201
|
Qiao SP, Lang C, Wang RD, Li XM, Yan TF, Pan TZ, Zhao LL, Fan XT, Zhang X, Hou CX, Luo Q, Xu JY, Liu JQ. Metal induced self-assembly of designed V-shape protein into 2D wavy supramolecular nanostructure. NANOSCALE 2016; 8:333-341. [PMID: 26612683 DOI: 10.1039/c5nr06378g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to understand and imitate the more complex bio-processes and fascinating functions in nature, protein self-assembly has been studied and has attracted more and more interest in recent years. Artificial self-assemblies of proteins have been constructed through many strategies. However, the design of complicated protein self-assemblies utilizing the special profile of building blocks remains a challenge. We herein report linear and 2D nanostructures constructed from a V shape SMAC protein and induced by metal coordination. Zigzag nanowires and wavy 2D nanostructures have been demonstrated by AFM and TEM. The zigzag nanowires can translate to a 2D nanostructure with an excess of metal ions, which reveals the step by step assembly process. Fluorescence and UV/Vis spectra have also been obtained to further study the mechanism and process of self-assembly. Upon the protein nanostructure, fluorescence resonance energy transfer (FRET) could also be detected using fluorescein modified proteins as building blocks. This article provides an approach for designing and controlling self-assembled protein nanostructures with a distinctive topological morphology.
Collapse
Affiliation(s)
- S P Qiao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - C Lang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - R D Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - X M Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - T F Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - T Z Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - L L Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - X T Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - X Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - C X Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Q Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - J Y Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - J Q Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
202
|
Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular Polymers in Aqueous Media. Chem Rev 2016; 116:2414-77. [DOI: 10.1021/acs.chemrev.5b00369] [Citation(s) in RCA: 527] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Pol Besenius
- Institute
of Organic Chemistry, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Boris Rybtchinski
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
203
|
Design of Self-Assembling Protein-Polymer Conjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:179-214. [PMID: 27677514 DOI: 10.1007/978-3-319-39196-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.
Collapse
|
204
|
Kim YN, Jung Y. Artificial supramolecular protein assemblies as functional high-order protein scaffolds. Org Biomol Chem 2016; 14:5352-6. [DOI: 10.1039/c6ob00116e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Artificial supramolecular protein assemblies can serve as novel high-order scaffolds that can display various functional proteins with defined valencies and organization, offering unprecedented functional bio-architectures.
Collapse
Affiliation(s)
- Yu-na Kim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Korea
| | - Yongwon Jung
- Department of Chemistry
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Korea
| |
Collapse
|
205
|
Two-Dimensional Peptide and Protein Assemblies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:29-60. [PMID: 27677508 DOI: 10.1007/978-3-319-39196-0_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two-dimensional nanoscale assemblies (nanosheets) represent a promising structural platform to arrange molecular and supramolecular substrates with precision for integration into devices. This nanoarchitectonic approach has gained significant traction over the last decade, as a general concept to guide the fabrication of functional nanoscale devices. Sequence-specific biomolecules, e.g., peptides and proteins, may be considered excellent substrates for the fabrication of two-dimensional nanoarchitectonics. Molecular level instructions can be encoded within the sequence of monomers, which allows for control over supramolecular structure if suitable design principles could be elaborated. Due to the complexity of interactions between protomers, the development of principles aimed toward rational design of peptide and protein nanosheets is at a nascent stage. This review discusses the known two-dimensional peptide and protein assemblies to further our understanding of how to control the arrangement of molecules in two-dimensions.
Collapse
|
206
|
Abe S, Ijiri H, Negishi H, Yamanaka H, Sasaki K, Hirata K, Mori H, Ueno T. Design of Enzyme-Encapsulated Protein Containers by In Vivo Crystal Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7951-7956. [PMID: 26503073 DOI: 10.1002/adma.201503827] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Crystalline protein assemblies of polyhedra crystal (PhC) can be utilized as solid enzyme containers for long-term storage of enzymes with retention of their enzymatic activity. The enzymes can be released from the crystals at the optimum pH for the enzymatic activity by dissolution of the crystals using in vivo crystal engineering.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroshi Ijiri
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hashiru Negishi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroyuki Yamanaka
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Katsuhito Sasaki
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kunio Hirata
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Hajime Mori
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takafumi Ueno
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
207
|
Patterson JP, Proetto MT, Gianneschi NC. Soft nanomaterials analysed by in situ liquid TEM: Towards high resolution characterisation of nanoparticles in motion. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.pisc.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
208
|
Bale JB, Park RU, Liu Y, Gonen S, Gonen T, Cascio D, King NP, Yeates TO, Baker D. Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression. Protein Sci 2015; 24:1695-701. [PMID: 26174163 PMCID: PMC4594668 DOI: 10.1002/pro.2748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022]
Abstract
We recently reported the development of a computational method for the design of coassembling multicomponent protein nanomaterials. While four such materials were validated at high-resolution by X-ray crystallography, low yield of soluble protein prevented X-ray structure determination of a fifth designed material, T33-09. Here we report the design and crystal structure of T33-31, a variant of T33-09 with improved soluble yield resulting from redesign efforts focused on mutating solvent-exposed side chains to charged amino acids. The structure is found to match the computational design model with atomic-level accuracy, providing further validation of the design approach and demonstrating a simple and potentially general means of improving the yield of designed protein nanomaterials.
Collapse
Affiliation(s)
- Jacob B Bale
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Graduate Program in Molecular and Cellular Biology, University of WashingtonSeattle, Washington, 98195
| | - Rachel U Park
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
| | - Yuxi Liu
- Department of Chemistry and Biochemistry, UCLALos Angeles, California, 90095
| | - Shane Gonen
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Janelia Research Campus, Howard Hughes Medical InstituteAshburn, Virginia, 20147
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical InstituteAshburn, Virginia, 20147
| | - Duilio Cascio
- Institute for Genomics and Proteomics, UCLA-DOELos Angeles, California, 90095
| | - Neil P King
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Institute for Protein Design, University of WashingtonSeattle, Washington, 98195
| | - Todd O Yeates
- Department of Chemistry and Biochemistry, UCLALos Angeles, California, 90095
- Institute for Genomics and Proteomics, UCLA-DOELos Angeles, California, 90095
| | - David Baker
- Department of Biochemistry, University of WashingtonSeattle, Washington, 98195
- Institute for Protein Design, University of WashingtonSeattle, Washington, 98195
- Howard Hughes Medical Institute, University of WashingtonSeattle, Washington, 98195
| |
Collapse
|
209
|
Miyamoto T, Kuribayashi M, Nagao S, Shomura Y, Higuchi Y, Hirota S. Domain-swapped cytochrome cb562 dimer and its nanocage encapsulating a Zn-SO 4 cluster in the internal cavity. Chem Sci 2015; 6:7336-7342. [PMID: 28791095 PMCID: PMC5519777 DOI: 10.1039/c5sc02428e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023] Open
Abstract
Three domain-swapped cytochrome cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity.
Protein nanostructures have been gaining in interest, along with developments in new methods for construction of novel nanostructures. We have previously shown that c-type cytochromes and myoglobin form oligomers by domain swapping. Herein, we show that a four-helix bundle protein cyt cb562, with the cyt b562 heme attached to the protein moiety by two Cys residues insertion, forms a domain-swapped dimer. Dimeric cyt cb562 did not dissociate to monomers at 4 °C, whereas dimeric cyt b562 dissociated under the same conditions, showing that heme attachment to the protein moiety stabilizes the domain-swapped structure. According to X-ray crystallographic analysis of dimeric cyt cb562, the two helices in the N-terminal region of one protomer interacted with the other two helices in the C-terminal region of the other protomer, where Lys51–Asp54 served as a hinge loop. The heme coordination structure of the dimer was similar to that of the monomer. In the crystal, three domain-swapped cyt cb562 dimers formed a unique cage structure with a Zn–SO4 cluster inside the cavity. The Zn–SO4 cluster consisted of fifteen Zn2+ and seven SO42– ions, whereas six additional Zn2+ ions were detected inside the cavity. The cage structure was stabilized by coordination of the amino acid side chains of the dimers to the Zn2+ ions and connection of two four-helix bundle units through the conformation-adjustable hinge loop. These results show that domain swapping can be applied in the construction of unique protein nanostructures.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Mai Kuribayashi
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Satoshi Nagao
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| | - Yasuhito Shomura
- Graduate School of Science and Engineering , Ibaraki University , 4-12-1, Nakanarusawa , Hitachi , Ibaraki 316-8511 , Japan
| | - Yoshiki Higuchi
- Department of Life Science , Graduate School of Life Science , University of Hyogo , 3-2-1 Koto, Kamigori-cho, Ako-gun , Hyogo 678-1297 , Japan.,RIKEN SPring-8 Center , 1-1-1 Koto, Sayo-cho, Sayo-gun , Hyogo 679-5148 , Japan
| | - Shun Hirota
- Graduate School of Materials Science , Nara Institute of Science and Technology , 8916-5 Takayama, Ikoma , Nara 630-0192 , Japan .
| |
Collapse
|
210
|
Sontz PA, Bailey JB, Ahn S, Tezcan FA. A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. J Am Chem Soc 2015; 137:11598-601. [PMID: 26305584 DOI: 10.1021/jacs.5b07463] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We describe here the construction of a three-dimensional, porous, crystalline framework formed by spherical protein nodes that assemble into a prescribed lattice arrangement through metal-organic linker-directed interactions. The octahedral iron storage enzyme, ferritin, was engineered in its C3 symmetric pores with tripodal Zn coordination sites. Dynamic light scattering and crystallographic studies established that this Zn-ferritin construct could robustly self-assemble into the desired bcc-type crystals upon coordination of a ditopic linker bearing hydroxamic acid functional groups. This system represents the first example of a ternary protein-metal-organic crystalline framework whose formation is fully dependent on each of its three components.
Collapse
Affiliation(s)
- Pamela A Sontz
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jake B Bailey
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sunhyung Ahn
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego , 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
211
|
Computational design of co-assembling protein-DNA nanowires. Nature 2015; 525:230-3. [PMID: 26331548 DOI: 10.1038/nature14874] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/30/2015] [Indexed: 11/09/2022]
Abstract
Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.
Collapse
|
212
|
Brodin JD, Smith SJ, Carr JR, Tezcan FA. Designed, Helical Protein Nanotubes with Variable Diameters from a Single Building Block. J Am Chem Soc 2015; 137:10468-71. [PMID: 26256820 PMCID: PMC6855837 DOI: 10.1021/jacs.5b05755] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Due to their structural and mechanical properties, 1D helical protein assemblies represent highly attractive design targets for biomolecular engineering and protein design. Here we present a designed, tetrameric protein building block, Zn8R4, which assembles via Zn coordination interactions into a series of crystalline, helical nanotubes whose widths can be controlled by solution conditions. X-ray crystallography and transmission electron microscopy (TEM) measurements indicate that all classes of protein nanotubes are constructed through the same 2D arrangement of Zn8R4 tetramers held together by Zn coordination. The mechanical properties of these nanotubes are correlated with their widths. All Zn8R4 nanotubes are found to be highly flexible despite possessing crystalline order, owing to their minimal interbuilding-block interactions mediated solely by metal coordination.
Collapse
Affiliation(s)
| | | | - Jessica R. Carr
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0356
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0356
| |
Collapse
|
213
|
Parmar AS, Xu F, Pike DH, Belure SV, Hasan NF, Drzewiecki KE, Shreiber DI, Nanda V. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides. Biochemistry 2015; 54:4987-97. [PMID: 26225466 PMCID: PMC5335877 DOI: 10.1021/acs.biochem.5b00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.
Collapse
Affiliation(s)
- Avanish S. Parmar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad-500046, Telangana, INDIA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Fei Xu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sandeep V. Belure
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Nida F. Hasan
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kathryn E. Drzewiecki
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
214
|
Matthaei JF, DiMaio F, Richards JJ, Pozzo LD, Baker D, Baneyx F. Designing Two-Dimensional Protein Arrays through Fusion of Multimers and Interface Mutations. NANO LETTERS 2015; 15:5235-5239. [PMID: 25986921 DOI: 10.1021/acs.nanolett.5b01499] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have combined fusion of oligomers with cyclic symmetry and alanine substitutions to eliminate clashes and produce proteins that self-assemble into 2-D arrays upon addition of calcium ions. Using TEM, AFM, small-angle X-ray scattering, and fluorescence microscopy, we show that the designed lattices which are 5 nm high with p3 space group symmetry and 7.25 nm periodicity self-assemble into structures that can exceed 100 μm in characteristic length. The versatile strategy, experimental approach, and hexagonal arrays described herein should prove valuable for the engineering of functional nanostructured materials in 2-D.
Collapse
Affiliation(s)
- James F Matthaei
- †Department of Chemical Engineering, University of Washington, Seattle, Washington 918195, United States
| | - Frank DiMaio
- ‡Department of Biochemistry, University of Washington, Seattle, Washington 918195, United States
| | - Jeffrey J Richards
- †Department of Chemical Engineering, University of Washington, Seattle, Washington 918195, United States
| | - Lilo D Pozzo
- †Department of Chemical Engineering, University of Washington, Seattle, Washington 918195, United States
| | - David Baker
- ‡Department of Biochemistry, University of Washington, Seattle, Washington 918195, United States
- §Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815, United States
| | - François Baneyx
- †Department of Chemical Engineering, University of Washington, Seattle, Washington 918195, United States
| |
Collapse
|
215
|
Lai YT, Jiang L, Chen W, Yeates TO. On the predictability of the orientation of protein domains joined by a spanning alpha-helical linker. Protein Eng Des Sel 2015; 28:491-9. [DOI: 10.1093/protein/gzv035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 11/14/2022] Open
|
216
|
Wang C, Sun Y, Wang J, Xu H, Lu JR. Copper(II)-Mediated Self-Assembly of Hairpin Peptides and Templated Synthesis of CuS Nanowires. Chem Asian J 2015; 10:1953-8. [PMID: 26110265 DOI: 10.1002/asia.201500467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 11/06/2022]
Abstract
The self-assembly of peptides and proteins under well-controlled conditions underlies important nanostructuring processes that could be harnessed in practical applications. Herein, the synthesis of a new hairpin peptide containing four histidine residues is reported and the self-assembly process mediated by metal ions is explored. The work involves the combined use of circular dichroism, NMR spectroscopy, UV/Vis spectroscopy, AFM, and TEM to follow the structural and morphological details of the metal-coordination-mediated folding and self-assembly of the peptide. The results indicate that by forming a tetragonal coordination geometry with four histidine residues, copper(II) ions selectively trigger the peptide to fold and then self-assemble into nanofibrils. Furthermore, the copper(II)-bound nanofibrils template the synthesis of CuS nanowires, which display a near-infrared laser-induced thermal effect.
Collapse
Affiliation(s)
- Chengdong Wang
- State Key Laboratory of Heavy Oil Processing, and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Changjiang West Road, Qingdao, 266580, P.R. China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing, and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Changjiang West Road, Qingdao, 266580, P.R. China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Changjiang West Road, Qingdao, 266580, P.R. China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Changjiang West Road, Qingdao, 266580, P.R. China.
| | - Jian R Lu
- School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
217
|
Kobayashi N, Yanase K, Sato T, Unzai S, Hecht MH, Arai R. Self-Assembling Nano-Architectures Created from a Protein Nano-Building Block Using an Intermolecularly Folded Dimeric de Novo Protein. J Am Chem Soc 2015; 137:11285-93. [PMID: 26120734 DOI: 10.1021/jacs.5b03593] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design of novel proteins that self-assemble into supramolecular complexes is an important step in the development of synthetic biology and nanotechnology. Recently, we described the three-dimensional structure of WA20, a de novo protein that forms an intermolecularly folded dimeric 4-helix bundle (PDB code 3VJF ). To harness the unusual intertwined structure of WA20 for the self-assembly of supramolecular nanostructures, we created a protein nanobuilding block (PN-Block), called WA20-foldon, by fusing the dimeric structure of WA20 to the trimeric foldon domain of fibritin from bacteriophage T4. The WA20-foldon fusion protein was expressed in the soluble fraction in Escherichia coli, purified, and shown to form several homooligomeric forms. The stable oligomeric forms were further purified and characterized by a range of biophysical techniques. Size exclusion chromatography, multiangle light scattering, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS) analyses indicate that the small (S form), middle (M form), and large (L form) forms of the WA20-foldon oligomers exist as hexamer (6-mer), dodecamer (12-mer), and octadecamer (18-mer), respectively. These findings suggest that the oligomers in multiples of 6-mer are stably formed by fusing the interdigitated dimer of WA20 with the trimer of foldon domain. Pair-distance distribution functions obtained from the Fourier inversion of the SAXS data suggest that the S and M forms have barrel- and tetrahedron-like shapes, respectively. These results demonstrate that the de novo WA20-foldon is an effective building block for the creation of self-assembling artificial nanoarchitectures.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Japan Society for the Promotion of Science , Chiyoda, Tokyo 102-8471, Japan
| | | | | | - Satoru Unzai
- Graduate School of Medical Life Science, Yokohama City University , Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Michael H Hecht
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Ryoichi Arai
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University , Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
218
|
Gonen S, DiMaio F, Gonen T, Baker D. Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces. Science 2015; 348:1365-8. [PMID: 26089516 DOI: 10.1126/science.aaa9897] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe a general approach to designing two-dimensional (2D) protein arrays mediated by noncovalent protein-protein interfaces. Protein homo-oligomers are placed into one of the seventeen 2D layer groups, the degrees of freedom of the lattice are sampled to identify configurations with shape-complementary interacting surfaces, and the interaction energy is minimized using sequence design calculations. We used the method to design proteins that self-assemble into layer groups P 3 2 1, P 4 2(1) 2, and P 6. Projection maps of micrometer-scale arrays, assembled both in vitro and in vivo, are consistent with the design models and display the target layer group symmetry. Such programmable 2D protein lattices should enable new approaches to structure determination, sensing, and nanomaterial engineering.
Collapse
Affiliation(s)
- Shane Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA. Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Tamir Gonen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
219
|
Jiang T, Vail OA, Jiang Z, Zuo X, Conticello VP. Rational Design of Multilayer Collagen Nanosheets with Compositional and Structural Control. J Am Chem Soc 2015; 137:7793-802. [DOI: 10.1021/jacs.5b03326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Jiang
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Owen A. Vail
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhigang Jiang
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xiaobing Zuo
- X-ray
Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | | |
Collapse
|
220
|
Alies B, Wiener JD, Franz KJ. A prochelator peptide designed to use heterometallic cooperativity to enhance metal ion affinity. Chem Sci 2015; 6:3606-3610. [PMID: 29511523 PMCID: PMC5659173 DOI: 10.1039/c5sc00602c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022] Open
Abstract
A peptide has been designed so that its chelating affinity for one type of metal ion regulates its affinity for a second, different type of metal ion. The prochelator peptide (PCP), which is a fusion of motifs evocative of calcium loops and zinc fingers, forms a 1 : 2 Zn : peptide complex at pH 7.4 that increases its affinity for Zn2+ ∼3-fold in the presence of Tb3+ (log β2 from 13.8 to 14.3), while the 1 : 1 luminescent complex with Tb3+ is brighter, longer lived, and 20-fold tighter in the presence of Zn2+ (log K from 6.2 to 7.5). This unique example of cooperative, heterometallic allostery in a biologically compatible construct suggests the possibility of designing conditionally active metal-binding agents that could respond to dynamic changes in cellular metal status.
Collapse
Affiliation(s)
- Bruno Alies
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - Jacob D Wiener
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| | - Katherine J Franz
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , USA .
| |
Collapse
|
221
|
Ma L, Li F, Fang T, Zhang J, Wang Q. Controlled Self-Assembly of Proteins into Discrete Nanoarchitectures Templated by Gold Nanoparticles via Monovalent Interfacial Engineering. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11024-11031. [PMID: 25943563 DOI: 10.1021/acsami.5b02823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Designed rational assembly of proteins promises novel properties and functionalities as well as new insights into the nature of life. De novo design of artificial protein nanostructures has been achieved using protein subunits or peptides as building blocks. However, controlled assembly of protein nanostructures into higher-order discrete nanoarchitectures, rather than infinite arrays or aggregates, remains a challenge due to the complex or symmetric surface chemistry of protein nanostructures. Here we develop a facile strategy to control the hierarchical assembly of protein nanocages into discrete nanoarchitectures with gold nanoparticles (AuNPs) as scaffolds via rationally designing their interfacial interaction. The protein nanocage is monofunctionalized with a polyhistidine tag (Histag) on the external surface through a mixed assembly strategy, while AuNPs are modified with Ni(2+)-NTA chelates, so that the protein nanocage can controllably assemble onto the AuNPs via the Histag-Ni(2+) affinity. Discrete protein nanoarchitectures with tunable composition can be generated by stoichiometric control over the ratio of protein nanocage to AuNP or change of AuNP size. The methodology described here is extendable to other protein nanostructures and chemically synthesized nanomaterials, and can be borrowed by synthetic biology for biomacromolecule manipulation.
Collapse
Affiliation(s)
- Lingzhi Ma
- †Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Feng Li
- ‡State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, P. R. China
| | - Ti Fang
- ‡State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, No. 44, Xiaohongshan, Wuhan 430071, P. R. China
| | - Jianting Zhang
- †Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, P. R. China
| | - Qiangbin Wang
- †Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou 215123, P. R. China
| |
Collapse
|
222
|
In-frame amber stop codon replacement mutagenesis for the directed evolution of proteins containing non-canonical amino acids: identification of residues open to bio-orthogonal modification. PLoS One 2015; 10:e0127504. [PMID: 26011713 PMCID: PMC4444182 DOI: 10.1371/journal.pone.0127504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/13/2015] [Indexed: 11/19/2022] Open
Abstract
Expanded genetic code approaches are a powerful means to add new and useful chemistry to proteins at defined residues positions. One such use is the introduction of non-biological reactive chemical handles for site-specific biocompatible orthogonal conjugation of proteins. Due to our currently limited information on the impact of non-canonical amino acids (nAAs) on the protein structure-function relationship, rational protein engineering is a “hit and miss” approach to selecting suitable sites. Furthermore, dogma suggests surface exposed native residues should be the primary focus for introducing new conjugation chemistry. Here we describe a directed evolution approach to introduce and select for in-frame codon replacement to facilitate engineering proteins with nAAs. To demonstrate the approach, the commonly reprogrammed amber stop codon (TAG) was randomly introduced in-frame in two different proteins: the bionanotechnologically important cyt b562 and therapeutic protein KGF. The target protein is linked at the gene level to sfGFP via a TEV protease site. In absence of a nAA, an in-frame TAG will terminate translation resulting in a non-fluorescent cell phenotype. In the presence of a nAA, TAG will encode for nAA incorporation so instilling a green fluorescence phenotype on E. coli. The presence of endogenously expressed TEV proteases separates in vivo target protein from its fusion to sfGFP if expressed as a soluble fusion product. Using this approach, we incorporated an azide reactive handle and identified residue positions amenable to conjugation with a fluorescence dye via strain-promoted azide-alkyne cycloaddition (SPAAC). Interestingly, best positions for efficient conjugation via SPAAC were residues whose native side chain were buried through analysis of their determined 3D structures and thus may not have been chosen through rational protein engineering. Molecular modeling suggests these buried native residues could become partially exposed on substitution to the azide containing nAA.
Collapse
|
223
|
Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat Commun 2015; 6:7134. [PMID: 25972078 PMCID: PMC4479010 DOI: 10.1038/ncomms8134] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/08/2015] [Indexed: 02/08/2023] Open
Abstract
Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein–protein interactions and tools to manipulate receptor clustering on live cell surfaces. Supramolecular protein assemblies can provide novel nano-architectures with diverse structures and functions. Here, the authors report a fabrication strategy for a series of monodisperse protein oligomers, which allows valency-controlled display of various functional proteins.
Collapse
|
224
|
Uchida M, LaFrance B, Broomell CC, Prevelige PE, Douglas T. Higher order assembly of virus-like particles (VLPs) mediated by multi-valent protein linkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1562-1570. [PMID: 25641768 DOI: 10.1002/smll.201402067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/14/2014] [Indexed: 06/04/2023]
Abstract
Two- and three-dimensional assembly of nanoparticles has generated significant interest because these higher order structures could exhibit collective behaviors/properties beyond those of the individual nanoparticles. Highly specific interactions between molecules, which biology exploits to regulate molecular assemblies such as DNA hybridization, often provide inspiration for the construction of higher order materials using bottom-up approaches. In this study, higher order assembly of virus-like particles (VLPs) derived from the bacteriophage P22 is demonstrated by using a small adaptor protein, Dec, which binds to symmetry specific sites on the P22 capsid. Two types of connector proteins, which have different number of P22 binding sites and different geometries (ditopic linker with liner geometry and tetratopic linker with tetrahedral geometry) have been engineered through either a point mutation of Dec or genetic fusion with another protein, respectively. Bulk assembly and layer-by-layer deposition of P22 VLPs from solution was successfully achieved using both of the engineered multi-topic linker molecules, while Dec with only a single binding site does not mediate P22 assembly. Beyond the two types of linkers developed in this study, a wide range of different connector geometries could be envisioned using a similar engineering approach. This is a powerful strategy to construct higher order assemblies of VLP based nanomaterials.
Collapse
Affiliation(s)
- Masaki Uchida
- Department of Chemistry, Indiana University, 800 East Kirkwood Ave., Bloomington, IN, 47405, USA; Department of Chemistry and Biochemistry, Montana State University, CBB103, Bozeman, MT, 59717, USA
| | | | | | | | | |
Collapse
|
225
|
Abstract
The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein-protein interactions for DNA-DNA interactions to direct the assembly of two nucleic-acid-functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA-DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials.
Collapse
|
226
|
Xue M, Cai X, Chen G. Colloidal pen lithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:548-552. [PMID: 25288364 DOI: 10.1002/smll.201400416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/22/2014] [Indexed: 06/03/2023]
Abstract
Colloidal pen lithography, a low-cost, high-throughput scanning probe contact printing method, has been developed, which is based on self-assembled colloidal arrays embedded in a soft elastomeric stamp. Patterned protein arrays are demonstrated using this method, with a feature size ranging from 100 nm to several micrometers. A brief study into the specificity reorganization of protein gives evidence for the feasibility of this method for writing protein chips.
Collapse
Affiliation(s)
- Mianqi Xue
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China; Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | | | | |
Collapse
|
227
|
Rad B, Haxton TK, Shon A, Shin SH, Whitelam S, Ajo-Franklin CM. Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice. ACS NANO 2015; 9:180-90. [PMID: 25494454 PMCID: PMC4310639 DOI: 10.1021/nn502992x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/10/2014] [Indexed: 05/22/2023]
Abstract
Self-assembling proteins offer a potential means of creating nanostructures with complex structure and function. However, using self-assembly to create nanostructures with long-range order whose size is tunable is challenging, because the kinetics and thermodynamics of protein interactions depend sensitively on solution conditions. Here we systematically investigate the impact of varying solution conditions on the self-assembly of SbpA, a surface-layer protein from Lysinibacillus sphaericus that forms two-dimensional nanosheets. Using high-throughput light scattering measurements, we mapped out diagrams that reveal the relative yield of self-assembly of nanosheets over a wide range of concentrations of SbpA and Ca(2+). These diagrams revealed a localized region of optimum yield of nanosheets at intermediate Ca(2+) concentration. Replacement of Mg(2+) or Ba(2+) for Ca(2+) indicates that Ca(2+) acts both as a specific ion that is required to induce self-assembly and as a general divalent cation. In addition, we use competitive titration experiments to find that 5 Ca(2+) bind to SbpA with an affinity of 67.1 ± 0.3 μM. Finally, we show via modeling that nanosheet assembly occurs by growth from a negligibly small critical nucleus. We also chart the dynamics of nanosheet size over a variety of conditions. Our results demonstrate control of the dynamics and size of the self-assembly of a nanostructured lattice, the constituents of which are one of a class of building blocks able to form novel hybrid nanomaterials.
Collapse
Affiliation(s)
- Behzad Rad
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
| | - Thomas K. Haxton
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
| | - Albert Shon
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California 94720-1462, United States
| | - Seong-Ho Shin
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
- Department of Chemistry, UC Berkeley, Berkeley, California 94720-1460, United States
| | - Stephen Whitelam
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
| | - Caroline M. Ajo-Franklin
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
- Address correspondence to
| |
Collapse
|
228
|
Egelman EH, Xu C, DiMaio F, Magnotti E, Modlin C, Yu X, Wright E, Baker D, Conticello VP. Structural plasticity of helical nanotubes based on coiled-coil assemblies. Structure 2015; 23:280-9. [PMID: 25620001 DOI: 10.1016/j.str.2014.12.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/16/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Numerous instances can be seen in evolution in which protein quaternary structures have diverged while the sequences of the building blocks have remained fairly conserved. However, the path through which such divergence has taken place is usually not known. We have designed two synthetic 29-residue α-helical peptides, based on the coiled-coil structural motif, that spontaneously self-assemble into helical nanotubes in vitro. Using electron cryomicroscopy with a newly available direct electron detection capability, we can achieve near-atomic resolution of these thin structures. We show how conservative changes of only one or two amino acids result in dramatic changes in quaternary structure, in which the assemblies can be switched between two very different forms. This system provides a framework for understanding how small sequence changes in evolution can translate into very large changes in supramolecular structure, a phenomenon that may have significant implications for the de novo design of synthetic peptide assemblies.
Collapse
Affiliation(s)
- E H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| | - C Xu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - F DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - E Magnotti
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - C Modlin
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - X Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - E Wright
- Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - D Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - V P Conticello
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
229
|
Kaminsky W, Stenkamp RE, Skubatz H. Crystal and molecular structure of the analgesic tetrapeptide, L-Phe-L-Leu-L-Pro-L-Ser. Biopolymers 2015; 104:84-90. [PMID: 25581776 DOI: 10.1002/bip.22606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/09/2014] [Accepted: 12/21/2014] [Indexed: 11/06/2022]
Abstract
The tetrapeptide, L-Phe-L-Leu-L-Pro-L-Ser (FLPS), alleviates pain in a rat model of post-surgery pain. The crystal structure of the tetrapeptide is solved at high resolution (0.54 Å). The asymmetric unit contains two FLPS molecules, one Zn ion, and four molecules of water with a formula of [Zn(C23H33N4O6)2(H2O)4]. Each Zn ion is octahedrally coordinated with Phe and Ser residues from four peptide molecules [2N+4O]. The linking of Phe and Ser residues of one FLPS molecule to three other FLPS molecules by Zn ion forms a complex consisting of chains of metal ions and FLPS molecules oriented along the b axis. Analysis of molecular packing reveals the coexistence of two FLPS conformers in the same crystal. The crystallographic parameters for [Zn(C23H33N4O6)2(H2O)4] are as follows: space group P21 21 21 , a = 9.8698(2) Å, α = 90°, b = 20.1844(4) Å, β = 90°, c = 25.9302(6) Å, γ = 90°. Volume = 5165.71(19) Å(3), Z = 4, density (calc) = 1.364 Mg/cm(3), and agreement factor R1 = 4.13%.
Collapse
Affiliation(s)
- Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, WA, 98195
| | | | | |
Collapse
|
230
|
Tabbasum K, Rao CP. Zn2+ and Cu2+ induced nanosheets and nanotubes in six different lectins by TEM. RSC Adv 2015. [DOI: 10.1039/c5ra00481k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Zn2+ and Cu2+ induced supramolecular assemblies of lectins resulted in the formation of nanosheets in case of Zn2+ and both nanosheets and nanotubes in case of Cu2+ having different features characteristic of the lectin and the metal ion present. These nanostructures are unprecedented and would lead to major advances in nanobiomaterial science.
Collapse
Affiliation(s)
- Khatija Tabbasum
- Bioinorganic Laboratory
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| | - Chebrolu Pulla Rao
- Bioinorganic Laboratory
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400 076
- India
| |
Collapse
|
231
|
Abstract
Protein crystals have been functionalized for applications in preparation of inorganic materials, asymmetric catalysis and accumulation of functional compounds.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomolecular Engineering
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Takafumi Ueno
- Department of Biomolecular Engineering
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| |
Collapse
|
232
|
Roy A, Sommer DJ, Schmitz RA, Brown CL, Gust D, Astashkin A, Ghirlanda G. A De Novo Designed 2[4Fe-4S] Ferredoxin Mimic Mediates Electron Transfer. J Am Chem Soc 2014; 136:17343-9. [DOI: 10.1021/ja510621e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Anindya Roy
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Dayn Joseph Sommer
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Robert Arthur Schmitz
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Chelsea Lynn Brown
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Devens Gust
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Andrei Astashkin
- Department
of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Giovanna Ghirlanda
- Department
of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
233
|
Liu Z, Cai Y, Jia Y, Liu L, Kong X, Kundu SC, Yao J. One-Step Synthesis of Natural Silk Sericin-Based Microcapsules with Bionic Structures. Macromol Rapid Commun 2014; 35:1668-72. [DOI: 10.1002/marc.201400304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Zhaogang Liu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education; College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education; College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Yaru Jia
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education; College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Lin Liu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education; College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xiangdong Kong
- College of Life Sciences, Bio-X Center; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Subhas C. Kundu
- Department of Biotechnology; Indian Institute of Technology (IIT) Kharagpur; 721302 West Bengal India
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education; College of Materials and Textiles; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
234
|
Abstract
From the catalytic reactions that sustain the global oxygen, nitrogen, and carbon cycles to the stabilization of DNA processing proteins, transition metal ions and metallocofactors play key roles in biology. Although the exquisite interplay between metal ions and protein scaffolds has been studied extensively, the fact that the biological roles of the metals often stem from their placement in the interfaces between proteins and protein subunits is not always recognized. Interfacial metal ions stabilize permanent or transient protein-protein interactions, enable protein complexes involved in cellular signaling to adopt distinct conformations in response to environmental stimuli, and catalyze challenging chemical reactions that are uniquely performed by multisubunit protein complexes. This review provides a structural survey of transition metal ions and metallocofactors found in protein-protein interfaces, along with a series of selected examples that illustrate their diverse biological utility and significance.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; emails: , ,
| | | | | | | |
Collapse
|
235
|
Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nat Commun 2014; 5:4634. [DOI: 10.1038/ncomms5634] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/09/2014] [Indexed: 11/08/2022] Open
|
236
|
Hudalla GA, Sun T, Gasiorowski JZ, Han H, Tian YF, Chong AS, Collier JH. Gradated assembly of multiple proteins into supramolecular nanomaterials. NATURE MATERIALS 2014; 13:829-36. [PMID: 24930032 PMCID: PMC4180598 DOI: 10.1038/nmat3998] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 04/29/2014] [Indexed: 04/14/2023]
Abstract
Biomaterials exhibiting precise ratios of different bioactive protein components are critical for applications ranging from vaccines to regenerative medicine, but their design is often hindered by limited choices and cross-reactivity of protein conjugation chemistries. Here, we describe a strategy for inducing multiple different expressed proteins of choice to assemble into nanofibres and gels with exceptional compositional control. The strategy employs 'βTail' tags, which allow for good protein expression in bacteriological cultures, yet can be induced to co-assemble into nanomaterials when mixed with additional β-sheet fibrillizing peptides. Multiple different βTail fusion proteins could be inserted into peptide nanofibres alone or in combination at predictable, smoothly gradated concentrations, providing a simple yet versatile route to install precise combinations of proteins into nanomaterials. The technology is illustrated by achieving precisely targeted hues using mixtures of fluorescent proteins, by creating nanofibres bearing enzymatic activity, and by adjusting antigenic dominance in vaccines.
Collapse
Affiliation(s)
| | - Tao Sun
- Department of Surgery, University of Chicago
| | | | - Huifang Han
- Department of Surgery, University of Chicago
| | - Ye F. Tian
- Department of Surgery, University of Chicago
- Illinois Institute of Technology, Department of Biomedical Engineering
| | - Anita. S. Chong
- Department of Surgery, University of Chicago
- Committee on Immunology, University of Chicago
| | - Joel H. Collier
- Department of Surgery, University of Chicago
- Committee on Molecular Medicine, University of Chicago
- Committee on Immunology, University of Chicago
- Author to whom correspondence and requests for materials should be addressed: Joel H. Collier Associate Professor Department of Surgery, Committee on Immunology, Committee on Molecular Medicine University of Chicago 5841 S. Maryland Ave ML 5032 Chicago, IL 60637 Tel: 773-834-4161 Fax: 773-834-4546
| |
Collapse
|
237
|
Zhang J, Zheng F, Grigoryan G. Design and designability of protein-based assemblies. Curr Opin Struct Biol 2014; 27:79-86. [DOI: 10.1016/j.sbi.2014.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
|
238
|
Abstract
The construction of crystalline arrays allows proteins to be presented in a dense, oriented and functional way that also facilitates determination of their structure. Rational design of these supramolecular structures is becoming increasingly tractable with recent successes exploiting both innate protein symmetry and advances in protein–protein interface design. Pre-existing symmetry minimizes the number of non-native interfaces that must be produced, and the use of symmetric interfaces facilitates protein alignment. Arrays in which metal coordination or peptide binding are responsible for the inter-particle associations show particular promise due to the malleable and reversible nature of these interactions. Cross-pollination of the principles that underlie successful strategies is likely to produce rapid advances in this field and consequent benefits to both nanotechnology and structural biology.
Collapse
|
239
|
Liljeström V, Mikkilä J, Kostiainen MA. Self-assembly and modular functionalization of three-dimensional crystals from oppositely charged proteins. Nat Commun 2014; 5:4445. [PMID: 25033911 PMCID: PMC4109007 DOI: 10.1038/ncomms5445] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/18/2014] [Indexed: 02/08/2023] Open
Abstract
Multicomponent crystals and nanoparticle superlattices are a powerful approach to integrate different materials into ordered nanostructures. Well-developed, especially DNA-based, methods for their preparation exist, yet most techniques concentrate on molecular and synthetic nanoparticle systems in non-biocompatible environment. Here we describe the self-assembly and characterization of binary solids that consist of crystalline arrays of native biomacromolecules. We electrostatically assembled cowpea chlorotic mottle virus particles and avidin proteins into heterogeneous crystals, where the virus particles adopt a non-close-packed body-centred cubic arrangement held together by avidin. Importantly, the whole preparation process takes place at room temperature in a mild aqueous medium allowing the processing of delicate biological building blocks into ordered structures with lattice constants in the nanometre range. Furthermore, the use of avidin-biotin interaction allows highly selective pre- or post-functionalization of the protein crystals in a modular way with different types of functional units, such as fluorescent dyes, enzymes and plasmonic nanoparticles.
Collapse
Affiliation(s)
- Ville Liljeström
- Biohybrid Materials Group, Department of Biotechnology and Chemical Technology, Aalto University, 00076 Aalto, Finland
- Molecular Materials Group, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Joona Mikkilä
- Biohybrid Materials Group, Department of Biotechnology and Chemical Technology, Aalto University, 00076 Aalto, Finland
- Molecular Materials Group, Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid Materials Group, Department of Biotechnology and Chemical Technology, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
240
|
Sawada T, Matsumoto A, Fujita M. Coordination‐Driven Folding and Assembly of a Short Peptide into a Protein‐like Two‐Nanometer‐Sized Channel. Angew Chem Int Ed Engl 2014; 53:7228-32. [DOI: 10.1002/anie.201403506] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/01/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| | - Asami Matsumoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| |
Collapse
|
241
|
|
242
|
Abstract
The self-assembly of different classes of peptide, including cyclic peptides, amyloid peptides and surfactant-like peptides into nanotube structures is reviewed. The modes of self-assembly are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD (UK).
| |
Collapse
|
243
|
Luo Q, Dong Z, Hou C, Liu J. Protein-based supramolecular polymers: progress and prospect. Chem Commun (Camb) 2014; 50:9997-10007. [DOI: 10.1039/c4cc03143a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
244
|
Accurate design of co-assembling multi-component protein nanomaterials. Nature 2014; 510:103-8. [PMID: 24870237 DOI: 10.1038/nature13404] [Citation(s) in RCA: 426] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/25/2014] [Indexed: 12/19/2022]
Abstract
The self-assembly of proteins into highly ordered nanoscale architectures is a hallmark of biological systems. The sophisticated functions of these molecular machines have inspired the development of methods to engineer self-assembling protein nanostructures; however, the design of multi-component protein nanomaterials with high accuracy remains an outstanding challenge. Here we report a computational method for designing protein nanomaterials in which multiple copies of two distinct subunits co-assemble into a specific architecture. We use the method to design five 24-subunit cage-like protein nanomaterials in two distinct symmetric architectures and experimentally demonstrate that their structures are in close agreement with the computational design models. The accuracy of the method and the number and variety of two-component materials that it makes accessible suggest a route to the construction of functional protein nanomaterials tailored to specific applications.
Collapse
|
245
|
Sawada T, Matsumoto A, Fujita M. Coordination‐Driven Folding and Assembly of a Short Peptide into a Protein‐like Two‐Nanometer‐Sized Channel. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403506] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| | - Asami Matsumoto
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku, Tokyo 113‐8656 (Japan)
| |
Collapse
|
246
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
247
|
Oohora K, Hayashi T. Hemoprotein-based supramolecular assembling systems. Curr Opin Chem Biol 2014; 19:154-61. [PMID: 24658057 DOI: 10.1016/j.cbpa.2014.02.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/11/2022]
Abstract
Hemoproteins are metalloproteins which include iron porphyrin as a cofactor. These proteins have received much attention as promising building blocks for development of new types of biomaterials. This review summarizes recent efforts in the rational design of supramolecular hemoprotein assemblies using myoglobin, horseradish peroxidase, cytochrome b562 and cytochrome c as a monomer unit. The processes of coordination bond-mediated assembly or domain swapping-mediated assembly provide defined oligomers, while hemoprotein reconstitution with synthetic heme derivatives provides submicrometer-sized structures such as fibrils, vesicles/micelles, or networks. Interestingly, several of these assembled structures maintain the intrinsic functions of monomer units. The chemical and/or biological strategies described in this review will lead to the creation of unique hemoprotein-based functional biomaterials.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita, 565-0871, Japan.
| |
Collapse
|
248
|
Zastrow M, Pecoraro VL. Designing hydrolytic zinc metalloenzymes. Biochemistry 2014; 53:957-78. [PMID: 24506795 PMCID: PMC3985962 DOI: 10.1021/bi4016617] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/23/2014] [Indexed: 12/15/2022]
Abstract
Zinc is an essential element required for the function of more than 300 enzymes spanning all classes. Despite years of dedicated study, questions regarding the connections between primary and secondary metal ligands and protein structure and function remain unanswered, despite numerous mechanistic, structural, biochemical, and synthetic model studies. Protein design is a powerful strategy for reproducing native metal sites that may be applied to answering some of these questions and subsequently generating novel zinc enzymes. From examination of the earliest design studies introducing simple Zn(II)-binding sites into de novo and natural protein scaffolds to current studies involving the preparation of efficient hydrolytic zinc sites, it is increasingly likely that protein design will achieve reaction rates previously thought possible only for native enzymes. This Current Topic will review the design and redesign of Zn(II)-binding sites in de novo-designed proteins and native protein scaffolds toward the preparation of catalytic hydrolytic sites. After discussing the preparation of Zn(II)-binding sites in various scaffolds, we will describe relevant examples for reengineering existing zinc sites to generate new or altered catalytic activities. Then, we will describe our work on the preparation of a de novo-designed hydrolytic zinc site in detail and present comparisons to related designed zinc sites. Collectively, these studies demonstrate the significant progress being made toward building zinc metalloenzymes from the bottom up.
Collapse
Affiliation(s)
| | - Vincent L. Pecoraro
- Department of Chemistry, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
249
|
Carpenter MC, Wilcox DE. Thermodynamics of Formation of the Insulin Hexamer: Metal-Stabilized Proton-Coupled Assembly of Quaternary Structure. Biochemistry 2014; 53:1296-301. [DOI: 10.1021/bi4016567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Margaret C. Carpenter
- Department
of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| | - Dean E. Wilcox
- Department
of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755, United States
| |
Collapse
|
250
|
Tabe H, Abe S, Hikage T, Kitagawa S, Ueno T. Porous Protein Crystals as Catalytic Vessels for Organometallic Complexes. Chem Asian J 2014; 9:1373-8. [DOI: 10.1002/asia.201301347] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/26/2013] [Indexed: 01/19/2023]
|