 was rapidly detected and tumor regression was observed at doses of ≥1 mg/kg without severe body weight loss. In addition, quizartinib inhibited the viability of midostaurin-resistant MOLM-14 cells and exerted potent antitumor activity in mouse xenograft models without severe body weight loss, while midostaurin and gilteritinib did not show significant antitumor effects. This is the first detailed characterization of quizartinib and AC886 in comparison with other FLT3 inhibitors under the same experimental conditions. Preclinical antileukemic activity in midostaurin-resistant FLT3-ITD–mutated AML cells suggests the potential value of quizartinib following midostaurin failure in patients with FLT3-ITD mutated AML.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark J Levis
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD, United States of America
| | | |
Collapse
|
234
|
Yang J, Shibu MA, Kong L, Luo J, BadrealamKhan F, Huang Y, Tu ZC, Yun CH, Huang CY, Ding K, Lu X. Design, Synthesis, and Structure-Activity Relationships of 1,2,3-Triazole Benzenesulfonamides as New Selective Leucine-Zipper and Sterile-α Motif Kinase (ZAK) Inhibitors. J Med Chem 2020; 63:2114-2130. [PMID: 31244114 DOI: 10.1021/acs.jmedchem.9b00664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
ZAK is a new promising target for discovery of drugs with activity against antihypertrophic cardiomyopathy (HCM). A series of 1,2,3-triazole benzenesulfonamides were designed and synthesized as selective ZAK inhibitors. One of these compounds, 6p binds tightly to ZAK protein (Kd = 8.0 nM) and potently suppresses the kinase function of ZAK with single-digit nM (IC50 = 4.0 nM) and exhibits excellent selectivity in a KINOMEscan screening platform against a panel of 403 wild-type kinases. This compound dose dependently blocks p38/GATA-4 and JNK/c-Jun signaling and demonstrates promising in vivo anti-HCM efficacy upon oral administration in a spontaneous hypertensive rat (SHR) model. Compound 6p may serve as a lead compound for new anti-HCM drug discovery.
Collapse
Affiliation(s)
- Jianzhang Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | | | - Lulu Kong
- Department of Biochemistry and Biophysics, Institute of Systems Biomedicine and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Farheen BadrealamKhan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yanhui Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Cai-Hong Yun
- Department of Biochemistry and Biophysics, Institute of Systems Biomedicine and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
- College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
235
|
Mo C, Zhang Z, Li Y, Huang M, Zou J, Luo J, Tu ZC, Xu Y, Ren X, Ding K, Lu X. Design and Optimization of 3'-(Imidazo[1,2- a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxamides as Selective DDR1 Inhibitors. ACS Med Chem Lett 2020; 11:379-384. [PMID: 32184973 DOI: 10.1021/acsmedchemlett.9b00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022] Open
Abstract
DDR1 is considered as a promising target for cancer therapy, and selective inhibitors against DDR1 over other kinases may be considered as promising therapeutic agents. Herein, we have identified a series of 3'-(imidazo[1,2-a]pyrazin-3-yl)-[1,1'-biphenyl]-3-carboxamides as novel selective DDR1 inhibitors. Among these, compound 8v potently inhibited DDR1 with an IC50 of 23.8 nM, while it showed less inhibitory activity against DDR2 (IC50 = 1740 nM) and negligible activities against Bcr-Abl (IC50 > 10 μM) and c-Kit (IC50 > 10 μM). 8v also exhibited excellent selectivity in a KINOMEscan screening platform with 468 kinases. This compound dose-dependently suppressed NSCLC cell tumorigenicity, migration, and invasion. Collectively, these studies support its potential application for treatment of NSCLC.
Collapse
Affiliation(s)
- Cheng Mo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yupeng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Minhao Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Jian Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Yong Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
236
|
Le Y, Gan Y, Fu Y, Liu J, Li W, Zou X, Zhou Z, Wang Z, Ouyang G, Yan L. Design, synthesis and in vitro biological evaluation of quinazolinone derivatives as EGFR inhibitors for antitumor treatment. J Enzyme Inhib Med Chem 2020; 35:555-564. [PMID: 31967481 PMCID: PMC7006757 DOI: 10.1080/14756366.2020.1715389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In this paper, a series of novel 3-methyl-quinazolinone derivatives was designed, synthesised and evaluated for antitumor activity in vitro on wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) and three human cancer cell lines including A549, PC-3, and SMMC-7721. The results displayed that some of the compounds had good activities, especially 2-{4-[(3-Fluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5 g), 2-{4-[(3,4-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5k) and 2-{4-[(3,5-Difluoro-phenylimino)-methyl]-phenoxymethyl}-3-methyl-3H-quinazolin-4-one (5 l) showed high antitumor activities against three cancer cell lines. Moreover, compound 5k could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G2/M phase at tested concentrations. Also, compound 5k could inhibit the EGFRwt-TK with IC50 value of 10 nM. Molecular docking data indicates that the compound 5k may exert inhibitory activity by forming stable hydrogen bonds with the R817, T830 amino acid residues and cation-Π interaction with the K72 residue of EGFRwt-TK.
Collapse
Affiliation(s)
- Yi Le
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Yiyuan Gan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Yihong Fu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Jiamin Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Wen Li
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
| | - Xue Zou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhixu Zhou
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China.,Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zhenchao Wang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Guiping Ouyang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China
| | - Longjia Yan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China.,Guizhou Engineering Laboratory for Synthetic Drugs, Guiyang, China.,Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
237
|
Katavolos P, Cain G, Farman C, Romero FA, Magnuson S, Ly JQ, Choo EF, Katakam AK, Andaya R, Maher J. Preclinical Safety Assessment of a Highly Selective and Potent Dual Small-Molecule Inhibitor of CBP/P300 in Rats and Dogs. Toxicol Pathol 2020; 48:465-480. [PMID: 32124659 DOI: 10.1177/0192623319898469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyclic adenosine monophosphate-response element (CREB)-binding protein (CBP) and EP300E1A-binding protein (p300) are members of the bromodomain and extraterminal motif (BET) family. These highly homologous proteins have a key role in modulating transcription, including altering the status of chromatin or through interactions with or posttranslational modifications of transcription factors. As CBP and p300 have known roles for stimulating c-Myc oncogenic activity, a small-molecule inhibitor, GNE-781, was developed to selectively and potently inhibit the CBP/p300 bromodomains (BRDs). Genetic models have been challenging to develop due to embryonic lethality arising from germline homozygous mutations in either CBP or P300. Hence, the purpose of this study was to characterize the role of dual inhibition of these proteins in adult rats and dogs. Repeat dose toxicity studies were conducted, and toxicologic and pathologic end points were assessed. GNE-781 was generally tolerated; however, marked effects on thrombopoiesis occurred in both species. Evidence of inhibition of erythroid, granulocytic, and lymphoid cell differentiation was also present, as well as deleterious changes in gastrointestinal and reproductive tissues. These findings are consistent with many preclinical (and clinical) effects reported with BET inhibitors targeting BRD proteins; thus, the current study findings indicate a likely important role for CBP/p300 in stem cell differentiation.
Collapse
Affiliation(s)
- Paula Katavolos
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Gary Cain
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Cindy Farman
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA.,Vet Path Services, Inc, Mason, OH, USA
| | - F Anthony Romero
- Medicinal Chemistry, Genentech, Inc, South San Francisco, CA, USA.,Terns Pharmaceuticals, San Mateo, CA, USA
| | - Steven Magnuson
- Medicinal Chemistry, Genentech, Inc, South San Francisco, CA, USA
| | - Justin Q Ly
- Department of Drug Metabolism and Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Edna F Choo
- Department of Drug Metabolism and Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | | | - Roxanne Andaya
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| | - Jonathan Maher
- Safety Assessment, Genentech, Inc, South San Francisco, CA, USA
| |
Collapse
|
238
|
Angst D, Gessier F, Janser P, Vulpetti A, Wälchli R, Beerli C, Littlewood-Evans A, Dawson J, Nuesslein-Hildesheim B, Wieczorek G, Gutmann S, Scheufler C, Hinniger A, Zimmerlin A, Funhoff EG, Pulz R, Cenni B. Discovery of LOU064 (Remibrutinib), a Potent and Highly Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase. J Med Chem 2020; 63:5102-5118. [DOI: 10.1021/acs.jmedchem.9b01916] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
239
|
Discovery of 6′-chloro-N-methyl-5’-(phenylsulfonamido)-[3,3′-bipyridine]-5-carboxamide (CHMFL-PI4K-127) as a novel Plasmodium falciparum PI(4)K inhibitor with potent antimalarial activity against both blood and liver stages of Plasmodium. Eur J Med Chem 2020; 188:112012. [DOI: 10.1016/j.ejmech.2019.112012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 11/20/2022]
|
240
|
Promiscuity analysis of a kinase panel screen with designated p38 alpha inhibitors. Eur J Med Chem 2020; 187:112004. [DOI: 10.1016/j.ejmech.2019.112004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/19/2022]
|
241
|
Labots M, Pham TV, Honeywell RJ, Knol JC, Beekhof R, de Goeij-de Haas R, Dekker H, Neerincx M, Piersma SR, van der Mijn JC, van der Peet DL, Meijerink MR, Peters GJ, van Grieken NC, Jiménez CR, Verheul HM. Kinase Inhibitor Treatment of Patients with Advanced Cancer Results in High Tumor Drug Concentrations and in Specific Alterations of the Tumor Phosphoproteome. Cancers (Basel) 2020; 12:cancers12020330. [PMID: 32024067 PMCID: PMC7072422 DOI: 10.3390/cancers12020330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 12/22/2022] Open
Abstract
Identification of predictive biomarkers for targeted therapies requires information on drug exposure at the target site as well as its effect on the signaling context of a tumor. To obtain more insight in the clinical mechanism of action of protein kinase inhibitors (PKIs), we studied tumor drug concentrations of protein kinase inhibitors (PKIs) and their effect on the tyrosine-(pTyr)-phosphoproteome in patients with advanced cancer. Tumor biopsies were obtained from 31 patients with advanced cancer before and after 2 weeks of treatment with sorafenib (SOR), erlotinib (ERL), dasatinib (DAS), vemurafenib (VEM), sunitinib (SUN) or everolimus (EVE). Tumor concentrations were determined by LC-MS/MS. pTyr-phosphoproteomics was performed by pTyr-immunoprecipitation followed by LC-MS/MS. Median tumor concentrations were 2–10 µM for SOR, ERL, DAS, SUN, EVE and >1 mM for VEM. These were 2–178 × higher than median plasma concentrations. Unsupervised hierarchical clustering of pTyr-phosphopeptide intensities revealed patient-specific clustering of pre- and on-treatment profiles. Drug-specific alterations of peptide phosphorylation was demonstrated by marginal overlap of robustly up- and downregulated phosphopeptides. These findings demonstrate that tumor drug concentrations are higher than anticipated and result in drug specific alterations of the phosphoproteome. Further development of phosphoproteomics-based personalized medicine is warranted.
Collapse
Affiliation(s)
- Mariette Labots
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Richard J. Honeywell
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Jaco C. Knol
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Robin Beekhof
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Henk Dekker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Maarten Neerincx
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Johannes C. van der Mijn
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Donald L. van der Peet
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Martijn R. Meijerink
- Department of Radiology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
| | - Nicole C.T. van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| | - Connie R. Jiménez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (M.L.); (T.V.P.); (R.J.H.); (J.C.K.); (R.B.); (R.d.G.-d.H.); (H.D.); (M.N.); (S.R.P.); (J.C.v.d.M.); (G.J.P.)
- Correspondence: or (C.R.J.); (H.M.W.V.)
| | - Henk M.W. Verheul
- Department of Medical Oncology, RadboudUMC, Radboud University, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, The Netherlands
- Correspondence: or (C.R.J.); (H.M.W.V.)
| |
Collapse
|
242
|
Yang C, Zhu Z, Tong BCK, Iyaswamy A, Xie WJ, Zhu Y, Sreenivasmurthy SG, Senthilkumar K, Cheung KH, Song JX, Zhang HJ, Li M. A stress response p38 MAP kinase inhibitor SB202190 promoted TFEB/TFE3-dependent autophagy and lysosomal biogenesis independent of p38. Redox Biol 2020; 32:101445. [PMID: 32037305 PMCID: PMC7264467 DOI: 10.1016/j.redox.2020.101445] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/22/2022] Open
Abstract
TFEB (transcription factor EB) and TFE3 (transcription factor E3) are “master regulators” of autophagy and lysosomal biogenesis. The stress response p38 mitogen-activated protein (MAP) kinases affect multiple intracellular responses including inflammation, cell growth, differentiation, cell death, senescence, tumorigenesis, and autophagy. Small molecule p38 MAP kinase inhibitors such as SB202190 are widely used in dissection of related signal transduction mechanisms including redox biology and autophagy. Here, we initially aimed to investigate the links between p38 MAP kinase and TFEB/TFE3-mediated autophagy and lysosomal biogenesis. Unexpectedly, we found that only SB202190, rather than several other p38 inhibitors, promotes TFEB and TFE3 to translocate from the cytosol into the nucleus and subsequently enhances autophagy and lysosomal biogenesis. In addition, siRNA-mediated Tfeb and Tfe3 knockdown effectively attenuated SB202190-induced gene expression and lysosomal biogenesis. Mechanistical studies showed that TFEB and TFE3 activation in response to SB202190 is dependent on PPP3/calcineurin rather than on the inhibition of p38 or MTOR signaling, the main pathway for regulating TFEB and TFE3 activation. Importantly, SB202190 increased intracellular calcium levels, and calcium chelator BAPTAP-AM blocked SB202190-induced TFEB and TFE3 activation as well as autophagy and lysosomal biogenesis. Moreover, endoplasmic reticulum (ER) calcium is required for TFEB and TFE3 activation in response to SB202190. In summary, we identified a previously uncharacterized role of SB202190 in activating TFEB- and TFE3-dependent autophagy and lysosomal biogenesis via ER calcium release and subsequent calcium-dependent PPP3/calcineurin activation, leading to dephosphorylation of TFEB and TFE3. Given the importance of p38 MAP kinase invarious conditions including oxidative stress, the findings collectively indicate that SB202190 should not be used as a specific inhibitor for elucidating the p38 MAP kinase biological functions due to its potential effect on activating autophagy-lysosomal axis. A stress response p38 MAP kinase inhibitor SB202190 promoted TFEB/TFE3-dependent autophagy and lysosomal biogenesis. SB202190-induced TFEB/TFE3 activation is independent of p38 MAP kinase inhibition. SB202190-induced TFEB/TFE3 activation is independent of mTOR inhibition. ER calcium-induced PPP3/calcineurin is required for TFEB/TFE3 activation in response to SB202190.
Collapse
Affiliation(s)
- Chuanbin Yang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhou Zhu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Benjamin Chun-Kit Tong
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Ashok Iyaswamy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Wen-Jian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yu Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sravan Gopalkrishnashetty Sreenivasmurthy
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Krishnamoorthi Senthilkumar
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - King-Ho Cheung
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Ju-Xian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China; Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
243
|
Huang J, Lin Y, Lai C, Yang S, Lin SF, Yang J, Huang H, Liu C, Wei W, Chuang S, Chiang C, Lee YE, Liao C, Chern CY. The inhibition profiles of 4'‐acylpyrrole–5‐fluoroindolin‐2‐ones with a C‐3' side chain for VEGFR2, PDGFR‐β, and FGFR‐1 protein kinases. J CHIN CHEM SOC-TAIP 2020. [DOI: 10.1002/jccs.201900466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiann‐Jyh Huang
- Department of Applied ChemistryNational Chiayi University Chiayi City, Taiwan Republic of China
| | - Yu‐Hsiang Lin
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Chun‐Liang Lai
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Sheng‐Chuan Yang
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Shu Fu Lin
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Ju‐Ying Yang
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Hung‐Jyun Huang
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Chiawei Liu
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Win‐Yin Wei
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Shih‐Hsien Chuang
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Chao‐Cheng Chiang
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Ying‐Shuen E. Lee
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Chu‐Bin Liao
- Development Center for BiotechnologyNational Biotechnology Research Park Taipei City, Taiwan Republic of China
| | - Ching Yuh Chern
- Department of Applied ChemistryNational Chiayi University Chiayi City, Taiwan Republic of China
| |
Collapse
|
244
|
Cheng M, Yu X, Lu K, Xie L, Wang L, Meng F, Han X, Chen X, Liu J, Xiong Y, Jin J. Discovery of Potent and Selective Epidermal Growth Factor Receptor (EGFR) Bifunctional Small-Molecule Degraders. J Med Chem 2020; 63:1216-1232. [PMID: 31895569 DOI: 10.1021/acs.jmedchem.9b01566] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors have been developed and approved by Food and Drug Administration for the treatment of non-small-cell lung cancers, but their efficacy can be compromised by acquired drug resistance conferred by EGFR-mutant variants. Here, we described the discovery of a novel E3 ligase von Hippel-Lindau-recruiting EGFR degrader, MS39 (compound 6), and a first-in-class E3 ligase cereblon-recruiting EGFR degrader, MS154 (compound 10), using the proteolysis targeting chimera technology. These compounds potently induced the degradation of mutant but not wild-type EGFR in an E3 ligase-dependent manner in cancer cell lines and effectively suppressed the growth of lung cancer cells compared with the corresponding negative controls. The global proteomic analyses revealed that the compounds were highly selective for EGFR. Furthermore, both compounds were bioavailable in mouse pharmacokinetic studies, and compound 6 is the first EGFR degrader suitable for in vivo efficacy studies. Overall, we provide a set of well-characterized chemical tools to the research community.
Collapse
Affiliation(s)
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | | | | | | | - Fanye Meng
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | | | | | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | | | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
245
|
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock Strategies to Cure HIV Infection. Viruses 2020; 12:E84. [PMID: 31936859 PMCID: PMC7019976 DOI: 10.3390/v12010084] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Today HIV infection cannot be cured due to the presence of a reservoir of latently infected cells inducing a viral rebound upon treatment interruption. Hence, the latent reservoir is considered as the major barrier for an HIV cure. So far, efforts to completely eradicate the reservoir via a shock-and-kill approach have proven difficult and unsuccessful. Therefore, more research has been done recently on an alternative block-and-lock functional cure strategy. In contrast to the shock-and-kill strategy that aims to eradicate the entire reservoir, block-and-lock aims to permanently silence all proviruses, even after treatment interruption. HIV silencing can be achieved by targeting different factors of the transcription machinery. In this review, we first describe the underlying mechanisms of HIV transcription and silencing. Next, we give an overview of the different block-and-lock strategies under investigation.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Anne Bruggemans
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Julie Janssens
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| |
Collapse
|
246
|
|
247
|
Bonifacio L, Dodds M, Prohaska D, Moss A, Giaccia A, Tabibiazar R, McIntyre G. Target-Mediated Drug Disposition Pharmacokinetic/Pharmacodynamic Model-Informed Dose Selection for the First-in-Human Study of AVB-S6-500. Clin Transl Sci 2020; 13:204-211. [PMID: 31599479 PMCID: PMC6951457 DOI: 10.1111/cts.12706] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/02/2019] [Indexed: 12/26/2022] Open
Abstract
AVB-S6-500 neutralized growth arrest-specific 6 (GAS6) protein and effectively inhibited AXL signaling in preclinical cancer models. A target-mediated drug disposition (TMDD) pharmacokinetic/pharmacodynamic (PK/PD) model was used to select first-in-human (FIH) doses for AVB-S6-500 based on predicted target (GAS6) suppression in the clinic. The effect of TMDD on AVB-S6-500 clearance was incorporated into a standard two-compartment model, providing parallel linear and nonlinear clearance. Observed AVB-S6-500 and GAS6 concentration data in cynomolgus monkeys and relevant interspecies differences were used to predict the PK (serum concentration)/PD (GAS6 suppression) relationship in humans. Human exposure and GAS6 suppression were simulated for the proposed FIH doses of 1, 2.5, 5, and 10 mg/kg. A dose of 1 mg/kg was selected to target GAS6 suppression for 2 weeks in the initial healthy volunteer study. The cynomolgus monkey:human ratios for the highest proposed FIH dose were anticipated to yield more than a 10-fold margin to the nonclinical no observed adverse event level while maintaining > 90% GAS6 suppression. In human subjects, the first dose (1 mg/kg) model-projected and clinically observed maximal concentration (Cmax ) was within 10% of predicted; repeat dosing at 5 mg/kg was within 1% (Cmax ) and 45% (area under the serum concentration-time curve from time 0 to end of dosing interval) of predicted. Predicted GAS6 suppression duration of 14 days was accurate for the 1 mg/kg dose. A PK/PD model expedited clinical development of AVB-S6-500, minimized exposure of patients with cancer to subtherapeutic doses, and rationally guided the optimal dosing in patients.
Collapse
Affiliation(s)
| | | | | | - Aaron Moss
- Certara Strategic ConsultingPrincetonNew JerseyUSA
| | - Amato Giaccia
- Aravive, Inc.HoustonTexasUSA
- Stanford Medicine Division of Radiation and Cancer BiologyStanfordCaliforniaUSA
| | | | | |
Collapse
|
248
|
Synthesis and biological evaluation of novel pyrazolo[1,5-a]pyrimidines: Discovery of a selective inhibitor of JAK1 JH2 pseudokinase and VPS34. Bioorg Med Chem Lett 2020; 30:126813. [DOI: 10.1016/j.bmcl.2019.126813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
|
249
|
Abstract
The urea functionality is inherent to numerous bioactive compounds, including a variety of clinically approved therapies. Urea containing compounds are increasingly used in medicinal chemistry and drug design in order to establish key drug-target interactions and fine-tune crucial drug-like properties. In this perspective, we highlight physicochemical and conformational properties of urea derivatives. We provide outlines of traditional reagents and chemical procedures for the preparation of ureas. Also, we discuss newly developed methodologies mainly aimed at overcoming safety issues associated with traditional synthesis. Finally, we provide a broad overview of urea-based medicinally relevant compounds, ranging from approved drugs to recent medicinal chemistry developments.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Excellence of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
250
|
Wang H, Qiu J, Liu H, Xu Y, Jia Y, Zhao Y. HKPocket: human kinase pocket database for drug design. BMC Bioinformatics 2019; 20:617. [PMID: 31783725 PMCID: PMC6884818 DOI: 10.1186/s12859-019-3254-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/15/2019] [Indexed: 01/06/2023] Open
Abstract
Background The kinase pocket structural information is important for drug discovery targeting cancer or other diseases. Although some kinase sequence, structure or drug databases have been developed, the databases cannot be directly used in the kinase drug study. Therefore, a comprehensive database of human kinase protein pockets is urgently needed to be developed. Results Here, we have developed HKPocket, a comprehensive Human Kinase Pocket database. This database provides sequence, structure, hydrophilic-hydrophobic, critical interactions, and druggability information including 1717 pockets from 255 kinases. We further divided these pockets into 91 pocket clusters using structural and position features in each kinase group. The pocket structural information would be useful for preliminary drug screening. Then, the potential drugs can be further selected and optimized by analyzing the sequence conservation, critical interactions, and hydrophobicity of identified drug pockets. HKPocket also provides online visualization and pse files of all identified pockets. Conclusion The HKPocket database would be helpful for drug screening and optimization. Besides, drugs targeting the non-catalytic pockets would cause fewer side effects. HKPocket is available at http://zhaoserver.com.cn/HKPocket/HKPocket.html.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Jiadi Qiu
- Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Haoquan Liu
- Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Ying Xu
- Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Ya Jia
- Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yunjie Zhao
- Department of Physics, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|