201
|
Abstract
In this issue of Cell, McDonald et al. show that giant multinucleated, bone-resorbing osteoclasts dissolve into smaller cells, termed "osteopmorhs," which re-form into osteoclasts at distal bone sites (McDonald et al., 2021). These findings overturn the long-standing premise that osteoclasts differentiate solely from hematopoietic precursors and undergo apoptosis after completing resorption.
Collapse
|
202
|
Kalkitoxin Reduces Osteoclast Formation and Resorption and Protects against Inflammatory Bone Loss. Int J Mol Sci 2021; 22:ijms22052303. [PMID: 33669069 PMCID: PMC7956546 DOI: 10.3390/ijms22052303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts, bone-specified multinucleated cells produced by monocyte/macrophage, are involved in numerous bone destructive diseases such as arthritis, osteoporosis, and inflammation-induced bone loss. The osteoclast differentiation mechanism suggests a possible strategy to treat bone diseases. In this regard, we recently examined the in vivo impact of kalkitoxin (KT), a marine product obtained from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), on the macrophage colony-stimulating factor (M-CSF) and on the receptor activator of nuclear factor κB ligand (RANKL)-stimulated in vitro osteoclastogenesis and inflammation-mediated bone loss. We have now examined the molecular mechanism of KT in greater detail. KT decreased RANKL-induced bone marrow-derived macrophages (BMMs) tartrate-resistant acid phosphatase (TRAP)-multinucleated cells at a late stage. Likewise, KT suppressed RANKL-induced pit area and actin ring formation in BMM cells. Additionally, KT inhibited several RANKL-induced genes such as cathepsin K, matrix metalloproteinase (MMP-9), TRAP, and dendritic cell-specific transmembrane protein (DC-STAMP). In line with these results, RANKL stimulated both genes and protein expression of c-Fos and nuclear factor of activated T cells (NFATc1), and this was also suppressed by KT. Moreover, KT markedly decreased RANKL-induced p-ERK1/2 and p-JNK pathways at different time points. As a result, KT prevented inflammatory bone loss in mice, such as bone mineral density (BMD) and osteoclast differentiation markers. These experiments demonstrated that KT markedly inhibited osteoclast formation and inflammatory bone loss through NFATc1 and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, KT may have potential as a treatment for destructive bone diseases.
Collapse
|
203
|
Abstract
Hintergrund Die labordiagnostische Untersuchung stellt eine wichtige Möglichkeit zur Beurteilung und Optimierung der Leistungs- und Regenerationsfähigkeit professioneller Athleten dar. Ferner ist sie für die Prävention, Diagnostik und Rehabilitation von Verletzungen und Überbelastungen von Bedeutung. Fragestellung Ziel dieser Arbeit ist die Darstellung muskuloskelettaler laborchemischer Parameter, die relevante Erkenntnisse für die medizinische Betreuung von Leistungssportlern liefern. Material und Methoden Literaturrecherche und narratives Review. Ergebnisse Die Bestimmung des Vitamin-D-, Calcium- und Knochenstoffwechsels stellt die laborchemische Basisdiagnostik im Rahmen der Beurteilung des Skelettstatus mit zusätzlichem präventivem Nutzen bezüglich muskuloskelettaler Verletzungen dar. Ferner können muskuläre Serummarker, z. B. Laktatdehydrogenase (LDH), Kreatinkinase (CK), Myoglobin und Aspartat-Aminotransferase (ASAT), helfen, eine metabolische Adaptation an das physische Training festzustellen und Aussagen über die muskuläre Arbeitslast und mögliche Schädigungen zu gewinnen. Die Energieverfügbarkeit kann durch eine entsprechende Bilanzierung sowie die laborchemische Bestimmung der Makro- und Mikronährstoffe eingeschätzt und optimiert werden. Schlussfolgerungen Die labordiagnostische Untersuchung besitzt in der Betreuung von Athleten eine sportartenübergreifende klinische Relevanz. Sie dient der Erreichung einer höchstmöglichen Leistungsfähigkeit sowie optimalen Prävention von Knochen- und Muskelverletzungen, wobei sämtliche Mangelzustände (z. B. Vitamin D) ausgeglichen werden sollten. Durch eine Periodisierung der laborchemischen Untersuchungen, mit zumindest zwei Labordiagnostiken im Jahr, und Aufstellung individueller Variabilitäts- und Referenzbereiche kann ferner eine bessere Beurteilbarkeit erreicht werden.
Collapse
|
204
|
Yi W, Liu T, Gao X, Xie Y, Liu M. 4-Hexylresorcinol inhibits osteoclastogenesis by suppressing the NF-κB signaling pathway and reverses bone loss in ovariectomized mice. Exp Ther Med 2021; 21:354. [PMID: 33732327 PMCID: PMC7903454 DOI: 10.3892/etm.2021.9785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022] Open
Abstract
4-Hexylresorcinol (4HR) is a small organic compound that is widely used as an antiseptic and antioxidant. In the present study, its role in osteoclastogenesis was investigated. Bone marrow-derived macrophages from mice were used to examine the role of 4HR in osteogenesis. An ovariectomy (OVX) mouse model was constructed to examine the effect of 4HR in vivo, followed by hematoxylin and eosin and tartrate resistant acid phosphatase staining. In the present study, 4HR effectively suppressed receptor activator of NF-κB ligand-induced osteoclastogenesis in a dose-dependent manner. 4HR was also found to significantly suppress the expression of osteoclast (OC)-specific markers, including tartrate-resistant acid phosphatase, cathepsin K, nuclear factor of activated T-cell cytoplasmic 1 and c-Fos in the presence of RANKL in BMMs. Furthermore, 4HR inhibited osteoclastogenesis by inhibiting the activation of the NF-κB signaling pathway in BMMs. Consistent with the in vitro results, 4HR effectively ameliorated OVX-induced bone loss and markedly reduced OC number in the proximal tibia in vivo. In conclusion, the present results suggested that 4HR inhibited osteoclastogenesis in vitro and rescued bone loss in vivo, suggesting that 4HR may serve as a novel therapeutic agent for osteoporosis treatment.
Collapse
Affiliation(s)
- Wenkai Yi
- Department of Spine Surgery, Pu Ai Hospital of Wuhan City, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Tao Liu
- Department of Spine Surgery, Pu Ai Hospital of Wuhan City, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Xinfeng Gao
- Department of Spine Surgery, Pu Ai Hospital of Wuhan City, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yonghua Xie
- Department of Spine Surgery, Pu Ai Hospital of Wuhan City, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Ming Liu
- Department of Spine Surgery, Pu Ai Hospital of Wuhan City, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
205
|
Abstract
MicroRNAs (miRNAs) are a class of short RNA molecules that mediate the regulation of gene activity through interactions with target mRNAs and subsequent silencing of gene expression. It has become increasingly clear the miRNAs regulate many diverse aspects of bone biology, including bone formation and bone resorption processes. The role of miRNAs specifically in osteoclasts has been of recent investigation, due to clinical interest in discovering new paradigms to control excessive bone resorption, as is observed in multiple conditions including aging, estrogen deprivation, cancer metastases or glucocorticoid use. Therefore understanding the role that miRNAs play during osteoclastic differentiation is of critical importance. In this review, we highlight and discuss general aspects of miRNA function in osteoclasts, including exciting data demonstrating that miRNAs encapsulated in extracellular vesicles (EVs) either originating from osteoclasts, or signaling to osteoclast from divergent sites, have important roles in bone homeostasis.
Collapse
Affiliation(s)
- Megan M Weivoda
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Sun-Kyeong Lee
- Department of Medicine, UCONN Center on Aging, University Connecticut Health Center, Farmington, CT 06030, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|
206
|
Hendrickx G, Fischer V, Liedert A, von Kroge S, Haffner-Luntzer M, Brylka L, Pawlus E, Schweizer M, Yorgan T, Baranowsky A, Rolvien T, Neven M, Schumacher U, Beech DJ, Amling M, Ignatius A, Schinke T. Piezo1 Inactivation in Chondrocytes Impairs Trabecular Bone Formation. J Bone Miner Res 2021; 36:369-384. [PMID: 33180356 DOI: 10.1002/jbmr.4198] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023]
Abstract
The skeleton is a dynamic tissue continuously adapting to mechanical stimuli. Although matrix-embedded osteocytes are considered as the key mechanoresponsive bone cells, all other skeletal cell types are principally exposed to macroenvironmental and microenvironmental mechanical influences that could potentially affect their activities. It was recently reported that Piezo1, one of the two mechanically activated ion channels of the Piezo family, functions as a mechanosensor in osteoblasts and osteocytes. Here we show that Piezo1 additionally plays a critical role in the process of endochondral bone formation. More specifically, by targeted deletion of Piezo1 or Piezo2 in either osteoblast (Runx2Cre) or osteoclast lineage cells (Lyz2Cre), we observed severe osteoporosis with numerous spontaneous fractures specifically in Piezo1Runx2Cre mice. This phenotype developed at an early postnatal stage and primarily affected the formation of the secondary spongiosa. The presumptive Piezo1Runx2Cre osteoblasts in this region displayed an unusual flattened appearance and were positive for type X collagen. Moreover, transcriptome analyses of primary osteoblasts identified an unexpected induction of chondrocyte-related genes in Piezo1Runx2Cre cultures. Because Runx2 is not only expressed in osteoblast progenitor cells, but also in prehypertrophic chondrocytes, these data suggested that Piezo1 functions in growth plate chondrocytes to ensure trabecular bone formation in the process of endochondral ossification. To confirm this hypothesis, we generated mice with Piezo1 deletion in chondrocytes (Col2a1Cre). These mice essentially recapitulated the phenotype of Piezo1Runx2Cre animals, because they displayed early-onset osteoporosis with multiple fractures, as well as impaired formation of the secondary spongiosa with abnormal osteoblast morphology. Our data identify a previously unrecognized key function of Piezo1 in endochondral ossification, which, together with its role in bone remodeling, suggests that Piezo1 represents an attractive target for the treatment of skeletal disorders. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Gretl Hendrickx
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Verena Fischer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Pawlus
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Department of Electron Microscopy, Center of Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
207
|
Honma M, Ikebuchi Y, Suzuki H. RANKL as a key figure in bridging between the bone and immune system: Its physiological functions and potential as a pharmacological target. Pharmacol Ther 2021; 218:107682. [DOI: 10.1016/j.pharmthera.2020.107682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
|
208
|
Dai W, Wang M, Wang P, Wen J, Wang J, Cha S, Xiao X, He Y, Shu R, Bai D. lncRNA NEAT1 ameliorates LPS‑induced inflammation in MG63 cells by activating autophagy and suppressing the NLRP3 inflammasome. Int J Mol Med 2021; 47:607-620. [PMID: 33416115 PMCID: PMC7797466 DOI: 10.3892/ijmm.2020.4827] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of inflammation in bone and joint tissue are complex and involve long non‑coding RNAs (lncRNAs), which play an important role in this process. The aim of the present study was to screen out differentially expressed genes in human osteoblasts stimulated by inflammation, and to further explore the mechanisms underlying inflammatory responses and the functional activity of human osteoblasts through bioinformatics methods and in vitro experiments. For this purpose, MG63 cells were stimulated with various concentrations of lipopolysaccharide (LPS) for different periods of time to construct an optimal inflammatory model and RNA sequencing was then performed on these cells. The levels of nuclear enriched abundant transcript 1 (NEAT1), various inflammatory factors, Nod‑like receptor protein 3 (NLRP3) protein and osteogenesis‑related proteins, as well as the levels of cell apoptosis‑ and cell cycle‑related markers were measured in MG63 cells stimulated with LPS, transfected with NEAT1 overexpression plasmid and treated with bexarotene by western blot analysis, RT‑qPCR, immunofluorescence, FISH, TEM and flow cytometry. There were 427 differentially expressed genes in the LPS‑stimulated MG63 cells, in which NEAT1 was significantly downregulated. LPS upregulated the expression of inflammatory cytokines and NLRP3, inhibited the expression of autophagy‑related and osteogenesis‑related proteins, promoted apoptosis and altered the cell cycle, which was partially inhibited by NEAT1 overexpression and promoted by bexarotene. LPS stimulated inflammation in the MG63 cells and inhibited the retinoid X receptor (RXR)‑α to downregulate the expression of NEAT1 and decrease levels of autophagy, which promoted the activation of NLRP3 and the release of inflammatory factors, and impaired the functional activity of osteoblasts, thus promoting the development of inflammation.
Collapse
Affiliation(s)
- Wenyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Manyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510599, P.R. China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Ji Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Jiangyue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Sa Cha
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Xueling Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Yiruo He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Rui Shu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| | - Ding Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, Department of Orthodontics and Pediatrics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041
| |
Collapse
|
209
|
Kanji S, Sarkar R, Pramanik A, Kshirsagar S, Greene CJ, Das H. Dental pulp-derived stem cells inhibit osteoclast differentiation by secreting osteoprotegerin and deactivating AKT signalling in myeloid cells. J Cell Mol Med 2021; 25:2390-2403. [PMID: 33511706 PMCID: PMC7933945 DOI: 10.1111/jcmm.16071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Osteoclasts (OCs) differentiate from the monocyte/macrophage lineage, critically regulate bone resorption and remodelling in both homeostasis and pathology. Various immune and non‐immune cells help initiating activation of myeloid cells for differentiation, whereas hyper‐activation leads to pathogenesis, and mechanisms are yet to be completely understood. Herein, we show the efficacy of dental pulp–derived stem cells (DPSCs) in limiting RAW 264.7 cell differentiation and underlying molecular mechanism, which has the potential for future therapeutic application in bone‐related disorders. We found that DPSCs inhibit induced OC differentiation of RAW 264.7 cells when co‐cultured in a contact‐free system. DPSCs reduced expression of key OC markers, such as NFATc1, cathepsin K, TRAP, RANK and MMP‐9 assessed by quantitative RT‐PCR, Western blotting and immunofluorescence detection methods. Furthermore, quantitative RT‐PCR analysis revealed that DPSCs mediated M2 polarization of RAW 264.7 cells. To define molecular mechanisms, we found that osteoprotegerin (OPG), an OC inhibitory factor, was up‐regulated in RAW 264.7 cells in the presence of DPSCs. Moreover, DPSCs also constitutively secrete OPG that contributed in limiting OC differentiation. Finally, the addition of recombinant OPG inhibited OC differentiation in a dose‐dependent manner by reducing the expression of OC differentiation markers, NFATc1, cathepsin K, TRAP, RANK and MMP9 in RAW 264.7 cells. RNAKL and M‐CSF phosphorylate AKT and activate PI3K‐AKT signalling pathway during osteoclast differentiation. We further confirmed that OPG‐mediated inhibition of the downstream activation of PI3K‐AKT signalling pathway was similar to the DPSC co‐culture–mediated inhibition of OC differentiation. This study provides novel evidence of DPSC‐mediated inhibition of osteoclastogenesis mechanisms.
Collapse
Affiliation(s)
- Suman Kanji
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ripon Sarkar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Asmita Pramanik
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sudhir Kshirsagar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Carl J Greene
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
210
|
Cheng YH, Liu SF, Dong JC, Bian Q. Transcriptomic alterations underline aging of osteogenic bone marrow stromal cells. World J Stem Cells 2021; 13:128-138. [PMID: 33584984 PMCID: PMC7859986 DOI: 10.4252/wjsc.v13.i1.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling. During aging, an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture. We examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo.
AIM To identify the functional alterations and transcriptomic dynamics of BMSCs during early bone loss.
METHODS We collected BMSCs from mice at early to middle ages and compared their self-renewal and differentiation potential. Subsequently, we obtained the transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo.
RESULTS The colony-forming and osteogenic commitment capacity showed a comparable finding that decreased at the age of 1 mo. The transcriptomic analysis showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo. The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair features. Moreover, we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo, followed by increased pro-inflammatory and apoptotic features.
CONCLUSION Our study uncovered the cellular and molecular dynamics of bone aging in mice and demonstrated the contribution of BMSCs to the early stage of age-related bone loss.
Collapse
Affiliation(s)
- Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shu-Fen Liu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
211
|
A Review of Recent Developments in the Molecular Mechanisms of Bone Healing. Int J Mol Sci 2021; 22:ijms22020767. [PMID: 33466612 PMCID: PMC7828700 DOI: 10.3390/ijms22020767] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Between 5 and 10 percent of fractures do not heal, a condition known as nonunion. In clinical practice, stable fracture fixation associated with autologous iliac crest bone graft placement is the gold standard for treatment. However, some recalcitrant nonunions do not resolve satisfactorily with this technique. For these cases, biological alternatives are sought based on the molecular mechanisms of bone healing, whose most recent findings are reviewed in this article. The pro-osteogenic efficacy of morin (a pale yellow crystalline flavonoid pigment found in old fustic and osage orange trees) has recently been reported, and the combined use of bone morphogenetic protein-9 (BMP9) and leptin might improve fracture healing. Inhibition with methyl-piperidino-pyrazole of estrogen receptor alpha signaling delays bone regeneration. Smoking causes a chondrogenic disorder, aberrant activity of the skeleton’s stem and progenitor cells, and an intense initial inflammatory response. Smoking cessation 4 weeks before surgery is therefore highly recommended. The delay in fracture consolidation in diabetic animals is related to BMP6 deficiency (35 kDa). The combination of bioceramics and expanded autologous human mesenchymal stem cells from bone marrow is a new and encouraging alternative for treating recalcitrant nonunions.
Collapse
|
212
|
Ye J, Huang B, Gong P. Nerve growth factor-chondroitin sulfate/hydroxyapatite-coating composite implant induces early osseointegration and nerve regeneration of peri-implant tissues in Beagle dogs. J Orthop Surg Res 2021; 16:51. [PMID: 33436038 PMCID: PMC7805124 DOI: 10.1186/s13018-020-02177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/25/2020] [Indexed: 02/08/2023] Open
Abstract
Background Osseointegration is the premise of the chewing function of dental implant. Nerve growth factor (NGF), as a neurotrophic factor, can induce bone healing. However, the influence of NGF-chondroitin sulfate (CS)/hydroxyapatite (HA)-coating composite implant on the osseointegration and innervations is still not entirely clear. Materials and methods NGF-CS/HA-coating composite implants were prepared using the modified biomimetic method. The characteristics of NGF-CS/HA-coating implants were determined using a scanning electron microscope. After NGF-CS/HA-coating implants were placed in the mandible of Beagle dogs, the early osseointegration and innervation in peri-implant tissues were assessed through X-ray, Micro-CT, maximal pull-out force, double fluorescence staining, toluidine blue staining, DiI neural tracer, immunohistochemistry, and RT-qPCR assays. Results NGF-CS/HA-coating composite implants were made successfully, which presented porous mesh structures with the main components (Ti and HA). Besides, we revealed that implantation of NGF-CS/HA-coating implants significantly changed the morphology of bone tissues and elevated maximum output, MAR, BIC, and nerve fiber in the mandible of Beagle dogs. Moreover, we proved that the implantation of NGF-CS/HA-coating implants also markedly upregulated the levels of NGF, osteogenesis differentiation, and neurogenic differentiation-related genes in the mandible of Beagle dogs. Conclusion Implantation of NGF-CS/HA-coating composite implants has significant induction effects on the early osseointegration and nerve regeneration of peri-implant tissues in the mandible of Beagle dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-020-02177-5.
Collapse
Affiliation(s)
- Jun Ye
- Department of Prosthodontics, School and Hospital of Stomatology, Tongji University and Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, People's Republic of China
| | - Bo Huang
- State Key Laboratory of Oral Diseases, General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, Department of Oral Implant, West China School of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
213
|
Caetano AJ, Yianni V, Volponi A, Booth V, D'Agostino EM, Sharpe P. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. eLife 2021; 10:62810. [PMID: 33393902 PMCID: PMC7781605 DOI: 10.7554/elife.62810] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Human oral soft tissues provide the first barrier of defence against chronic inflammatory disease and hold a remarkable scarless wounding phenotype. Tissue homeostasis requires coordinated actions of epithelial, mesenchymal, and immune cells. However, the extent of heterogeneity within the human oral mucosa and how tissue cell types are affected during the course of disease progression is unknown. Using single-cell transcriptome profiling we reveal a striking remodelling of the epithelial and mesenchymal niches with a decrease in functional populations that are linked to the aetiology of the disease. Analysis of ligand–receptor interaction pairs identify potential intercellular hubs driving the inflammatory component of the disease. Our work establishes a reference map of the human oral mucosa in health and disease, and a framework for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ana J Caetano
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Ana Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Veronica Booth
- Department of Periodontology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| | - Eleanor M D'Agostino
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire, Bedford, United Kingdom
| | - Paul Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
214
|
Merlotti D, Cosso R, Eller-Vainicher C, Vescini F, Chiodini I, Gennari L, Falchetti A. Energy Metabolism and Ketogenic Diets: What about the Skeletal Health? A Narrative Review and a Prospective Vision for Planning Clinical Trials on this Issue. Int J Mol Sci 2021; 22:ijms22010435. [PMID: 33406758 PMCID: PMC7796307 DOI: 10.3390/ijms22010435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/27/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
The existence of a common mesenchymal cell progenitor shared by bone, skeletal muscle, and adipocytes cell progenitors, makes the role of the skeleton in energy metabolism no longer surprising. Thus, bone fragility could also be seen as a consequence of a “poor” quality in nutrition. Ketogenic diet was originally proven to be effective in epilepsy, and long-term follow-up studies on epileptic children undergoing a ketogenic diet reported an increased incidence of bone fractures and decreased bone mineral density. However, the causes of such negative impacts on bone health have to be better defined. In these subjects, the concomitant use of antiepileptic drugs and the reduced mobilization may partly explain the negative effects on bone health, but little is known about the effects of diet itself, and/or generic alterations in vitamin D and/or impaired growth factor production. Despite these remarks, clinical studies were adequately designed to investigate bone health are scarce and bone health related aspects are not included among the various metabolic pathologies positively influenced by ketogenic diets. Here, we provide not only a narrative review on this issue, but also practical advice to design and implement clinical studies on ketogenic nutritional regimens and bone health outcomes. Perspectives on ketogenic regimens, microbiota, microRNAs, and bone health are also included.
Collapse
Affiliation(s)
- Daniela Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Roberta Cosso
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
| | - Cristina Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy;
| | - Fabio Vescini
- Endocrinology and Metabolism Unit, University-Hospital S. Maria della Misericordia of Udine, 33100 Udine, Italy;
| | - Iacopo Chiodini
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milano, Italy
| | - Luigi Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (D.M.); (L.G.)
| | - Alberto Falchetti
- Istituto Auxologico Italiano “Scientific Institute for Hospitalisation and Care”, 20100 Milano, Italy; (R.C.); (I.C.)
- Correspondence:
| |
Collapse
|
215
|
Zhou T, Wang M, Ma H, Li X, Heianza Y, Qi L. Dietary Fiber, Genetic Variations of Gut Microbiota-derived Short-chain Fatty Acids, and Bone Health in UK Biobank. J Clin Endocrinol Metab 2021; 106:201-210. [PMID: 33051670 PMCID: PMC8186524 DOI: 10.1210/clinem/dgaa740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
CONTEXT Dietary fiber intake may relate to bone health. OBJECTIVE To investigate whether dietary fiber intake is associated with bone mineral density (BMD), and the modification effect of genetic variations related to gut microbiota-derived short-chain fatty acids (SCFAs). DESIGN The associations of dietary fiber intake with estimated BMD derived from heel ultrasound and fractures were assessed in 224 630 and 384 134 participants from the UK Biobank. SETTING UK Biobank. MAIN OUTCOME MEASURES Estimated BMD derived from heel ultrasound. RESULTS Higher dietary fiber intake (per standard deviation) was significantly associated with higher heel-BMD (β [standard error] = 0.0047 [0.0003], P = 1.10 × 10-54). Similarly significant associations were observed for all the fiber subtypes including cereal, fruit (dried and raw), and vegetable (cooked and raw) (all P < .05). A positive association was found in both women and men but more marked among men except for dietary fiber in cooked vegetables (all Pinteraction < .05). A protective association was found between dietary fiber intake and hip fracture (hazard ratio, 95% confidence interval: 0.94, 0.89-0.99; P = 3.0 × 10-2). In addition, the association between dietary fiber and heel BMD was modified by genetically determined SCFA propionate production (Pinteraction = 5.1 × 10-3). The protective association between dietary fiber and heel BMD was more pronounced among participants with lower genetically determined propionate production. CONCLUSIONS Our results indicate that greater intakes of total dietary fiber and subtypes from various food sources are associated with higher heel-BMD. Participants with lower genetically determined propionate production may benefit more from taking more dietary fiber.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
| | - Mengying Wang
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
- Department of Epidemiology and Biostatistics, School of Public Health,
Peking University Health Science Center, Beijing, China
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
| | - Xiang Li
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical
Medicine, Tulane University, New Orleans, Louisiana
- Department of Nutrition, Harvard TH Chan School of Public
Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham
and Women’s Hospital and Harvard Medical School, Boston,
Massachusetts
- Correspondence and Reprint Requests: Dr Lu Qi, Department of Epidemiology, School of Public Health and
Tropical Medicine, Tulane University, New Orleans, LA 70112, USA. E-mail:
| |
Collapse
|
216
|
Tang CC, Castro Andrade CD, O'Meara MJ, Yoon SH, Sato T, Brooks DJ, Bouxsein ML, Martins JDS, Wang J, Gray NS, Misof B, Roschger P, Blouin S, Klaushofer K, Velduis-Vlug A, Vegting Y, Rosen CJ, O'Connell D, Sundberg TB, Xavier RJ, Ung P, Schlessinger A, Kronenberg HM, Berdeaux R, Foretz M, Wein MN. Dual targeting of salt inducible kinases and CSF1R uncouples bone formation and bone resorption. eLife 2021; 10:67772. [PMID: 34160349 PMCID: PMC8238509 DOI: 10.7554/elife.67772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bone formation and resorption are typically coupled, such that the efficacy of anabolic osteoporosis treatments may be limited by bone destruction. The multi-kinase inhibitor YKL-05-099 potently inhibits salt inducible kinases (SIKs) and may represent a promising new class of bone anabolic agents. Here, we report that YKL-05-099 increases bone formation in hypogonadal female mice without increasing bone resorption. Postnatal mice with inducible, global deletion of SIK2 and SIK3 show increased bone mass, increased bone formation, and, distinct from the effects of YKL-05-099, increased bone resorption. No cell-intrinsic role of SIKs in osteoclasts was noted. In addition to blocking SIKs, YKL-05-099 also binds and inhibits CSF1R, the receptor for the osteoclastogenic cytokine M-CSF. Modeling reveals that YKL-05-099 binds to SIK2 and CSF1R in a similar manner. Dual targeting of SIK2/3 and CSF1R induces bone formation without concomitantly increasing bone resorption and thereby may overcome limitations of most current anabolic osteoporosis therapies.
Collapse
Affiliation(s)
- Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | | | - Maureen J O'Meara
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Daniel J Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States,Center for Advanced Orthopaedic Studies, Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUnited States
| | | | - Jinhua Wang
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonUnited States
| | - Nathanael S Gray
- Dana Farber Cancer Institute, Harvard Medical SchoolBostonUnited States
| | - Barbara Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre, Meidling, 1st Medical Department Hanusch HospitalViennaAustria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre, Meidling, 1st Medical Department Hanusch HospitalViennaAustria
| | - Stephane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre, Meidling, 1st Medical Department Hanusch HospitalViennaAustria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre, Meidling, 1st Medical Department Hanusch HospitalViennaAustria
| | - Annegreet Velduis-Vlug
- Center for Bone Quality, Leiden University Medical CenterLeidenNetherlands,Center for Clinical and Translational Research, Maine Medical Center Research InstituteScarboroughCanada
| | - Yosta Vegting
- Department of Endocrinology and Metabolism, Academic Medical CenterAmsterdamNetherlands
| | - Clifford J Rosen
- Center for Clinical and Translational Research, Maine Medical Center Research InstituteScarboroughCanada
| | | | | | - Ramnik J Xavier
- Broad Institute of MIT and HarvardCambridgeUnited States,Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| | - Peter Ung
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth)HoustonUnited States
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRSParisFrance
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States,Broad Institute of MIT and HarvardCambridgeUnited States,Harvard Stem Cell InstituteCambridgeUnited States
| |
Collapse
|
217
|
Kim EN, Kim GR, Yu JS, Kim KH, Jeong GS. Inhibitory Effect of (2 R)-4-(4-hydroxyphenyl)-2-butanol 2- O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside on RANKL-Induced Osteoclast Differentiation and ROS Generation in Macrophages. Int J Mol Sci 2020; 22:ijms22010222. [PMID: 33379346 PMCID: PMC7795186 DOI: 10.3390/ijms22010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
In bone homeostasis, bone loss due to excessive osteoclasts and inflammation or osteolysis in the bone formation process cause bone diseases such as osteoporosis. Suppressing the accompanying oxidative stress such as ROS in this process is an important treatment strategy for bone disease. Therefore, in this study, the effect of (2R)-4-(4-hydroxyphenyl)-2-butanol 2-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (BAG), an arylbutanoid glycoside isolated from Betula platyphylla var. japonica was investigated in RANKL-induced RAW264.7 cells and LPS-stimulated MC3E3-T1 cells. BAG inhibited the activity of TRAP, an important marker of osteoclast differentiation and F-actin ring formation, which has osteospecific structure. In addition, the protein and gene levels were suppressed of integrin β3 and CCL4, which play an important role in the osteoclast-induced bone resorption and migration of osteoclasts, and inhibited the production of ROS and restored the expression of antioxidant enzymes such as SOD and CAT lost by RANKL. The inhibitory effect of BAG on osteoclast differentiation and ROS production appears to be due to the inhibition of MAPKs phosphorylation and NF-κβ translocation, which play a major role in osteoclast differentiation. In addition, BAG inhibited ROS generated by LPS and effectively restores the mineralization of lost osteoblasts, thereby showing the effect of bone formation in the inflammatory situation accompanying bone loss by excessive osteoclasts, suggesting its potential as a new natural product-derived bone disease treatment.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (E.-N.K.); (G.-R.K.)
| | - Ga-Ram Kim
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (E.-N.K.); (G.-R.K.)
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (K.H.K.); (G.-S.J.)
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (E.-N.K.); (G.-R.K.)
- Correspondence: (K.H.K.); (G.-S.J.)
| |
Collapse
|
218
|
Abstract
Bone homeostasis is maintained by a balance in the levels of osteoclast and osteoblast activity. Osteoclasts are bone-resorbing cells and have been shown to act as key players in various osteolytic diseases. Osteoclasts differentiate from monocyte/macrophage lineage cells in the presence of receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Osteoblasts support osteoclastogenesis by producing several osteoclast differentiation factors. Toll-like receptors (TLRs) are members of the pattern recognition receptor family that are involved in recognizing pathogen-associated molecular patterns and damage-associated molecular patterns in response to pathogen infection. TLRs regulate osteoclastogenesis and bone resorption through either the myeloid differentiation primary response 88 or the Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β signaling pathways. Since osteoclasts play a central role in the progression of osteolytic diseases, extensive research focusing on TLR downstream signaling in these cells should be conducted to advance the development of effective TLR modulators. In this review, we summarize the currently available information on the role of TLRs in osteoclast differentiation and osteolytic diseases.
Collapse
Affiliation(s)
- Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
219
|
Li X, Jin L, Tan Y. Different roles of matrix metalloproteinase 2 in osteolysis of skeletal dysplasia and bone metastasis (Review). Mol Med Rep 2020; 23:70. [PMID: 33236155 PMCID: PMC7716421 DOI: 10.3892/mmr.2020.11708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
Matrix metalloproteinase 2 (MMP2) is a well-characterized protein that is indispensable for extracellular matrix remodeling and other pathological processes, such as tumor progression and skeletal dysplasia. Excessive activation of MMP2 promotes osteolytic metastasis and bone destruction in late-stage cancers, while its loss-of-function mutations result in the decreased bone mineralization and generalized osteolysis occurring progressively in skeletal developmental disorders, particularly in multicentric osteolysis, nodulosis and arthropathy (MONA). Either upregulation or downregulation of MMP2 activity can result in the same osteolytic effects. Thus, different functions of MMP2 have been recently identified that could explain this observation. While MMP2 can degrade bone matrix, facilitate osteoclastogenesis and amplify various signaling pathways that enhance osteolysis in bone metastasis, its role in maintaining the number of bone cells, supporting osteocytic canalicular network formation and suppressing leptin-mediated inhibition of bone formation has been implicated in osteolytic disorders caused by MMP2 deficiency. Furthermore, the proangiogenic activity of MMP2 is one of the potential mechanisms that are associated with both pathological situations. In the present article, the latest research on MMP2 in bone homeostasis is reviewed and the mechanisms underlying the role of this protein in skeletal metastasis and developmental osteolysis are discussed.
Collapse
Affiliation(s)
- Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Libin Jin
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanbin Tan
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
220
|
Wang L, Han L, Xue P, Hu X, Wong SW, Deng M, Tseng HC, Huang BW, Ko CC. Dopamine suppresses osteoclast differentiation via cAMP/PKA/CREB pathway. Cell Signal 2020; 78:109847. [PMID: 33242564 DOI: 10.1016/j.cellsig.2020.109847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023]
Abstract
How the nervous system regulates bone remodeling is an exciting area of emerging research in bone biology. Accumulating evidence suggest that neurotransmitter-mediated inputs from neurons may act directly on osteoclasts. Dopamine is a neurotransmitter that can be released by hypothalamic neurons to regulate bone metabolism through the hypothalamic-pituitary-gonadal axis. Dopamine is also present in sympathetic nerves that penetrate skeletal structures throughout the body. It has been shown that dopamine suppresses osteoclast differentiation via a D2-like receptors (D2R)-dependent manner, but the intracellular secondary signaling pathway has not been elucidated. In this study, we found that cAMP-response element binding protein (CREB) activity responds to dopamine treatment during osteoclastogenesis. Considering the critical role of CREB in osteoclastogenesis, we hypothesize that CREB may be a critical target in dopamine's regulation of osteoclast differentiation. We confirmed that D2R is also present in RAW cells and activated by dopamine. Binding of dopamine to D2R inhibits the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway which ultimately decreases CREB phosphorylation during osteoclastogenesis. This was also associated with diminished expression of osteoclast markers that are downstream of CREB. Pharmacological activation of adenylate cyclase (to increase cAMP production) and PKA reverses the effect of dopamine on CREB activity and osteoclastogenesis. Therefore, we have identified D2R/cAMP/PKA/CREB as a candidate pathway that mediates dopamine's inhibition of osteoclast differentiation. These findings will contribute to our understanding of how the nervous and skeletal systems interact to regulate bone remodeling. This will enable future work toward elucidating the role of the nervous system in bone development, repair, aging, and degenerative disease.
Collapse
Affiliation(s)
- Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Lichi Han
- Department of Oral Medicine, Medical College, Dalian University, Dalian, China
| | - Peng Xue
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Xiangxiang Hu
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Sing-Wai Wong
- Division of Comprehensive Oral Health, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Meng Deng
- Division of Craniofacial and Surgical Care, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States
| | - Bo-Wen Huang
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States.
| |
Collapse
|
221
|
Lee HY, Cho KM, Kim MK, Lee M, Kim H, Choi CY, Kim KK, Park JS, Kim HH, Bae YS. Sphingosylphosphorylcholine blocks ovariectomy-induced bone loss by suppressing Ca 2+ /calmodulin-mediated osteoclast differentiation. J Cell Mol Med 2020; 25:473-483. [PMID: 33230972 PMCID: PMC7810965 DOI: 10.1111/jcmm.16101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/29/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is a disease in which bone mineral density decreases due to abnormal activity of osteoclasts, and is commonly found in post‐menopausal women who have decreased levels of female hormones. Sphingosylphosphorylcholine (SPC) is an important biological lipid that can be converted to sphingosine‐1‐phosphate (S1P) by autotaxin. S1P is known to be involved in osteoclast activation by stimulating osteoblasts, but bone regulation by SPC is not well understood. In this study, we found that SPC strongly inhibits RANKL‐induced osteoclast differentiation. SPC‐induced inhibitory effects on osteoclast differentiation were not affected by several antagonists of S1P receptors or pertussis toxin, suggesting cell surface receptor independency. However, SPC inhibited RANKL‐induced calcineurin activation and subsequent NFATc1 activity, leading to decrease of the expression of Trap and Ctsk. Moreover, we found that bone loss in an experimental osteoporosis mouse model was recovered by SPC injection. SPC also blocked ovariectomy‐induced body weight increase and Nfatc1 gene expression in mice. We also found that SPC inhibits RANKL‐induced osteoclast differentiation in human macrophages. Since currently available treatments for osteoporosis, such as administration of female hormones or hormone receptor modulators, show serious side effects, SPC has potential as a new agent for osteoporosis treatment.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Kwang Min Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Min Kyung Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Hun Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon, Korea
| | - Hong-Hee Kim
- Department of Cell and Developmental Biology, BK21 Program and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
222
|
Elangovan S, Gajendrareddy P, Ravindran S, Salem AK. Emerging local delivery strategies to enhance bone regeneration. ACTA ACUST UNITED AC 2020; 15:062001. [PMID: 32647095 PMCID: PMC10148649 DOI: 10.1088/1748-605x/aba446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In orthopedics and dentistry there is an increasing need for novel biomaterials and clinical strategies to achieve predictable bone regeneration. These novel molecular strategies have the potential to eliminate the limitations of currently available approaches. Specifically, they have the potential to reduce or eliminate the need to harvest autogenous bone, and the overall complexity of the clinical procedures. In this review, emerging tissue engineering strategies that have been, or are currently being, developed based on the current understanding of bone biology, development and wound healing will be discussed. In particular, protein/peptide based approaches, DNA/RNA therapeutics, cell therapy, and the use of exosomes will be briefly covered. The review ends with a summary of the current status of these approaches, their clinical translational potentials and their challenges.
Collapse
Affiliation(s)
- Satheesh Elangovan
- Department of Periodontics, The University of Iowa College of Dentistry, Iowa City, IA 52242, United States of America
| | | | | | | |
Collapse
|
223
|
Zaidi M, Lizneva D, Gera S, Taneja C, Korkmaz F, Gumerova A, Ievleva K, Ahmad N, Ryu V, Sun L, Kim S, New MI, Haider S, Iqbal J, Rosen C, Yuen T. Beyond bone biology: Lessons from team science. J Orthop Res 2020; 38:2331-2338. [PMID: 32519816 PMCID: PMC7722176 DOI: 10.1002/jor.24771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 02/04/2023]
Abstract
Today, research in biomedicine often requires the knowledge and technologies in diverse fields. Therefore, there is an increasing need for collaborative team science that crosses traditional disciplines. Here, we discuss our own lessons from both interdisciplinary and transdisciplinary teams, which ultimately ushered us to expand our research realm beyond bone biology.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sakshi Gera
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charit Taneja
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kseniia Ievleva
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Federal State Public Scientific Institution, Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russian Federation
| | - Naseer Ahmad
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Se–Min Kim
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria I. New
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shozeb Haider
- School of Pharmacy, University College London, London, UK
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clifford Rosen
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
224
|
Abstract
Blocking the action of FSH genetically or pharmacologically in mice reduces body fat, lowers serum cholesterol, and increases bone mass, making an anti-FSH agent a potential therapeutic for three global epidemics: obesity, osteoporosis, and hypercholesterolemia. Here, we report the generation, structure, and function of a first-in-class, fully humanized, epitope-specific FSH blocking antibody with a K D of 7 nM. Protein thermal shift, molecular dynamics, and fine mapping of the FSH-FSH receptor interface confirm stable binding of the Fab domain to two of five receptor-interacting residues of the FSHβ subunit, which is sufficient to block its interaction with the FSH receptor. In doing so, the humanized antibody profoundly inhibited FSH action in cell-based assays, a prelude to further preclinical and clinical testing.
Collapse
|
225
|
An L, Shi Q, Fan M, Huang G, Zhu M, Zhang M, Liu Y, Weng Y. Benzo[a]pyrene injures BMP2-induced osteogenic differentiation of mesenchymal stem cells through AhR reducing BMPRII. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110930. [PMID: 32684523 DOI: 10.1016/j.ecoenv.2020.110930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene(BaP), a polycyclic aromatic hydrocarbons (PAH) of environmental pollutants, is one of the main ingredients in cigarettes and an agonist of the aryl hydrocarbon receptor (AhR). Mesenchymal stem cells (MSCs) including C3H10T1/2 and MEF cells, adult multipotent stem cells, can be differentiated toward osteoblasts during the induction of osteogenic induction factor-bone morphogenetic protein 2(BMP2). Accumulating evidence suggests that BaP decreases bone development in mammals, but the further mechanisms of BaP on BMP2-induced bone formation involved are unknown. Here, we researched the role of BaP on BMP2-induced osteoblast differentiation and bone formation. We showed that BaP significantly suppressed early and late osteogenic differentiation, and downregulated the runt-related transcription factor 2(Runx2), osteocalcin(OCN) and osteopontin (OPN) during the induction of BMP2 in MSCs. Consistent with in vitro results, administration of BaP inhibited BMP2-induced subcutaneous ectopic osteogenesis in vivo. Interestingly, blocking AhR reversed the inhibition of BaP on BMP2-induced osteogenic differentiation, which suggested that AhR played an important role in this process. Moreover, BaP significantly decreased BMP2-induced Smad1/5/8 phosphorylation. Furthermore, BaP significantly reduced bone morphogenetic protein receptor 2(BMPRII) expression and excessively activated Hey1. Thus, our data demonstrate the role of BaP in BMP2-induced bone formation and suggest that impaired BMP/Smad pathways through AhR regulating BMPRII and Hey1 may be an underlying mechanism for BaP inhibiting BMP2-induced osteogenic differentiation.
Collapse
Affiliation(s)
- Liqin An
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Qiong Shi
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Mengtian Fan
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Gaigai Huang
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Mengying Zhu
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Menghao Zhang
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yan Liu
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yaguang Weng
- Department of Laboratory Medicine, M.O.E. Key Laboratory of Laboratory Medicine Diagnostics, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
226
|
Zhou L, Huang Y, Zhao J, Yang H, Kuai F. Oridonin promotes osteogenesis through Wnt/β-catenin pathway and inhibits RANKL-induced osteoclastogenesis in vitro. Life Sci 2020; 262:118563. [PMID: 33038376 DOI: 10.1016/j.lfs.2020.118563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
AIMS To study the molecular mechanism of oridonin (ORI) on osteoblast differentiation and osteoclast formation in vitro. MAIN METHODS Rat bone marrow mesenchymal stem cells (BMSCs) were treated with different concentrations of ORI in osteogenic medium (OM). CCK-8 assay and were used to detect the effect on BMSCs viability. Alizarin red staining and ALP activity were used to illuminate the effect of ORI on osteogenic differentiation. Expressions of osteogenic differentiation related genes were detected by real-time quantitative PCR (qRT-PCR), and expressions of osteogenic related proteins were detected by Western blot (WB) and immunofluorescence. Similarly, bone marrow mononuclear cells (BMMs) were treated with different concentrations of ORI. CCK-8 assay and Live/Dead staining were used to detect the effect of ORI on BMMs activity. TRAP staining was used to detect its effect on osteoclast differentiation. Expressions of osteoclast-related genes were detected by qRT-PCR, and expressions of osteoclast-related proteins were detected by WB and immunofluorescence. KEY FINDINGS (1) ORI (2 μM) promoted the ALP activity of BMSCs differentiation into osteoblasts and increased the number of calcium nodules. (2) ORI stimulated the expressions of wnt1, β-catenin and Runx2, but with no significantly effect on p-GSK-3β and GSK-3β. (3) ORI promoted the expression of OPG and inhibited the expression of RANKL. (4) ORI directly/indirectly inhibited the osteoclast formation and expressions of osteoclast-related genes TRAP, NFATc1 and c-Fos. SIGNIFICANCE ORI may promote BMSCs differentiate into osteoblasts through the Wnt/β-catenin signaling pathway. At the same time, it may also inhibit the formation of osteoclasts mediated by RANKL.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Orthopedics, Lianshui county People's Hospital, Huai'an, Jiangsu 223001, China
| | - Yingkang Huang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiali Zhao
- Department of Orthopedics, the Affiliated Huai'an Hospital of Xuzhou Medical University and the Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, China
| | - Huilin Yang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| | - Feng Kuai
- Department of Geriatrics, the First People's Hospital of Yancheng, the Forth Affiliated Hospital of Nantong University, Yancheng, Jiangsu 224001, China.
| |
Collapse
|
227
|
Kim H, Takegahara N, Walsh MC, Ueda J, Fujihara Y, Ikawa M, Choi Y. Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation. BMB Rep 2020. [PMID: 32635982 PMCID: PMC7526982 DOI: 10.5483/bmbrep.2020.53.9.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NFκB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew C. Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jun Ueda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
228
|
Li S, Liu Q, Wu D, He T, Yuan J, Qiu H, Tickner J, Zheng SG, Li X, Xu J, Rong L. PKC-δ deficiency in B cells displays osteopenia accompanied with upregulation of RANKL expression and osteoclast-osteoblast uncoupling. Cell Death Dis 2020; 11:762. [PMID: 32938907 PMCID: PMC7494897 DOI: 10.1038/s41419-020-02947-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
PKC-δ is an important molecule for B-cell proliferation and tolerance. B cells have long been recognized to play a part in osteoimmunology and pathological bone loss. However, the role of B cells with PKC-δ deficiency in bone homeostasis and the underlying mechanisms are unknown. We generated mice with PKC-δ deletion selectively in B cells by crossing PKC-δ-loxP mice with CD19-Cre mice. We studied their bone phenotype using micro-CT and histology. Next, immune organs were obtained and analyzed. Western blotting was used to determine the RANKL/OPG ratio in vitro in B-cell cultures, ELISA assay and immunohistochemistry were used to analyze in vivo RANKL/OPG balance in serum and bone sections respectively. Finally, we utilized osteoclastogenesis to study osteoclast function via hydroxyapatite resorption assay, and isolated primary calvaria osteoblasts to investigate osteoblast proliferation and differentiation. We also investigated osteoclast and osteoblast biology in co-culture with B-cell supernatants. We found that mice with PKC-δ deficiency in B cells displayed an osteopenia phenotype in the trabecular and cortical compartment of long bones. In addition, PKC-δ deletion resulted in changes of trabecular bone structure in association with activation of osteoclast bone resorption and decrease in osteoblast parameters. As expected, inactivation of PKC-δ in B cells resulted in changes in spleen B-cell number, function, and distribution. Consistently, the RANKL/OPG ratio was elevated remarkably in B-cell culture, in the serum and in bone specimens after loss of PKC-δ in B cells. Finally, in vitro analysis revealed that PKC-δ ablation suppressed osteoclast differentiation and function but co-culture with B-cell supernatant reversed the suppression effect, as well as impaired osteoblast proliferation and function, indicative of osteoclast–osteoblast uncoupling. In conclusion, PKC-δ plays an important role in the interplay between B cells in the immune system and bone cells in the pathogenesis of bone lytic diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Heng Qiu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Southern Medical University, Guangzhou Guangdong, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China.
| |
Collapse
|
229
|
Yorgan TA, Rolvien T, Stürznickel J, Vollersen N, Lange F, Zhao W, Baranowsky A, Rosenthal L, Hermans-Borgmeyer I, Sharaf A, Karsak M, David JP, Oheim R, Amling M, Schinke T. Mice Carrying a Ubiquitous R235W Mutation of Wnt1 Display a Bone-Specific Phenotype. J Bone Miner Res 2020; 35:1726-1737. [PMID: 32369212 DOI: 10.1002/jbmr.4043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Since a key function of Wnt1 in brain development was established early on through the generation of non-viable Wnt1-deficient mice, it was initially surprising that WNT1 mutations were found to cause either early-onset osteoporosis (EOOP) or osteogenesis imperfecta type XV (OI-XV). The deduced function of Wnt1 as an osteoanabolic factor has been confirmed in various mouse models with bone-specific inactivation or overexpression, but mice carrying disease-causing Wnt1 mutations have not yet been described. Triggered by the clinical analysis of EOOP patients carrying a heterozygous WNT1 mutation (p.R235W), we introduced this mutation into the murine Wnt1 gene to address the question of whether this would cause a skeletal phenotype. We observed that Wnt1+/R235W and Wnt1R235W/R235W mice were born at the expected Mendelian ratio and that they did not display postnatal lethality or obvious nonskeletal phenotypes. At 12 weeks of age, the homozygous presence of the Wnt1 mutation was associated with reduced trabecular and cortical bone mass, explained by a lower bone formation rate compared with wild-type littermates. At 52 weeks of age, we also observed a moderate bone mass reduction in heterozygous Wnt1+/R235W mice, thereby underscoring their value as a model of WNT1-dependent EOOP. Importantly, when we treated wild-type and Wnt1+/R235W mice by daily injection of parathyroid hormone (PTH), we detected the same osteoanabolic influence in both groups, together with an increased cortical thickness in the mutant mice. Our data demonstrate the pathogenicity of the WNT1-R235W mutation, confirm that controlling skeletal integrity is the primary physiological function of Wnt1, and suggest that osteoanabolic treatment with teriparatide should be applicable for individuals with WNT1-dependent EOOP. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nele Vollersen
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabiola Lange
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wenbo Zhao
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lana Rosenthal
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ahmed Sharaf
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
230
|
Yang J, Ueharu H, Mishina Y. Energy metabolism: A newly emerging target of BMP signaling in bone homeostasis. Bone 2020; 138:115467. [PMID: 32512164 PMCID: PMC7423769 DOI: 10.1016/j.bone.2020.115467] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Energy metabolism is the process of generating energy (i.e. ATP) from nutrients. This process is indispensable for cell homeostasis maintenance and responses to varying conditions. Cells require energy for growth and maintenance and have evolved to have multiple pathways to produce energy. Both genetic and functional studies have demonstrated that energy metabolism, such as glucose, fatty acid, and amino acid metabolism, plays important roles in the formation and function of bone cells including osteoblasts, osteocytes, and osteoclasts. Dysregulation of energy metabolism in bone cells consequently disturbs the balance between bone formation and bone resorption. Metabolic diseases have also been reported to affect bone homeostasis. Bone morphogenic protein (BMP) signaling plays critical roles in regulating the formation and function of bone cells, thus affecting bone development and homeostasis. Mutations of BMP signaling-related genes in mice have been reported to show abnormalities in energy metabolism in many tissues, including bone. In addition, BMP signaling correlates with critical signaling pathways such as mTOR, HIF, Wnt, and self-degradative process autophagy to coordinate energy metabolism and bone homeostasis. These findings will provide a newly emerging target of BMP signaling and potential therapeutic strategies and the improved management of bone diseases. This review summarizes the recent advances in our understanding of (1) energy metabolism in regulating the formation and function of bone cells, (2) function of BMP signaling in whole body energy metabolism, and (3) mechanistic interaction of BMP signaling with other signaling pathways and biological processes critical for energy metabolism and bone homeostasis.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| | - Hiroki Ueharu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
231
|
Kim H, Takegahara N, C M, Walsh, Ueda J, Fujihara Y, Ikawa M, Choi Y. Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation. BMB Rep 2020; 53:472-477. [PMID: 32635982 PMCID: PMC7526982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 02/15/2024] Open
Abstract
Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NF-κB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis. [BMB Reports 2020; 53(9): 472-477].
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew C
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jun Ueda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
232
|
Nakama C, Kadowaki T, Choo J, El-Saed A, Kadota A, Willcox BJ, Fujiyoshi A, Shin C, Leader JK, Miura K, Masaki K, Ueshima H, Kuller LH, Bon J, Sekikawa A. Cross-sectional association of bone mineral density with coronary artery calcification in an international multi-ethnic population-based cohort of men aged 40-49: ERA JUMP study. IJC HEART & VASCULATURE 2020; 30:100618. [PMID: 32904231 PMCID: PMC7452517 DOI: 10.1016/j.ijcha.2020.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 08/07/2020] [Indexed: 11/24/2022]
Abstract
Significant association of atherosclerosis and bone mineral density has been reported. The association has been reported in postmenopausal women and elderly men. This study reported the association in an international cohort of middle-aged men. Coronary artery calcification was used as a biomarker of coronary atherosclerosis. Vertebral bone density was used as a surrogate marker of bone mineral density.
Introduction Inverse associations of cardiovascular disease (CVD) and atherosclerosis with osteoporosis and bone mineral density (BMD) have been reported in post-menopausal women and elderly men. We aimed to investigate an association between vetebral bone density (VBD) and coronary artery cacification (CAC) in an international multi-ethnic cohort of middle-aged men in the EBCT and Risk Factor Assessment among Japanese and US Men in the Post-World-War-II birth cohort (ERA JUMP). Methods ERA JUMP examined 1134 men aged 40–49 (267 white, 84 black, and 242 Japanese Americans, 308 Japanese in Japan, and 233 Koreans in South Korea) free from CVD for CAC, and VBD, biomarkers of coronary atherosclerosis and BMD, respectively, with electron-beam computed tomography, and other risk factors. CAC was quantified with the Agatston method and VBD by computing the mean Hounsfield Unit (HU) value of the T12 to L3 vertebrae. To examine multivariable-adjusted associations of CAC with VBD, we used robust linear and logistic regressions. Results The mean VBD and median CAC were 175.4 HU (standard deviation: 36.3) and 0 (interquartile range: (0, 4.5)), respectively. The frequency of CAC was 19.0%. There was no significant interaction by race. VBD had a significant inverse association with CAC score (β = −0.207, p-value = 0.005), while a 10-unit increase in VBD was significantly associated with the frequency of CAC (odds ratio (95% confidence interval) = 0.929 (0.890–0.969)). Both associations remained significant after adjusting for covariates. Conclusions VBD had a significant inverse association with CAC in this international multi-ethnic cohort of men aged 40–49.
Collapse
Affiliation(s)
- Chikako Nakama
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi Kadowaki
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Jina Choo
- Department of Community Health Nursing, College of Nursing, Korea University, Seoul, Republic of Korea
| | - Aiman El-Saed
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aya Kadota
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Bradley J Willcox
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.,Kuakini Medical Center, Honolulu, HI, USA.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akira Fujiyoshi
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Hygiene, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Chol Shin
- Department of Internal Medicine, Korea University Medical Center, Seoul, Republic of Korea
| | - Joseph K Leader
- Department of Radiology, Imaging Research Division, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Katsuyuki Miura
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kamal Masaki
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.,Kuakini Medical Center, Honolulu, HI, USA
| | - Hirotsugu Ueshima
- Department of Public Health, Shiga University of Medical Science, Otsu, Shiga, Japan.,Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Lewis H Kuller
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Bon
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Medical Center, Pittsburgh, PA, USA
| | - Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
233
|
Jeong E, Kim J, Go M, Lee SY. Early estrogen-induced gene 1 facilitates osteoclast formation through the inhibition of interferon regulatory factor 8 expression. FASEB J 2020; 34:12894-12906. [PMID: 32741026 DOI: 10.1096/fj.202001197r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/11/2022]
Abstract
Osteoclast-mediated inflammatory bone resorption is a major cause of many inflammatory bone disorders, including rheumatoid arthritis and periodontitis. However, the mechanisms regulating osteoclast differentiation in inflammatory settings are not well understood. We demonstrate here that early estrogen-induced gene 1 (EEIG1)-deficient mice are protected from inflammatory bone loss as determined with the use of models of lipopolysaccharide (LPS)-induced bone destruction. EEIG1-deficient macrophages markedly decreased RANKL- and TNFα-mediated osteoclastogenesis due to the downregulation of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which is an essential transcription factor for osteoclast formation. In contrast, expression of interferon regulatory factor 8 (IRF8), a transcriptional repressor that blocks osteoclast differentiation, is elevated in EEIG1-deficient macrophages relative to wild-type cells. We found that reduced expression of B lymphocyte-induced maturation protein-1 (Blimp1) by siRNA downregulated RANKL-induced EEIG1 levels, whereas overexpression of Blimp1 potentiated EEIG1 levels. Mechanistic studies revealed that EEIG1 forms a complex with Blimp1 to negatively regulate the expression of the anti-osteoclastogenic gene, Irf8. We elucidated a novel mechanism by which EEIG1 restricts IRF8 expression and function, thereby enhancing the osteoclast formation by contributing to Blimp1-mediated IRF8 regulation. Together, these findings identify EEIG1 as a key regulator of osteoclastogenesis and a possible therapeutic target for pathological bone destruction.
Collapse
Affiliation(s)
- Eutteum Jeong
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - Jihee Kim
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| | - Miyeon Go
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, Republic of Korea.,The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
234
|
Qian Z, Zhang Y, Kang X, Li H, Zhang Y, Jin X, Gao X, Xu M, Ma Z, Zhao L, Zhang Z, Sun H, Wu S. Postnatal Conditional Deletion of Bmal1 in Osteoblasts Enhances Trabecular Bone Formation Via Increased BMP2 Signals. J Bone Miner Res 2020; 35:1481-1493. [PMID: 32212389 DOI: 10.1002/jbmr.4017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 01/09/2023]
Abstract
A large number of studies in recent years indicated the involvement of peripheral circadian clock in varied pathologies. However, evidence regarding how peripheral clocks regulate bone metabolism is still very limited. The present study aimed to investigate the direct role of Bmal1 (the key activator of peripheral circadian clock system) in vivo during bone developmental and remodeling stages using inducible osteoblast-specific Bmal1 knockout mice. Unexpectedly, the removal of Bmal1 in osteoblasts caused multiple abnormalities of bone metabolism, including a progressive increase in trabecular bone mass in as early as 8 weeks, manifested by an 82.3% increase in bone mineral density and 2.8-fold increase in bone volume per tissue volume. As mice age, an increase in trabecular bone mass persists while cortical bone mass decreases by about 33.7%, concomitant with kyphoscoliosis and malformed intervertebral disk. The increased trabecular bone mass is attributed to increased osteoblast number and osteoblast activity coupled with decreased osteoclastogenesis. Remarkably, the ablation of Bmal1 in osteoblasts promoted the expression level of Bmp2 and phosphorylation of SMAD1, whereas the attenuation of BMP2/SMAD1 signaling partially alleviated the effects of Bmal1 deficiency on osteoblast differentiation and activity. The results revealed that Bmal1 was a transcriptional silencer of Bmp2 by targeting the Bmp2 promoter. The peripheral clock gene Bmal1 in osteoblasts was crucial to coordinate differential effects on trabecular and cortical bones through regulating BMP2/SMAD1 during bone development, thus providing novel insights into a key role of osteoblast Bmal1 in homeostasis and integrity of adult bones. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Huixia Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xinxin Jin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Gao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhengmin Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Liting Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhuanmin Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
235
|
Wang S, Deng Z, Ma Y, Jin J, Qi F, Li S, Liu C, Lyu FJ, Zheng Q. The Role of Autophagy and Mitophagy in Bone Metabolic Disorders. Int J Biol Sci 2020; 16:2675-2691. [PMID: 32792864 PMCID: PMC7415419 DOI: 10.7150/ijbs.46627] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
Bone metabolic disorders include osteolysis, osteoporosis, osteoarthritis and rheumatoid arthritis. Osteoblasts and osteoclasts are two major types of cells in bone constituting homeostasis. The imbalance between bone formation by osteoblasts and bone resorption by osteoclasts has been shown to have a direct contribution to the onset of these diseases. Recent evidence indicates that autophagy and mitophagy, the selective autophagy of mitochondria, may play a vital role in regulating the proliferation, differentiation and function of osteoblasts and osteoclasts. Several signaling pathways, including PINK1/Parkin, SIRT1, MAPK8/FOXO3, Beclin-1/BECN1, p62/SQSTM1, and mTOR pathways, have been implied in the regulation of autophagy and mitophagy in these cells. Here we review the current progress about the regulation of autophagy and mitophagy in osteoblasts and osteoclasts in these bone metabolic disorders, as well as the molecular signaling activated or deactivated during this process. Together, we hope to draw attention to the role of autophagy and mitophagy in bone metabolic disorders, and their potential as a new target for the treatment of bone metabolic diseases and the requirements of further mechanism studies.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University
| | - Fangjie Qi
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shuxian Li
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China.,South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Chang Liu
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Feng-Juan Lyu
- South China University of Technology-The University of Western Australia Joint Center for Regenerative Medicine Research, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 510080, China
| |
Collapse
|
236
|
Wang P, Yang R, Liu S, Ren Y, Liu X, Wang X, Zhang W, Chi B. Thermosensitive nanoparticle of mPEG-PTMC for oligopeptide delivery into osteoclast precursors. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520933916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Transmembrane delivery of biomolecules through nanoparticles plays an important role in targeted therapy. Here, we designed a simple nanoparticle for the delivery of model peptide drug into primary osteoclast precursor cells (bone marrow macrophages) by thermosensitive and biodegradable diblock copolymer monomethoxy poly(ethylene glycol)-block-poly(trimethylene carbonate). The model peptide drug was encapsulated into the nanoparticle by dropping the drug carrier dissolved in dimethylsulfoxide solvent into water containing poly(vinyl alcohol) to achieve temperature response nanoparticles. Through size analysis, we found that the nanoparticles possessed a temperature-sensitive property between 30°C and 40°C. Moreover, flow cytometry and spectrofluorimetry analysis indicated that nanoparticle systems underwent significant cellular uptake. In addition, the evaluation of cell biology showed that nanoparticles have excellent biocompatibility. Thus, the results indicated that the temperature-sensitive nanoparticles have potential application value for targeted delivery of oligopeptide in the treatment process of osteoarthritis.
Collapse
Affiliation(s)
- Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yanhan Ren
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Wenjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials Nanjing Tech University, Nanjing, China
| |
Collapse
|
237
|
Suresh S, Lee J, Noguchi CT. Erythropoietin signaling in osteoblasts is required for normal bone formation and for bone loss during erythropoietin-stimulated erythropoiesis. FASEB J 2020; 34:11685-11697. [PMID: 32671900 DOI: 10.1096/fj.202000888r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 01/02/2023]
Abstract
Erythropoietin (EPO) regulates erythropoiesis by binding to erythropoietin receptor (Epor) on erythroid progenitor cells. Epor is also expressed on bone forming osteoblasts and bone loss accompanies EPO-stimulated erythropoiesis in mice. Mice with Epor restricted to erythroid tissue exhibit reduced bone and increased marrow adipocytes; in contrast, transgenic mice (Tg) with osteoblastic-specific deletion of Epor exhibit reduced trabecular bone with age without change in marrow adipocytes. By 12 weeks, male Tg mice had 22.2% and female Tg mice had 29.6% reduced trabecular bone volume (BV) compared to controls. EPO administration (1200 U/kg) for 10 days reduced trabecular bone in control mice but not in Tg mice. There were no differences in numbers of osteoblasts, osteoclasts, and marrow adipocytes in Tg mice, suggesting independence of EPO signaling in mature osteoblasts, osteoclasts, and adipocytes. Female Tg mice had increased number of dying osteocytes and male Tg mice had a trend for more empty lacunae. Osteogenic cultures from Tg mice had reduced differentiation and mineralization with reduced Alpl and Runx2 transcripts. In conclusion, endogenous EPO-Epor signaling in osteoblasts is important in bone remodeling, particularly trabecular bone and endogenous Epor expression in osteoblasts is required for bone loss accompanying EPO-stimulated erythropoiesis.
Collapse
Affiliation(s)
- Sukanya Suresh
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeeyoung Lee
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance T Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
238
|
Khan NM, Clifton KB, Lorenzo J, Hansen MF, Drissi H. Comparative transcriptomic analysis identifies distinct molecular signatures and regulatory networks of chondroclasts and osteoclasts. Arthritis Res Ther 2020; 22:168. [PMID: 32650826 PMCID: PMC7353397 DOI: 10.1186/s13075-020-02259-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Chondroclasts and osteoclasts have been previously identified as the cells capable of resorbing mineralized cartilage and bone matrices, respectively. While both cell types appear morphologically similar, contain comparable ultrastructural features, and express tartrate-resistant acid phosphatase (TRAP), however, no information is available about the genomic similarities and differences between osteoclasts and chondroclasts. METHODS To address this question, we laser captured homogeneous populations of TRAP-positive cells that interact with bone (osteoclasts) and TRAP-positive cells that interact with mineralized cartilage (chondroclasts) on the same plane from murine femoral fracture callus sections. We then performed a global transcriptome profiling of chondroclasts and osteoclasts by utilizing a mouse genome Agilent GE 4X44K V2 microarray platform. Multiple computational approaches and interaction networks were used to analyze the transcriptomic landscape of osteoclasts and chondroclasts. RESULTS Our systematic and comprehensive analyses using hierarchical clustering and principal component analysis (PCA) demonstrate that chondroclasts and osteoclasts are transcriptionally distinct cell populations and exhibit discrete transcriptomic signatures as revealed by multivariate analysis involving scatter plot, volcano plot, and heatmap analysis. TaqMan qPCR was used to validate the microarray results. Intriguingly, the functional enrichment and integrated network analyses revealed distinct Gene Ontology terms and molecular pathways specific to chondroclasts and osteoclasts and further suggest that subsets of metabolic genes were specific to chondroclasts. Protein-protein interaction (PPI) network analysis showed an abundance of structured networks of metabolic pathways, ATP synthesis, and proteasome pathways in chondroclasts. The regulatory network analysis using transcription factor-target gene network predicted a pool of genes including ETV6, SIRT1, and ATF1 as chondroclast-specific gene signature. CONCLUSIONS Our study provides an important genetic resource for further exploration of chondroclast function in vivo. To our knowledge, this is the first demonstration of genetic landscape of osteoclasts from chondroclasts identifying unique molecular signatures, functional clustering, and interaction network.
Collapse
Affiliation(s)
- Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA-30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Kari B Clifton
- Department of Biology, University of West Florida, Pensacola, FL, USA
| | - Joseph Lorenzo
- Department of Medicine, UConn Health, Farmington, CT, USA.,Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
| | - Marc F Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA-30033, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
239
|
Cui H, Han G, Sun B, Fang X, Dai X, Zhou S, Mao H, Wang B. Activating PIK3CA mutation promotes osteogenesis of bone marrow mesenchymal stem cells in macrodactyly. Cell Death Dis 2020; 11:505. [PMID: 32632138 PMCID: PMC7338441 DOI: 10.1038/s41419-020-2723-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Macrodactyly is a disabling congenital disease characterized by overgrowth of soft tissues and bones, which leads to finger enlargement and joint deformity. The mechanism of bone overgrowth in macrodactyly was rarely understood. In our study bone manifestations of three macrodactyly patients were analyzed by micro-CT. PIK3CA mutation was detected by next-generation sequencing (NGS) of a tumor gene-panel. The PI3K/AKT/mTOR pathway activation and target genes were analyzed. The osteogenic potential of macrodactyly-derived bone marrow mesenchymal stem cells (MAC-BMSCs) was compared with polydactyly-derived bone marrow mesenchymal stem cells (PD-BMSCs). PIK3CA inhibitors were tested for proliferation and osteogenesis potential of MAC-BMSCs. Activating PIK3CA mutations and activation of PI3K/AKT/mTOR pathway were detected in all MAC-BMSCs. MAC-BMSCs had enhanced osteogenesis potential compared with PD-BMSCs. PIK3CA knockdown by shRNA or BYL719 treatment significantly reduced osteogenic differentiation capacity of MAC-BMSCs. RNA-Seq and qRT-PCR revealed the upregulation of distal-less homeobox 5 (DLX5) in MAC-BMSCs compared with PD-BMSCs. The osteogenic potential of MAC-BMSCs was inhibited by DLX5 knockdown, indicating that DLX5 is a downstream target of PIK3CA activation-mediated osteogenesis. This study revealed that osteogenic differentiation in MAC-BMSCs is enhanced by PIK3CA activation mutation through PI3K/AKT/mTOR signaling pathway and can be reversed by PIK3CA knockdown or drug inhibition.
Collapse
Affiliation(s)
- Hengqing Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Gang Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xia Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
240
|
Zheng ZG, Cheng HM, Zhou YP, Zhu ST, Thu PM, Li HJ, Li P, Xu X. Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ 2020; 27:2048-2065. [PMID: 31907393 PMCID: PMC7308277 DOI: 10.1038/s41418-019-0484-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Several pharmacological treatment of osteoporosis has been developed; however, new treatments are still necessary. Cholesterol and estrogen receptor-related receptor alpha (ERRα) promote osteoclasts formation, survival, and cellular fusion and thus become high risk factors of osteoporosis. In this study, we identified that carnosic acid (CA) suppressed bone loss by dual-targeting of sterol regulatory element-binding protein 2 (SREBP2, a major regulator that regulates cholesterol synthesis) and ERRα. Mechanistically, CA reduced nuclear localization of mature SREBP2 and suppressed de novo biogenesis of cholesterol. CA subsequently decreased the interaction between ERRα and peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β), resulting in decreased the transcription activity of ERRα and its target genes expression. Meanwhile, CA directly bound to the ligand-binding domain of ERRα and significantly promoted its ubiquitination and proteasomal degradation. Subsequently, STUB1 was identified as the E3 ligase of ERRα. The lysine residues (K51 and K68) are essential for ubiquitination and proteasomal degradation of ERRα by CA. In conclusion, CA dually targets SREBP2 and ERRα, thus inhibits the RANKL-induced osteoclast formation and improves OVX-induced bone loss. CA may serve as a lead compound for pharmacological control of osteoporosis.
Collapse
Affiliation(s)
- Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Si-Tong Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
241
|
Lin J, Ma S, Zhu C, Chen C, Lin W, Lin C, Huang G, Ding Z. Circular RNA atlas in osteoclast differentiation with and without alendronate treatment. J Orthop Surg Res 2020; 15:240. [PMID: 32611361 PMCID: PMC7331147 DOI: 10.1186/s13018-020-01722-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alendronate (AL) is the most widely used bisphosphonate in the treatment of osteoporosis (OP). However, the role of circular RNAs (circRNAs) in the treatment of OP with AL remains unclear. METHODS In this study, we showed that osteoclast (OC) precursors (OPCSs) could be induced into OCs with macrophage colony-stimulating factor (MCSF) and receptor activator of nuclear factor-κB ligand (RANKL) treatment. Subsequently, the OCs were treated with AL. OC differentiation-related biomarkers including RANK, tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were analyzed with TRAP staining, quantitative real-time (qPCR), and western blotting. Differentially expressed circRNAs (DECs) were identified among the OPCS, OC, and OC + AL groups. In addition, the expression levels of 10 DECs related to OC differentiation were verified by qPCR. RESULTS TRAP staining showed that MCSF and RANKL treatment effectively induced OPCSs to differentiate into OCs. In addition, qPCR and western blot analysis revealed that the three biomarkers of OC (RANK, TRAP, and CTSK) were expressed significantly more in the OC group than those in the OPCS group. In contrast, the mRNA and protein expression levels of these three biomarkers decreased significantly in OCs treated with AL compared with those non-treated OCs. GO analysis of the DECs in the OPCS group vs. the OC group revealed that their functions were mainly related to cell, cell part, binding, and single-organism terms. KEGG analysis of the top 20 DECs in a comparison between the OPCS and OC groups showed that genes involved in mitogen-activated protein kinase signaling were the most common. Results of functional analyses of DECs in an OC vs. OC + AL comparison were similar to those in the OPCS vs. OC comparison. Finally, qPCR showed that, in the OC + AL vs. OC group comparison, the expression levels of seven and three DECs significantly decreased and increased, respectively. CONCLUSIONS Having successfully induced OPCSs to differentiate into OCs, we showed that AL suppresses the differentiation of OPCS into OC and that 10 DECs were involved in the regulation of this process. This indicates that these DECs might be important to the treatment of OP.
Collapse
Affiliation(s)
- Jianbiao Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Shaofeng Ma
- Obstetrics and Gynecology Department, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, Zhangzhou, China
| | - Cong Zhu
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Changqing Chen
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Weibin Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Canbin Lin
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China
| | - Guofeng Huang
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China.
| | - Zhenqi Ding
- Center for Orthopedics, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian, China.
| |
Collapse
|
242
|
Győri DS, Mócsai A. Osteoclast Signal Transduction During Bone Metastasis Formation. Front Cell Dev Biol 2020; 8:507. [PMID: 32637413 PMCID: PMC7317091 DOI: 10.3389/fcell.2020.00507] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoclasts are myeloid lineage-derived bone-resorbing cells of hematopoietic origin. They differentiate from myeloid precursors through a complex regulation process where the differentiation of preosteoclasts is followed by intercellular fusion to generate large multinucleated cells. Under physiological conditions, osteoclastogenesis is primarily directed by interactions between CSF-1R and macrophage colony-stimulating factor (M-CSF, CSF-1), receptor activator of nuclear factor NF-κB (RANK) and RANK ligand (RANKL), as well as adhesion receptors (e.g., integrins) and their ligands. Osteoclasts play a central role in physiological and pathological bone resorption and are also required for excessive bone loss during osteoporosis, inflammatory bone and joint diseases (such as rheumatoid arthritis) and cancer cell-induced osteolysis. Due to the major role of osteoclasts in these diseases the better understanding of their intracellular signaling pathways can lead to the identification of potential novel therapeutic targets. Non-receptor tyrosine kinases and lipid kinases play major roles in osteoclasts and small-molecule kinase inhibitors are emerging new therapeutics in diseases with pathological bone loss. During the last few years, we and others have shown that certain lipid (such as phosphoinositide 3-kinases PI3Kβ and PI3Kδ) and tyrosine (Src-family and Syk) kinases play a critical role in osteoclast differentiation and function in humans and mice. Some of these signaling pathways shows similarity to immunoreceptor-like receptor signaling and involves important other enzymes (e.g., PLCγ2) and adapter proteins (such as the ITAM-bearing adapters DAP12 and the Fc-receptor γ-chain). Here, we review recently identified osteoclast signaling pathways and their role in osteoclast differentiation and function as well as pathological bone loss associated with osteolytic tumors of the bone. A better understanding of osteoclast signaling may facilitate the design of novel and more efficient therapies for pathological bone resorption and osteolytic skeletal metastasis formation.
Collapse
Affiliation(s)
- Dávid S. Győri
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
243
|
Li S, He T, Wu D, Zhang L, Chen R, Liu B, Yuan J, Tickner J, Qin A, Xu J, Rong L. Conditional Knockout of PKC-δ in Osteoclasts Favors Bone Mass Accrual in Males Due to Decreased Osteoclast Function. Front Cell Dev Biol 2020; 8:450. [PMID: 32582715 PMCID: PMC7295979 DOI: 10.3389/fcell.2020.00450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Protein kinase C delta (PKC-δ) functions as an important regulator in bone metabolism. However, the precise involvement of PKC-δ in the regulation of osteoclasts remains elusive. We generated an osteoclast specific PKC-δ knockout mouse strain to investigate the function of PKC-δ in osteoclast biology. Bone phenotype was investigated using microcomputed tomography. Osteoclast and osteoblast parameters were assessed using bone histomorphometry, and analysis of osteoclast formation and function with osteoclastogensis and hydroxyapatite resorption assays. The molecular mechanisms by which PKC-δ regulated osteoclast function were dissected by Western Blotting, TUNEL assay, transfection and transcriptome sequencing. We found that ablation of PKC-δ in osteoclasts resulted in an increase in trabecular and cortical bone volume in male mice, however, the bone mass phenotype was not observed in female mice. This was accompanied by decreased osteoclast number and surface, and Cathepsin-K protein levels in vivo, as well as decreased osteoclast formation and resorption in vitro in a male-specific manner. PKC-δ regulated androgen receptor transcription by binding to its promoter, moreover, PKC-δ conditional knockout did not increase osteoclast apoptosis but increased MAPK signaling and enhanced androgen receptor transcription and expression, finally leding to significant alterations in gene expression and signaling changes related to extracellular matrix proteins specifically in male mice. In conclusion, PKC-δ plays an important role in osteoclast formation and function in a male-specific manner. Our work reveals a previously unknown target for treatment of gender-related bone diseases.
Collapse
Affiliation(s)
- Shangfu Li
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Depeng Wu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Ruiqiang Chen
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Bin Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| | - Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, China
| |
Collapse
|
244
|
Che J, Yang J, Zhao B, Zhang G, Wang L, Peng S, Shang P. The Effect of Abnormal Iron Metabolism on Osteoporosis. Biol Trace Elem Res 2020; 195:353-365. [PMID: 31473898 DOI: 10.1007/s12011-019-01867-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
Iron is one of the important trace elements in life activities. Abnormal iron metabolism increases the incidence of many skeletal diseases, especially for osteoporosis. Iron metabolism plays a key role in the bone homeostasis. Disturbance of iron metabolism not only promotes osteoclast differentiation and apoptosis of osteoblasts but also inhibits proliferation and differentiation of osteoblasts, which eventually destroys the balance of bone remodeling. The strength and density of bone can be weakened by the disordered iron metabolism, which increases the incidence of osteoporosis. Clinically, compounds or drugs that regulate iron metabolism are used for the treatment of osteoporosis. The goal of this review summarizes the new progress on the effect of iron overload or deficiency on osteoporosis and the mechanism of disordered iron metabolism on osteoporosis. Explaining the relationship of iron metabolism with osteoporosis may provide ideas for clinical treatment and development of new drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Jiancheng Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Luyao Wang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Songlin Peng
- Department of Spine Surgery, Shenzhen People's Hospital, Shenzhen, 518000, Guangdong, China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, Guangdong, China.
- Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China.
| |
Collapse
|
245
|
Umeyama R, Yamawaki T, Liu D, Kanazawa S, Takato T, Hoshi K, Hikita A. Optimization of culture duration of bone marrow cells before transplantation with a β-tricalcium phosphate/recombinant collagen peptide hybrid scaffold. Regen Ther 2020; 14:284-295. [PMID: 32462057 PMCID: PMC7240285 DOI: 10.1016/j.reth.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 04/04/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Currently, various kinds of materials are used for the treatment of bone defects. In general, these materials have a problem of formativeness. The three -dimensional (3D) printing technique has been introduced to fabricate artificial bone with arbitrary shapes, but poor bone replacement is still problematic.Our group has created a β⁻tricalcium phosphate (β⁻TCP) scaffold by applying 3D printing technology. This scaffold has an arbitrary shape and an internal structure suitable for cell loading, growth, and colonization. The scaffold was coated with a recombinant collagen peptide (RCP) to promote bone replacement.As indicated by several studies, cells loaded to scaffolds promote bone regeneration, especially when they are induced osteoblastic differentiation before transplantation. In this study, culture duration for bone marrow cells was optimized before being loaded to this new scaffold material. METHOD Bone marrow cells isolated from C57BL/6J mice were subjected to osteogenic culture for 4, 7, and 14 days. The differentiation status of the cells was examined by alkaline phosphatase staining, alizarin red staining, and real-time RT-PCR for differentiation markers. In addition, the flow of changes in the abundance of endothelial cells and monocytes was analyzed by flow cytometry according to the culture period of bone marrow cells.Next, cells at days 4, 7, and 14 of culture were placed on a β-TCP/RCP scaffold and implanted subcutaneously into the back of C57BL/6J mice. Grafts were harvested and evaluated histologically 8 weeks later. Finally, Cells cultured for 7 days were also transplanted subperiosteally in the skull of the mouse with scaffolds. RESULT Alkaline phosphatase staining was most prominent at 7 days, and alizarin red staining was positive at 14 days. Real-time RT-PCR revealed that Runx2 and Alp peaked at 7 days, while expression of Col1a1 and Bglap was highest at 14 days. Flow cytometry indicated that endothelial cells increased from day 0 to day 7, while monocytes increased continuously from day 0 to day 14. When transplanted into mice, the scaffold with cells cultured for 7 days exhibited the most prominent osteogenesis. The scaffold, which was transplanted subperiosteally in the skull, retained its shape and was replaced with regenerated bone over a large area of the field of view. CONCLUSION Osteoblasts before full maturation are most efficient for bone regeneration, and the pre-culture period suitable for cells to be loaded onto a β-TCP/RCP hybrid scaffold is approximately 7 days.This β-TCP/RCP hybrid scaffolds will also be useful for bone augmentation.
Collapse
Affiliation(s)
- Ryo Umeyama
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Takanori Yamawaki
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Dan Liu
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Sanshiro Kanazawa
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tsuyoshi Takato
- JR Tokyo General Hospital, 2-1-3 Yoyogi, Shibuya, Tokyo 151-8528
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
- Department of Cell & Tissue Engineering (FUJISOFT), Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuhiko Hikita
- Department of Cell & Tissue Engineering (FUJISOFT), Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
246
|
Kim JH, Kim N. Bone Cell Communication Factors Provide a New Therapeutic Strategy for Osteoporosis. Chonnam Med J 2020; 56:94-98. [PMID: 32509555 PMCID: PMC7250673 DOI: 10.4068/cmj.2020.56.2.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Bone homeostasis is strictly regulated by the balance between bone resorption by osteoclasts and bone formation by osteoblasts. Many studies have shown that osteoclasts affect osteoblasts, and vice versa, through diffusible paracrine factors, cell-cell contact, and cell-bone matrix interactions to achieve the correct balance between osteoclastic and osteoblastic activities in the basic multicellular unit (BMU). The strict regulation that occurs during bone remodeling hinders the long-term use of the currently available antiresorptive agents and anabolic agents for the treatment of osteoporosis. To overcome these limitations, it is necessary to develop novel agents that simultaneously inhibit bone resorption, promote bone formation, and decouple resorption from formation. Therefore, a more detailed understanding of the mechanisms involved in osteoclast-osteoblast communication during bone remodeling is necessary.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
247
|
Guarnieri R, Miccoli G, Seracchiani M, D’Angelo M, Di Nardo D, Testarelli L. Changes of Radiographic Trabecular Bone Density and Peri-Implant Marginal Bone Vertical Dimensions Around Non-Submerged Dental Implants with a Laser-Microtextured Collar after 5 Years of Functional Loading. Open Dent J 2020. [DOI: 10.2174/1874210602014010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objectives:
The progressive peri-implant bone remodeling caused by dynamic cycles of microdamage may change peri-implant bone characteristics and volume after the functional loading.
This prospective study was designed to evaluate the radiographic trabecular bone density and peri-implant vertical dimensional changes around the non submerged dental implant with a laser-microtextured collar (NSLI)s after 5 years of functional loading.
Methods:
Digital periapical radiographs of 58 NSLIs supported fixed single crowns and fixed partial dentures in 26 patients (14 men, mean age of 52 ± 3.8 years) were used for comparative evaluation between the implant placement [Baseline (BSL)], the definitive Crowns Delivery (CD) and the 5 years post-functional loading examination (T5). Regions of interest (ROI) were taken into consideration for the measurement of mean gray levels, standard deviation, and variation coefficient. The texture parameters, such as contrast, correlation, angular second moment and entropy, were investigated by using the software ImageJ (v.1.50i), by means of the Gray-level Co-occurrence Matrix (GLCM) Texture Tool plugin. Vertical Peri-implant Marginal Bone Level (VPMBL) was assessed at the mesial and the distal sides of each implant by subtracting the measure at BSL from the measure at T5 by means of dedicate software (VixWin Platinum Imaging Software). Mixed regression models were adopted to analyze data. The possible effects of some variables, such as the use of provisional denture, location, crown/implant ratio, type of prosthetic design (single or splinted), on radiographic dimensional vertical changes, gray levels and texture analysis variables were also evaluated.
Results:
From BSL to T5, mesial and distal VPMBL showed a statistically significant gain of 0.9 ±0.5, and 0.10 mm ±0.6, respectively (P<0.05). From CD to T5, mean gray levels increased from 94.4±26.8) to 111.8±27.1 (P<0.05), while the coefficient of variation decreased from 0.08±0,03 to 0.05±0.04) (P<0.05). Variables showed no statistically significant correlation with texture parameters (P > 0.05).
Conclusion:
NSLIs showed an increase in radiographic vertical peri-implant marginal bone levels and bone density up to 5 years of loading.
Collapse
|
248
|
Huang Y, Li Q, Feng Z, Zheng L. STIM1 controls calcineurin/Akt/mTOR/NFATC2-mediated osteoclastogenesis induced by RANKL/M-CSF. Exp Ther Med 2020; 20:736-747. [PMID: 32742319 PMCID: PMC7388407 DOI: 10.3892/etm.2020.8774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the stable calcium channel influx in most cells. It consists of the cytoplasmic ion channel ORAI and endoplasmic reticulum receptor stromal interaction molecule 1 (STIM1). Abolition of SOCE function due to ORAI1 and STIM1 gene defects may cause non-perspiration, ectoderm dysplasia and skeletal malformations with severe combined immunodeficiency (CID). Calcineurin/mammalian target of rapamycin (mTOR)/nuclear factor of activated T cells 2 (NFATC2) is an important signalling cascade for osteoclast development. Calcineurin is activated by Ca2+ via SOCE during osteoclastogenesis, which is induced by receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the underlying mechanism has remained to be fully elucidated, which was therefore the aim of the present study. In the current study, flow cytometry was used to examine the effect of a number of STIM1 mutations on proliferation, differentiation, and expression of osteolysis-associated proteins in Bone marrow-derived mononuclear macrophages (BMDM). The calcineurin/AKT/mTOR/NFATC2 signaling cascade activation were also assessed. BMDMs were obtained from three patients with STIM1 mutations (p.E136X, p.R429C and p.R304W). These mutations, which exhibited abolished (p.E136X, p.R429C) or constitutively activated (p.R304W) SOCE, failed to respond to RANKL/M-CSF-mediated induction of normal osteoclastogenesis. In addition, activation of the calcineurin/Akt/mTOR/NFATC2 signalling cascade induced by RANKL/M-CSF was abnormal in the BMDMs with STIM1 mutants compared with that in BMDMs from healthy subjects. In addition, overexpression of wild-type STIM1 restored SOCE in p.R429C- and p.E136X-mutant BMDMs, but not in p.R304W-mutant BMDMs. Of note, calcineurin, cyclosporin A, mTOR inhibitor rapamycin and NFATC2-specific small interfering RNA restored the function of SOCE in p.R304W-mutant BMDMs. The present study suggests a role for SOCE in calcineurin/Akt/mTOR/NFATC2-mediated osteoclast proliferation, differentiation and function.
Collapse
Affiliation(s)
- Yanjiao Huang
- Department of Pathological Anatomy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Qiang Li
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Zunyong Feng
- Department of Forensic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lanrong Zheng
- Department of Pathological Anatomy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
249
|
Nandiraju D, Ahmed I. Human skeletal physiology and factors affecting its modeling and remodeling. Fertil Steril 2020; 112:775-781. [PMID: 31731931 DOI: 10.1016/j.fertnstert.2019.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/21/2022]
Abstract
Human skeleton is a living tissue that performs structural and metabolic functions. It is not only the largest storehouse for calcium and other essential ions but also a depot for toxic chemicals faced by human body throughout life. Skeletal modeling starts at conception and then throughout life undergoes constant remodeling to adopt its shape and strength according to human needs. With the passage of time, like other tissues in the body, bones also bear the brunt of life and in this life long process loses its strength and vitality. Multiple genetic and environmental factors play an integral part in its formation, strength, and decline.
Collapse
Affiliation(s)
- Deepika Nandiraju
- Division of Endocrinology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Intekhab Ahmed
- Division of Endocrinology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
250
|
Huang X, Xiong X, Liu J, Zhao Z, Cen X. MicroRNAs-containing extracellular vesicles in bone remodeling: An emerging frontier. Life Sci 2020; 254:117809. [PMID: 32428598 DOI: 10.1016/j.lfs.2020.117809] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/05/2023]
Abstract
Bone remodeling is a complex and constant process, which is maintained by well-regulated communication among various cells. Extracellular vesicles (EVs) are small vesicles, which could provide a protective environment for the transportation of various functional molecules. It has been shown that EVs could dock with distant and/or neighboring target cells, deliver cargoes to these specific cells and alter their fates. MicroRNAs (miRNAs), single-stranded non-coding RNAs with 22-26 nucleotides, could bind to mRNAs and repress the translation or stimulate the degradation of mRNAs. It is reported that EVs could serve as the mail carriers, which could cargo miRNAs to exchange information between different cells and act through a novel way to regulate signaling pathways during bone remodeling. In this review, we summarize the function of EV-miRNAs in the communication among mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, osteocytes, and myoblasts during bone remodeling, as well as the key signaling molecules which are involved in this process. The roles of EV-miRNAs in sending intercellular messages in the microenvironment of bone remodeling could shed new light on the development of tissue engineering, and provide novel diagnostic markers and therapeutic targets of bone-related diseases.
Collapse
Affiliation(s)
- Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiner Xiong
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jun Liu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|