201
|
Bahieldin A, Atef A, Edris S, Gadalla NO, Ramadan AM, Hassan SM, Al Attas SG, Al-Kordy MA, Al-Hajar ASM, Sabir JSM, Nasr ME, Osman GH, El-Domyati FM. Multifunctional activities of ERF109 as affected by salt stress in Arabidopsis. Sci Rep 2018; 8:6403. [PMID: 29686365 PMCID: PMC5913302 DOI: 10.1038/s41598-018-24452-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2017] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
Transcriptomic analysis was conducted in leaves of Arabidopsis T-DNA insertion ERF109-knocked out (KO) mutant or plants overexpressing (OE) the gene to detect its role in driving expression of programmed cell death- (PCD-) or growth-related genes under high salt (200 mM NaCl) stress. The analysis yielded ~22–24 million reads, of which 90% mapped to the Arabidopsis reference nuclear genome. Hierarchical cluster analysis of gene expression and principal component analysis (PCA) successfully separated transcriptomes of the two stress time points. Analysis indicated the occurrence of 65 clusters of gene expression with transcripts of four clusters differed at the genotype (e.g., WT (wild type), KOERF109 or OEERF109) level. Regulated transcripts involved DIAP1-like gene encoding a death-associated inhibitor of reactive oxygen species (ROS). Other ERF109-regulated transcripts belong to gene families encoding ROS scavenging enzymes and a large number of genes participating in three consecutive pathways, e.g., phenylalanine, tyrosine and tryptophan biosynthesis, tryptophan metabolism and plant hormone signal transduction. We investigated the possibility that ERF109 acts as a “master switch” mediator of a cascade of consecutive events across these three pathways initially by driving expression of ASA1 and YUC2 genes and possibly driving GST, IGPS and LAX2 genes. Action of downstream auxin-regulator, auxin-responsive as well as auxin carrier genes promotes plant cell growth under adverse conditions.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nour O Gadalla
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia.,Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Ahmed M Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia.,Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Sanaa G Al Attas
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Magdy A Al-Kordy
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Abdulrahman S M Al-Hajar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah, 21589, Saudi Arabia
| | - Mahmoud E Nasr
- Faculty of Agriculture, Menofia University, Shebeen Elkom, Egypt
| | - Gamal H Osman
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt. .,Department of Biology, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Fotouh M El-Domyati
- Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
202
|
E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proc Natl Acad Sci U S A 2018; 115:4513-4518. [PMID: 29632179 PMCID: PMC5924906 DOI: 10.1073/pnas.1719387115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022] Open
Abstract
Auxin signaling components participate in ethylene-mediated inhibition of root elongation. However, the interplay between TIR1/AFB2-auxin-Aux/indole acetic acid (IAA) signaling and ethylene response remains to be elucidated in detail. In this study, we report an E3 ubiquitin ligase soil-surface rooting 1 (SOR1), which targets a noncanonical Aux/IAA protein OsIAA26 for 26S proteasome-mediated degradation. The E3 ligase activity of SOR1 can be repressed by the canonical Aux/IAA protein OsIAA9, which is the target of OsTIR1/AFB2. Our study identifies a potential regulator that modulates auxin-mediated ethylene response at the auxin signaling level. Plant hormones ethylene and auxin synergistically regulate plant root growth and development. Ubiquitin-mediated proteolysis of Aux/IAA transcriptional repressors by the E3 ubiquitin ligase SCFTIR1/AFB triggers a transcription-based auxin signaling. Here we show that rice (Oryza sativa L.) soil-surface rooting 1 (SOR1), which is a RING finger E3 ubiquitin ligase identified from analysis of a rice ethylene-insensitive mutant mhz2/sor1-2, controls root-specific ethylene responses by modulating Aux/IAA protein stability. SOR1 physically interacts with OsIAA26 and OsIAA9, which are atypical and canonical Aux/IAA proteins, respectively. SOR1 targets OsIAA26 for ubiquitin/26S proteasome-mediated degradation, whereas OsIAA9 protects the OsIAA26 protein from degradation by inhibiting the E3 activity of SOR1. Auxin promotes SOR1-dependent degradation of OsIAA26 by facilitating SCFOsTIR1/AFB2-mediated and SOR1-assisted destabilization of OsIAA9 protein. Our study provides a candidate mechanism by which the SOR1-OsIAA26 module acts downstream of the OsTIR1/AFB2-auxin-OsIAA9 signaling to modulate ethylene inhibition of root growth in rice seedlings.
Collapse
|
203
|
Xu F, He S, Zhang J, Mao Z, Wang W, Li T, Hua J, Du S, Xu P, Li L, Lian H, Yang HQ. Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis. MOLECULAR PLANT 2018; 11:523-541. [PMID: 29269022 DOI: 10.1016/j.molp.2017.12.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/21/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 05/04/2023]
Abstract
Light is a key environmental cue that inhibits hypocotyl cell elongation through the blue and red/far-red light photoreceptors cryptochrome- and phytochrome-mediated pathways in Arabidopsis. In contrast, as a pivotal endogenous phytohormone auxin promotes hypocotyl elongation through the auxin receptors TIR1/AFBs-mediated degradation of AUX/IAA proteins (AUX/IAAs). However, the molecular mechanisms underlying the antagonistic interaction of light and auxin signaling remain unclear. Here, we report that light inhibits auxin signaling through stabilization of AUX/IAAs by blue and red light-dependent interactions of cryptochrome 1 (CRY1) and phytochrome B with AUX/IAAs, respectively. Blue light-triggered interactions of CRY1 with AUX/IAAs inhibit the associations of TIR1 with AUX/IAAs, leading to the repression of auxin-induced degradation of these proteins. Our results indicate that photoreceptors share AUX/IAAs with auxin receptors as the same direct downstream signaling components. We propose that antagonistic regulation of AUX/IAA protein stability by photoreceptors and auxin receptors allows plants to balance light and auxin signals to optimize their growth.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shengbo He
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jingyi Zhang
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zhilei Mao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenxiu Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Li
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Jie Hua
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shasha Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Pengbo Xu
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Ling Li
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hongli Lian
- School of Agriculture and Biology/School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | - Hong-Quan Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
204
|
Cross-resistance to dicamba, 2,4-D, and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene. Proc Natl Acad Sci U S A 2018. [PMID: 29531066 DOI: 10.1073/pnas.1712372115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
The understanding and mitigation of the appearance of herbicide-resistant weeds have come to the forefront of study in the past decade, as the number of weed species that are resistant to one or more herbicide modes of action is on the increase. Historically, weed resistance to auxin herbicides has been rare, but examples, such as Kochia scoparia L. Schrad (kochia), have appeared, posing a challenge to conventional agricultural practices. Reports of dicamba-resistant kochia populations began in the early 1990s in areas where auxin herbicides were heavily utilized for weed control in corn and wheat cropping systems, and some biotypes are resistant to other auxin herbicides as well. We have further characterized the auxin responses of one previously reported dicamba-resistant biotype isolated from western Nebraska and found that it is additionally cross-resistant to other auxin herbicides, including 2,4-dichlorophenoxyacetic acid (2,4-D) and fluroxypyr. We have utilized transcriptome sequencing and comparison to identify a 2-nt base change in this biotype, which results in a glycine to asparagine amino acid change within a highly conserved region of an AUX/indole-3-acetic acid (IAA) protein, KsIAA16. Through yeast two-hybrid analysis, characterization of F2 segregation, and heterologous expression and characterization of the gene in Arabidopsis thaliana, we show that that the single dominant KsIAA16R resistance allele is the causal basis for dicamba resistance in this population. Furthermore, we report the development of a molecular marker to identify this allele in populations and facilitate inheritance studies. We also report that the resistance allele confers a fitness penalty in greenhouse studies.
Collapse
|
205
|
Lim SD, Yim WC, Liu D, Hu R, Yang X, Cushman JC. A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1595-1615. [PMID: 29520945 PMCID: PMC6096725 DOI: 10.1111/pbi.12898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 05/03/2023]
Abstract
Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1opt -overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased K content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen-defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1opt -overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Biochemistry and Molecular BiologyUniversity of Nevada, RenoRenoNVUSA
| | - Won Choel Yim
- Department of Biochemistry and Molecular BiologyUniversity of Nevada, RenoRenoNVUSA
| | - Degao Liu
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Rongbin Hu
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Xiaohan Yang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - John C. Cushman
- Department of Biochemistry and Molecular BiologyUniversity of Nevada, RenoRenoNVUSA
| |
Collapse
|
206
|
Middleton AM, Dal Bosco C, Chlap P, Bensch R, Harz H, Ren F, Bergmann S, Wend S, Weber W, Hayashi KI, Zurbriggen MD, Uhl R, Ronneberger O, Palme K, Fleck C, Dovzhenko A. Data-Driven Modeling of Intracellular Auxin Fluxes Indicates a Dominant Role of the ER in Controlling Nuclear Auxin Uptake. Cell Rep 2018. [DOI: 10.1016/j.celrep.2018.02.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022] Open
|
207
|
Stoeckle D, Thellmann M, Vermeer JE. Breakout-lateral root emergence in Arabidopsis thaliana. CURRENT OPINION IN PLANT BIOLOGY 2018; 41:67-72. [PMID: 28968512 DOI: 10.1016/j.pbi.2017.09.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/10/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 05/24/2023]
Abstract
Lateral roots are determinants of plant root system architecture. Besides providing anchorage, they are a plant's means to explore the soil environment for water and nutrients. Lateral roots form post-embryonically and initiate deep within the root. On its way to the surface, the newly formed organ needs to grow through three overlying cell layers; the endodermis, cortex and epidermis. A picture is emerging that a tight integration of chemical and mechanical signalling between the lateral root and the surrounding tissue is essential for proper organogenesis. Here we review the latest progress made towards our understanding of the fascinating biology underlying lateral root emergence in Arabidopsis.
Collapse
Affiliation(s)
- Dorothee Stoeckle
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Martha Thellmann
- Department of Plant and Microbial Biology, University of Zurich, Switzerland
| | - Joop Em Vermeer
- Department of Plant and Microbial Biology, University of Zurich, Switzerland; Cell Biology and Developmental Biology, Wageningen University, The Netherlands.
| |
Collapse
|
208
|
Peng XP, Lim S, Li S, Marjavaara L, Chabes A, Zhao X. Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet 2018; 14:e1007129. [PMID: 29360860 PMCID: PMC5779651 DOI: 10.1371/journal.pgen.1007129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2017] [Accepted: 11/27/2017] [Indexed: 11/18/2022] Open
Abstract
Smc5/6, a member of the conserved SMC family of complexes, is essential for growth in most organisms. Its exact functions in a mitotic cell cycle are controversial, as chronic Smc5/6 loss-of-function alleles produce varying phenotypes. To circumvent this issue, we acutely depleted Smc5/6 in budding yeast and determined the first cell cycle consequences of Smc5/6 removal. We found a striking primary defect in replication of the ribosomal DNA (rDNA) array. Each rDNA repeat contains a programmed replication fork barrier (RFB) established by the Fob1 protein. Fob1 removal improves rDNA replication in Smc5/6 depleted cells, implicating Smc5/6 in the management of programmed fork pausing. A similar improvement is achieved by removing the DNA helicase Mph1 whose recombinogenic activity can be inhibited by Smc5/6 under DNA damage conditions. DNA 2D gel analyses further show that Smc5/6 loss increases recombination structures at RFB regions; moreover, mph1∆ and fob1∆ similarly reduce this accumulation. These findings point to an important mitotic role for Smc5/6 in restraining recombination events when protein barriers in rDNA stall replication forks. As rDNA maintenance influences multiple essential cellular processes, Smc5/6 likely links rDNA stability to overall mitotic growth. Smc5/6 belongs to the SMC (Structural Maintenance of Chromosomes) family of protein complexes, all of which are highly conserved and critical for genome maintenance. To address the roles of Smc5/6 during growth, we rapidly depleted its subunits in yeast and found the main acute effect to be defective ribosomal DNA (rDNA) duplication. The rDNA contains hundreds of sites that can pause replication forks; these must be carefully managed for cells to finish replication. We found that reducing fork pausing improved rDNA replication in cells without Smc5/6. Further analysis suggested that Smc5/6 prevents the DNA helicase Mph1 from turning paused forks into recombination structures, which cannot be processed without Smc5/6. Our findings thus revealed a key role for Smc5/6 in managing endogenous replication fork pausing. As rDNA and its associated nucleolar structure are critical for overall genome maintenance and other cellular processes, rDNA regulation by Smc5/6 would be expected to have multilayered effects on cell physiology and growth.
Collapse
Affiliation(s)
- Xiao P. Peng
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Tri-Institutional MD-PhD Program of Weill Cornell Medical School, Rockefeller University, and Sloan-Kettering Cancer Center, New York, NY, United States of America
| | - Shelly Lim
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Shibai Li
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
209
|
Chemical hijacking of auxin signaling with an engineered auxin-TIR1 pair. Nat Chem Biol 2018; 14:299-305. [PMID: 29355850 PMCID: PMC5812785 DOI: 10.1038/nchembio.2555] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2017] [Accepted: 12/04/2017] [Indexed: 12/22/2022]
Abstract
The phytohormone auxin, indole-3-acetic acid (IAA), regulates nearly all
aspects of plant growth and development. Despite substantial progress in our
understanding of auxin biology, delineating specific auxin response remains as a
major challenge. Auxin regulates transcriptional response via its receptors,
TIR1/AFB F-box proteins. Here we report an engineered, orthogonal auxin-TIR1
receptor pair, developed through a bump-and-hole strategy, that triggers auxin
signaling without interfering with endogenous auxin or TIR1/AFBs. A synthetic,
convex IAA (cvxIAA) hijacked the downstream auxin signaling in
vivo both at the transcriptomic level and in specific developmental
contexts, only in the presence of a complementary, concave TIR1 (ccvTIR1)
receptor. Harnessing the cvxIAA-ccvTIR1 system, we provide conclusive evidence
for the role of TIR1-mediated pathway in auxin-induced seedling acid growth. The
cvxIAA-ccvTIR1 system serves as a powerful tool for solving outstanding
questions in auxin biology and for precise manipulation of auxin-mediated
processes as a controllable switch.
Collapse
|
210
|
Luo J, Zhou JJ, Zhang JZ. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. Int J Mol Sci 2018; 19:ijms19010259. [PMID: 29337875 PMCID: PMC5796205 DOI: 10.3390/ijms19010259] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
211
|
Quareshy M, Prusinska J, Li J, Napier R. A cheminformatics review of auxins as herbicides. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:265-275. [PMID: 28992122 DOI: 10.1093/jxb/erx258] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/06/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Herbicides are an important asset in ensuring food security, especially when faced with an ever-increasing demand on food production to feed the global population. The current selection of herbicides is increasingly encountering resistance in agricultural weeds they once targeted effectively. It is imperative that new compounds or more effective modes of action are discovered in order to overcome this resistance. This cheminformatics review looks at current herbicides and evaluates their physiochemical properties on a class-by-class basis. We focus in particular on the synthetic auxin herbicides, Herbicide Resistance Action Committee class O, analyzing these against herbicides more generally and for class-specific features such as mobility in plant vasculature. We summarise the physiochemical properties of all 24 compounds used commercially as auxins and relate these results to ongoing approaches to novel auxin discovery. We introduce an interactive, open source cheminformatics tool known as DataWarrior for herbicide discovery, complete with records for over 300 herbicidal compounds. We hope this tool helps researchers as part of a rational approach to not only auxin discovery but agrochemical discovery in general.
Collapse
Affiliation(s)
| | | | - Jun Li
- School of Life Sciences, University of Warwick, UK
- Department of Pesticide Science, College of Crop Protection, Nanjing Agricultural University, P.R. China
| | | |
Collapse
|
212
|
Iglesias MJ, Sellaro R, Zurbriggen MD, Casal JJ. Multiple links between shade avoidance and auxin networks. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:213-228. [PMID: 29036463 DOI: 10.1093/jxb/erx295] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/20/2023]
Abstract
Auxin has emerged as a key player in the adjustment of plant morphology to the challenge imposed by variable environmental conditions. Shade-avoidance responses, including the promotion of stem and petiole growth, leaf hyponasty, and the inhibition of branching, involve an intimate connection between light and auxin signalling. Low activity of photo-sensory receptors caused by the presence of neighbouring vegetation enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs), which directly promote the expression of genes involved in auxin biosynthesis, conjugation, transport, perception, and signalling. In seedlings, neighbour signals increase auxin levels in the foliage, which then moves to the stem, where it reaches epidermal tissues to promote growth. However, this model only partially accounts for shade-avoidance responses (which may also occur in the absence of increased auxin levels), and understanding the whole picture will require further insight into the functional significance of the multiple links between shade and auxin networks.
Collapse
Affiliation(s)
- María José Iglesias
- Instituto de Investigaciones Biológicas, CONICET-Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, Argentina
| | - Romina Sellaro
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, Argentina
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences (CEPLAS), University of Düsseldorf, Germany
| | - Jorge José Casal
- IFEVA, Universidad de Buenos Aires and CONICET, Facultad de Agronomía, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, Argentina
| |
Collapse
|
213
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
214
|
Kato H, Nishihama R, Weijers D, Kohchi T. Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:291-301. [PMID: 28992186 DOI: 10.1093/jxb/erx267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/06/2023]
Abstract
Auxin plays critical roles in growth and development through the regulation of cell differentiation, cell expansion, and pattern formation. The auxin signal is mainly conveyed through a so-called nuclear auxin pathway involving the receptor TIR1/AFB, the transcriptional co-repressor AUX/IAA, and the transcription factor ARF with direct DNA-binding ability. Recent progress in sequence information and molecular genetics in basal plants has provided many insights into the evolutionary origin of the nuclear auxin pathway and its pleiotropic roles in land plant development. In this review, we summarize the latest knowledge of the nuclear auxin pathway gained from studies using basal plants, including charophycean green algae and two major model bryophytes, Marchantia polymorpha and Physcomitrella patens. In addition, we discuss the functional implication of the increase in genetic complexity of the nuclear auxin pathway during land plant evolution.
Collapse
Affiliation(s)
- Hirotaka Kato
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | |
Collapse
|
215
|
París R, Vazquez MM, Graziano M, Terrile MC, Miller ND, Spalding EP, Otegui MS, Casalongué CA. Distribution of Endogenous NO Regulates Early Gravitropic Response and PIN2 Localization in Arabidopsis Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:495. [PMID: 29731760 PMCID: PMC5920048 DOI: 10.3389/fpls.2018.00495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/16/2017] [Accepted: 04/03/2018] [Indexed: 05/19/2023]
Abstract
High-resolution and automated image analysis of individual roots demonstrated that endogenous nitric oxide (NO) contribute significantly to gravitropism of Arabidopsis roots. Lowering of endogenous NO concentrations strongly reduced and even reversed gravitropism, resulting in upward bending, without affecting root growth rate. Notably, the asymmetric accumulation of NO along the upper and lower sides of roots correlated with a positive gravitropic response. Detection of NO by the specific DAF-FM DA fluorescent probe revealed that NO was higher at the lower side of horizontally-oriented roots returning to initial values 2 h after the onset of gravistimulation. We demonstrate that NO promotes plasma membrane re-localization of PIN2 in epidermal cells, which is required during the early root gravitropic response. The dynamic and asymmetric localization of both auxin and NO is critical to regulate auxin polar transport during gravitropism. Our results collectively suggest that, although auxin and NO crosstalk occurs at different levels of regulation, they converge in the regulation of PIN2 membrane trafficking in gravistimulated roots, supporting the notion that a temporally and spatially coordinated network of signal molecules could participate in the early phases of auxin polar transport during gravitropism.
Collapse
Affiliation(s)
- Ramiro París
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- *Correspondence: Ramiro París
| | - María M. Vazquez
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Magdalena Graziano
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María C. Terrile
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Nathan D. Miller
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin, Madison, WI, United States
| | - Marisa S. Otegui
- Laboratory of Cell and Molecular Biology, Departments of Botany and Genetics, University of Wisconsin, Madison, WI, United States
| | - Claudia A. Casalongué
- Instituto de Investigaciones Biológicas, UE Consejo Nacional de Investigaciones Científicas y Técnicas-UNMDP, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Claudia A. Casalongué
| |
Collapse
|
216
|
Nakamura M, Claes AR, Grebe T, Hermkes R, Viotti C, Ikeda Y, Grebe M. Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells. PLANT PHYSIOLOGY 2018; 176:378-391. [PMID: 29084900 PMCID: PMC5761770 DOI: 10.1104/pp.17.00713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/27/2017] [Accepted: 10/26/2017] [Indexed: 05/25/2023]
Abstract
Polar nuclear migration is crucial during the development of diverse eukaryotes. In plants, root hair growth requires polar nuclear migration into the outgrowing hair. However, knowledge about the dynamics and the regulatory mechanisms underlying nuclear movements in root epidermal cells remains limited. Here, we show that both auxin and Rho-of-Plant (ROP) signaling modulate polar nuclear position at the inner epidermal plasma membrane domain oriented to the cortical cells during cell elongation as well as subsequent polar nuclear movement to the outer domain into the emerging hair bulge in Arabidopsis (Arabidopsis thaliana). Auxin signaling via the nuclear AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and INDOLE ACETIC ACID7 pathway ensures correct nuclear placement toward the inner membrane domain. Moreover, precise inner nuclear placement relies on SPIKE1 Rho-GEF, SUPERCENTIPEDE1 Rho-GDI, and ACTIN7 (ACT7) function and to a lesser extent on VTI11 vacuolar SNARE activity. Strikingly, the directionality and/or velocity of outer polar nuclear migration into the hair outgrowth along actin strands also are ACT7 dependent, auxin sensitive, and regulated by ROP signaling. Thus, our findings provide a founding framework revealing auxin and ROP signaling of inner polar nuclear position with some contribution by vacuolar morphology and of actin-dependent outer polar nuclear migration in root epidermal hair cells.
Collapse
Affiliation(s)
- Moritaka Nakamura
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Andrea R Claes
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Tobias Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Rebecca Hermkes
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Corrado Viotti
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
| | - Yoshihisa Ikeda
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| | - Markus Grebe
- Institute of Biochemistry and Biology, Plant Physiology, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90 187 Umeå, Sweden
| |
Collapse
|
217
|
Abstract
Auxin triggers diverse responses in plants, and this is reflected in quantitative and qualitative diversity in the auxin signaling machinery.
Collapse
Affiliation(s)
- Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| |
Collapse
|
218
|
Bagchi R, Melnyk CW, Christ G, Winkler M, Kirchsteiner K, Salehin M, Mergner J, Niemeyer M, Schwechheimer C, Calderón Villalobos LIA, Estelle M. The Arabidopsis ALF4 protein is a regulator of SCF E3 ligases. EMBO J 2017; 37:255-268. [PMID: 29233834 DOI: 10.15252/embj.201797159] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
The cullin-RING E3 ligases (CRLs) regulate diverse cellular processes in all eukaryotes. CRL activity is controlled by several proteins or protein complexes, including NEDD8, CAND1, and the CSN Recently, a mammalian protein called Glomulin (GLMN) was shown to inhibit CRLs by binding to the RING BOX (RBX1) subunit and preventing binding to the ubiquitin-conjugating enzyme. Here, we show that Arabidopsis ABERRANT LATERAL ROOT FORMATION4 (ALF4) is an ortholog of GLMN The alf4 mutant exhibits a phenotype that suggests defects in plant hormone response. We show that ALF4 binds to RBX1 and inhibits the activity of SCFTIR1, an E3 ligase responsible for degradation of the Aux/IAA transcriptional repressors. In vivo, the alf4 mutation destabilizes the CUL1 subunit of the SCF Reduced CUL1 levels are associated with increased levels of the Aux/IAA proteins as well as the DELLA repressors, substrate of SCFSLY1 We propose that the alf4 phenotype is partly due to increased levels of the Aux/IAA and DELLA proteins.
Collapse
Affiliation(s)
- Rammyani Bagchi
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | | | - Gideon Christ
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Martin Winkler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany.,Institute of Biology, Structural Biology/Biochemistry, Humboldt-University Berlin, Berlin, Germany
| | - Kerstin Kirchsteiner
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | - Mohammad Salehin
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| | - Julia Mergner
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | - Michael Niemeyer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | | | | | - Mark Estelle
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
219
|
van den Berg T, Ten Tusscher KH. Auxin Information Processing; Partners and Interactions beyond the Usual Suspects. Int J Mol Sci 2017; 18:ijms18122585. [PMID: 29194409 PMCID: PMC5751188 DOI: 10.3390/ijms18122585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/20/2022] Open
Abstract
Auxin plays a major role in a variety of processes involved in plant developmental patterning and its adaptation to environmental conditions. Therefore, an important question is how specificity in auxin signalling is achieved, that is, how a single signalling molecule can carry so many different types of information. In recent years, many studies on auxin specificity have been published, unravelling increasingly more details on differential auxin sensitivity, expression domains and downstream partners of the auxin receptors (transport inhibitor response 1 (TIR1) and other auxin signaling F-box proteins (AFB)), transcriptional repressors that are degraded in response to auxin (AUX/IAA) and downstream auxin response factors (ARF) that together constitute the plant’s major auxin response pathways. These data are critical to explain how, in the same cells, different auxin levels may trigger different responses, as well as how in different spatial or temporal contexts similar auxin signals converge to different responses. However, these insights do not yet answer more complex questions regarding auxin specificity. As an example, they leave open the question of how similar sized auxin changes at similar locations result in different responses depending on the duration and spatial extent of the fluctuation in auxin levels. Similarly, it leaves unanswered how, in the case of certain tropisms, small differences in signal strength at both sides of a plant organ are converted into an instructive auxin asymmetry that enables a robust tropic response. Finally, it does not explain how, in certain cases, substantially different auxin levels become translated into similar cellular responses, while in other cases similar auxin levels, even when combined with similar auxin response machinery, may trigger different responses. In this review, we illustrate how considering the regulatory networks and contexts in which auxin signalling takes place helps answer these types of fundamental questions.
Collapse
Affiliation(s)
- Thea van den Berg
- Theoretical Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | - Kirsten H Ten Tusscher
- Theoretical Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
220
|
Ligerot Y, de Saint Germain A, Waldie T, Troadec C, Citerne S, Kadakia N, Pillot JP, Prigge M, Aubert G, Bendahmane A, Leyser O, Estelle M, Debellé F, Rameau C. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. PLoS Genet 2017; 13:e1007089. [PMID: 29220348 PMCID: PMC5738142 DOI: 10.1371/journal.pgen.1007089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2017] [Revised: 12/20/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022] Open
Abstract
Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.
Collapse
Affiliation(s)
- Yasmine Ligerot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | | | - Tanya Waldie
- Sainsbury Laboratory Cambridge University, Bateman Street, Cambridge, United Kingdom
| | - Christelle Troadec
- Institute of Plant Sciences Paris-Saclay, INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Nikita Kadakia
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Jean-Paul Pillot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Michael Prigge
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay, INRA, CNRS, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Ottoline Leyser
- Sainsbury Laboratory Cambridge University, Bateman Street, Cambridge, United Kingdom
| | - Mark Estelle
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| |
Collapse
|
221
|
Olatunji D, Geelen D, Verstraeten I. Control of Endogenous Auxin Levels in Plant Root Development. Int J Mol Sci 2017; 18:E2587. [PMID: 29194427 PMCID: PMC5751190 DOI: 10.3390/ijms18122587] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/24/2022] Open
Abstract
In this review, we summarize the different biosynthesis-related pathways that contribute to the regulation of endogenous auxin in plants. We demonstrate that all known genes involved in auxin biosynthesis also have a role in root formation, from the initiation of a root meristem during embryogenesis to the generation of a functional root system with a primary root, secondary lateral root branches and adventitious roots. Furthermore, the versatile adaptation of root development in response to environmental challenges is mediated by both local and distant control of auxin biosynthesis. In conclusion, auxin homeostasis mediated by spatial and temporal regulation of auxin biosynthesis plays a central role in determining root architecture.
Collapse
Affiliation(s)
- Damilola Olatunji
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Inge Verstraeten
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
222
|
Li H, Wang B, Zhang Q, Wang J, King GJ, Liu K. Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2017; 17:204. [PMID: 29145811 PMCID: PMC5691854 DOI: 10.1186/s12870-017-1165-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/23/2017] [Accepted: 11/08/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Auxin/Indoleacetic acid (Aux/IAA) genes participate in the auxin signaling pathway and play key roles in plant growth and development. Although the Aux/IAA gene family has been identified in many plants, within allotetraploid Brassica napus little is known. RESULTS In this study, a total of 119 Aux/IAA genes were found in the genome of B. napus. They were distributed non-randomly across all 19 chromosomes and other non-anchored random scaffolds, with a symmetric distribution in the A and C subgenomes. Evolutionary and comparative analysis revealed that 111 (94.1%) B. napus Aux/IAA genes were multiplied due to ancestral Brassica genome triplication and recent allotetraploidy from B. rapa and B. oleracea. Phylogenetic analysis indicated seven subgroups containing 29 orthologous gene sets and two Brassica-specific gene sets. Structures of genes and proteins varied across different genes but were conserved among homologous genes in B. napus. Furthermore, analysis of transcriptional profiles revealed that the expression patterns of Aux/IAA genes in B. napus were tissue dependent. Auxin-responsive elements tend to be distributed in the proximal region of promoters, and are significantly associated with early exogenous auxin up-regulation. CONCLUSIONS Members of the Aux/IAA gene family were identified and analyzed comprehensively in the allotetraploid B. napus genome. This analysis provides a deeper understanding of diversification of the Aux/IAA gene family and will facilitate further dissection of Aux/IAA gene function in B. napus.
Collapse
Affiliation(s)
- Haitao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480 Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
223
|
Li H, Yao R, Ma S, Hu S, Li S, Wang Y, Yan C, Xie D, Yan J. Efficient ASK-assisted system for expression and purification of plant F-box proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:736-743. [PMID: 28985004 DOI: 10.1111/tpj.13708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/05/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
Ubiquitin-mediated protein degradation plays an essential role in plant growth and development as well as responses to environmental and endogenous signals. F-box protein is one of the key components of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which recruit specific substrate proteins for subsequent ubiquitination and 26S proteasome-mediated degradation to regulate developmental processes and signaling networks. However, it is not easy to obtain purified F-box proteins with high activity due to their unstable protein structures. Here, we found that Arabidopsis SKP-like proteins (ASKs) can significantly improve soluble expression of F-box proteins and maintain their bioactivity. We established an efficient ASK-assisted method to express and purify plant F-box proteins. The method meets a broad range of criteria required for the biochemical analysis or protein crystallization of plant F-box proteins.
Collapse
Affiliation(s)
- Haiou Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Ruifeng Yao
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sui Ma
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuai Hu
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Suhua Li
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yupei Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chun Yan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianbin Yan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
224
|
Chen Y, Yang Q, Sang S, Wei Z, Wang P. Rice Inositol Polyphosphate Kinase (OsIPK2) Directly Interacts with OsIAA11 to Regulate Lateral Root Formation. PLANT & CELL PHYSIOLOGY 2017; 58:1891-1900. [PMID: 29016933 DOI: 10.1093/pcp/pcx125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/15/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
The plant hormone auxin controls many aspects of plant growth and development by promoting the degradation of Auxin/Indole-3-acetic acid (Aux/IAA) proteins. The domain II (DII) of Aux/IAA proteins is sufficient for eliciting the degradation by directly interacting with the auxin receptor F-box protein TIR1 to form a TIR1/AFBs-Aux/IAA complex in an auxin-dependent manner. However, the underlying mechanisms of fine-tuning Aux/IAA degradation by auxin stimuli remain to be elucidated. Here, we show that OsIPK2, a rice (Oryza sativa) inositol polyphosphate kinase, directly interacts with an Aux/IAA protein OsIAA11 to repress its degradation. In a rice protoplast transient expression system, the auxin-induced degradation of Myc-OsIAA11 fusion was delayed by co-expressed GFP-OsIPK2 proteins. Furthermore, expressing additional OsIPK2 or its N-terminal amino acid sequence enhanced the accumulation of OsIAA11 proteins in transgenic plants, which in turn caused defects in lateral root formation and auxin response. Taken together, we identify a novel co-factor of Aux/IAA in auxin signaling and demonstrate its role in regulating lateral root development.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiaofeng Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Sihong Sang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhaoyun Wei
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Peng Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
225
|
Wright RC, Zahler ML, Gerben SR, Nemhauser JL. Insights into the Evolution and Function of Auxin Signaling F-Box Proteins in Arabidopsis thaliana Through Synthetic Analysis of Natural Variants. Genetics 2017; 207:583-591. [PMID: 28760746 PMCID: PMC5629325 DOI: 10.1534/genetics.117.300092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
The evolution of complex body plans in land plants has been paralleled by gene duplication and divergence within nuclear auxin-signaling networks. A deep mechanistic understanding of auxin signaling proteins therefore may allow rational engineering of novel plant architectures. Toward that end, we analyzed natural variation in the auxin receptor F-box family of wild accessions of the reference plant Arabidopsis thaliana and used this information to populate a structure/function map. We employed a synthetic assay to identify natural hypermorphic F-box variants and then assayed auxin-associated phenotypes in accessions expressing these variants. To more directly measure the impact of the strongest variant in our synthetic assay on auxin sensitivity, we generated transgenic plants expressing this allele. Together, our findings link evolved sequence variation to altered molecular performance and auxin sensitivity. This approach demonstrates the potential for combining synthetic biology approaches with quantitative phenotypes to harness the wealth of available sequence information and guide future engineering efforts of diverse signaling pathways.
Collapse
Affiliation(s)
- R Clay Wright
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | - Mollye L Zahler
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | - Stacey R Gerben
- Department of Biology, University of Washington, Seattle, Washington 98195-1800
| | | |
Collapse
|
226
|
Dahlke RI, Fraas S, Ullrich KK, Heinemann K, Romeiks M, Rickmeyer T, Klebe G, Palme K, Lüthen H, Steffens B. Protoplast Swelling and Hypocotyl Growth Depend on Different Auxin Signaling Pathways. PLANT PHYSIOLOGY 2017; 175:982-994. [PMID: 28860155 PMCID: PMC5619902 DOI: 10.1104/pp.17.00733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/31/2017] [Accepted: 08/29/2017] [Indexed: 05/10/2023]
Abstract
Members of the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX PROTEIN (TIR1/AFB) family are known auxin receptors. To analyze the possible receptor function of AUXIN BINDING PROTEIN1 (ABP1), an auxin receptor currently under debate, we performed different approaches. We performed a pharmacological approach using α-(2,4-dimethylphenylethyl-2-oxo)-indole-3-acetic acid (auxinole), α-(phenylethyl-2-oxo)-indole-3-acetic acid (PEO-IAA), and 5-fluoroindole-3-acetic acid (5-F-IAA) to discriminate between ABP1- and TIR1/AFB-mediated processes in Arabidopsis (Arabidopsis thaliana). We used a peptide of the carboxyl-terminal region of AtABP1 as a tool. We performed mutant analysis with the null alleles of ABP1, abp1-c1 and abp1-TD1, and the TILLING mutant abp1-5 We employed Coimbra, an accession that exhibits an amino acid exchange in the auxin-binding domain of ABP1. We measured either volume changes of single hypocotyl protoplasts or hypocotyl growth, both at high temporal resolution. 5-F-IAA selectively activated the TIR1/AFB pathway but did not induce protoplast swelling; instead, it showed auxin activity in the hypocotyl growth test. In contrast, PEO-IAA induced an auxin-like swelling response but no hypocotyl growth. The carboxyl-terminal peptide of AtABP1 induced an auxin-like swelling response. In the ABP1-related mutants and Coimbra, no auxin-induced protoplast swelling occurred. ABP1 seems to be involved in mediating rapid auxin-induced protoplast swelling, but it is not involved in the control of rapid auxin-induced growth.
Collapse
Affiliation(s)
- Renate I Dahlke
- Plant Physiology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Simon Fraas
- Molecular Plant Physiology, Department of Biology, University of Hamburg, 22609 Hamburg, Germany
| | - Kristian K Ullrich
- Plant Cell Biology, Philipps University, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| | - Kirka Heinemann
- Molecular Plant Physiology, Department of Biology, University of Hamburg, 22609 Hamburg, Germany
| | - Maren Romeiks
- Molecular Plant Physiology, Department of Biology, University of Hamburg, 22609 Hamburg, Germany
| | - Thomas Rickmeyer
- Pharmaceutical Chemistry, University of Marburg, 35032 Marburg, Germany
| | - Gerhard Klebe
- Pharmaceutical Chemistry, University of Marburg, 35032 Marburg, Germany
| | - Klaus Palme
- Institute of Biology II, BIOSS Centre for Biological Signaling Studies, Institute for Advanced Sciences and Centre for Biological Systems Analysis, University of Freiburg, 79104 Freiburg, Germany
| | - Hartwig Lüthen
- Molecular Plant Physiology, Department of Biology, University of Hamburg, 22609 Hamburg, Germany
| | - Bianka Steffens
- Plant Physiology, Faculty of Biology, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
227
|
Abstract
The plant hormone auxin triggers complex growth and developmental processes. Its underlying molecular mechanism of action facilitates rapid switching between transcriptional repression and gene activation through the auxin-dependent degradation of transcriptional repressors. The nuclear auxin signaling pathway consists of a small number of core components. However, in most plants each component is represented by a large gene family. The modular construction of the pathway can thus produce diverse transcriptional outputs depending on the cellular and environmental context. Here, and in the accompanying poster, we outline the current model for TIR1/AFB-dependent auxin signaling with an emphasis on recent studies.
Collapse
Affiliation(s)
- Meirav Lavy
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
228
|
Simonini S, Bencivenga S, Trick M, Østergaard L. Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis. THE PLANT CELL 2017; 29:1864-1882. [PMID: 28804059 PMCID: PMC5590509 DOI: 10.1105/tpc.17.00389] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/17/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 05/18/2023]
Abstract
The phytohormone auxin governs crucial developmental decisions throughout the plant life cycle. Auxin signaling is effectuated by auxin response factors (ARFs) whose activity is repressed by Aux/IAA proteins under low auxin levels, but relieved from repression when cellular auxin concentrations increase. ARF3/ETTIN (ETT) is a conserved noncanonical Arabidopsis thaliana ARF that adopts an alternative auxin-sensing mode of translating auxin levels into multiple transcriptional outcomes. However, a mechanistic model for how this auxin-dependent modulation of ETT activity regulates gene expression has not yet been elucidated. Here, we take a genome-wide approach to show how ETT controls developmental processes in the Arabidopsis shoot through its auxin-sensing property. Moreover, analysis of direct ETT targets suggests that ETT functions as a central node in coordinating auxin dynamics and plant development and reveals tight feedback regulation at both the transcriptional and protein-interaction levels. Finally, we present an example to demonstrate how auxin sensitivity of ETT-protein interactions can shape the composition of downstream transcriptomes to ensure specific developmental outcomes. These results show that direct effects of auxin on protein factors, such as ETT-TF complexes, comprise an important part of auxin biology and likely contribute to the vast number of biological processes affected by this simple molecule.
Collapse
Affiliation(s)
- Sara Simonini
- Crop Genetics Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Stefano Bencivenga
- Crop Genetics Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Martin Trick
- Computational and System Biology Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| | - Lars Østergaard
- Crop Genetics Department, John Innes Centre, NR4 7UH Norwich, United Kingdom
| |
Collapse
|
229
|
Gonzalez LE, Keller K, Chan KX, Gessel MM, Thines BC. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. BMC Genomics 2017; 18:533. [PMID: 28716048 PMCID: PMC5512810 DOI: 10.1186/s12864-017-3864-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2016] [Accepted: 06/15/2017] [Indexed: 01/14/2023] Open
Abstract
Background The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Results Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1–1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. Conclusion FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3864-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kristen Keller
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Karen X Chan
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Megan M Gessel
- Chemistry Department, University of Puget Sound, Tacoma, WA, 98416, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA, 98416, USA.
| |
Collapse
|
230
|
Hu Y, Depaepe T, Smet D, Hoyerova K, Klíma P, Cuypers A, Cutler S, Buyst D, Morreel K, Boerjan W, Martins J, Petrášek J, Vandenbussche F, Van Der Straeten D. ACCERBATIN, a small molecule at the intersection of auxin and reactive oxygen species homeostasis with herbicidal properties. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4185-4203. [PMID: 28922768 PMCID: PMC5853866 DOI: 10.1093/jxb/erx242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/14/2017] [Accepted: 06/22/2017] [Indexed: 05/30/2023]
Abstract
The volatile two-carbon hormone ethylene acts in concert with an array of signals to affect etiolated seedling development. From a chemical screen, we isolated a quinoline carboxamide designated ACCERBATIN (AEX) that exacerbates the 1-aminocyclopropane-1-carboxylic acid-induced triple response, typical for ethylene-treated seedlings in darkness. Phenotypic analyses revealed distinct AEX effects including inhibition of root hair development and shortening of the root meristem. Mutant analysis and reporter studies further suggested that AEX most probably acts in parallel to ethylene signaling. We demonstrated that AEX functions at the intersection of auxin metabolism and reactive oxygen species (ROS) homeostasis. AEX inhibited auxin efflux in BY-2 cells and promoted indole-3-acetic acid (IAA) oxidation in the shoot apical meristem and cotyledons of etiolated seedlings. Gene expression studies and superoxide/hydrogen peroxide staining further revealed that the disrupted auxin homeostasis was accompanied by oxidative stress. Interestingly, in light conditions, AEX exhibited properties reminiscent of the quinoline carboxylate-type auxin-like herbicides. We propose that AEX interferes with auxin transport from its major biosynthesis sites, either as a direct consequence of poor basipetal transport from the shoot meristematic region, or indirectly, through excessive IAA oxidation and ROS accumulation. Further investigation of AEX can provide new insights into the mechanisms connecting auxin and ROS homeostasis in plant development and provide useful tools to study auxin-type herbicides.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Dajo Smet
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Klara Hoyerova
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Petr Klíma
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, Belgium
| | - Sean Cutler
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Dieter Buyst
- NMR and Structure Analysis, Department of Organic Chemistry, Krijgslaan, Ghent, Belgium
| | - Kris Morreel
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology), Technologiepark, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology), Technologiepark, Ghent, Belgium
| | - José Martins
- NMR and Structure Analysis, Department of Organic Chemistry, Krijgslaan, Ghent, Belgium
| | - Jan Petrášek
- Institute of Experimental Botany ASCR, Praha, Czech Republic
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat, Ghent, Belgium
| |
Collapse
|
231
|
Lehman TA, Smertenko A, Sanguinet KA. Auxin, microtubules, and vesicle trafficking: conspirators behind the cell wall. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3321-3329. [PMID: 28666373 DOI: 10.1093/jxb/erx205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/27/2023]
Abstract
Plant morphogenesis depends on the synchronized anisotropic expansion of individual cells in response to developmental and environmental cues. The magnitude of cell expansion depends on the biomechanical properties of the cell wall, which in turn depends on both its biosynthesis and extensibility. Although the control of cell expansion by the phytohormone auxin is well established, its regulation of cell wall composition, trafficking of H+-ATPases, and K+ influx that drives growth is still being elucidated. Furthermore, the maintenance of auxin fluxes via the interaction between the cytoskeleton and PIN protein recycling on the plasma membrane remains under investigation. This review proposes a model that describes how the cell wall, auxin, microtubule binding-protein CLASP and Kin7/separase complexes, and vesicle trafficking are co-ordinated on a cellular level to mediate cell wall loosening during cell expansion.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
232
|
Winkler M, Niemeyer M, Hellmuth A, Janitza P, Christ G, Samodelov SL, Wilde V, Majovsky P, Trujillo M, Zurbriggen MD, Hoehenwarter W, Quint M, Calderón Villalobos LIA. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nat Commun 2017; 8:15706. [PMID: 28589936 PMCID: PMC5467235 DOI: 10.1038/ncomms15706] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2015] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.
Collapse
Affiliation(s)
- Martin Winkler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Michael Niemeyer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Antje Hellmuth
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Philipp Janitza
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| | - Gideon Christ
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Sophia L. Samodelov
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf D-40225, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg D-79104, Germany
| | - Verona Wilde
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Petra Majovsky
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Marco Trujillo
- Independent Junior Research Group Ubiquitination in Immunity, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Matias D. Zurbriggen
- Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf D-40225, Germany
- Cluster of Excellence on Plant Science (CEPLAS), University of Düsseldorf, Düsseldorf D-40225, Germany
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale) D-06120, Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| | | |
Collapse
|
233
|
Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, Freire-Rios A, Sorefan K, Weijers D, Friml J, Østergaard L. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev 2017; 30:2286-2296. [PMID: 27898393 PMCID: PMC5110995 DOI: 10.1101/gad.285361.116] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 01/18/2023]
Abstract
Tissue patterning in multicellular organisms is the output of precise spatio-temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joyita Deb
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Laila Moubayidin
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Pauline Stephenson
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Manoj Valluru
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Alejandra Freire-Rios
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, the Netherlands
| | - Karim Sorefan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
234
|
Lucas X, Ciulli A. Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. Curr Opin Struct Biol 2017; 44:101-110. [DOI: 10.1016/j.sbi.2016.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022]
|
235
|
Abstract
Phytohormones are central players in diverse plant physiological events, such as plant growth, development, and environmental stress and defense responses. The elucidation of their regulatory mechanisms through phytohormone receptors could facilitate the generation of transgenic crops with cultivation advantages and the rational design of growth control chemicals. During the last decade, accumulated structural data on phytohormone receptors have provided critical insights into the molecular mechanisms of phytohormone perception and signal transduction. Here, we review the structural bases of phytohormone recognition and receptor activation. As a common feature, phytohormones regulate the interaction between the receptors and their respective target proteins (also called co-receptors) by two types of regulatory mechanisms, acting as either "molecular glue" or an "allosteric regulator." However, individual phytohormone receptors adopt specific structural features that are essential for activation. In addition, recent studies have focused on the molecular diversity of redundant phytohormone receptors.
Collapse
Affiliation(s)
- Takuya Miyakawa
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| | - Masaru Tanokura
- a Department of Applied Biological Chemistry , Graduate School of Agricultural and Life Sciences, The University of Tokyo , Tokyo , Japan
| |
Collapse
|
236
|
Takahashi M, Umetsu K, Oono Y, Higaki T, Blancaflor EB, Rahman A. Small acidic protein 1 and SCF TIR1 ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:940-956. [PMID: 27885735 DOI: 10.1111/tpj.13433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/15/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4-D-specific mutants suggested that 2,4-D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4-D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4-D but not IAA altered the actin structure in long-term and short-term assays. Analysis of the 2,4-D-specific mutant aar1-1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4-D-induced depolymerization of actin. The ubiquitin proteasome mutants tir1-1 and axr1-12, which show enhanced resistance to 2,4-D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4-D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4-D on the organization of actin filaments. Roots of the double mutant aar1-1 tir1-1 also showed enhanced resistance to 2,4-D-induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4-D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCFTIR1 ubiquitin proteasome components.
Collapse
Affiliation(s)
- Maho Takahashi
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Kana Umetsu
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Yutaka Oono
- Department of Radiation-Applied Biology, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Takasaki, 370-1292, Japan
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Abidur Rahman
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
- Department of Plant Bio Sciences, Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
237
|
Shi H, Liu W, Wei Y, Ye T. Integration of auxin/indole-3-acetic acid 17 and RGA-LIKE3 confers salt stress resistance through stabilization by nitric oxide in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1239-1249. [PMID: 28158805 DOI: 10.1093/jxb/erw508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
Plants have developed complex mechanisms to respond to salt stress, depending on secondary messenger-mediated stress perception and signal transduction. Nitric oxide (NO) is widely known as a 'jack-of-all-trades' in stress responses. However, NO-mediated crosstalk between plant hormones remains unclear. In this study, we found that salt stabilized both AUXIN/INDOLE-3-ACETIC ACID 17 (Aux/IAA17) and RGA-LIKE3 (RGL3) proteins due to salt-induced NO production. Salt-induced NO overaccumulation and IAA17 overexpression decreased the transcripts of GA3ox genes, resulting in lower bioactive GA4. Further investigation showed that IAA17 directly interacted with RGL3 and increased its protein stability. Consistently, RGL3 stabilized IAA17 protein through inhibiting the interaction of TIR1 and IAA17 by competitively binding to IAA17. Moreover, both IAA17 and RGL3 conferred salt stress resistance. Overexpression of IAA17 and RGL3 partially alleviated the inhibitory effect of NO deficiency on salt resistance, whereas the iaa17 and rgl3 mutants displayed reduced responsiveness to NO-promoted salt resistance. Thus, the associations between IAA17 and gibberellin (GA) synthesis and signal transduction, and between the IAA17-interacting complex and the NO-mediated salt stress response were revealed based on physiological and genetic approaches. We conclude that integration of IAA17 and RGL3 is an essential component of NO-mediated salt stress response.
Collapse
Affiliation(s)
- Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou city, Hainan, 570228, China
| | - Wen Liu
- Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang city, Hubei, 443002, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou city, Hainan, 570228, China
| | - Tiantian Ye
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
238
|
Su Y, Luo W, Chen X, Liu H, Hu Y, Lin W, Xiao L. Auxin Extraction and Purification Based on Recombinant Aux/IAA Proteins. Biol Proced Online 2017; 19:1. [PMID: 28100961 PMCID: PMC5237334 DOI: 10.1186/s12575-016-0050-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2016] [Accepted: 12/12/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indole-3-acetic acid (IAA) extraction and purification are of great importance in auxin research, which is a hot topic in the plant growth and development field. Solid-phase extraction (SPE) is frequently used for IAA extraction and purification. However, no IAA-specific SPE columns are commercially available at the moment. Therefore, the development of IAA-specific recognition materials and IAA extraction and purification methods will help researchers meet the need for more precise analytical methods for research on phytohormones. RESULTS Since the AUXIN RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) proteins show higher specific binding capability with auxin, recombinant IAA1, IAA7 and IAA28 proteins were used as sorbents to develop an IAA extraction and purification method. A GST tag was used to solidify the recombinant protein in a column. Aux/IAA proteins solidified in a column have successfully trapped trace IAA in aqueous solutions. The IAA7 protein showed higher IAA binding capability than the other proteins tested. In addition, expression of the IAA7 protein in Drosophila Schneider 2 (S2) cells produced better levels of binding than IAA7 expressed in E. coli. CONCLUSION This work validated the potential of Aux/IAA proteins to extract and purify IAA from crude plant extracts once we refined the techniques for these processes.
Collapse
Affiliation(s)
- Yi Su
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Weigui Luo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Xiaofei Chen
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Huizhen Liu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Yueqing Hu
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Wanhuang Lin
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China ; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China ; Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| |
Collapse
|
239
|
Abstract
Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase family (approximately 5% of the protein coding genes), although the specific function for only a few dozen of these kinases is clearly established. Recent comparative genomics studies have revealed that parasitic nematodes and pathogenic microbes produce plant peptide hormone mimics that target specific plant plasma membrane receptor-like protein kinases, thus usurping endogenous signaling pathways for their own pathogenic purposes. With biochemical, genetic, and physiological analyses of the regulation of hormone receptor signal pathways, we are thus just now beginning to understand how plants optimize the development of their body shape and cope with constantly changing environmental conditions.
Collapse
Affiliation(s)
- Miyoshi Haruta
- University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
240
|
Estrada-Johnson E, Csukasi F, Pizarro CM, Vallarino JG, Kiryakova Y, Vioque A, Brumos J, Medina-Escobar N, Botella MA, Alonso JM, Fernie AR, Sánchez-Sevilla JF, Osorio S, Valpuesta V. Transcriptomic Analysis in Strawberry Fruits Reveals Active Auxin Biosynthesis and Signaling in the Ripe Receptacle. FRONTIERS IN PLANT SCIENCE 2017; 8:889. [PMID: 28611805 PMCID: PMC5447041 DOI: 10.3389/fpls.2017.00889] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/17/2017] [Accepted: 05/12/2017] [Indexed: 05/18/2023]
Abstract
The role of auxin in ripening strawberry (Fragaria ×ananassa) fruits has been restricted to the early stages of development where the growth of the receptacle is dependent on the delivery of auxin from the achenes. At later stages, during enlargement of the receptacle, other hormones have been demonstrated to participate to different degrees, from the general involvement of gibberellins and abscisic acid to the more specific of ethylene. Here we report the involvement of auxin at the late stages of receptacle ripening. The auxin content of the receptacle remains constant during ripening. Analysis of the transcriptome of ripening strawberry fruit revealed the changing expression pattern of the genes of auxin synthesis, perception, signaling and transport along with achene and receptacle development from the green to red stage. Specific members of the corresponding gene families show active transcription in the ripe receptacle. For the synthesis of auxin, two genes encoding tryptophan aminotransferases, FaTAA1 and FaTAR2, were expressed in the red receptacle, with FaTAR2 expression peaking at this stage. Transient silencing of this gene in ripening receptacle was accompanied by a diminished responsiveness to auxin. The auxin activity in the ripening receptacle is supported by the DR5-directed expression of a GUS reporter gene in the ripening receptacle of DR5-GUS transgenic strawberry plants. Clustering by co-expression of members of the FaAux/IAA and FaARF families identified five members whose transcriptional activity was increased with the onset of receptacle ripening. Among these, FaAux/IAA11 and FaARF6a appeared, by their expression level and fold-change, as the most likely candidates for their involvement in the auxin activity in the ripening receptacle. The association of the corresponding ARF6 gene in Arabidopsis to cell elongation constitutes a suggestive hypothesis for FaARF6a involvement in the same cellular process in the growing and ripening receptacle.
Collapse
Affiliation(s)
- Elizabeth Estrada-Johnson
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Fabiana Csukasi
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Carmen M. Pizarro
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Yulia Kiryakova
- Dipartimento di Scienze, Università degli Studi della BasilicataPotenza, Italy
| | - Amalia Vioque
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Javier Brumos
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | - Nieves Medina-Escobar
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - José M. Alonso
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
| | | | - José F. Sánchez-Sevilla
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, IFAPA-Centro de ChurrianaMálaga, Spain
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
- *Correspondence: Victoriano Valpuesta, Sonia Osorio,
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea, Universidad de Málaga-Consejo Superior de Investigaciones CientíficasMálaga, Spain
- *Correspondence: Victoriano Valpuesta, Sonia Osorio,
| |
Collapse
|
241
|
Quareshy M, Uzunova V, Prusinska JM, Napier RM. Assaying Auxin Receptor Activity Using SPR Assays with F-Box Proteins and Aux/IAA Degrons. Methods Mol Biol 2017; 1497:159-191. [PMID: 27864766 DOI: 10.1007/978-1-4939-6469-7_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
The identification of TIR1 as an auxin receptor combined with advanced biophysical instrumentation has led to the development of real-time activity assays for auxins. Traditionally, molecules have been assessed for auxinic activity using bioassays, and agrochemical compound discovery continues to be based on "spray and pray" technologies. Here, we describe the methodology behind an SPR-based assay that uses TIR1 and related F-box proteins with surface plasmon resonance spectrometry for rapid compound screening. In addition, methods for collecting kinetic binding data and data processing are given so that they may support programs for rational design of novel auxin ligands.
Collapse
Affiliation(s)
- Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Veselina Uzunova
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Richard M Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
242
|
Trenner J, Poeschl Y, Grau J, Gogol-Döring A, Quint M, Delker C. Auxin-induced expression divergence between Arabidopsis species may originate within the TIR1/AFB-AUX/IAA-ARF module. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:539-552. [PMID: 28007950 DOI: 10.1093/jxb/erw457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/22/2023]
Abstract
Auxin is an essential regulator of plant growth and development, and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intraspecies comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of interspecies differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Collapse
Affiliation(s)
- Jana Trenner
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 1,Halle (Saale), Germany
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann, Halle (Saale), Germany
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany
| |
Collapse
|
243
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
244
|
Steenackers W, Klíma P, Quareshy M, Cesarino I, Kumpf RP, Corneillie S, Araújo P, Viaene T, Goeminne G, Nowack MK, Ljung K, Friml J, Blakeslee JJ, Novák O, Zažímalová E, Napier R, Boerjan W, Vanholme B. cis-Cinnamic Acid Is a Novel, Natural Auxin Efflux Inhibitor That Promotes Lateral Root Formation. PLANT PHYSIOLOGY 2017; 173:552-565. [PMID: 27837086 PMCID: PMC5210711 DOI: 10.1104/pp.16.00943] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 05/07/2023]
Abstract
Auxin steers numerous physiological processes in plants, making the tight control of its endogenous levels and spatiotemporal distribution a necessity. This regulation is achieved by different mechanisms, including auxin biosynthesis, metabolic conversions, degradation, and transport. Here, we introduce cis-cinnamic acid (c-CA) as a novel and unique addition to a small group of endogenous molecules affecting in planta auxin concentrations. c-CA is the photo-isomerization product of the phenylpropanoid pathway intermediate trans-CA (t-CA). When grown on c-CA-containing medium, an evolutionary diverse set of plant species were shown to exhibit phenotypes characteristic for high auxin levels, including inhibition of primary root growth, induction of root hairs, and promotion of adventitious and lateral rooting. By molecular docking and receptor binding assays, we showed that c-CA itself is neither an auxin nor an anti-auxin, and auxin profiling data revealed that c-CA does not significantly interfere with auxin biosynthesis. Single cell-based auxin accumulation assays showed that c-CA, and not t-CA, is a potent inhibitor of auxin efflux. Auxin signaling reporters detected changes in spatiotemporal distribution of the auxin response along the root of c-CA-treated plants, and long-distance auxin transport assays showed no inhibition of rootward auxin transport. Overall, these results suggest that the phenotypes of c-CA-treated plants are the consequence of a local change in auxin accumulation, induced by the inhibition of auxin efflux. This work reveals a novel mechanism how plants may regulate auxin levels and adds a novel, naturally occurring molecule to the chemical toolbox for the studies of auxin homeostasis.
Collapse
Affiliation(s)
- Ward Steenackers
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Petr Klíma
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Mussa Quareshy
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Igor Cesarino
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Robert P Kumpf
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Sander Corneillie
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Pedro Araújo
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Tom Viaene
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Geert Goeminne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Karin Ljung
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Joshua J Blakeslee
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Ondřej Novák
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Eva Zažímalová
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Richard Napier
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.)
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.)
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.)
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.)
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.)
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.);
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.);
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.);
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.);
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.);
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.);
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.);
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.P.K., S.C., P.A., T.V., G.G., M.K.N., W.B., B.V.);
- Institute of Experimental Botany, Czech Academy of Sciences, CZ-16502 Prague, Czech Republic (P.K., E.Z.);
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom (M.Q., R.N.);
- Department of Botany, Institute of Biosciences, University of São Paulo, Butantã, São Paulo 03178-200, Brazil (I.C.);
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.);
- Institute of Science and Technology, Austria, 3400 Klosterneuburg, Austria (J.F.);
- Department of Horticulture and Crop Science, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, Ohio 44691 (J.J.B.); and
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic (O.N.)
| |
Collapse
|
245
|
Ren Z, Wang X. SlTIR1 is involved in crosstalk of phytohormones, regulates auxin-induced root growth and stimulates stenospermocarpic fruit formation in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:13-20. [PMID: 27968981 DOI: 10.1016/j.plantsci.2016.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 05/04/2023]
Abstract
TIR1 and its homologs act as auxin receptors and play important roles in plant growth and development in Arabidopsis thaliana. An auxin receptor homolog Solanum lycopersicum TIR1 (SlTIR1) has been isolated from tomato cultivar Micro-Tom, and SlTIR1 over-expression results in parthenocarpic fruit formation. In this study, the promoter driving the β-glucuronidase (GUS) expression vector was constructed and stably transformed into Micro-Tom seedlings. The SlTIR1 promoter driving GUS expression accumulated predominantly in the leaf and vasculature in transgenic seedlings. Promoter analysis identified an auxin-response element (AuxRE) and two gibberellic acid (GA)-response elements in the SlTIR1 promoter. Quantitative PCR showed that SlTIR1 transcript level was down-regulated by naphthaleneacetic acid, ethephon and abscisic acid and up-regulated by GA. Furthermore, because of the lack of ability to form reproductive seeds in SlTIR1 over-expressing Micro-Tom, this limits further exploration of potential roles of SlTIR1 in auxin signaling. Here, an antisense vector and an over-expression vector of the SlTIR1 gene were stably transformed into Micro-Tom and Ailsa Craig tomato, respectively. Phenotypes and physiological analyses indicated that SlTIR1 regulated primary root growth and auxin-associated lateral root formation in Micro-Tom. Meanwhile, SlTIR1 also stimulated abnormal seed development, so-called stenospermocarpy, in Ailsa Craig. Transcript accumulations of auxin-signaling genes determined by quantitative PCR were consistent with the idea that SlTIR1 regulated plant growth and development, partially mediated by controlling the mRNA levels of auxin-signaling genes. Our work demonstrates that SlTIR1 regulated auxin-induced root growth and stimulated stenospermocarpic fruit formation. SlTIR1 may be a key mediator of the crosstalk among auxin and other hormones to co-regulate plant growth and development.
Collapse
Affiliation(s)
- Zhenxin Ren
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiaomin Wang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China.
| |
Collapse
|
246
|
Steenackers W, Cesarino I, Klíma P, Quareshy M, Vanholme R, Corneillie S, Kumpf RP, Van de Wouwer D, Ljung K, Goeminne G, Novák O, Zažímalová E, Napier R, Boerjan W, Vanholme B. The Allelochemical MDCA Inhibits Lignification and Affects Auxin Homeostasis. PLANT PHYSIOLOGY 2016; 172:874-888. [PMID: 27506238 PMCID: PMC5047068 DOI: 10.1104/pp.15.01972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/18/2015] [Accepted: 08/03/2016] [Indexed: 05/05/2023]
Abstract
The phenylpropanoid 3,4-(methylenedioxy)cinnamic acid (MDCA) is a plant-derived compound first extracted from roots of Asparagus officinalis and further characterized as an allelochemical. Later on, MDCA was identified as an efficient inhibitor of 4-COUMARATE-CoA LIGASE (4CL), a key enzyme of the general phenylpropanoid pathway. By blocking 4CL, MDCA affects the biosynthesis of many important metabolites, which might explain its phytotoxicity. To decipher the molecular basis of the allelochemical activity of MDCA, we evaluated the effect of this compound on Arabidopsis thaliana seedlings. Metabolic profiling revealed that MDCA is converted in planta into piperonylic acid (PA), an inhibitor of CINNAMATE-4-HYDROXYLASE (C4H), the enzyme directly upstream of 4CL. The inhibition of C4H was also reflected in the phenolic profile of MDCA-treated plants. Treatment of in vitro grown plants resulted in an inhibition of primary root growth and a proliferation of lateral and adventitious roots. These observed growth defects were not the consequence of lignin perturbation, but rather the result of disturbing auxin homeostasis. Based on DII-VENUS quantification and direct measurement of cellular auxin transport, we concluded that MDCA disturbs auxin gradients by interfering with auxin efflux. In addition, mass spectrometry was used to show that MDCA triggers auxin biosynthesis, conjugation, and catabolism. A similar shift in auxin homeostasis was found in the c4h mutant ref3-2, indicating that MDCA triggers a cross talk between the phenylpropanoid and auxin biosynthetic pathways independent from the observed auxin efflux inhibition. Altogether, our data provide, to our knowledge, a novel molecular explanation for the phytotoxic properties of MDCA.
Collapse
Affiliation(s)
- Ward Steenackers
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Igor Cesarino
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Petr Klíma
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Mussa Quareshy
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Sander Corneillie
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Robert Peter Kumpf
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Dorien Van de Wouwer
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Karin Ljung
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Geert Goeminne
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Ondřej Novák
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Eva Zažímalová
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Richard Napier
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| | - Bartel Vanholme
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (W.S., I.C., R.V., S.C., R.P.K., D.V.d.W., G.G., W.B., B.V.);Department of Botany, Institute of Biosciences, University of São Paulo, 05508-090 Butantã, São Paulo, Brazil (I.C.);Institute of Experimental Botany, the Czech Academy of Sciences, 16502 Prague, the Czech Republic (P.K., E.Z.);School of Life Sciences, University of Warwick, CV4 7AL Coventry, United Kingdom (M.Q., R.N.);Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden (K.L., O.N.); andLaboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic (O.N.)
| |
Collapse
|
247
|
Guo F, Han N, Xie Y, Fang K, Yang Y, Zhu M, Wang J, Bian H. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). PLANT, CELL & ENVIRONMENT 2016; 39:2288-302. [PMID: 27342100 DOI: 10.1111/pce.12781] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/29/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 05/23/2023]
Abstract
The conserved miRNA393 family is thought to be involved in root elongation, leaf development and stress responses, but its role during seed germination and seedling establishment remains unclear. In this study, expression of the MIR393a/target module and its role in germinating rice (Oryza sativa L.) seeds were investigated. β-Glucuronidase (GUS) analysis showed that MIR393a and OsTIR1 had spatial-temporal transcriptional activities in radicle roots, coleoptile tips and stomata cells, corresponding to a dynamic auxin response. miR393a promoted primary root elongation when rice seeds were germinated in air and inhibited coleoptile elongation and stomatal development when seeds were submerged. Under submergence, the expression of miR393a was inhibited, and then the auxin response was induced. In the process, OsTIR1 and OsAFB2, auxin receptor genes, were negatively regulated by miR393. We found that miR393a inhibited stomatal development and coleoptile elongation but promoted free indole acetic acid (IAA) accumulation in the rice coleoptile tips. In addition, exogenous abscisic acid (ABA) enhanced the expression of miR393 and inhibited coleoptile growth. Together, miR393a/target plays a role in coleoptile elongation and stomatal development via modulation of auxin signalling during seed germination and seedling establishment under submergence. This study provides new perspectives on the direct sowing of rice seeds in flooded paddy fields.
Collapse
Affiliation(s)
- Fu Guo
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ning Han
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yakun Xie
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ke Fang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yinong Yang
- Department of Plant Pathology and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Muyuan Zhu
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junhui Wang
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Hongwu Bian
- Institute of Genetics, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
248
|
Chini A, Gimenez-Ibanez S, Goossens A, Solano R. Redundancy and specificity in jasmonate signalling. CURRENT OPINION IN PLANT BIOLOGY 2016; 33:147-156. [PMID: 27490895 DOI: 10.1016/j.pbi.2016.07.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 05/21/2023]
Abstract
Jasmonates (JAs) are essential phytohormones regulating plant development and environmental adaptation. Many components of the JA-signalling pathway have been identified. However, our insight into the mechanisms by which a single bioactive JA hormone can regulate a myriad of physiological processes and provide specificity in the response remains limited. Recent findings on molecular components suggest that, despite apparent redundancy, specificity is achieved by (1) distinct protein-protein interactions forming unique JAZ/transcription factor complexes, (2) discrete spatiotemporal expression of specific components, (3) variable hormone thresholds for the formation of multiple JA receptor complexes and (4) integration of several signals by JA-pathway components. The molecular modularity that is thereby created enables a single bioactive hormone to specifically modulate multiple JA-outputs in response to different environmental and developmental cues.
Collapse
Affiliation(s)
- Andrea Chini
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Selena Gimenez-Ibanez
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | - Roberto Solano
- Department of Plant Molecular Genetics, National Centre for Biotechnology (CNB-CSIC), 28049 Madrid, Spain.
| |
Collapse
|
249
|
Uzunova VV, Quareshy M, Del Genio CI, Napier RM. Tomographic docking suggests the mechanism of auxin receptor TIR1 selectivity. Open Biol 2016; 6:160139. [PMID: 27805904 PMCID: PMC5090058 DOI: 10.1098/rsob.160139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 01/14/2023] Open
Abstract
We study the binding of plant hormone IAA on its receptor TIR1, introducing a novel computational method that we call tomographic docking and that accounts for interactions occurring along the depth of the binding pocket. Our results suggest that selectivity is related to constraints that potential ligands encounter on their way from the surface of the protein to their final position at the pocket bottom. Tomographic docking helps develop specific hypotheses about ligand binding, distinguishing binders from non-binders, and suggests that binding is a three-step mechanism, consisting of engagement with a niche in the back wall of the pocket, interaction with a molecular filter which allows or precludes further descent of ligands, and binding on the pocket base. Only molecules that are able to descend the pocket and bind at its base allow the co-receptor IAA7 to bind on the complex, thus behaving as active auxins. Analysing the interactions at different depths, our new method helps in identifying critical residues that constitute preferred future study targets and in the quest for safe and effective herbicides. Also, it has the potential to extend the utility of docking from ligand searches to the study of processes contributing to selectivity.
Collapse
Affiliation(s)
- Veselina V Uzunova
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Charo I Del Genio
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Richard M Napier
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
250
|
Fendrych M, Leung J, Friml J. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 2016; 5. [PMID: 27627746 PMCID: PMC5045290 DOI: 10.7554/elife.19048] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/22/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022] Open
Abstract
Despite being composed of immobile cells, plants reorient along directional stimuli. The hormone auxin is redistributed in stimulated organs leading to differential growth and bending. Auxin application triggers rapid cell wall acidification and elongation of aerial organs of plants, but the molecular players mediating these effects are still controversial. Here we use genetically-encoded pH and auxin signaling sensors, pharmacological and genetic manipulations available for Arabidopsis etiolated hypocotyls to clarify how auxin is perceived and the downstream growth executed. We show that auxin-induced acidification occurs by local activation of H+-ATPases, which in the context of gravity response is restricted to the lower organ side. This auxin-stimulated acidification and growth require TIR1/AFB-Aux/IAA nuclear auxin perception. In addition, auxin-induced gene transcription and specifically SAUR proteins are crucial downstream mediators of this growth. Our study provides strong experimental support for the acid growth theory and clarified the contribution of the upstream auxin perception mechanisms. DOI:http://dx.doi.org/10.7554/eLife.19048.001
Collapse
Affiliation(s)
- Matyáš Fendrych
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jeffrey Leung
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA - Centre de Versailles-Grignon, Saclay Plant Science, Versailles, France
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|