201
|
Abstract
Protein-protein interactions (PPIs) underlie most, if not all, cellular functions. The comprehensive mapping of these complex networks of stable and transient associations thus remains a key goal, both for systems biology-based initiatives (where it can be combined with other 'omics' data to gain a better understanding of functional pathways and networks) and for focused biological studies. Despite the significant challenges of such an undertaking, major strides have been made over the past few years. They include improvements in the computation prediction of PPIs and the literature curation of low-throughput studies of specific protein complexes, but also an increase in the deposition of high-quality data from non-biased high-throughput experimental PPI mapping strategies into publicly available databases.
Collapse
Affiliation(s)
- Virja Mehta
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Laura Trinkle-Mulcahy
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
202
|
Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, Poser I, Mann M, Hyman AA, Citi S. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem 2016; 291:11016-29. [PMID: 27044745 DOI: 10.1074/jbc.m115.712935] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Indexed: 01/07/2023] Open
Abstract
PLEKHA7 is a junctional protein implicated in stabilization of the cadherin protein complex, hypertension, cardiac contractility, glaucoma, microRNA processing, and susceptibility to bacterial toxins. To gain insight into the molecular basis for the functions of PLEKHA7, we looked for new PLEKHA7 interactors. Here, we report the identification of PDZ domain-containing protein 11 (PDZD11) as a new interactor of PLEKHA7 by yeast two-hybrid screening and by mass spectrometry analysis of PLEKHA7 immunoprecipitates. We show that PDZD11 (17 kDa) is expressed in epithelial and endothelial cells, where it forms a complex with PLEKHA7, as determined by co-immunoprecipitation analysis. The N-terminal Trp-Trp (WW) domain of PLEKHA7 interacts directly with the N-terminal 44 amino acids of PDZD11, as shown by GST-pulldown assays. Immunofluorescence analysis shows that PDZD11 is localized at adherens junctions in a PLEKHA7-dependent manner, because its junctional localization is abolished by knock-out of PLEKHA7, and is rescued by re-expression of exogenous PLEKHA7. The junctional recruitment of nectin-1 and nectin-3 and their protein levels are decreased via proteasome-mediated degradation in epithelial cells where either PDZD11 or PLEKHA7 have been knocked-out. PDZD11 forms a complex with nectin-1 and nectin-3, and its PDZ domain interacts directly with the PDZ-binding motif of nectin-1. PDZD11 is required for the efficient assembly of apical junctions of epithelial cells at early time points in the calcium-switch model. These results show that the PLEKHA7-PDZD11 complex stabilizes nectins to promote efficient early junction assembly and uncover a new molecular mechanism through which PLEKHA7 recruits PDZ-binding membrane proteins to epithelial adherens junctions.
Collapse
Affiliation(s)
- Diego Guerrera
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Jimit Shah
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ekaterina Vasileva
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Sophie Sluysmans
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Isabelle Méan
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Lionel Jond
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland
| | - Ina Poser
- the Max Planck Institute for Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Matthias Mann
- the Max Planck Institute for Biochemistry, 82152 Martinsried, Germany
| | - Anthony A Hyman
- the Max Planck Institute for Cell Biology and Genetics, 01307 Dresden, Germany, and
| | - Sandra Citi
- From the Department of Cell Biology and Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211-4 Geneva, Switzerland,
| |
Collapse
|
203
|
FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget 2016; 6:12697-709. [PMID: 25885523 PMCID: PMC4494967 DOI: 10.18632/oncotarget.3708] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
CCDC6 gene product is a pro-apoptotic protein substrate of ATM, whose loss or inactivation enhances tumour progression. In primary tumours, the impaired function of CCDC6 protein has been ascribed to CCDC6 rearrangements and to somatic mutations in several neoplasia. Recently, low levels of CCDC6 protein, in NSCLC, have been correlated with tumor prognosis. However, the mechanisms responsible for the variable levels of CCDC6 in primary tumors have not been described yet. We show that CCDC6 turnover is regulated in a cell cycle dependent manner. CCDC6 undergoes a cyclic variation in the phosphorylated status and in protein levels that peak at G2 and decrease in mitosis. The reduced stability of CCDC6 in the M phase is dependent on mitotic kinases and on degron motifs that are present in CCDC6 and direct the recruitment of CCDC6 to the FBXW7 E3 Ubl. The de-ubiquitinase enzyme USP7 appears responsible of the fine tuning of the CCDC6 stability, affecting cells behaviour and drug response. Thus, we propose that the amount of CCDC6 protein in primary tumors, as reported in lung, may depend on the impairment of the CCDC6 turnover due to altered protein-protein interaction and post-translational modifications and may be critical in optimizing personalized therapy.
Collapse
|
204
|
Raab M, Gentili M, de Belly H, Thiam HR, Vargas P, Jimenez AJ, Lautenschlaeger F, Voituriez R, Lennon-Duménil AM, Manel N, Piel M. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 2016; 352:359-62. [PMID: 27013426 DOI: 10.1126/science.aad7611] [Citation(s) in RCA: 647] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022]
Abstract
In eukaryotic cells, the nuclear envelope separates the genomic DNA from the cytoplasmic space and regulates protein trafficking between the two compartments. This barrier is only transiently dissolved during mitosis. Here, we found that it also opened at high frequency in migrating mammalian cells during interphase, which allowed nuclear proteins to leak out and cytoplasmic proteins to leak in. This transient opening was caused by nuclear deformation and was rapidly repaired in an ESCRT (endosomal sorting complexes required for transport)-dependent manner. DNA double-strand breaks coincided with nuclear envelope opening events. As a consequence, survival of cells migrating through confining environments depended on efficient nuclear envelope and DNA repair machineries. Nuclear envelope opening in migrating leukocytes could have potentially important consequences for normal and pathological immune responses.
Collapse
Affiliation(s)
- M Raab
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France. Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - M Gentili
- Institut Curie, PSL Research University, INSERM, U 932, F-75005 Paris, France
| | - H de Belly
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - H R Thiam
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - P Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France. Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - A J Jimenez
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - F Lautenschlaeger
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris, France. Laboratoire Jean Perrin, CNRS UMR 8237, Université Pierre et Marie Curie, Paris, France
| | - A M Lennon-Duménil
- Institut Curie, PSL Research University, INSERM, U 932, F-75005 Paris, France
| | - N Manel
- Institut Curie, PSL Research University, INSERM, U 932, F-75005 Paris, France
| | - M Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France. Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France.
| |
Collapse
|
205
|
Sudhir PR, Chen CH. Proteomics-Based Analysis of Protein Complexes in Pluripotent Stem Cells and Cancer Biology. Int J Mol Sci 2016; 17:432. [PMID: 27011181 PMCID: PMC4813282 DOI: 10.3390/ijms17030432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/24/2022] Open
Abstract
A protein complex consists of two or more proteins that are linked together through protein-protein interactions. The proteins show stable/transient and direct/indirect interactions within the protein complex or between the protein complexes. Protein complexes are involved in regulation of most of the cellular processes and molecular functions. The delineation of protein complexes is important to expand our knowledge on proteins functional roles in physiological and pathological conditions. The genetic yeast-2-hybrid method has been extensively used to characterize protein-protein interactions. Alternatively, a biochemical-based affinity purification coupled with mass spectrometry (AP-MS) approach has been widely used to characterize the protein complexes. In the AP-MS method, a protein complex of a target protein of interest is purified using a specific antibody or an affinity tag (e.g., DYKDDDDK peptide (FLAG) and polyhistidine (His)) and is subsequently analyzed by means of MS. Tandem affinity purification, a two-step purification system, coupled with MS has been widely used mainly to reduce the contaminants. We review here a general principle for AP-MS-based characterization of protein complexes and we explore several protein complexes identified in pluripotent stem cell biology and cancer biology as examples.
Collapse
Affiliation(s)
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
206
|
Isokane M, Walter T, Mahen R, Nijmeijer B, Hériché JK, Miura K, Maffini S, Ivanov MP, Kitajima TS, Peters JM, Ellenberg J. ARHGEF17 is an essential spindle assembly checkpoint factor that targets Mps1 to kinetochores. J Cell Biol 2016; 212:647-59. [PMID: 26953350 PMCID: PMC4792069 DOI: 10.1083/jcb.201408089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures genome stability during cell division. Here, a new essential SAC factor, ARHGEF17, is characterized by quantitative imaging, biochemical, and biophysical experiments, which show that it targets the checkpoint kinase Mps1 to kinetochores. To prevent genome instability, mitotic exit is delayed until all chromosomes are properly attached to the mitotic spindle by the spindle assembly checkpoint (SAC). In this study, we characterized the function of ARHGEF17, identified in a genome-wide RNA interference screen for human mitosis genes. Through a series of quantitative imaging, biochemical, and biophysical experiments, we showed that ARHGEF17 is essential for SAC activity, because it is the major targeting factor that controls localization of the checkpoint kinase Mps1 to the kinetochore. This mitotic function is mediated by direct interaction of the central domain of ARHGEF17 with Mps1, which is autoregulated by the activity of Mps1 kinase, for which ARHGEF17 is a substrate. This mitosis-specific role is independent of ARHGEF17’s RhoGEF activity in interphase. Our study thus assigns a new mitotic function to ARHGEF17 and reveals the molecular mechanism for a key step in SAC establishment.
Collapse
Affiliation(s)
- Mayumi Isokane
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Thomas Walter
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Robert Mahen
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bianca Nijmeijer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jean-Karim Hériché
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Kota Miura
- Centre for Molecular and Cellular Imaging, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Miroslav Penchev Ivanov
- Molecular and Cellular Biology, Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Tomoya S Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jan-Michael Peters
- Molecular and Cellular Biology, Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
207
|
Tame MA, Raaijmakers JA, Afanasyev P, Medema RH. Chromosome misalignments induce spindle-positioning defects. EMBO Rep 2016; 17:317-25. [PMID: 26882550 PMCID: PMC4772978 DOI: 10.15252/embr.201541143] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022] Open
Abstract
Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus-end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein-dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP-170 or CENP-E depletion or by noscapine treatment are similarly accompanied by severe spindle-positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re-establishes proper spindle orientation. Hence, KT-enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis.
Collapse
Affiliation(s)
- Mihoko A Tame
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jonne A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pavel Afanasyev
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands
| | - René H Medema
- Department of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
208
|
Noberini R, Sigismondo G, Bonaldi T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 2016; 8:429-45. [DOI: 10.2217/epi.15.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chromatin is a macromolecular complex composed of DNA and histones that regulate gene expression and nuclear architecture. The concerted action of DNA methylation, histone post-translational modifications and chromatin-associated proteins control the epigenetic regulation of the genome, ultimately determining cell fate and the transcriptional outputs of differentiated cells. Deregulation of this complex machinery leads to disease states, and exploiting epigenetic drugs is becoming increasingly attractive for therapeutic intervention. Mass spectrometry (MS)-based proteomics emerged as a powerful tool complementary to genomic approaches for epigenetic research, allowing the unbiased and comprehensive analysis of histone post-translational modifications and the characterization of chromatin constituents and chromatin-associated proteins. Furthermore, MS holds great promise for epigenetic biomarker discovery and represents a useful tool for deconvolution of epigenetic drug targets. Here, we will provide an overview of the applications of MS-based proteomics in various areas of chromatin biology.
Collapse
Affiliation(s)
- Roberta Noberini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, via Adamello 16, Milano, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, via Adamello 16, Milano, Italy
| |
Collapse
|
209
|
Hendriks G, Derr RS, Misovic B, Morolli B, Calléja FMGR, Vrieling H. The Extended ToxTracker Assay Discriminates Between Induction of DNA Damage, Oxidative Stress, and Protein Misfolding. Toxicol Sci 2016; 150:190-203. [PMID: 26719371 PMCID: PMC5009621 DOI: 10.1093/toxsci/kfv323] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chemical exposure of cells may damage biomolecules, cellular structures, and organelles thereby jeopardizing cellular homeostasis. A multitude of defense mechanisms have evolved that can recognize specific types of damaged molecules and will initiate distinct cellular programs aiming to remove the damage inflicted and prevent cellular havoc. As a consequence, quantitative assessment of the activity of the cellular stress responses may serve as a sensitive reporter for the induction of specific types of damage. We have previously developed the ToxTracker assay, a mammalian stem cell-based genotoxicity assay employing two green fluorescent protein reporters specific for DNA damage and oxidative stress. We have now expanded the ToxTracker assay with an additional four reporter cell lines to include monitoring of additional stress signaling pathways. This panel of six green fluorescent protein reporters is able to discriminate between different primary reactivity of chemicals being their ability to react with DNA and block DNA replication, induce oxidative stress, activate the unfolded protein response, or cause a general P53-dependent cellular stress response. Extensive validation using the compound library suggested by the European Centre for the Validation of Alternative Methods (ECVAM) and a large panel of reference chemicals shows that the ToxTracker assay has an outstanding sensitivity and specificity. In addition, we developed Toxplot, a dedicated software tool for automated data analysis and graphical representation of the test results. Rapid and reliable identification by the ToxTracker assay of specific biological reactivity can significantly improve in vitro human hazard assessment of chemicals.
Collapse
Affiliation(s)
- Giel Hendriks
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Remco S Derr
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Branislav Misovic
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Bruno Morolli
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Fabienne M G R Calléja
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands
| |
Collapse
|
210
|
Makowski MM, Willems E, Jansen PWTC, Vermeulen M. Cross-linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-associated Protein Complexes Using Single Affinity Purification. Mol Cell Proteomics 2016; 15:854-65. [PMID: 26560067 PMCID: PMC4813705 DOI: 10.1074/mcp.m115.053082] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/04/2015] [Indexed: 12/31/2022] Open
Abstract
In recent years, cross-linking mass spectrometry has proven to be a robust and effective method of interrogating macromolecular protein complex topologies at peptide resolution. Traditionally, cross-linking mass spectrometry workflows have utilized homogenous complexes obtained through time-limiting reconstitution, tandem affinity purification, and conventional chromatography workflows. Here, we present cross-linking immunoprecipitation-MS (xIP-MS), a simple, rapid, and efficient method for structurally probing chromatin-associated protein complexes using small volumes of mammalian whole cell lysates, single affinity purification, and on-bead cross-linking followed by LC-MS/MS analysis. We first benchmarked xIP-MS using the structurally well-characterized phosphoribosyl pyrophosphate synthetase complex. We then applied xIP-MS to the chromatin-associated cohesin (SMC1A/3), XRCC5/6 (Ku70/86), and MCM complexes, and we provide novel structural and biological insights into their architectures and molecular function. Of note, we use xIP-MS to perform topological studies under cell cycle perturbations, showing that the xIP-MS protocol is sufficiently straightforward and efficient to allow comparative cross-linking experiments. This work, therefore, demonstrates that xIP-MS is a robust, flexible, and widely applicable methodology for interrogating chromatin-associated protein complex architectures.
Collapse
Affiliation(s)
- Matthew M Makowski
- From the ‡Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Esther Willems
- From the ‡Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- From the ‡Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands
| | - Michiel Vermeulen
- From the ‡Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Geert Grooteplein 28, 6525 GA Nijmegen, the Netherlands; §Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
211
|
Ladurner R, Kreidl E, Ivanov MP, Ekker H, Idarraga-Amado MH, Busslinger GA, Wutz G, Cisneros DA, Peters JM. Sororin actively maintains sister chromatid cohesion. EMBO J 2016; 35:635-53. [PMID: 26903600 PMCID: PMC4801952 DOI: 10.15252/embj.201592532] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/17/2016] [Indexed: 11/26/2022] Open
Abstract
Cohesion between sister chromatids is established during DNA replication but needs to be maintained to enable proper chromosome–spindle attachments in mitosis or meiosis. Cohesion is mediated by cohesin, but also depends on cohesin acetylation and sororin. Sororin contributes to cohesion by stabilizing cohesin on DNA. Sororin achieves this by inhibiting WAPL, which otherwise releases cohesin from DNA and destroys cohesion. Here we describe mouse models which enable the controlled depletion of sororin by gene deletion or auxin‐induced degradation. We show that sororin is essential for embryonic development, cohesion maintenance, and proper chromosome segregation. We further show that the acetyltransferases ESCO1 and ESCO2 are essential for stabilizing cohesin on chromatin, that their only function in this process is to acetylate cohesin's SMC3 subunit, and that DNA replication is also required for stable cohesin–chromatin interactions. Unexpectedly, we find that sororin interacts dynamically with the cohesin complexes it stabilizes. This implies that sororin recruitment to cohesin does not depend on the DNA replication machinery or process itself, but on a property that cohesin acquires during cohesion establishment.
Collapse
Affiliation(s)
- Rene Ladurner
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Emanuel Kreidl
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Heinz Ekker
- Campus Science Support Facilities NGS Facility, Vienna, Austria
| | | | | | - Gordana Wutz
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | | | | |
Collapse
|
212
|
Rai A, Pathak D, Thakur S, Singh S, Dubey AK, Mallik R. Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes. Cell 2016; 164:722-34. [PMID: 26853472 PMCID: PMC4752818 DOI: 10.1016/j.cell.2015.12.054] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/26/2015] [Accepted: 12/23/2015] [Indexed: 01/19/2023]
Abstract
Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes. Dynein clusters into lipid microdomains on the phagosome as it matures Clustering allows many dyneins to simultaneously contact a single microtubule Large cooperative forces can now be generated to transport phagosomes to lysosomes Leishmania lipophosphoglycans disrupt microdomains and inhibit this transport
Collapse
Affiliation(s)
- Ashim Rai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Divya Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Shreyasi Thakur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Shampa Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Alok Kumar Dubey
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| | - Roop Mallik
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India.
| |
Collapse
|
213
|
Varier RA, Carrillo de Santa Pau E, van der Groep P, Lindeboom RGH, Matarese F, Mensinga A, Smits AH, Edupuganti RR, Baltissen MP, Jansen PWTC, Ter Hoeve N, van Weely DR, Poser I, van Diest PJ, Stunnenberg HG, Vermeulen M. Recruitment of the Mammalian Histone-modifying EMSY Complex to Target Genes Is Regulated by ZNF131. J Biol Chem 2016; 291:7313-24. [PMID: 26841866 DOI: 10.1074/jbc.m115.701227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 11/06/2022] Open
Abstract
Recent work from others and us revealed interactions between the Sin3/HDAC complex, the H3K4me3 demethylase KDM5A, GATAD1, and EMSY. Here, we characterize the EMSY/KDM5A/SIN3B complex in detail by quantitative interaction proteomics and ChIP-sequencing. We identify a novel substoichiometric interactor of the complex, transcription factor ZNF131, which recruits EMSY to a large number of active, H3K4me3 marked promoters. Interestingly, using an EMSY knock-out line and subsequent rescue experiments, we show that EMSY is in most cases positively correlated with transcriptional activity of its target genes and stimulates cell proliferation. Finally, by immunohistochemical staining of primary breast tissue microarrays we find that EMSY/KDM5A/SIN3B complex subunits are frequently overexpressed in primary breast cancer cases in a correlative manner. Taken together, these data open venues for exploring the possibility that sporadic breast cancer patients with EMSY amplification might benefit from epigenetic combination therapy targeting both the KDM5A demethylase and histone deacetylases.
Collapse
Affiliation(s)
- Radhika A Varier
- From the Department of Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Enrique Carrillo de Santa Pau
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands
| | - Petra van der Groep
- Department of Pathology, University Medical Center Utrecht Heidelberglaan 100, 3584CX Utrecht, The Netherlands, and
| | - Rik G H Lindeboom
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands
| | - Filomena Matarese
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands
| | - Anneloes Mensinga
- From the Department of Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Arne H Smits
- From the Department of Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands
| | - Raghu Ram Edupuganti
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands
| | - Marijke P Baltissen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands
| | - Pascal W T C Jansen
- From the Department of Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands
| | - Natalie Ter Hoeve
- Department of Pathology, University Medical Center Utrecht Heidelberglaan 100, 3584CX Utrecht, The Netherlands, and
| | - Danny R van Weely
- From the Department of Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | - Ina Poser
- Max Planck Institute of Molecular Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht Heidelberglaan 100, 3584CX Utrecht, The Netherlands, and
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands
| | - Michiel Vermeulen
- From the Department of Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584CG Utrecht, The Netherlands, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 30, 6525GA Nijmegen, The Netherlands,
| |
Collapse
|
214
|
Identifying novel protein interactions: Proteomic methods, optimisation approaches and data analysis pipelines. Methods 2016; 95:46-54. [DOI: 10.1016/j.ymeth.2015.08.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
|
215
|
Barr AR, Heldt FS, Zhang T, Bakal C, Novák B. A Dynamical Framework for the All-or-None G1/S Transition. Cell Syst 2016; 2:27-37. [PMID: 27136687 PMCID: PMC4802413 DOI: 10.1016/j.cels.2016.01.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/09/2015] [Accepted: 01/04/2016] [Indexed: 01/24/2023]
Abstract
The transition from G1 into DNA replication (S phase) is an emergent behavior resulting from dynamic and complex interactions between cyclin-dependent kinases (Cdks), Cdk inhibitors (CKIs), and the anaphase-promoting complex/cyclosome (APC/C). Understanding the cellular decision to commit to S phase requires a quantitative description of these interactions. We apply quantitative imaging of single human cells to track the expression of G1/S regulators and use these data to parametrize a stochastic mathematical model of the G1/S transition. We show that a rapid, proteolytic, double-negative feedback loop between Cdk2:Cyclin and the Cdk inhibitor p27(Kip1) drives a switch-like entry into S phase. Furthermore, our model predicts that increasing Emi1 levels throughout S phase are critical in maintaining irreversibility of the G1/S transition, which we validate using Emi1 knockdown and live imaging of G1/S reporters. This work provides insight into the general design principles of the signaling networks governing the temporally abrupt transitions between cell-cycle phases.
Collapse
Affiliation(s)
- Alexis R Barr
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Frank S Heldt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tongli Zhang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Béla Novák
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
216
|
Overlap microtubules link sister k-fibres and balance the forces on bi-oriented kinetochores. Nat Commun 2016; 7:10298. [PMID: 26728792 PMCID: PMC4728446 DOI: 10.1038/ncomms10298] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/26/2015] [Indexed: 02/04/2023] Open
Abstract
During metaphase, forces on kinetochores are exerted by k-fibres, bundles of microtubules that end at the kinetochore. Interestingly, non-kinetochore microtubules have been observed between sister kinetochores, but their function is unknown. Here we show by laser-cutting of a k-fibre in HeLa and PtK1 cells that a bundle of non-kinetochore microtubules, which we term ‘bridging fibre', bridges sister k-fibres and balances the interkinetochore tension. We found PRC1 and EB3 in the bridging fibre, suggesting that it consists of antiparallel dynamic microtubules. By using a theoretical model that includes a bridging fibre, we show that the forces at the pole and at the kinetochore depend on the bridging fibre thickness. Moreover, our theory and experiments show larger relaxation of the interkinetochore distance for cuts closer to kinetochores. We conclude that the bridging fibre, by linking sister k-fibres, withstands the tension between sister kinetochores and enables the spindle to obtain a curved shape. During metaphase, k-fibre microtubules exert force on kinetochores, but there are also non-kinetochore microtubules close to kinetochores without a known function. Here the authors show that these microtubules, which they call bridging fibres, balance interkinetochore tension by bridging sister k-fibres.
Collapse
|
217
|
Abstract
As spindle positioning during mitosis is a highly dynamic process, live cell imaging is a key technology when studying its underlying mechanisms. Recent advances in imaging tools and microscope systems have enabled us to simultaneously visualize several cellular components in living cells with high temporal and spatial resolution. By combining live cell imaging with functional assays such as RNAi-based depletions, drug inhibition, and micropatterned coverslips, novel and unexpected mechanisms of spindle positioning have been uncovered. In this chapter, I present methods for analyzing the dynamics of spindle positioning in cultured cells.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Room 227 Building A, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
218
|
Abstract
Fluorescence microscopy is one of the most important approaches in the cell biologist's toolbox for studying the mitotic spindle. In fact, many of the key insights into our understanding of mitosis have been enabled by the visualization of mitotic processes using fluorescence microscopy. Here, we summarize some of the important considerations for imaging mitosis using fluorescence microscopy. Because light can damage live cells, we emphasize the importance of minimizing cellular damage while obtaining informative images.
Collapse
|
219
|
Schmid B, Rinas M, Ruggieri A, Acosta EG, Bartenschlager M, Reuter A, Fischl W, Harder N, Bergeest JP, Flossdorf M, Rohr K, Höfer T, Bartenschlager R. Live Cell Analysis and Mathematical Modeling Identify Determinants of Attenuation of Dengue Virus 2'-O-Methylation Mutant. PLoS Pathog 2015; 11:e1005345. [PMID: 26720415 PMCID: PMC4697809 DOI: 10.1371/journal.ppat.1005345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 11/26/2015] [Indexed: 11/19/2022] Open
Abstract
Dengue virus (DENV) is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN) response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells. Dengue virus (DENV) infection is a global health problem for which no selective therapy or vaccine exists. The magnitude of infection critically depends on the induction kinetics of the interferon (IFN) response and the kinetics of viral countermeasures. Here we established a novel live cell imaging system to dissect the dynamics of this interplay. We find that IFN controls DENV infection in a kinetically determined manner. At the single cell level, the IFN response is highly heterogeneous and stochastic, likely accounting for viral spread in the presence of IFN. Mathematical modeling and validation experiments show that the kinetics of activation of the IFN response critically determines control of virus replication and spread. A vaccine candidate DENV mutant lacking 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. This attenuation is primarily due to accelerated kinetics of IFN production acting on infected cells in an autocrine manner. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. Thus, attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells.
Collapse
Affiliation(s)
- Bianca Schmid
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Melanie Rinas
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Eliana Gisela Acosta
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Antje Reuter
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Fischl
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Nathalie Harder
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Jan-Philip Bergeest
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Michael Flossdorf
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- * E-mail: (TH); (RB)
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
- * E-mail: (TH); (RB)
| |
Collapse
|
220
|
Joachim J, Jefferies HBJ, Razi M, Frith D, Snijders AP, Chakravarty P, Judith D, Tooze SA. Activation of ULK Kinase and Autophagy by GABARAP Trafficking from the Centrosome Is Regulated by WAC and GM130. Mol Cell 2015; 60:899-913. [PMID: 26687599 PMCID: PMC4691241 DOI: 10.1016/j.molcel.2015.11.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/18/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
Abstract
Starvation-induced autophagy requires activation of the ULK complex at the phagophore. Two Golgi proteins, WAC and GM130, regulate autophagy, however their mechanism of regulation is unknown. In search of novel interaction partners of WAC, we found that GM130 directly interacts with WAC, and this interaction is required for autophagy. WAC is bound to the Golgi by GM130. WAC and GM130 interact with the Atg8 homolog GABARAP and regulate its subcellular localization. GABARAP is on the pericentriolar matrix, and this dynamic pool contributes to autophagosome formation. Tethering of GABARAP to the Golgi by GM130 inhibits autophagy, demonstrating an unexpected role for a golgin. WAC suppresses GM130 binding to GABARAP, regulating starvation-induced centrosomal GABARAP delivery to the phagophore. GABARAP, unlipidated and lipidated, but not LC3B, GABARAPL1, and GATE-16, specifically promotes ULK kinase activation dependent on the ULK1 LIR motif, elucidating a unique non-hierarchical role for GABARAP in starvation-induced activation of autophagy.
Collapse
Affiliation(s)
- Justin Joachim
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Harold B J Jefferies
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Minoo Razi
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - David Frith
- Mass Spectrometry, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ambrosius P Snijders
- Mass Spectrometry, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Probir Chakravarty
- Bioinformatics Core, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Delphine Judith
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
221
|
Chevrier V, Bruel AL, Van Dam TJP, Franco B, Lo Scalzo M, Lembo F, Audebert S, Baudelet E, Isnardon D, Bole A, Borg JP, Kuentz P, Thevenon J, Burglen L, Faivre L, Rivière JB, Huynen MA, Birnbaum D, Rosnet O, Thauvin-Robinet C. OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digital syndrome. Hum Mol Genet 2015; 25:497-513. [PMID: 26643951 DOI: 10.1093/hmg/ddv488] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/20/2015] [Indexed: 11/13/2022] Open
Abstract
Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentriolar satellites in human cells and forms a complex with FOR20 and OFD1. The decreased expression of any component of this ternary complex in RPE1 cells causes a defective recruitment onto centrosomes and satellites. The OFD KIAA0753/OFIP mutant loses its capacity to interact with FOR20 and OFD1, which may be the molecular basis of the defect. We also show that KIAA0753/OFIP has microtubule-stabilizing activity. OFD1 and FOR20 are known to regulate the integrity of the centriole distal end, confirming that this structural element is a target of importance for pathogenic mutations in ciliopathies.
Collapse
Affiliation(s)
- Véronique Chevrier
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Ange-Line Bruel
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD)
| | - Teunis J P Van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Naples, Italy, Medical Genetics, Department of Medical Translational Sciences, University of Napoli Federico II, Naples, Italy
| | | | - Frédérique Lembo
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Emilie Baudelet
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | | | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Paul Kuentz
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD)
| | - Julien Thevenon
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet and Service de Génétique, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Laurence Faivre
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est
| | - Jean-Baptiste Rivière
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon F-21079, France
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Olivier Rosnet
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France,
| | - Christel Thauvin-Robinet
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est,
| |
Collapse
|
222
|
A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015; 162:1066-77. [PMID: 26317470 DOI: 10.1016/j.cell.2015.07.047] [Citation(s) in RCA: 2019] [Impact Index Per Article: 201.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/10/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023]
Abstract
Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.
Collapse
|
223
|
Boström T, Takanen JO, Hober S. Antibodies as means for selective mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1021:3-13. [PMID: 26565067 DOI: 10.1016/j.jchromb.2015.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 01/21/2023]
Abstract
For protein analysis of biological samples, two major strategies are used today; mass spectrometry (MS) and antibody-based methods. Each strategy offers advantages and drawbacks. However, combining the two using an immunoenrichment step with MS analysis brings together the benefits of each method resulting in increased sensitivity, faster analysis and possibility of higher degrees of multiplexing. The immunoenrichment can be performed either on protein or peptide level and quantification standards can be added in order to enable determination of the absolute protein concentration in the sample. The combination of immunoenrichment and MS holds great promise for the future in both proteomics and clinical diagnostics. This review describes different setups of immunoenrichment coupled to mass spectrometry and how these can be utilized in various applications.
Collapse
Affiliation(s)
- Tove Boström
- School of Biotechnology, Division of Protein Technology, KTH-Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Jenny Ottosson Takanen
- School of Biotechnology, Division of Proteomics and Nanobiotechnology, KTH-Royal Institute ofTechnology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Sophia Hober
- School of Biotechnology, Division of Protein Technology, KTH-Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
224
|
Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 2015; 163:712-23. [PMID: 26496610 DOI: 10.1016/j.cell.2015.09.053] [Citation(s) in RCA: 950] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023]
Abstract
The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis.
Collapse
Affiliation(s)
- Marco Y Hein
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nina C Hubner
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Igor A Gak
- Cell Cycle, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Ina Weisswange
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Eupheria Biotech GmbH, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
225
|
Hasse S, Hyman AA, Sarov M. TransgeneOmics--A transgenic platform for protein localization based function exploration. Methods 2015; 96:69-74. [PMID: 26475212 DOI: 10.1016/j.ymeth.2015.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022] Open
Abstract
The localization of a protein is intrinsically linked to its role in the structural and functional organization of the cell. Advances in transgenic technology have streamlined the use of protein localization as a function discovery tool. Here we review the use of large genomic DNA constructs such as bacterial artificial chromosomes as a transgenic platform for systematic tag-based protein function exploration.
Collapse
Affiliation(s)
- Susanne Hasse
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Mihail Sarov
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| |
Collapse
|
226
|
Agrotis A, Ketteler R. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front Genet 2015; 6:300. [PMID: 26442115 PMCID: PMC4585242 DOI: 10.3389/fgene.2015.00300] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022] Open
Abstract
CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening.
Collapse
Affiliation(s)
- Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London UK
| |
Collapse
|
227
|
Gebhardt A, Habjan M, Benda C, Meiler A, Haas DA, Hein MY, Mann A, Mann M, Habermann B, Pichlmair A. mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nat Commun 2015; 6:8192. [PMID: 26382858 PMCID: PMC4595607 DOI: 10.1038/ncomms9192] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023] Open
Abstract
The flow of genetic information from DNA to protein requires polymerase-II-transcribed RNA characterized by the presence of a 5'-cap. The cap-binding complex (CBC), consisting of the nuclear cap-binding protein (NCBP) 2 and its adaptor NCBP1, is believed to bind all capped RNA and to be necessary for its processing and intracellular localization. Here we show that NCBP1, but not NCBP2, is required for cell viability and poly(A) RNA export. We identify C17orf85 (here named NCBP3) as a cap-binding protein that together with NCBP1 forms an alternative CBC in higher eukaryotes. NCBP3 binds mRNA, associates with components of the mRNA processing machinery and contributes to poly(A) RNA export. Loss of NCBP3 can be compensated by NCBP2 under steady-state conditions. However, NCBP3 becomes pivotal under stress conditions, such as virus infection. We propose the existence of an alternative CBC involving NCBP1 and NCBP3 that plays a key role in mRNA biogenesis.
Collapse
Affiliation(s)
- Anna Gebhardt
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Arno Meiler
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Darya A Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Angelika Mann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Bianca Habermann
- Bioinformatics Core Facility, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich D-82152, Germany
| |
Collapse
|
228
|
Savic D, Partridge EC, Newberry KM, Smith SB, Meadows SK, Roberts BS, Mackiewicz M, Mendenhall EM, Myers RM. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res 2015; 25:1581-9. [PMID: 26355004 PMCID: PMC4579343 DOI: 10.1101/gr.193540.115] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/14/2015] [Indexed: 01/16/2023]
Abstract
Chromatin immunoprecipitation followed by next-generation DNA sequencing (ChIP-seq) is a widely used technique for identifying transcription factor (TF) binding events throughout an entire genome. However, ChIP-seq is limited by the availability of suitable ChIP-seq grade antibodies, and the vast majority of commercially available antibodies fail to generate usable data sets. To ameliorate these technical obstacles, we present a robust methodological approach for performing ChIP-seq through epitope tagging of endogenous TFs. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing technology to develop CRISPR epitope tagging ChIP-seq (CETCh-seq) of DNA-binding proteins. We assessed the feasibility of CETCh-seq by tagging several DNA-binding proteins spanning a wide range of endogenous expression levels in the hepatocellular carcinoma cell line HepG2. Our data exhibit strong correlations between both replicate types as well as with standard ChIP-seq approaches that use TF antibodies. Notably, we also observed minimal changes to the cellular transcriptome and to the expression of the tagged TF. To examine the robustness of our technique, we further performed CETCh-seq in the breast adenocarcinoma cell line MCF7 as well as mouse embryonic stem cells and observed similarly high correlations. Collectively, these data highlight the applicability of CETCh-seq to accurately define the genome-wide binding profiles of DNA-binding proteins, allowing for a straightforward methodology to potentially assay the complete repertoire of TFs, including the large fraction for which ChIP-quality antibodies are not available.
Collapse
Affiliation(s)
- Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | | | - Sophia B Smith
- University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Sarah K Meadows
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Brian S Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Eric M Mendenhall
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA; University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| |
Collapse
|
229
|
Luft C, Ketteler R. Electroporation Knows No Boundaries: The Use of Electrostimulation for siRNA Delivery in Cells and Tissues. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:932-42. [PMID: 25851034 PMCID: PMC4543902 DOI: 10.1177/1087057115579638] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/04/2014] [Accepted: 03/10/2015] [Indexed: 12/15/2022]
Abstract
The discovery of RNA interference (RNAi) has enabled several breakthrough discoveries in the area of functional genomics. The RNAi technology has emerged as one of the major tools for drug target identification and has been steadily improved to allow gene manipulation in cell lines, tissues, and whole organisms. One of the major hurdles for the use of RNAi in high-throughput screening has been delivery to cells and tissues. Some cell types are refractory to high-efficiency transfection with standard methods such as lipofection or calcium phosphate precipitation and require different means. Electroporation is a powerful and versatile method for delivery of RNA, DNA, peptides, and small molecules into cell lines and primary cells, as well as whole tissues and organisms. Of particular interest is the use of electroporation for delivery of small interfering RNA oligonucleotides and clustered regularly interspaced short palindromic repeats/Cas9 plasmid vectors in high-throughput screening and for therapeutic applications. Here, we will review the use of electroporation in high-throughput screening in cell lines and tissues.
Collapse
Affiliation(s)
- Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
230
|
Abstract
The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein-protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein-protein interaction networks and drive the cancer phenotype.
Collapse
Affiliation(s)
- Emily Bowler
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Zhenghe Wang
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rob M. Ewing
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
231
|
Arai Y, Sampaio JL, Wilsch-Bräuninger M, Ettinger AW, Haffner C, Huttner WB. Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis. Front Cell Neurosci 2015; 9:325. [PMID: 26379497 PMCID: PMC4551859 DOI: 10.3389/fncel.2015.00325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid (CF) in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membrane's lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS), among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the CF of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point toward that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex.
Collapse
Affiliation(s)
- Yoko Arai
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Julio L Sampaio
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | | | - Andreas W Ettinger
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Christiane Haffner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden, Germany
| |
Collapse
|
232
|
Systems Analyses Reveal Shared and Diverse Attributes of Oct4 Regulation in Pluripotent Cells. Cell Syst 2015; 1:141-51. [PMID: 27135800 DOI: 10.1016/j.cels.2015.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/07/2015] [Accepted: 08/04/2015] [Indexed: 11/23/2022]
Abstract
We combine a genome-scale RNAi screen in mouse epiblast stem cells (EpiSCs) with genetic interaction, protein localization, and "protein-level dependency" studies-a systematic technique that uncovers post-transcriptional regulation-to delineate the network of factors that control the expression of Oct4, a key regulator of pluripotency. Our data signify that there are similarities, but also fundamental differences in Oct4 regulation in EpiSCs versus embryonic stem cells (ESCs). Through multiparametric data analyses, we predict that Tox4 is associating with the Paf1C complex, which maintains cell identity in both cell types, and validate that this protein-protein interaction exists in ESCs and EpiSCs. We also identify numerous knockdowns that increase Oct4 expression in EpiSCs, indicating that, in stark contrast to ESCs, Oct4 is under active repressive control in EpiSCs. These studies provide a framework for better understanding pluripotency and for dissecting the molecular events that govern the transition from the pre-implantation to the post-implantation state.
Collapse
|
233
|
Polat AN, Karayel Ö, Giese SH, Harmanda B, Sanal E, Hu CK, Renard BY, Özlü N. Phosphoproteomic Analysis of Aurora Kinase Inhibition in Monopolar Cytokinesis. J Proteome Res 2015; 14:4087-98. [PMID: 26270265 DOI: 10.1021/acs.jproteome.5b00645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytokinesis is the last step of the cell cycle that requires coordinated activities of the microtubule cytoskeleton, actin cytoskeleton, and membrane compartments. Aurora B kinase is one of the master regulatory kinases that orchestrate multiple events during cytokinesis. To reveal targets of the Aurora B kinase, we combined quantitative mass spectrometry with chemical genetics. Using the quantitative proteomic approach, SILAC (stable isotope labeling with amino acids in cell culture), we analyzed the phosphoproteome of monopolar cytokinesis upon VX680- or AZD1152-mediated aurora kinase inhibition. In total, our analysis quantified over 20 000 phosphopeptides in response to the Aurora-B kinase inhibition; 246 unique phosphopeptides were significantly down-regulated and 74 were up-regulated. Our data provide a broad analysis of downstream effectors of Aurora kinase and offer insights into how Aurora kinase regulates cytokinesis.
Collapse
Affiliation(s)
- Ayse Nur Polat
- Department of Molecular Biology and Genetics, Koç University , Fen Fakultesi, Sariyer, Istanbul 34450, Turkey
| | - Özge Karayel
- Department of Molecular Biology and Genetics, Koç University , Fen Fakultesi, Sariyer, Istanbul 34450, Turkey
| | - Sven H Giese
- Research Group Bioinformatics (NG 4), Robert Koch-Institute , Postfach 65 02 61, D-13302 Berlin, Germany.,Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin , Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Büşra Harmanda
- Department of Molecular Biology and Genetics, Koç University , Fen Fakultesi, Sariyer, Istanbul 34450, Turkey
| | - Erdem Sanal
- Department of Molecular Biology and Genetics, Koç University , Fen Fakultesi, Sariyer, Istanbul 34450, Turkey
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, School of Medicine , 291 Campus Drive, Li Ka Shing Building, Stanford, California 94305, United States
| | - Bernhard Y Renard
- Research Group Bioinformatics (NG 4), Robert Koch-Institute , Postfach 65 02 61, D-13302 Berlin, Germany
| | - Nurhan Özlü
- Department of Molecular Biology and Genetics, Koç University , Fen Fakultesi, Sariyer, Istanbul 34450, Turkey
| |
Collapse
|
234
|
Carvalhal S, Ribeiro SA, Arocena M, Kasciukovic T, Temme A, Koehler K, Huebner A, Griffis ER. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation. Mol Biol Cell 2015; 26:3424-38. [PMID: 26246606 PMCID: PMC4591688 DOI: 10.1091/mbc.e15-02-0113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
The nucleoporin ALADIN, which is mutated in patients with triple A syndrome, is necessary for proper spindle formation. Without ALADIN, active Aurora A moves away from centrosomes. The relocalization of active Aurora A leads to a redistribution of specific spindle assembly factors that make spindles less stable and slows their formation. The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome.
Collapse
Affiliation(s)
- Sara Carvalhal
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Susana Abreu Ribeiro
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Miguel Arocena
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Katrin Koehler
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Angela Huebner
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Eric R Griffis
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
235
|
Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 2015; 4:e06807. [PMID: 26238190 PMCID: PMC4522596 DOI: 10.7554/elife.06807] [Citation(s) in RCA: 411] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/25/2015] [Indexed: 12/27/2022] Open
Abstract
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine. DOI:http://dx.doi.org/10.7554/eLife.06807.001 Genes consist of long stretches of DNA that code for proteins. The DNA is first ‘transcribed’ to produce an RNA molecule, which is then translated into a protein. In most cells, RNA molecules are present within a structure called ribonucleoprotein (RNP for short) granules. These contain the protein machinery needed to transport, store, and break down RNAs. P bodies and stress granules are two types of RNP granules found in all cells, from yeast to human. P bodies are present at all times, whereas stress granules assemble when a cell experiences stressful conditions, such as a lack of nutrients or high temperatures. Once the stress has been overcome, the stress granules are disassembled. The precise details of how RNP granules assemble in cells remain poorly understood. One theory suggests that RNP granules form through a physical process called ‘phase separation’ in which RNA molecules and proteins above a certain critical concentration condense to form a liquid droplet. Other research has suggested that RNP granules arise when so-called prion-like proteins spontaneously clump together and start aggregating to form fibers. These granules would behave more like solids than liquids. Kroschwald et al. have now analyzed how P bodies and stress granules form in yeast and human cells using a chemical compound that can distinguish between liquid-like and solid-like structures. The results revealed that P bodies and stress granules behave very differently in yeast cells. While P bodies are indeed liquid droplets, stress granules are more solid in nature and act like protein aggregates. So why is there a difference between the two? It is known from previous work that when cells are stressed, many proteins misfold and start aggregating. Kroschwald et al. found that the formation of stress granules coincides with the formation of aggregates, suggesting that stress granules themselves are a type of aggregate. Furthermore, stress granule formation does not seem to involve prion-like fibers, but rather prion-like proteins can easily interact with other proteins in a promiscuous way, thus promoting the seeding of stress granules and their growth. Kroschwald et al. next studied human cells and observed that in these cells, both P bodies and stress granules were liquid droplets. These results together suggest that the physical properties and method of assembling P bodies and stress granules can vary from one organism to another. Future work will investigate whether the ability to form solid rather than liquid stress granules provides extra protection to yeast cells when they are stressed. It also remains to be tested whether and how stress granules convert into the pathological RNP aggregates that are often seen in neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.06807.002
Collapse
Affiliation(s)
- Sonja Kroschwald
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
236
|
Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife 2015; 4:e06807. [PMID: 26238190 DOI: 10.7554/elife.06807.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/25/2015] [Indexed: 05/23/2023] Open
Abstract
RNA-protein (RNP) granules have been proposed to assemble by forming solid RNA/protein aggregates or through phase separation into a liquid RNA/protein phase. Which model describes RNP granules in living cells is still unclear. In this study, we analyze P bodies in budding yeast and find that they have liquid-like properties. Surprisingly, yeast stress granules adopt a different material state, which is reminiscent of solid protein aggregates and controlled by protein disaggregases. By using an assay to ectopically nucleate RNP granules, we further establish that RNP granule formation does not depend on amyloid-like aggregation but rather involves many promiscuous interactions. Finally, we show that stress granules have different properties in mammalian cells, where they show liquid-like behavior. Thus, we propose that the material state of RNP granules is flexible and that the solid state of yeast stress granules is an adaptation to extreme environments, made possible by the presence of a powerful disaggregation machine.
Collapse
Affiliation(s)
- Sonja Kroschwald
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Shovamayee Maharana
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Liliana Malinovska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Nüske
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Doris Richter
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
237
|
Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment. Proc Natl Acad Sci U S A 2015; 112:E4546-55. [PMID: 26240331 DOI: 10.1073/pnas.1508791112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C-MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression.
Collapse
|
238
|
Gentili C, Castor D, Kaden S, Lauterbach D, Gysi M, Steigemann P, Gerlich DW, Jiricny J, Ferrari S. Chromosome Missegregation Associated with RUVBL1 Deficiency. PLoS One 2015; 10:e0133576. [PMID: 26201077 PMCID: PMC4511761 DOI: 10.1371/journal.pone.0133576] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/30/2015] [Indexed: 12/31/2022] Open
Abstract
RUVBL1 (RuvB-like1) and RUVBL2 (RuvB-like 2) are integral components of multisubunit protein complexes involved in processes ranging from cellular metabolism, transcription and chromatin remodeling to DNA repair. Here, we show that although RUVBL1 and RUVBL2 are known to form heterodimeric complexes in which they stabilize each other, the subunits separate during cytokinesis. In anaphase-to-telophase transition, RUVBL1 localizes to structures of the mitotic spindle apparatus, where it partially co-localizes with polo-like kinase 1 (PLK1). The ability of PLK1 to phosphorylate RUVBL1-but not RUVBL2-in vitro and their physical association in vivo suggest that this kinase differentially regulates the function of the RuvB-like proteins during mitosis. We further show that siRNA-mediated knock-down of RuvB-like proteins causes severe defects in chromosome alignment and segregation. In addition, we show that the ATPase activity of RUVBL1 is indispensable for cell proliferation. Our data thus demonstrate that RUVBL1 is essential for efficient mitosis and proliferation.
Collapse
Affiliation(s)
- Christian Gentili
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Dennis Castor
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Svenja Kaden
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - David Lauterbach
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Mario Gysi
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Patrick Steigemann
- Institute of Biochemistry, Schafmattstrasse 18, HPM E17.2, Swiss Institute of Technology Zurich (ETHZ), CH-8093, Zurich, Switzerland
| | - Daniel W. Gerlich
- Institute of Biochemistry, Schafmattstrasse 18, HPM E17.2, Swiss Institute of Technology Zurich (ETHZ), CH-8093, Zurich, Switzerland
| | - Josef Jiricny
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Stefano Ferrari
- Institute of Molecular Cancer Research of the University of Zurich and the ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|
239
|
Wardle FC, Tan H. A ChIP on the shoulder? Chromatin immunoprecipitation and validation strategies for ChIP antibodies. F1000Res 2015; 4:235. [PMID: 26594335 PMCID: PMC4648227 DOI: 10.12688/f1000research.6719.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/18/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) is a technique widely used in the study of epigenetics and transcriptional regulation of gene expression. However, its antibody-centric nature exposes it to similar challenges faced by other antibody-based procedures, of which the most prominent are issues of specificity and affinity in antigen recognition. As with other techniques that make use of antibodies, recent studies have shown the need for validation of ChIP antibodies in order to be sure they recognize the advertised protein or epitope. We summarize here the issues surrounding ChIP antibody usage, and highlight the toolkit of validation methods that can be employed by investigators looking to appraise these reagents.
Collapse
Affiliation(s)
- Fiona C Wardle
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Haihan Tan
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
240
|
Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C, Stenmark H. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 2015; 522:231-5. [DOI: 10.1038/nature14408] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/13/2015] [Indexed: 01/03/2023]
|
241
|
Herpers B, Wink S, Fredriksson L, Di Z, Hendriks G, Vrieling H, de Bont H, van de Water B. Activation of the Nrf2 response by intrinsic hepatotoxic drugs correlates with suppression of NF-κB activation and sensitizes toward TNFα-induced cytotoxicity. Arch Toxicol 2015; 90:1163-79. [PMID: 26026609 PMCID: PMC4830895 DOI: 10.1007/s00204-015-1536-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022]
Abstract
Drug-induced liver injury (DILI) is an important problem both in the clinic and in the development of new safer medicines. Two pivotal adaptation and survival responses to adverse drug reactions are oxidative stress and cytokine signaling based on the activation of the transcription factors Nrf2 and NF-κB, respectively. Here, we systematically investigated Nrf2 and NF-κB signaling upon DILI-related drug exposure. Transcriptomics analyses of 90 DILI compounds in primary human hepatocytes revealed that a strong Nrf2 activation is associated with a suppression of endogenous NF-κB activity. These responses were translated into quantitative high-content live-cell imaging of induction of a selective Nrf2 target, GFP-tagged Srxn1, and the altered nuclear translocation dynamics of a subunit of NF-κB, GFP-tagged p65, upon TNFR signaling induced by TNFα using HepG2 cells. Strong activation of GFP-Srxn1 expression by DILI compounds typically correlated with suppression of NF-κB nuclear translocation, yet reversely, activation of NF-κB by TNFα did not affect the Nrf2 response. DILI compounds that provided strong Nrf2 activation, including diclofenac, carbamazepine and ketoconazole, sensitized toward TNFα-mediated cytotoxicity. This was related to an adaptive primary protective response of Nrf2, since loss of Nrf2 enhanced this cytotoxic synergy with TNFα, while KEAP1 downregulation was cytoprotective. These data indicate that both Nrf2 and NF-κB signaling may be pivotal in the regulation of DILI. We propose that the NF-κB-inhibiting effects that coincide with a strong Nrf2 stress response likely sensitize liver cells to pro-apoptotic signaling cascades induced by intrinsic cytotoxic pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Bram Herpers
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Steven Wink
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Lisa Fredriksson
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Zi Di
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Giel Hendriks
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans de Bont
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
242
|
Mulholland CB, Smets M, Schmidtmann E, Leidescher S, Markaki Y, Hofweber M, Qin W, Manzo M, Kremmer E, Thanisch K, Bauer C, Rombaut P, Herzog F, Leonhardt H, Bultmann S. A modular open platform for systematic functional studies under physiological conditions. Nucleic Acids Res 2015; 43:e112. [PMID: 26007658 PMCID: PMC4787826 DOI: 10.1093/nar/gkv550] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 12/15/2022] Open
Abstract
Any profound comprehension of gene function requires detailed information about the subcellular localization, molecular interactions and spatio-temporal dynamics of gene products. We developed a multifunctional integrase (MIN) tag for rapid and versatile genome engineering that serves not only as a genetic entry site for the Bxb1 integrase but also as a novel epitope tag for standardized detection and precipitation. For the systematic study of epigenetic factors, including Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2, Tet3 and Uhrf1, we generated MIN-tagged embryonic stem cell lines and created a toolbox of prefabricated modules that can be integrated via Bxb1-mediated recombination. We used these functional modules to study protein interactions and their spatio-temporal dynamics as well as gene expression and specific mutations during cellular differentiation and in response to external stimuli. Our genome engineering strategy provides a versatile open platform for efficient generation of multiple isogenic cell lines to study gene function under physiological conditions.
Collapse
Affiliation(s)
- Christopher B Mulholland
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Martha Smets
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Elisabeth Schmidtmann
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Susanne Leidescher
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yolanda Markaki
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Mario Hofweber
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Weihua Qin
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Massimiliano Manzo
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Elisabeth Kremmer
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Molecular Immunology, Marchioninistrasse 25, 81377 Munich, Germany
| | - Katharina Thanisch
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Christina Bauer
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Pascaline Rombaut
- Gene Center and Department of Biochemistry, Ludwig Maximilians University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Franz Herzog
- Gene Center and Department of Biochemistry, Ludwig Maximilians University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Heinrich Leonhardt
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Sebastian Bultmann
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
243
|
Making BAC transgene constructs with lambda-red recombineering system for transgenic animals or cell lines. Methods Mol Biol 2015; 1227:71-98. [PMID: 25239742 DOI: 10.1007/978-1-4939-1652-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The genomic DNA libraries based on Bacteria Artificial Chromosomes (BAC) are the foundation of whole genomic mapping, sequencing, and annotation for many species like mice and humans. With their large insert size, BACs harbor the gene-of-interest and nearby transcriptional regulatory elements necessary to direct the expression of the gene-of-interest in a temporal and cell-type specific manner. When replacing a gene-of-interest with a transgene in vivo, the transgene can be expressed with the same patterns and machinery as that of the endogenous gene. This chapter describes in detail a method of using lambda-red recombineering to make BAC transgene constructs with the integration of a transgene into a designated location within a BAC. As the final BAC construct will be used for transfection in cell lines or making transgenic animals, specific considerations with BAC transgenes such as genotyping, BAC coverage and integrity as well as quality of BAC DNA will be addressed. Not only does this approach provide a practical and effective way to modify large DNA constructs, the same recombineering principles can apply to smaller high copy plasmids as well as to chromosome engineering.
Collapse
|
244
|
Bagnall J, Boddington C, Boyd J, Brignall R, Rowe W, Jones NA, Schmidt L, Spiller DG, White MRH, Paszek P. Quantitative dynamic imaging of immune cell signalling using lentiviral gene transfer. Integr Biol (Camb) 2015; 7:713-25. [DOI: 10.1039/c5ib00067j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- J. Bagnall
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - C. Boddington
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - J. Boyd
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - R. Brignall
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - W. Rowe
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - N. A. Jones
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - L. Schmidt
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - D. G. Spiller
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - M. R. H. White
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - P. Paszek
- Faculty of Life Sciences, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
245
|
Reddy TR, Kelsall EJ, Fevat LMS, Munson SE, Cowley SM. Differential requirements of singleplex and multiplex recombineering of large DNA constructs. PLoS One 2015; 10:e0125533. [PMID: 25954970 PMCID: PMC4425527 DOI: 10.1371/journal.pone.0125533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/16/2015] [Indexed: 11/18/2022] Open
Abstract
Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency.
Collapse
Affiliation(s)
- Thimma R. Reddy
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | - Emma J. Kelsall
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, United Kingdom
| | - Léna M. S. Fevat
- Center for Fisheries, Environment and Aquaculture Sciences, Lowestoft, NR33 0HT, United Kingdom
| | - Sarah E. Munson
- ES Cell Facility, Center for Core Biotechnology Services, Leicester, LE1 9HN, United Kingdom
| | - Shaun M. Cowley
- Department of Biochemistry, University of Leicester, Leicester, LE1 9HN, United Kingdom
- * E-mail:
| |
Collapse
|
246
|
Barisic M, Silva e Sousa R, Tripathy SK, Magiera MM, Zaytsev AV, Pereira AL, Janke C, Grishchuk EL, Maiato H. Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 2015; 348:799-803. [PMID: 25908662 DOI: 10.1126/science.aaa5175] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/09/2015] [Indexed: 11/02/2022]
Abstract
Before chromosomes segregate into daughter cells, they align at the mitotic spindle equator, a process known as chromosome congression. Centromere-associated protein E (CENP-E)/Kinesin-7 is a microtubule plus-end-directed kinetochore motor required for congression of pole-proximal chromosomes. Because the plus-ends of many astral microtubules in the spindle point to the cell cortex, it remains unknown how CENP-E guides pole-proximal chromosomes specifically toward the equator. We found that congression of pole-proximal chromosomes depended on specific posttranslational detyrosination of spindle microtubules that point to the equator. In vitro reconstitution experiments demonstrated that CENP-E-dependent transport was strongly enhanced on detyrosinated microtubules. Blocking tubulin tyrosination in cells caused ubiquitous detyrosination of spindle microtubules, and CENP-E transported chromosomes away from spindle poles in random directions. Thus, CENP-E-driven chromosome congression is guided by microtubule detyrosination.
Collapse
Affiliation(s)
- Marin Barisic
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Portugal
| | - Ricardo Silva e Sousa
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suvranta K Tripathy
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maria M Magiera
- Institut Curie, 91405 Orsay, France. Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France. Centre National de la Recherche Scientifique UMR 3348, 91405 Orsay, France
| | - Anatoly V Zaytsev
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences (RAS), Moscow, Russia. Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ana L Pereira
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Portugal
| | - Carsten Janke
- Institut Curie, 91405 Orsay, France. Paris Sciences et Lettres (PSL) Research University, 75005 Paris, France. Centre National de la Recherche Scientifique UMR 3348, 91405 Orsay, France
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Helder Maiato
- Chromosome Instability and Dynamics Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal. Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Portugal. Cell Division Unit, Department of Experimental Biology, Faculdade de Medicina, Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal.
| |
Collapse
|
247
|
Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuzé M, Takaki T, Voituriez R, Piel M. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 2015; 160:659-672. [PMID: 25679760 DOI: 10.1016/j.cell.2015.01.007] [Citation(s) in RCA: 564] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 10/31/2014] [Accepted: 12/31/2014] [Indexed: 12/24/2022]
Abstract
The mesenchymal-amoeboid transition (MAT) was proposed as a mechanism for cancer cells to adapt their migration mode to their environment. While the molecular pathways involved in this transition are well documented, the role of the microenvironment in the MAT is still poorly understood. Here, we investigated how confinement and adhesion affect this transition. We report that, in the absence of focal adhesions and under conditions of confinement, mesenchymal cells can spontaneously switch to a fast amoeboid migration phenotype. We identified two main types of fast migration--one involving a local protrusion and a second involving a myosin-II-dependent mechanical instability of the cell cortex that leads to a global cortical flow. Interestingly, transformed cells are more prone to adopt this fast migration mode. Finally, we propose a generic model that explains migration transitions and predicts a phase diagram of migration phenotypes based on three main control parameters: confinement, adhesion, and contractility.
Collapse
Affiliation(s)
- Yan-Jun Liu
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Maël Le Berre
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France.
| | - Franziska Lautenschlaeger
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France; Universität des Saarlandes, Campus E2 6, 3. OG, Zi. 3.17, 66123 Saarbrücken, Germany
| | - Paolo Maiuri
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, CNRS/Université Paris Diderot, UMR 7057, 75204 Paris Cedex, France
| | - Mélina Heuzé
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Tohru Takaki
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK
| | - Raphaël Voituriez
- Laboratoire Jean Perrin and Laboratoire de Physique Théorique de la Matière Condensée, CNRS/Université Pierre et Marie Curie, 75005 Paris, France
| | - Matthieu Piel
- Institut Curie, CNRS UMR 144, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
248
|
LaCava J, Molloy KR, Taylor MS, Domanski M, Chait BT, Rout MP. Affinity proteomics to study endogenous protein complexes: pointers, pitfalls, preferences and perspectives. Biotechniques 2015; 58:103-19. [PMID: 25757543 PMCID: PMC4465938 DOI: 10.2144/000114262] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/17/2015] [Indexed: 01/13/2023] Open
Abstract
Dissecting and studying cellular systems requires the ability to specifically isolate distinct proteins along with the co-assembled constituents of their associated complexes. Affinity capture techniques leverage high affinity, high specificity reagents to target and capture proteins of interest along with specifically associated proteins from cell extracts. Affinity capture coupled to mass spectrometry (MS)-based proteomic analyses has enabled the isolation and characterization of a wide range of endogenous protein complexes. Here, we outline effective procedures for the affinity capture of protein complexes, highlighting best practices and common pitfalls.
Collapse
Affiliation(s)
- John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York
- Institute for Systems Genetics, New York University School of Medicine, New York, NY
| | - Kelly R. Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | - Martin S. Taylor
- High Throughput Biology Center and Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michal Domanski
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York
| |
Collapse
|
249
|
Tomasovic A, Kurrle N, Sürün D, Heidler J, Husnjak K, Poser I, Schnütgen F, Scheibe S, Seimetz M, Jaksch P, Hyman A, Weissmann N, von Melchner H. Sestrin 2 protein regulates platelet-derived growth factor receptor β (Pdgfrβ) expression by modulating proteasomal and Nrf2 transcription factor functions. J Biol Chem 2015; 290:9738-52. [PMID: 25716320 DOI: 10.1074/jbc.m114.632133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 01/12/2023] Open
Abstract
We recently identified the antioxidant protein Sestrin 2 (Sesn2) as a suppressor of platelet-derived growth factor receptor β (Pdgfrβ) signaling and Pdgfrβ signaling as an inducer of lung regeneration and injury repair. Here, we identified Sesn2 and the antioxidant gene inducer nuclear factor erythroid 2-related factor 2 (Nrf2) as positive regulators of proteasomal function. Inactivation of Sesn2 or Nrf2 induced reactive oxygen species-mediated proteasomal inhibition and Pdgfrβ accumulation. Using bacterial artificial chromosome (BAC) transgenic HeLa and mouse embryonic stem cells stably expressing enhanced green fluorescent protein-tagged Sesn2 at nearly endogenous levels, we also showed that Sesn2 physically interacts with 2-Cys peroxiredoxins and Nrf2 albeit under different reductive conditions. Overall, we characterized a novel, redox-sensitive Sesn2/Pdgfrβ suppressor pathway that negatively interferes with lung regeneration and is up-regulated in the emphysematous lungs of patients with chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- Ana Tomasovic
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Nina Kurrle
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Duran Sürün
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Juliana Heidler
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Koraljka Husnjak
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Frank Schnütgen
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Susan Scheibe
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-University Giessen, Department of Internal Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), 35392 Giessen, Germany, and
| | - Michael Seimetz
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-University Giessen, Department of Internal Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), 35392 Giessen, Germany, and
| | - Peter Jaksch
- Department of Thoracic Surgery, University Hospital of Vienna, A-1090 Vienna, Austria
| | - Anthony Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardiopulmonary System (ECCPS), Justus-Liebig-University Giessen, Department of Internal Medicine, Universities of Giessen and Marburg Lung Centre (UGMLC), 35392 Giessen, Germany, and
| | - Harald von Melchner
- From the Department of Molecular Hematology, Goethe University Medical School, 60590 Frankfurt am Main, Germany,
| |
Collapse
|
250
|
Sarek G, Vannier JB, Panier S, Petrini JHJ, Boulton SJ. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol Cell 2015; 57:622-635. [PMID: 25620558 PMCID: PMC4339303 DOI: 10.1016/j.molcel.2014.12.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/13/2014] [Accepted: 12/16/2014] [Indexed: 11/22/2022]
Abstract
The helicase RTEL1 promotes t-loop unwinding and suppresses telomere fragility to maintain the integrity of vertebrate telomeres. An interaction between RTEL1 and PCNA is important to prevent telomere fragility, but how RTEL1 engages with the telomere to promote t-loop unwinding is unclear. Here, we establish that the shelterin protein TRF2 recruits RTEL1 to telomeres in S phase, which is required to prevent catastrophic t-loop processing by structure-specific nucleases. We show that the TRF2-RTEL1 interaction is mediated by a metal-coordinating C4C4 motif in RTEL1, which is compromised by the Hoyeraal-Hreidarsson syndrome (HHS) mutation, RTEL1(R1264H). Conversely, we define a TRF2(I124D) substitution mutation within the TRFH domain of TRF2, which eliminates RTEL1 binding and phenocopies the RTEL1(R1264H) mutation, giving rise to aberrant t-loop excision, telomere length heterogeneity, and loss of the telomere as a circle. These results implicate TRF2 in the recruitment of RTEL1 to facilitate t-loop disassembly at telomeres in S phase.
Collapse
Affiliation(s)
- Grzegorz Sarek
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, Hertfordshire EN6 3LD, UK
| | - Jean-Baptiste Vannier
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, Hertfordshire EN6 3LD, UK
| | - Stephanie Panier
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, Hertfordshire EN6 3LD, UK
| | - John H J Petrini
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Simon J Boulton
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Clare Hall, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|