201
|
NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein. Mol Cell Biol 2020; 40:MCB.00597-19. [PMID: 32123008 PMCID: PMC7189095 DOI: 10.1128/mcb.00597-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Proteasomes are essential protease complexes that maintain cellular homeostasis, and aberrant proteasomal activity supports cancer development. The regulatory mechanisms and biological function of the ubiquitin-26S proteasome have been studied extensively, while those of the ubiquitin-independent 20S proteasome system remain obscure. Here, we show that the cap 'n' collar (CNC) family transcription factor NRF3 specifically enhances 20S proteasome assembly in cancer cells and that 20S proteasomes contribute to colorectal cancer development through ubiquitin-independent proteolysis of the tumor suppressor p53 and retinoblastoma (Rb) proteins. The NRF3 gene is highly expressed in many cancer tissues and cell lines and is important for cancer cell growth. In cancer cells, NRF3 upregulates the assembly of the 20S proteasome by directly inducing the gene expression of the 20S proteasome maturation protein POMP. Interestingly, NRF3 knockdown not only increases p53 and Rb protein levels but also increases p53 activities for tumor suppression, including cell cycle arrest and induction of apoptosis. Furthermore, protein stability and cell viability assays using two distinct proteasome inhibitor anticancer drugs, the 20S proteasome inhibitor bortezomib and the ubiquitin-activating enzyme E1 inhibitor TAK-243, show that the upregulation of the NRF3-POMP axis leads to ubiquitin-independent proteolysis of p53 and Rb and to impaired sensitivity to bortezomib but not TAK-243. More importantly, the NRF3-POMP axis supports tumorigenesis and metastasis, with higher NRF3/POMP expression levels correlating with poor prognoses in patients with colorectal or rectal adenocarcinoma. These results suggest that the NRF3-POMP-20S proteasome assembly axis is significant for cancer development via ubiquitin-independent proteolysis of tumor suppressor proteins.
Collapse
|
202
|
Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacol Rev 2020; 72:380-413. [PMID: 32107274 PMCID: PMC7047443 DOI: 10.1124/pr.118.015651] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.
Collapse
Affiliation(s)
- Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yien Che Tsai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bufan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yiyang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Han Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Tomaya Carpenter
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Allan M Weissman
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Jun Yin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| |
Collapse
|
203
|
Gu C, Yin Z, Nie H, Liu Y, Yang J, Huang G, Shen J, Chen L, Fei J. Identification of berberine as a novel drug for the treatment of multiple myeloma via targeting UHRF1. BMC Biol 2020; 18:33. [PMID: 32213189 PMCID: PMC7098108 DOI: 10.1186/s12915-020-00766-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/05/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Current therapies for multiple myeloma (MM) are associated with toxicity and resistance, highlighting the need for novel effective therapeutics. Berberine (BBR), a botanical alkaloid derived from several Berberis medicinal plants, has exhibited anti-tumor effects, including against multiple myeloma (MM); however, the molecular mechanism underlying the anti-MM effect has not been previously described. This study aimed to identify the target of berberine and related mechanisms involved in its therapeutic activity against MM. RESULTS Here, we demonstrated that BBR treatment killed MM cells in vitro and prolonged the survival of mice bearing MM xenografts in vivo. A screening approach integrating surface plasmon resonance (SPR) with liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified UHRF1 (ubiquitin-like with PHD and RING Finger domains 1) as a potential target of BBR. Combining molecular docking and SPR analysis, we confirmed UHRF1 as a BBR-binding protein and discovered that BBR binds UHRF1 in the tandem tudor domain and plant homeodomain (TTD-PHD domain). BBR treatment induced UHRF1 degradation via the ubiquitin-dependent proteasome system and reactivated p16INK4A and p73 in MM cells. Overexpression of UHRF1 promoted the MM cell proliferation and rendered MM cells more resistant to BBR, while silencing of UHRF1 with siRNA attenuated BBR-induced cytotoxicity. CONCLUSIONS In summary, our study has identified UHRF1 as a direct target of BBR and uncovered molecular mechanisms involved in the anti-MM activity of BBR. Targeting UHRF1 through BBR may be a novel therapeutic strategy against MM.
Collapse
Affiliation(s)
- Chunming Gu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
- Institute of Chinese Integrative Medicine, Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
- Institute of Chinese Integrative Medicine, Chinese Medicine College, Jinan University, Guangzhou, 510632, China
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China
| | - Jianping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, China.
| | - Liguo Chen
- Institute of Chinese Integrative Medicine, Chinese Medicine College, Jinan University, Guangzhou, 510632, China.
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, 601 Western Huangpu Avenue, Guangzhou, 510632, China.
- Institute of Chinese Integrative Medicine, Chinese Medicine College, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
204
|
Presta I, Novellino F, Donato A, La Torre D, Palleria C, Russo E, Malara N, Donato G. UbcH10 a Major Actor in Cancerogenesis and a Potential Tool for Diagnosis and Therapy. Int J Mol Sci 2020; 21:E2041. [PMID: 32192022 PMCID: PMC7139792 DOI: 10.3390/ijms21062041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/22/2023] Open
Abstract
Malignant transformation is a multistep process in which several molecular entities become dysregulated and result in dysfunction in the regulation of cell proliferation. In past years, scientists have gradually dissected the pathways involved in the regulation of the cell cycle. The mitotic ubiquitin-conjugating enzymes UbcH10, has been extensively studied since its cloning and characterization and it has been identified as a constantly overexpressed factor in many types of cancer. In this paper, we have reviewed the literature about UbcH10 in human cancer, pointing out the association between its overexpression and exacerbation of cancer phenotype. Moreover, many recalled studied demonstrated how immunohistochemistry or RT-PCR analysis can distinguish normal tissues and benign lesions from malignant neoplasms. In other experimental studies, many of the consequences of UbcH10 overexpression, such as increased proliferation, metastasizing, cancer progression and resistance to anticancer drugs are reversed through gene silencing techniques. In recent years, many authors have defined UbcH10 evaluation in cancer patients as a useful tool for diagnosis and therapy. This opinion is shared by the authors who advertise how it would be useful to start using in clinical practice the notions acquired about this important moleculein the carcinogenesis of many human malignancies.
Collapse
Affiliation(s)
- Ivan Presta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Fabiana Novellino
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR) Viale Europa, 88100 Catanzaro, Italy;
| | - Annalidia Donato
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (D.L.T.)
| | - Domenico La Torre
- Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (A.D.); (D.L.T.)
| | - Caterina Palleria
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Emilio Russo
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| | - Natalia Malara
- Department of Clinical and Experimental Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy;
| | - Giuseppe Donato
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (C.P.); (E.R.); (G.D.)
| |
Collapse
|
205
|
Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther 2020; 5:11. [PMID: 32296023 PMCID: PMC7048745 DOI: 10.1038/s41392-020-0107-0] [Citation(s) in RCA: 391] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the "quantity" and "quality" of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI-219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.
Collapse
Affiliation(s)
- Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China.
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, 389 Xincun Road, Shanghai, China
| | - Lei Chen
- Division of Laboratory Safety and Services, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
206
|
Balagopalan L, Malik H, McIntire KM, Garvey JA, Nguyen T, Rodriguez-Peña AB, Samelson LE. Bypassing ubiquitination enables LAT recycling to the cell surface and enhanced signaling in T cells. PLoS One 2020; 15:e0229036. [PMID: 32084172 PMCID: PMC7034843 DOI: 10.1371/journal.pone.0229036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022] Open
Abstract
LAT molecules defective in ubiquitination have an increased half-life and induce enhanced signaling when expressed in T cells. In this study, we have examined the role of ubiquitination in regulating LAT endocytosis, recycling, and degradation in resting and stimulated T cells. By tracking and comparing plasma membrane-labeled wild type and ubiquitination-resistant 2KR LAT, we find that ubiquitination promotes the degradation of surface LAT in T cells. Activation of T cells increases LAT ubiquitination and promotes trafficking of internalized LAT to lysosomes for degradation. Ubiquitination of LAT does not change internalization rates from the cell surface, but prevents efficient recycling of LAT to the surface of T cells. Our study demonstrates that surface LAT levels are tightly controlled by ubiquitination. LAT in unstimulated cells lacks ubiquitin allowing for increased LAT stability and efficient T cell activation upon TCR triggering; ubiquitination leads to efficient removal of LAT after activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (LB); (LES)
| | - Hiba Malik
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine M. McIntire
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph A. Garvey
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiffany Nguyen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana B. Rodriguez-Peña
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence E. Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (LB); (LES)
| |
Collapse
|
207
|
Yasuda S, Tsuchiya H, Kaiho A, Guo Q, Ikeuchi K, Endo A, Arai N, Ohtake F, Murata S, Inada T, Baumeister W, Fernández-Busnadiego R, Tanaka K, Saeki Y. Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 2020; 578:296-300. [DOI: 10.1038/s41586-020-1982-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/09/2019] [Indexed: 12/30/2022]
|
208
|
Proteasome Inhibitors: Harnessing Proteostasis to Combat Disease. Molecules 2020; 25:molecules25030671. [PMID: 32033280 PMCID: PMC7037493 DOI: 10.3390/molecules25030671] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
The proteasome is the central component of the main cellular protein degradation pathway. During the past four decades, the critical function of the proteasome in numerous physiological processes has been revealed, and proteasome activity has been linked to various human diseases. The proteasome prevents the accumulation of misfolded proteins, controls the cell cycle, and regulates the immune response, to name a few important roles for this macromolecular "machine." As a therapeutic target, proteasome inhibitors have been approved for the treatment of multiple myeloma and mantle cell lymphoma. However, inability to sufficiently inhibit proteasome activity at tolerated doses has hampered efforts to expand the scope of proteasome inhibitor-based therapies. With emerging new modalities in myeloma, it might seem challenging to develop additional proteasome-based therapies. However, the constant development of new applications for proteasome inhibitors and deeper insights into the intricacies of protein homeostasis suggest that proteasome inhibitors might have novel therapeutic applications. Herein, we summarize the latest advances in proteasome inhibitor development and discuss the future of proteasome inhibitors and other proteasome-based therapies in combating human diseases.
Collapse
|
209
|
Jiménez Fernández D, Hess S, Knobeloch KP. Strategies to Target ISG15 and USP18 Toward Therapeutic Applications. Front Chem 2020; 7:923. [PMID: 32039148 PMCID: PMC6985271 DOI: 10.3389/fchem.2019.00923] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
The interferon (IFN)-stimulated gene product 15 (ISG15) represents an ubiquitin-like protein (Ubl), which in a process termed ISGylation can be covalently linked to target substrates via a cascade of E1, E2, and E3 enzymes. Furthermore, ISG15 exerts functions in its free form both, as an intracellular and as a secreted protein. In agreement with its role as a type I IFN effector, most functions of ISG15 and ISGylation are linked to the anti-pathogenic response. However, also key roles in other cellular processes such as protein translation, cytoskeleton dynamics, exosome secretion, autophagy or genome stability and cancer were described. Ubiquitin-specific protease 18 (USP18) constitutes the major ISG15 specific protease which counteracts ISG15 conjugation. Remarkably, USP18 also functions as a critical negative regulator of the IFN response irrespective of its enzymatic activity. Concordantly, lack of USP18 function causes fatal interferonopathies in humans and mice. The negative regulatory function of USP18 in IFN signaling is regulated by various protein–protein interactions and its stability is controlled via proteasomal degradation. The broad repertoire of physiological functions and regulation of ISG15 and USP18 offers a variety of potential intervention strategies which might be of therapeutic use. Due to the high mutation rates of pathogens which are often species specific and constantly give rise to a variety of immune evasion mechanisms, immune effector systems are under constant evolutionarily pressure. Therefore, it is not surprising that considerable differences in ISG15 with respect to function and sequence exist even among closely related species. Hence, it is essential to thoroughly evaluate the translational potential of results obtained in model organisms especially for therapeutic strategies. This review covers existing and conceptual assay systems to target and identify modulators of ISG15, ISGylation, USP18 function, and protein–protein interactions within this context. Strategies comprise mouse models for translational perspectives, cell-based and biochemical assays as well as chemical probes.
Collapse
Affiliation(s)
| | - Sandra Hess
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Faculty of Medicine, Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
210
|
Fan Q, Wang Q, Cai R, Yuan H, Xu M. The ubiquitin system: orchestrating cellular signals in non-small-cell lung cancer. Cell Mol Biol Lett 2020; 25:1. [PMID: 31988639 PMCID: PMC6966813 DOI: 10.1186/s11658-019-0193-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
The ubiquitin system, known as a common feature in eukaryotes, participates in multiple cellular processes, such as signal transduction, cell-cycle progression, receptor trafficking and endocytosis, and even the immune response. In lung cancer, evidence has revealed that aberrant events in ubiquitin-mediated processes can cause a variety of pathological outcomes including tumorigenesis and metastasis. Likewise, ubiquitination on the core components contributing to the activity of cell signaling controls bio-signal turnover and cell final destination. Given this, inhibitors targeting the ubiquitin system have been developed for lung cancer therapies and have shown great prospects for clinical application. However, the exact biological effects and physiological role of the drugs used in lung cancer therapies are still not clearly elucidated, which might seriously impede the progress of treatment. In this work, we summarize current research advances in cell signal regulation processes mediated through the ubiquitin system during the development of lung cancer, with the hope of improving the therapeutic effects by means of aiming at efficient targets.
Collapse
Affiliation(s)
- Qiang Fan
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China.,2Department of General Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| | - Qian Wang
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| | - Renjie Cai
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China.,2Department of General Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| | - Haihua Yuan
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| | - Ming Xu
- 1Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mohe Road, Shanghai, China
| |
Collapse
|
211
|
Targeting ubiquitin-activating enzyme induces ER stress-mediated apoptosis in B-cell lymphoma cells. Blood Adv 2020; 3:51-62. [PMID: 30617217 DOI: 10.1182/bloodadvances.2018026880] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Alterations in the ubiquitin proteasome system (UPS) leave malignant cells in heightened cellular stress, making them susceptible to proteasome inhibition. However, given the limited efficacy of proteasome inhibitors in non-Hodgkin lymphoma (NHL), novel approaches to target the UPS are needed. Here, we show that TAK-243, the first small-molecule inhibitor of the ubiquitin activating enzyme (UAE) to enter clinical development, disrupts all ubiquitin signaling and global protein ubiquitination in diffuse large B-cell lymphoma (DLBCL) cells, thereby inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Activation of the ER stress response protein kinase R (PKR)-like ER kinase and phosphorylation of eukaryotic translation initiator factor 2α led to upregulation of the proapoptotic molecule C/EBP homologous protein and cell death across a panel of DLBCL cell lines independent of cell of origin. Concurrently, targeting UAE led to accumulation of Cdt1, a replication licensing factor, leading to DNA rereplication, checkpoint activation, and cell cycle arrest. MYC oncoprotein sensitized DLBCL cells to UAE inhibition; engineered expression of MYC enhanced while genetic MYC knockdown protected from TAK-243-induced apoptosis. UAE inhibition demonstrated enhanced ER stress and UPR and increased potency compared with bortezomib in DLBCL cell lines. In vivo treatment with TAK-243 restricted the growth of xenografted DLBCL tumors, accompanied by reduced cell proliferation and apoptosis. Finally, primary patient-derived DLBCL cells, including those expressing aberrant MYC, demonstrated susceptibility to UAE inhibition. In sum, targeting UAE may hold promise as a novel therapeutic approach in NHL.
Collapse
|
212
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
213
|
Banach-Orłowska M, Wyszyńska R, Pyrzyńska B, Maksymowicz M, Gołąb J, Miączyńska M. Cholesterol restricts lymphotoxin β receptor-triggered NF-κB signaling. Cell Commun Signal 2019; 17:171. [PMID: 31878945 PMCID: PMC6933913 DOI: 10.1186/s12964-019-0460-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lymphotoxin β receptor (LTβR) plays important roles in the development of the immune system and immune response. At the cellular level, ligand-bound LTβR activates the pro-inflammatory NF-κB pathway but the detailed mechanisms regulating its signaling remain unknown. Understanding them is of high importance since LTβR and its ligands are promising therapeutic targets. Here, we studied the consequences of perturbed cellular cholesterol content on LTβR-induced NF-κB signaling. METHODS To modulate cholesterol availability and/or level in lung carcinoma A549 and H2228, and endothelial HUVEC cells different treatment regimens with filipin, methyl-β-cyclodextrin and simvastatin were applied. LTβR localization was studied by confocal microscopy. The activity of LTβR-induced NF-κB pathway was assessed by measuring the levels of NF-κB pathway inhibitor IκBα and phosphorylation of RelA transcription factor by Western blotting. The NF-κB transcriptional response, production of chemokines and adhesion molecules were examined by qRT-PCR, ELISA, and Western blotting, respectively. Adherence of different types of primary immune cells to epithelial A549 cells and endothelial HUVECs was measured fluorometrically. Interactions of LTβR with its protein partners were investigated by immunoprecipitation. RESULTS We showed that filipin-mediated sequestration of cholesterol or its depletion from the plasma membrane with methyl-β-cyclodextrin impaired LTβR internalization and potentiated LTβR-dependent activation of the canonical branch of the NF-κB pathway. The latter was manifested by enhanced degradation of IκBα inhibitor, elevated RelA phosphorylation, substantial increase in the expression of NF-κB target genes encoding, among others, cytokines and adhesion molecules known to play important roles in immune response. It was followed by robust secretion of CXCL8 and upregulation of ICAM1, that favored the adhesion of immune cells (NK and T cells, neutrophils) to A549 cells and HUVECs. Mechanistically, we showed that cholesterol depletion stabilized interactions of ligand-stimulated LTβR with modified forms of TRAF2 and NEMO proteins. CONCLUSIONS Our results showed that the reduction of the plasma membrane content of cholesterol or its sequestration strongly potentiated signaling outcome initiated by LTβR. Thus, drugs modulating cholesterol levels could potentially improve efficacy of LTβR-based therapies. Video abstract.
Collapse
Affiliation(s)
- Magdalena Banach-Orłowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
| | - Renata Wyszyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Beata Pyrzyńska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Maksymowicz
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| |
Collapse
|
214
|
Li S, Dai X, Gong K, Song K, Tai F, Shi J. PA28α/β Promote Breast Cancer Cell Invasion and Metastasis via Down-Regulation of CDK15. Front Oncol 2019; 9:1283. [PMID: 31824858 PMCID: PMC6883405 DOI: 10.3389/fonc.2019.01283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
PA28α/β activated immunoproteasome frequently participates in MHC class I antigen processing, however, whether it is involved in breast tumor progression remains largely unclear. Here, our evidences show that PA28α/β proteins are responsible for breast cancer cell migration, invasion, and metastasis. Knockdown of immunoproteasome core subunit β5i also robustly suppresses the tumor cell migration and invasion. Interestingly, silencing of PA28α/β and β5i up-regulates the protein expression of cyclin-dependent kinase 15 (CDK15). Our data further indicate that the loss of CDK15 is important for breast tumor cell invasion and metastasis. Taken together, this study implicates that targeting of PA28α/β represents a potential way for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Xiaoqin Dai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China.,Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, China
| | - Kunxiang Gong
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Kai Song
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Fang Tai
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangdong, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangdong, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Southern Medical University, Guangdong, China
| |
Collapse
|
215
|
Magin RS, Doherty LM, Buhrlage SJ. Discovery of a First-In-Class Covalent Allosteric Inhibitor of SUMO E1 Activating Enzyme. Cell Chem Biol 2019; 26:153-155. [PMID: 30794786 DOI: 10.1016/j.chembiol.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
SUMOylation is a post-translational modification with important roles in normal physiology and whose dysregulation is associated with human diseases. In this issue of Cell Chemical Biology, Li et al. (2019) describe a covalent, allosteric inhibitor of the SUMO E1 enzyme and demonstrate its anti-tumor activity in preclinical models of colorectal cancer.
Collapse
Affiliation(s)
- Robert S Magin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura M Doherty
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
216
|
Differential Inhibition of Human and Trypanosome Ubiquitin E1S by TAK-243 Offers Possibilities for Parasite Selective Inhibitors. Sci Rep 2019; 9:16195. [PMID: 31700050 PMCID: PMC6838199 DOI: 10.1038/s41598-019-52618-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/08/2019] [Indexed: 11/25/2022] Open
Abstract
Novel strategies to target Trypanosoma brucei, Trypanosoma cruzi and Leishmania are urgently needed to generate better and safer drugs against Human African Trypanosomiasis, Chagas disease and Leishmaniasis, respectively. Here, we investigated the feasibility of selectively targeting in trypanosomatids the ubiquitin E1 activating enzyme (UBA1), an essential eukaryotic protein required for protein ubiquitination. Trypanosomatids contain two UBA1 genes in contrast to mammals and yeast that only have one, and using T. brucei as a model system, we show that both are active in vitro. Surprisingly, neither protein is inhibited by TAK-243, a potent inhibitor of human UBA1. This resistance stems from differences with the human protein at key amino acids, which includes a residue termed the gatekeeper because its mutation in E1s leads to resistance to TAK-243 and related compounds. Importantly, our results predict that trypanosomatid selective UBA1 inhibition is feasible and suggest ways to design novel compounds to achieve this.
Collapse
|
217
|
Cowell IG, Ling EM, Swan RL, Brooks MLW, Austin CA. The Deubiquitinating Enzyme Inhibitor PR-619 is a Potent DNA Topoisomerase II Poison. Mol Pharmacol 2019; 96:562-572. [PMID: 31515282 PMCID: PMC6776009 DOI: 10.1124/mol.119.117390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022] Open
Abstract
2,6-Diaminopyridine-3,5-bis(thiocyanate) (PR-619) is a broad-spectrum deubiquitinating enzyme (DUB) inhibitor that has been employed in cell-based studies as a tool to investigate the role of ubiquitination in various cellular processes. Here, we demonstrate that in addition to its action as a DUB inhibitor, PR-619 is a potent DNA topoisomerase II (TOP2) poison, inducing both DNA topoisomerase IIα (TOP2A) and DNA topoisomerase IIβ (TOP2B) covalent DNA complexes with similar efficiency to the archetypal TOP2 poison etoposide. However, in contrast to etoposide, which induces TOP2-DNA complexes with a pan-nuclear distribution, PR-619 treatment results in nucleolar concentration of TOP2A and TOP2B. Notably, neither the induction of TOP2-DNA covalent complexes nor their nucleolar concentration are due to TOP2 hyperubiquitination since both occur even under conditions of depleted ubiquitin. Like etoposide, since PR-619 affected TOP2 enzyme activity in in vitro enzyme assays as well as in live cells, we conclude that PR-619 interacts directly with TOP2A and TOP2B. The concentration at which PR-619 exhibits robust cellular DUB inhibitor activity (5-20 μM) is similar to the lowest concentration at which TOP2 poison activity was detected (above 20 μM), which suggests that caution should be exercised when employing this DUB inhibitor in cell-based studies.
Collapse
Affiliation(s)
- Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Elise M Ling
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca L Swan
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Matilda L W Brooks
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
218
|
Bio-Guided Fractionation of Ethanol Extract of Leaves of Esenbeckia alata Kunt (Rutaceae) Led to the Isolation of Two Cytotoxic Quinoline Alkaloids: Evidence of Selectivity Against Leukemia Cells. Biomolecules 2019; 9:biom9100585. [PMID: 31597257 PMCID: PMC6843300 DOI: 10.3390/biom9100585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Bio-guided fractionation performed on the leaves-derived ethanol extract of Esenbeckia alata (Rutaceae), a plant used in traditional medicine, led to the isolation of two alkaloids, kokusaginine 1 and flindersiamine 2, as main cytotoxic agents. Primary ethanolic extract and raw fractions exhibited cell inhibition against five cancer cell lines at different levels (25-97% inhibition at 50 µg/mL) as well as isolated alkaloids 1-2 (30-90% inhibition at 20 µM). Although alkaloid 2 generally was the most active compound, both alkaloids showed a selective effect on K562, a human chronic myelogenous leukemia cell line. The E1-like ubiquitin-activating enzymes (e.g., UBA5) have been recently described as important targets for future treatment of cancer progression, such as leukemia, among others. Therefore, as a rationale to the observed cytotoxic selectivity, an in-silico evaluation by molecular docking and molecular dynamics was also explored. Compounds 1-2 exhibited good performance on the interaction within the active site of UBA5.
Collapse
|
219
|
Lear TB, Lockwood KC, Ouyang Y, Evankovich JW, Larsen MB, Lin B, Liu Y, Chen BB. The RING-type E3 ligase RNF186 ubiquitinates Sestrin-2 and thereby controls nutrient sensing. J Biol Chem 2019; 294:16527-16534. [PMID: 31586034 DOI: 10.1074/jbc.ac119.010671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/27/2019] [Indexed: 12/22/2022] Open
Abstract
Nutrient sensing is a critical cellular process controlling metabolism and signaling. mTOR complex 1 (mTORC1) is the primary signaling hub for nutrient sensing and, when activated, stimulates anabolic processes while decreasing autophagic flux. mTORC1 receives nutrient status signals from intracellular amino acid sensors. One of these sensors, Sestrin-2, functions as an intracellular sensor of cytosolic leucine and inhibitor of mTORC1 activity. Genetic studies of Sestrin-2 have confirmed its critical role in regulating mTORC1 activity, especially in the case of leucine starvation. Sestrin-2 is known to be transcriptionally controlled by several mechanisms; however, the post-translational proteolytic regulation of Sestrin-2 remains unclear. Here, we explored how Sestrin-2 is regulated through the ubiquitin proteasome system. Using an unbiased screening approach of an siRNA library targeting ubiquitin E3 ligases, we identified a RING-type E3 ligase, ring finger protein 186 (RNF186), that critically mediates the Sestrin-2 ubiquitination and degradation. We observed that RNF186 and Sestrin-2 bind each other through distinct C-terminal motifs and that Lys-13 in Sestrin-2 is a putative ubiquitin acceptor site. RNF186 knockdown increased Sestrin-2 protein levels and decreased mTORC1 activation. These results reveal a new mechanism of E3 ligase control of mTORC1 activity through the RNF186-Sestrin-2 axis, suggesting that RNF186 inhibition may be a potential strategy to increase levels of the mTORC1 inhibitor Sestrin-2.
Collapse
Affiliation(s)
- Travis B Lear
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.,Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Karina C Lockwood
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yurong Ouyang
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - John W Evankovich
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.,Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mads B Larsen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Bo Lin
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yuan Liu
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 .,Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Bill B Chen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 .,Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.,Vascular Medicine Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
220
|
Multilevel structure-activity profiling reveals multiple green tea compound families that each modulate ubiquitin-activating enzyme and ubiquitination by a distinct mechanism. Sci Rep 2019; 9:12801. [PMID: 31488855 PMCID: PMC6728334 DOI: 10.1038/s41598-019-48888-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
We developed and implemented a reconstituted system to screen for modulators of the ubiquitination of proliferating cell nuclear antigen, a process that activates pathways of DNA damage tolerance and drug resistance. We identified the primary putatively health-beneficial green tea polyphenol epigallocatechin gallate (EGCG) and certain related small molecules as potent inhibitors of ubiquitination. EGCG directly and reversibly targets the ubiquitin-activating enzyme Uba1, blocking formation of the Uba1~ubiquitin thioester conjugate and thus ubiquitination and in the cell. Structure–activity relationship profiles across multiple biochemical and cellular assays for a battery of EGCG analogues revealed distinct chemical and mechanism-of-action clusters of molecules, with catechin gallates, alkyl gallates, and myricetin potently inhibiting ubiquitination. This study defines a number of related though distinct first-in-class inhibitors of ubiquitination, each series with its own unique activity pattern and mechanistic signature.
Collapse
|
221
|
Kabir S, Cidado J, Andersen C, Dick C, Lin PC, Mitros T, Ma H, Baik SH, Belmonte MA, Drew L, Corn JE. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells. eLife 2019; 8:e44288. [PMID: 31294695 PMCID: PMC6701926 DOI: 10.7554/elife.44288] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Overexpression of anti-apoptotic proteins MCL1 and Bcl-xL are frequently observed in many cancers. Inhibitors targeting MCL1 are in clinical development, however numerous cancer models are intrinsically resistant to this approach. To discover mechanisms underlying resistance to MCL1 inhibition, we performed multiple flow-cytometry based genome-wide CRISPR screens interrogating two drugs that directly (MCL1i) or indirectly (CDK9i) target MCL1. Remarkably, both screens identified three components (CUL5, RNF7 and UBE2F) of a cullin-RING ubiquitin ligase complex (CRL5) that resensitized cells to MCL1 inhibition. We find that levels of the BH3-only pro-apoptotic proteins Bim and Noxa are proteasomally regulated by the CRL5 complex. Accumulation of Noxa caused by depletion of CRL5 components was responsible for re-sensitization to CDK9 inhibitor, but not MCL1 inhibitor. Discovery of a novel role of CRL5 in apoptosis and resistance to multiple types of anticancer agents suggests the potential to improve combination treatments.
Collapse
Affiliation(s)
- Shaheen Kabir
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoUnited States
| | - Justin Cidado
- Bioscience Oncology, IMED Biotech UnitAstraZenecaWalthamUnited States
| | - Courtney Andersen
- Bioscience Oncology, IMED Biotech UnitAstraZenecaWalthamUnited States
| | - Cortni Dick
- Bioscience Oncology, IMED Biotech UnitAstraZenecaWalthamUnited States
| | - Pei-Chun Lin
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Therese Mitros
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Hong Ma
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Seung Hyun Baik
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Lisa Drew
- Bioscience Oncology, IMED Biotech UnitAstraZenecaWalthamUnited States
| | - Jacob E Corn
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
222
|
Peterson AR, Binder DK. Post-translational Regulation of GLT-1 in Neurological Diseases and Its Potential as an Effective Therapeutic Target. Front Mol Neurosci 2019; 12:164. [PMID: 31338020 PMCID: PMC6629900 DOI: 10.3389/fnmol.2019.00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/14/2019] [Indexed: 12/12/2022] Open
Abstract
Glutamate transporter-1 (GLT-1) is a Na+-dependent transporter that plays a key role in glutamate homeostasis by removing excess glutamate in the central nervous system (CNS). GLT-1 dysregulation occurs in various neurological diseases including Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and epilepsy. Downregulation or dysfunction of GLT-1 has been a common finding across these diseases but how this occurs is still under investigation. This review aims to highlight post-translational regulation of GLT-1 which leads to its downregulation including sumoylation, palmitoylation, nitrosylation, ubiquitination, and subcellular localization. Various therapeutic interventions to restore GLT-1, their proposed mechanism of action and functional effects will be examined as potential treatments to attenuate the neurological symptoms associated with loss or downregulation of GLT-1.
Collapse
Affiliation(s)
- Allison R Peterson
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
223
|
Sha Z, Blyszcz T, González-Prieto R, Vertegaal ACO, Goldberg AL. Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem 2019; 294:15218-15234. [PMID: 31285264 PMCID: PMC6802522 DOI: 10.1074/jbc.ra119.009147] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/21/2019] [Indexed: 12/31/2022] Open
Abstract
Protein ubiquitination and SUMOylation are required for the maintenance of cellular protein homeostasis, and both increase in proteotoxic conditions (e.g. heat shock or proteasome inhibition). However, we found that when ubiquitination was blocked in several human cell lines by inhibiting the ubiquitin-activating enzyme with TAK243, there was an unexpected, large accumulation of proteins modified by SUMO2/3 chains or SUMO1, but not by several other ubiquitin-like proteins. This buildup of SUMOylated proteins was evident within 3–4 h. It required the small ubiquitin-like modifier (SUMO)-conjugating enzyme, UBC9, and the promyelocytic leukemia protein (PML) and thus was not due to nonspecific SUMO conjugation by ubiquitination enzymes. The SUMOylated proteins accumulated predominantly bound to chromatin and were localized to PML nuclear bodies. Because blocking protein synthesis with cycloheximide prevented the buildup of SUMOylated proteins, they appeared to be newly-synthesized proteins. The proteins SUMOylated after inhibition of ubiquitination were purified and analyzed by MS. In HeLa and U2OS cells, there was a cycloheximide-sensitive increase in a similar set of SUMOylated proteins (including transcription factors and proteins involved in DNA damage repair). Surprisingly, the inhibition of ubiquitination also caused a cycloheximide-sensitive decrease in a distinct set of SUMOylated proteins (including proteins for chromosome modification and mRNA splicing). More than 80% of the SUMOylated proteins whose levels rose or fell upon inhibiting ubiquitination inhibition underwent similar cycloheximide-sensitive increases or decreases upon proteasome inhibition. Thus, when nuclear substrates of the ubiquitin–proteasome pathway are not efficiently degraded, many become SUMO-modified and accumulate in PML bodies.
Collapse
Affiliation(s)
- Zhe Sha
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tamara Blyszcz
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
224
|
Urano Y, Ho Vo DK, Hirofumi A, Noguchi N. 24( S)-Hydroxycholesterol induces ER dysfunction-mediated unconventional cell death. Cell Death Discov 2019; 5:113. [PMID: 31285856 PMCID: PMC6611791 DOI: 10.1038/s41420-019-0192-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress induced by disruption of protein folding activates the unfolded protein response (UPR), which while generally pro-survival in effect can also induce cell death under severe ER stress. 24(S)-hydroxycholesterol (24S-OHC), which is enzymatically produced in the ER of neurons, plays an important role in maintaining brain cholesterol homeostasis but also shows neurotoxicity when subjected to esterification by acyl-CoA:cholesterol acyltransferase 1 (ACAT1) in the ER. In this study, we demonstrated that the accumulation of 24S-OHC esters in human neuroblastoma SH-SY5Y cells evoked the UPR with substantially no pro-survival adaptive response but with significant activation of pro-death UPR signaling via regulated IRE1-dependent decay (RIDD). We further found that accumulation of 24S-OHC esters caused disruption of ER membrane integrity and release of ER luminal proteins into cytosol. We also found that de novo synthesis of global proteins was robustly suppressed in 24S-OHC-treated cells. Collectively, these results show that ER dysfunction and the accompanying RIDD-mediated pro-death UPR signaling and global protein synthesis inhibition are responsible for 24S-OHC ester-induced unconventional cell death.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394 Japan
| | - Diep-Khanh Ho Vo
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394 Japan
| | - Araki Hirofumi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394 Japan
| | - Noriko Noguchi
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394 Japan
| |
Collapse
|
225
|
Abstract
Posttranslational protein modification by ubiquitin (Ub) regulates aspects of biology, including protein turnover and the cell cycle. Proteins and enzymes that promote Ub conjugation are therapeutic targets because they are sometimes dysregulated in cancer, neurodegenerative diseases, and other disorders. Ub conjugation is initiated by a Ub-activating enzyme that adopts different conformations to catalyze Ub activation, Ub-activating enzyme thioester bond formation, and thioester bond transfer to Ub-conjugating enzymes. Here, we illuminate 2 uncharacterized states for Ub-activating enzyme, one bound to pyrophosphate prior to thioester bond formation and one captured during thioester bond formation. These structures reveal key differences and similarities among activating enzymes for Ub and SUMO with respect to conformational changes that accompany thioester formation. The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation. Several structures are available for Ub E1s, but none has been reported in the open state before pyrophosphate release or in the closed state. Here, we describe the structures of Schizosaccharomyces pombe Ub E1 in these two states, captured using semisynthetic Ub probes. In the first, with a Ub-adenylate mimetic (Ub-AMSN) bound, the E1 is in an open conformation before release of pyrophosphate. In the second, with a Ub-vinylsulfonamide (Ub-AVSN) bound covalently to the catalytic cysteine, the E1 is in a closed conformation required for thioester bond formation. These structures provide further insight into Ub E1 adenylation and thioester bond formation. Conformational changes that accompany Cys-domain rotation are conserved for SUMO and Ub E1s, but changes in Ub E1 involve additional surfaces as mutational and biochemical analysis of residues within these surfaces alter Ub E1 activities.
Collapse
|
226
|
Shaping Striated Muscles with Ubiquitin Proteasome System in Health and Disease. Trends Mol Med 2019; 25:760-774. [PMID: 31235369 DOI: 10.1016/j.molmed.2019.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/03/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
For long-lived contractile cells, such as striated muscle cells, maintaining proteome integrity is a challenging task. These cells require hundreds of components that must be properly synthesized, folded, and incorporated into the basic contractile unit, the sarcomere. Muscle protein quality control in cells is mainly guaranteed by the ubiquitin-proteasome system (UPS), the lysosome-autophagy system, and various molecular chaperones. Recent studies establish the concept of dedicated UPS in the regulation of sarcomere assembly during development and in adult life to maintain the intricate and interwoven organization of protein complexes in muscle. Failure of sarcomere protein quality control often represents the basis of severe myopathies and cardiomyopathies in human, further highlighting its importance in producing and maintaining the contractile machinery of muscle cells in shape.
Collapse
|
227
|
Affiliation(s)
- Michael J. Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ellen Yeh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
228
|
Best S, Liu T, Bruss N, Kittai A, Berger A, Danilov AV. Pharmacologic inhibition of the ubiquitin-activating enzyme induces ER stress and apoptosis in chronic lymphocytic leukemia and ibrutinib-resistant mantle cell lymphoma cells. Leuk Lymphoma 2019; 60:2946-2950. [PMID: 31111763 DOI: 10.1080/10428194.2019.1616190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
With the advent of proteasome inhibitors (bortezomib) and pleiotropic pathway modulators which target cereblon E3 ligase (lenalidomide), the ubiquitin-proteasome system has emerged as a tractable target in non-Hodgkin lymphoma and multiple myeloma. Here we report that TAK-243, a small molecule inhibitor of the ubiquitin-activating enzyme (UAE), induced ER stress and the unfolded protein response in primary chronic lymphocytic leukemia cells, facilitating cell death. Moreover, targeting UAE was effective in ibrutinib-resistant mantle cell lymphoma cell lines and primary cells in vitro. Thus, UAE is a promising target in lymphoid malignancies, including ibrutinib-resistant lymphomas, an area of unmet medical need.
Collapse
Affiliation(s)
- Scott Best
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Tingting Liu
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Nur Bruss
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Adam Kittai
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Allison Berger
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA, USA
| | - Alexey V Danilov
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
229
|
Yoshimura C, Muraoka H, Ochiiwa H, Tsuji S, Hashimoto A, Kazuno H, Nakagawa F, Komiya Y, Suzuki S, Takenaka T, Kumazaki M, Fujita N, Mizutani T, Ohkubo S. TAS4464, A Highly Potent and Selective Inhibitor of NEDD8-Activating Enzyme, Suppresses Neddylation and Shows Antitumor Activity in Diverse Cancer Models. Mol Cancer Ther 2019; 18:1205-1216. [PMID: 31092565 DOI: 10.1158/1535-7163.mct-18-0644] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/23/2018] [Accepted: 05/08/2019] [Indexed: 11/16/2022]
Abstract
NEDD8-activating enzyme (NAE) is an essential E1 enzyme of the NEDD8 conjugation (neddylation) pathway, which controls cancer cell growth and survival through activation of cullin-RING ubiquitin ligase complexes (CRL). In this study, we describe the preclinical profile of a novel, highly potent, and selective NAE inhibitor, TAS4464. TAS4464 selectively inhibited NAE relative to the other E1s UAE and SAE. TAS4464 treatment inhibited cullin neddylation and subsequently induced the accumulation of CRL substrates such as CDT1, p27, and phosphorylated IκBα in human cancer cell lines. TAS4464 showed greater inhibitory effects than those of the known NAE inhibitor MLN4924 both in enzyme assay and in cells. Cytotoxicity profiling revealed that TAS4464 is highly potent with widespread antiproliferative activity not only for cancer cell lines, but also patient-derived tumor cells. TAS4464 showed prolonged target inhibition in human tumor xenograft mouse models; weekly or twice a week TAS4464 administration led to prominent antitumor activity in multiple human tumor xenograft mouse models including both hematologic and solid tumors without marked weight loss. As a conclusion, TAS4464 is the most potent and highly selective NAE inhibitor reported to date, showing superior antitumor activity with prolonged target inhibition. It is, therefore, a promising agent for the treatment of a variety of tumors including both hematologic and solid tumors. These results support the clinical evaluation of TAS4464 in hematologic and solid tumors.
Collapse
Affiliation(s)
- Chihoko Yoshimura
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan.
| | - Hiromi Muraoka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Hiroaki Ochiiwa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Shingo Tsuji
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Akihiro Hashimoto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Hiromi Kazuno
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Fumio Nakagawa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Yu Komiya
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Satoshi Suzuki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Toru Takenaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Masafumi Kumazaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Naoya Fujita
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Takashi Mizutani
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd, Tsukuba, Japan
| |
Collapse
|
230
|
Markmiller S, Fulzele A, Higgins R, Leonard M, Yeo GW, Bennett EJ. Active Protein Neddylation or Ubiquitylation Is Dispensable for Stress Granule Dynamics. Cell Rep 2019; 27:1356-1363.e3. [PMID: 31042464 PMCID: PMC6508666 DOI: 10.1016/j.celrep.2019.04.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/26/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Stress granule (SG) formation is frequently accompanied by ubiquitin proteasome system (UPS) impairment and ubiquitylated protein accumulation. SGs, ubiquitin, and UPS components co-localize, but the relationship between the ubiquitin pathway and SGs has not been systematically characterized. We utilize pharmacological inhibition of either the ubiquitin- or NEDD8-activating enzyme (UAE or NAE) to probe whether active ubiquitylation or neddylation modulate SG dynamics. We show that UAE inhibition results in rapid loss of global protein ubiquitylation using ubiquitin-specific proteomics. Critically, inhibiting neither UAE nor NAE significantly affected SG formation or disassembly, indicating that active protein ubiquitylation or neddylation is dispensable for SG dynamics. Using antibodies with varying preference for free ubiquitin or polyubiquitin and fluorescently tagged ubiquitin variants in combination with UAE inhibition, we show that SGs co-localize primarily with unconjugated ubiquitin rather than polyubiquitylated proteins. These findings clarify the role of ubiquitin in SG biology and suggest that free ubiquitin may alter SG protein interactions.
Collapse
Affiliation(s)
- Sebastian Markmiller
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amit Fulzele
- Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reneé Higgins
- Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marilyn Leonard
- Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Eric J Bennett
- Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
231
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
232
|
Zhuang J, Shirazi F, Singh RK, Kuiatse I, Wang H, Lee HC, Berkova Z, Berger A, Hyer M, Chattopadhyay N, Syed S, Shi JQ, Yu J, Shinde V, Tirrell S, Jones RJ, Wang Z, Davis RE, Orlowski RZ. Ubiquitin-activating enzyme inhibition induces an unfolded protein response and overcomes drug resistance in myeloma. Blood 2019; 133:1572-1584. [PMID: 30737236 PMCID: PMC6450433 DOI: 10.1182/blood-2018-06-859686] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Three proteasome inhibitors have garnered regulatory approvals in various multiple myeloma settings; but drug resistance is an emerging challenge, prompting interest in blocking upstream components of the ubiquitin-proteasome pathway. One such attractive target is the E1 ubiquitin-activating enzyme (UAE); we therefore evaluated the activity of TAK-243, a novel and specific UAE inhibitor. TAK-243 potently suppressed myeloma cell line growth, induced apoptosis, and activated caspases while decreasing the abundance of ubiquitin-protein conjugates. This was accompanied by stabilization of many short-lived proteins, including p53, myeloid cell leukemia 1 (MCL-1), and c-MYC, and activation of the activating transcription factor 6 (ATF-6), inositol-requiring enzyme 1 (IRE-1), and protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK) arms of the ER stress response pathway, as well as oxidative stress. UAE inhibition showed comparable activity against otherwise isogenic cell lines with wild-type (WT) or deleted p53 despite induction of TP53 signaling in WT cells. Notably, TAK-243 overcame resistance to conventional drugs and novel agents in cell-line models, including bortezomib and carfilzomib resistance, and showed activity against primary cells from relapsed/refractory myeloma patients. In addition, TAK-243 showed strong synergy with a number of antimyeloma agents, including doxorubicin, melphalan, and panobinostat as measured by low combination indices. Finally, TAK-243 was active against a number of in vivo myeloma models in association with activation of ER stress. Taken together, the data support the conclusion that UAE inhibition could be an attractive strategy to move forward to the clinic for patients with relapsed and/or refractory multiple myeloma.
Collapse
Affiliation(s)
- Junling Zhuang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Fazal Shirazi
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ram Kumar Singh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Isere Kuiatse
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hua Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zuzana Berkova
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Allison Berger
- Millennium Pharmaceuticals, Inc, a subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA; and
| | - Marc Hyer
- Millennium Pharmaceuticals, Inc, a subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA; and
| | - Nibedita Chattopadhyay
- Millennium Pharmaceuticals, Inc, a subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA; and
| | - Sakeena Syed
- Millennium Pharmaceuticals, Inc, a subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA; and
| | - Judy Qiuju Shi
- Millennium Pharmaceuticals, Inc, a subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA; and
| | - Jie Yu
- Millennium Pharmaceuticals, Inc, a subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA; and
| | - Vaishali Shinde
- Millennium Pharmaceuticals, Inc, a subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA; and
| | - Stephen Tirrell
- Millennium Pharmaceuticals, Inc, a subsidiary of Takeda Pharmaceutical Company Limited, Cambridge, MA; and
| | - Richard Julian Jones
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - R Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
233
|
Boucher MJ, Yeh E. Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites. mSphere 2019; 4:e00710-18. [PMID: 30674649 PMCID: PMC6344605 DOI: 10.1128/msphere.00710-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/20/2022] Open
Abstract
Malaria parasites (Plasmodium spp.) contain a nonphotosynthetic plastid organelle called the apicoplast, which houses essential metabolic pathways and is required throughout the parasite life cycle. The biogenesis pathways responsible for apicoplast growth, division, and inheritance are of key interest as potential drug targets. Unfortunately, several known apicoplast biogenesis inhibitors are of limited clinical utility because they cause a peculiar "delayed-death" phenotype in which parasites do not stop replicating until the second lytic cycle posttreatment. Identifying apicoplast biogenesis pathways that avoid the delayed-death phenomenon is a priority. Here, we generated parasites targeting a murine dihydrofolate reductase (mDHFR) domain, which can be conditionally stabilized with the compound WR99210, to the apicoplast. Surprisingly, chemical stabilization of this exogenous fusion protein disrupted parasite growth in an apicoplast-specific manner after a single lytic cycle. WR99210-treated parasites exhibited an apicoplast biogenesis defect beginning within the same lytic cycle as drug treatment, indicating that stabilized mDHFR perturbs a non-delayed-death biogenesis pathway. While the precise mechanism-of-action of the stabilized fusion is still unclear, we hypothesize that it inhibits apicoplast protein import by stalling within and blocking translocons in the apicoplast membranes.IMPORTANCE Malaria is a major cause of global childhood mortality. To sustain progress in disease control made in the last decade, new antimalarial therapies are needed to combat emerging drug resistance. Malaria parasites contain a relict chloroplast called the apicoplast, which harbors new targets for drug discovery. Unfortunately, some drugs targeting apicoplast pathways exhibit a delayed-death phenotype, which results in a slow onset-of-action that precludes their use as fast-acting, frontline therapies. Identification of druggable apicoplast biogenesis factors that will avoid the delayed-death phenotype is an important priority. Here, we find that chemical stabilization of an apicoplast-targeted mDHFR domain disrupts apicoplast biogenesis and inhibits parasite growth after a single lytic cycle, suggesting a non-delayed-death target. Our finding indicates that further interrogation of the mechanism-of-action of this exogenous fusion protein may reveal novel therapeutic avenues.
Collapse
Affiliation(s)
- Michael J Boucher
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
| | - Ellen Yeh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
234
|
From Discovery to Bedside: Targeting the Ubiquitin System. Cell Chem Biol 2018; 26:156-177. [PMID: 30554913 DOI: 10.1016/j.chembiol.2018.10.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/21/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
The ubiquitin/proteasome system is a primary conduit for selective intracellular protein degradation. Since its discovery over 30 years ago, this highly regulated system continues to be an active research area for drug discovery that is exemplified by several approved drugs. Here we review compounds in preclinical testing, clinical trials, and approved drugs, with the aim of highlighting innovative discoveries and breakthrough therapies that target the ubiquitin system.
Collapse
|
235
|
Lv Z, Yuan L, Atkison JH, Williams KM, Vega R, Sessions EH, Divlianska DB, Davies C, Chen Y, Olsen SK. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun 2018; 9:5145. [PMID: 30514846 PMCID: PMC6279746 DOI: 10.1038/s41467-018-07015-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022] Open
Abstract
E1 enzymes activate ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) in the first step of Ub/Ubl conjugation cascades and represent potential targets for therapeutic intervention in cancer and other life-threatening diseases. Here, we report the crystal structure of the E1 enzyme for the Ubl SUMO in complex with a recently discovered and highly specific covalent allosteric inhibitor (COH000). The structure reveals that COH000 targets a cryptic pocket distinct from the active site that is completely buried in all previous SUMO E1 structures and that COH000 binding to SUMO E1 is accompanied by a network of structural changes that altogether lock the enzyme in a previously unobserved inactive conformation. These structural changes include disassembly of the active site and a 180° rotation of the catalytic cysteine-containing SCCH domain, relative to conformational snapshots of SUMO E1 poised to catalyze adenylation. Altogether, our study provides a molecular basis for the inhibitory mechanism of COH000 and its SUMO E1 specificity, and also establishes a framework for potential development of molecules targeting E1 enzymes for other Ubls at a cryptic allosteric site.
Collapse
Affiliation(s)
- Zongyang Lv
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Lingmin Yuan
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - James H Atkison
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Katelyn M Williams
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Ramir Vega
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, 91010, CA, USA
| | - E Hampton Sessions
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, 32827, FL, USA
| | - Daniela B Divlianska
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, 32827, FL, USA
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA
| | - Yuan Chen
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, 91010, CA, USA.
| | - Shaun K Olsen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, 29425, SC, USA.
| |
Collapse
|
236
|
Li X, Elmira E, Rohondia S, Wang J, Liu J, Dou QP. A patent review of the ubiquitin ligase system: 2015-2018. Expert Opin Ther Pat 2018; 28:919-937. [PMID: 30449221 DOI: 10.1080/13543776.2018.1549229] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Ubiquitin-proteasome system (UPS) has been validated as a novel anticancer drug target in the past 20 years. The UPS contains two distinct steps: ubiquitination of a substrate protein by ubiquitin activating enzyme (E1), ubiquitin conjugating enzyme (E2), and ubiquitin ligase (E3), and substrate degradation by the 26S proteasome complex. The E3 enzyme is the central player in the ubiquitination step and has a wide range of specific substrates in cancer cells, offering great opportunities for discovery and development of selective drugs. Areas covered: This review summarizes the recent advances in small molecule inhibitors of E1s, E2s, and E3s, with a focus on the latest patents (from 2015 to 2018) of E3 inhibitors and modulators. Expert opinion: One strategy to overcome limitations of current 20S proteasome inhibitors is to discover inhibitors of the upstream key components of the UPS, such as E3 enzymes. E3s play important roles in cancer development and determine the specificity of substrate ubiquitination, offering novel target opportunities. E3 modulators could be developed by rational design, natural compound or library screening, old drug repurposes, and application of other novel technologies. Further understanding of mechanisms of E3-substrate interaction will be essential for discovering and developing next-generation E3 inhibitors as effective anticancer drugs.
Collapse
Affiliation(s)
- Xin Li
- a Department of Biotechnology , Guangdong Polytechnic of Science and Trade , Guangzhou , Guangdong , China.,b Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering , South China University of Technology , Guangzhou , Guangdong , China.,c Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine , Wayne State University , Detroit , MI , USA
| | - Ekinci Elmira
- c Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine , Wayne State University , Detroit , MI , USA
| | - Sagar Rohondia
- c Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine , Wayne State University , Detroit , MI , USA
| | - Jicang Wang
- c Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine , Wayne State University , Detroit , MI , USA.,d College of Animal Science and Technology , Henan University of Science and Technology , Luoyang , China
| | - Jinbao Liu
- e Protein Modification and Degradation Lab, School of Basic Medical Sciences , Affiliated Tumor Hospital of Guangzhou Medical University , Guangzhou , China
| | - Q Ping Dou
- c Barbara Ann Karmanos Cancer Institute, and Departments of Oncology, Pharmacology and Pathology, School of Medicine , Wayne State University , Detroit , MI , USA.,e Protein Modification and Degradation Lab, School of Basic Medical Sciences , Affiliated Tumor Hospital of Guangzhou Medical University , Guangzhou , China
| |
Collapse
|
237
|
Lv Z, Williams KM, Yuan L, Atkison JH, Olsen SK. Crystal structure of a human ubiquitin E1-ubiquitin complex reveals conserved functional elements essential for activity. J Biol Chem 2018; 293:18337-18352. [PMID: 30279270 PMCID: PMC6254350 DOI: 10.1074/jbc.ra118.003975] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/24/2018] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin (Ub) signaling plays a key regulatory role in nearly every aspect of eukaryotic biology and is initiated by E1 enzymes that activate and transfer Ub to E2 Ub-conjugating enzymes. Despite Ub E1's fundamental importance to the cell and its attractiveness as a target for therapeutic intervention in cancer and other diseases, its only available structural information is derived from yeast orthologs of human ubiquitin-like modifier-activating enzyme 1 (hUBA1). To illuminate structural differences between yeast and hUBA1 structures that might be exploited for the development of small-molecule therapeutics, we determined the first crystal structure of a hUBA1-Ub complex. Using structural analysis, molecular modeling, and biochemical analysis, we demonstrate that hUBA1 shares a conserved overall structure and mechanism with previously characterized yeast orthologs, but displays subtle structural differences, particularly within the active site. Computational analysis revealed four potential ligand-binding hot spots on the surface of hUBA1 that might serve as targets to inhibit hUBA1 at the level of Ub activation or E2 recruitment or that might potentially be used in approaches such as protein-targeting chimeric molecules. Taken together, our work enhances our understanding of the hUBA1 mechanism, provides an improved framework for the development of small-molecule inhibitors of UBA1, and serves as a stepping stone for structural studies that involve the enzymes of the human Ub system at the level of both E1 and E2.
Collapse
Affiliation(s)
- Zongyang Lv
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Katelyn M Williams
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lingmin Yuan
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - James H Atkison
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shaun K Olsen
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
238
|
Downey-Kopyscinski S, Daily EW, Gautier M, Bhatt A, Florea BI, Mitsiades CS, Richardson PG, Driessen C, Overkleeft HS, Kisselev AF. An inhibitor of proteasome β2 sites sensitizes myeloma cells to immunoproteasome inhibitors. Blood Adv 2018; 2:2443-2451. [PMID: 30266819 PMCID: PMC6177641 DOI: 10.1182/bloodadvances.2018016360] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/18/2018] [Indexed: 12/22/2022] Open
Abstract
Proteasome inhibitors bortezomib, carfilzomib and ixazomib (approved by the US Food and Drug Administration [FDA]) induce remissions in patients with multiple myeloma (MM), but most patients eventually become resistant. MM and other hematologic malignancies express ubiquitous constitutive proteasomes and lymphoid tissue-specific immunoproteasomes; immunoproteasome expression is increased in resistant patients. Immunoproteasomes contain 3 distinct pairs of active sites, β5i, β1i, and β2i, which are different from their constitutive β5c, β1c, and β2c counterparts. Bortezomib and carfilzomib block β5c and β5i sites. We report here that pharmacologically relevant concentrations of β5i-specific inhibitor ONX-0914 show cytotoxicity in MM cell lines similar to that of carfilzomib and bortezomib. In addition, increasing immunoproteasome expression by interferon-γ increases sensitivity to ONX-0914 but not to carfilzomib. LU-102, an inhibitor of β2 sites, dramatically sensitizes MM cell lines and primary cells to ONX-0914. ONX-0914 synergizes with all FDA-approved proteasome inhibitors in MM in vitro and in vivo. Thus, immunoproteasome inhibitors, currently in clinical trials for the treatment of autoimmune diseases, should also be considered for the treatment of MM.
Collapse
Affiliation(s)
- Sondra Downey-Kopyscinski
- Program in Experimental and Molecular Medicine and
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
- Dana-Farber Cancer Institute, Boston MA
| | - Ellen W Daily
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Marc Gautier
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Ananta Bhatt
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Bogdan I Florea
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden University, Leiden, The Netherlands
| | | | | | - Christoph Driessen
- Department of Hematology and Oncology, Kantonsspital St. Gallen, St. Gallen, Switzerland; and
| | - Herman S Overkleeft
- Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden University, Leiden, The Netherlands
| | - Alexei F Kisselev
- Department of Medicine and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, NH
- Veterans Affairs Medical Center, White River Junction, VT
| |
Collapse
|
239
|
Barghout SH, Schimmer AD. The ubiquitin-activating enzyme, UBA1, as a novel therapeutic target for AML. Oncotarget 2018; 9:34198-34199. [PMID: 30344936 PMCID: PMC6188141 DOI: 10.18632/oncotarget.26153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
240
|
Monda JK, Cheeseman IM. Dynamic regulation of dynein localization revealed by small molecule inhibitors of ubiquitination enzymes. Open Biol 2018; 8:rsob.180095. [PMID: 30257893 PMCID: PMC6170511 DOI: 10.1098/rsob.180095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/29/2018] [Indexed: 11/27/2022] Open
Abstract
Cytoplasmic dynein is a minus-end-directed microtubule-based motor that acts at diverse subcellular sites. During mitosis, dynein localizes simultaneously to the mitotic spindle, spindle poles, kinetochores and the cell cortex. However, it is unclear what controls the relative targeting of dynein to these locations. As dynein is heavily post-translationally modified, we sought to test a role for these modifications in regulating dynein localization. We find that dynein rapidly and strongly accumulates at mitotic spindle poles following treatment with NSC697923, a small molecule that inhibits the ubiquitin E2 enzyme, Ubc13, or treatment with PYR-41, a ubiquitin E1 inhibitor. Subsets of dynein regulators such as Lis1, ZW10 and Spindly accumulate at the spindle poles, whereas others do not, suggesting that NSC697923 differentially affects specific dynein populations. We additionally find that dynein relocalization induced by NSC697923 or PYR-41 can be suppressed by simultaneous treatment with the non-selective deubiquitinase inhibitor, PR-619. However, we did not observe altered dynein localization following treatment with the selective E1 inhibitor, TAK-243. Although it is possible that off-target effects of NSC697923 and PYR-41 are responsible for the observed changes in dynein localization, the rapid relocalization upon drug treatment highlights the highly dynamic nature of dynein regulation during mitosis.
Collapse
Affiliation(s)
- Julie K Monda
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
241
|
Niazi S, Purohit M, Niazi JH. Role of p53 circuitry in tumorigenesis: A brief review. Eur J Med Chem 2018; 158:7-24. [PMID: 30199707 DOI: 10.1016/j.ejmech.2018.08.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
Maintenance of genome integrity under the stressed condition is paramount for normal functioning of cells in the multicellular organisms. Cells are programmed to protect their genome through specialized adaptive mechanisms which will help decide their fate under stressed conditions. These mechanisms are the outcome of activation of the intricate circuitries that are regulated by the p53 master protein. In this paper, we provided a comprehensive review on p53, p53 homologues and their isoforms, including a description about the ubiquitin-proteasome system emphasizing its role in p53 regulation. p53 induced E3(Ub)-ligases are an integral part of the ubiquitin-proteasome system. This review outlines the roles of important E3(Ub)-ligases and their splice variants in maintaining cellular p53 protein homeostasis. It also covers up-to-date and relevant information on small molecule Mdm2 inhibitors originated from different organizations. The review ends with a discussion on future prospects and investigation directives for the development of next-generation modulators as p53 therapeutics.
Collapse
Affiliation(s)
- Sarfaraj Niazi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Madhusudan Purohit
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy-Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Javed H Niazi
- Sabanci University SUNUM Nanotechnology Research Centre, TR-34956, Istanbul, Turkey
| |
Collapse
|
242
|
Yoshida GJ. Emerging roles of Myc in stem cell biology and novel tumor therapies. J Exp Clin Cancer Res 2018; 37:173. [PMID: 30053872 PMCID: PMC6062976 DOI: 10.1186/s13046-018-0835-y] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023] Open
Abstract
The pathophysiological roles and the therapeutic potentials of Myc family are reviewed in this article. The physiological functions and molecular machineries in stem cells, including embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, are clearly described. The c-Myc/Max complex inhibits the ectopic differentiation of both types of artificial stem cells. Whereas c-Myc plays a fundamental role as a "double-edged sword" promoting both iPS cells generation and malignant transformation, L-Myc contributes to the nuclear reprogramming with the significant down-regulation of differentiation-associated genetic expression. Furthermore, given the therapeutic resistance of neuroendocrine tumors such as small-cell lung cancer and neuroblastoma, the roles of N-Myc in difficult-to-treat tumors are discussed. N-Myc and p53 exhibit the co-localization in the nucleus and alter p53-dependent transcriptional responses which are necessary for DNA repair, anti-apoptosis, and lipid metabolic reprogramming. NCYM protein stabilizes N-Myc, resulting in the stimulation of Oct4 expression, while Oct4 induces both N-Myc and NCYM via direct transcriptional activation of N-Myc, [corrected] thereby leading to the enhanced metastatic potential. Importantly enough, accumulating evidence strongly suggests that c-Myc can be a promising therapeutic target molecule among Myc family in terms of the biological characteristics of cancer stem-like cells (CSCs). The presence of CSCs leads to the intra-tumoral heterogeneity, which is mainly responsible for the therapeutic resistance. Mechanistically, it has been shown that Myc-induced epigenetic reprogramming enhances the CSC phenotypes. In this review article, the author describes two major therapeutic strategies of CSCs by targeting c-Myc; Firstly, Myc-dependent metabolic reprogramming is closely related to CD44 variant-dependent redox stress regulation in CSCs. It has been shown that c-Myc increases NADPH production via enhanced glutaminolysis with a finely-regulated mechanism. Secondly, the dormancy of CSCs due to FBW7-depedent c-Myc degradation pathway is also responsible for the therapeutic resistance to the conventional anti-tumor agents, the action points of which are largely dependent on the operation of the cell cycle. That is why the loss-of-functional mutations of FBW7 gene are expected to trigger "awakening" of dormant CSCs in the niche with c-Myc up-regulation. Collectively, although the further research is warranted to develop the effective anti-tumor therapeutic strategy targeting Myc family, we cancer researchers should always catch up with the current advances in the complex functions of Myc family in highly-malignant and heterogeneous tumor cells to realize the precision medicine.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
243
|
Ramachandran KV, Fu JM, Schaffer TB, Na CH, Delannoy M, Margolis SS. Activity-Dependent Degradation of the Nascentome by the Neuronal Membrane Proteasome. Mol Cell 2018; 71:169-177.e6. [PMID: 29979964 PMCID: PMC6070390 DOI: 10.1016/j.molcel.2018.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Activity-dependent changes in neuronal function require coordinated regulation of the protein synthesis and protein degradation machinery to maintain protein homeostasis, critical for proper neuronal function. However, the biochemical evidence for this balance and coordination is largely lacking. Leveraging our recent discovery of a neuronal-specific 20S membrane proteasome complex (NMP), we began exploring how neuronal activity regulates its function. Here, we found that the NMP degrades exclusively a large fraction of ribosome-associated nascent polypeptides that are being newly synthesized during neuronal stimulation. Using deep-coverage and global mass spectrometry, we identified the nascent protein substrates of the NMP, which included products encoding immediate-early genes, such as c-Fos and Npas4. Intriguingly, we found that turnover of nascent polypeptides and not full-length proteins through the NMP occurred independent of canonical ubiquitylation pathways. We propose that these findings generally define a neuronal activity-induced protein homeostasis program of coordinated protein synthesis and degradation through the NMP.
Collapse
Affiliation(s)
- Kapil V Ramachandran
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Jack M Fu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Thomas B Schaffer
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Delannoy
- The Johns Hopkins University School of Medicine Microscope Facility, Baltimore, MD 21205, USA
| | - Seth S Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
244
|
Preclinical evaluation of the selective small-molecule UBA1 inhibitor, TAK-243, in acute myeloid leukemia. Leukemia 2018; 33:37-51. [DOI: 10.1038/s41375-018-0167-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
|
245
|
Cuijpers SAG, Vertegaal ACO. Guiding Mitotic Progression by Crosstalk between Post-translational Modifications. Trends Biochem Sci 2018; 43:251-268. [PMID: 29486978 DOI: 10.1016/j.tibs.2018.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022]
Abstract
Cell division is tightly regulated to disentangle copied chromosomes in an orderly manner and prevent loss of genome integrity. During mitosis, transcriptional activity is limited and post-translational modifications (PTMs) are responsible for functional protein regulation. Essential mitotic regulators, including polo-like kinase 1 (PLK1) and cyclin-dependent kinases (CDK), as well as the anaphase-promoting complex/cyclosome (APC/C), are members of the enzymatic machinery responsible for protein modification. Interestingly, communication between PTMs ensures the essential tight and timely control during all consecutive phases of mitosis. Here, we present an overview of current concepts and understanding of crosstalk between PTMs regulating mitotic progression.
Collapse
Affiliation(s)
- Sabine A G Cuijpers
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
246
|
Itoh Y, Suzuki M. Design, synthesis, and biological evaluation of novel ubiquitin-activating enzyme inhibitors. Bioorg Med Chem Lett 2018; 28:2723-2727. [PMID: 29548576 DOI: 10.1016/j.bmcl.2018.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 01/22/2023]
Abstract
Ubiquitin-activating enzyme (E1), which catalyzes the activation of ubiquitin in the initial step of the ubiquitination cascade, is a potential therapeutic target in multiple myeloma and breast cancer treatment. However, only a few E1 inhibitors have been reported to date. Moreover, there has been little medicinal chemistry research on the three-dimensional structure of E1. Therefore, in the present study, we attempted to identify novel E1 inhibitors using structure-based drug design. Following the rational design, synthesis, and in vitro biological evaluation of several such compounds, we identified a reversible E1 inhibitor (4b). Compound 4b increased p53 levels in MCF-7 breast cancer cells and inhibited their growth. These findings suggest that reversible E1 inhibitors are potential anticancer agents.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan.
| | - Miki Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
247
|
|