201
|
Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination. PLoS One 2016; 11:e0149201. [PMID: 26886550 PMCID: PMC4757544 DOI: 10.1371/journal.pone.0149201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 01/12/2023] Open
Abstract
Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic protein expression in both cerebral cortex and spinal cord. Together these data suggest that, unlike Schwann cells, oligodendrocytes do not have an intrinsic requirement for neuronal dystonin for differentiation and myelination.
Collapse
|
202
|
Schott JT, Kirby LA, Calabresi PA, Baxi EG. Preparation of Rat Oligodendrocyte Progenitor Cultures and Quantification of Oligodendrogenesis Using Dual-infrared Fluorescence Scanning. J Vis Exp 2016:53764. [PMID: 26967760 DOI: 10.3791/53764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Efficient oligodendrogenesis is the therapeutic goal of a number of areas of research including spinal cord injury, neonatal hypoxia, and demyelinating diseases such as multiple sclerosis and transverse myelitis. Myelination is required to not only facilitate rapid impulse propagation within the central nervous system, but also to provide trophic support to underlying axons. Oligodendrocyte progenitor cells (OPCs) can be studied in vitro to help identify factors that may promote or inhibit oligodendrocyte differentiation. To date, many of the methods available to evaluate this process have either required large numbers of cells, thus limiting the number of conditions that can be investigated at any one time, or labor-intensive methods of quantification. Herein, we describe a protocol for the isolation of large numbers of highly pure OPCs together with a fast and reliable method to determine oligodendrogenesis from multiple conditions simultaneously. OPCs are isolated from P5-P7 neonatal rat cortices and grown in vitro for three days prior to differentiation. Four days after differentiation, oligodendrogenesis is evaluated using a dual-infrared fluorescence-scanning assay to determine expression of the myelin protein.
Collapse
Affiliation(s)
| | | | | | - Emily G Baxi
- Neurology, Johns Hopkins University, School of Medicine;
| |
Collapse
|
203
|
O'Meara RW, Cummings SE, Michalski JP, Kothary R. A new in vitro mouse oligodendrocyte precursor cell migration assay reveals a role for integrin-linked kinase in cell motility. BMC Neurosci 2016; 17:7. [PMID: 26831726 PMCID: PMC4736119 DOI: 10.1186/s12868-016-0242-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022] Open
Abstract
Background The decline of remyelination in chronic multiple sclerosis (MS) is in part attributed to inadequate oligodendrocyte precursor cell (OPC) migration, a process governed by the extracellular matrix (ECM). Elucidating the mechanisms underlying OPC migration is therefore an important step towards developing new therapeutic strategies to promote myelin repair. Many seminal OPC culture methods were established using rat-sourced cells, and these often need modification for use with mouse OPCs due to their sensitive nature. It is of interest to develop mouse OPC assays to leverage the abundant transgenic lines. To this end, we developed a new OPC migration method specifically suited for use with mouse-derived cells. Results To validate its utility, we combined the new OPC migration assay with a conditional knockout approach to investigate the role of integrin-linked kinase (ILK) in OPC migration. ILK is a focal adhesion protein that stabilizes cellular adhesions to the extracellular matrix (ECM) by mediating a linkage between matrix-bound integrin receptors and the cytoskeleton. We identified ILK as a regulator of OPC migration on three permissive substrates. ILK loss produced an early, albeit transient, deficit in OPC migration on laminin matrix, while migration on fibronectin and polylysine was heavily reliant on ILK expression. Conclusions Inclusively, our work provides a new tool for studying mouse OPC migration and highlights the role of ILK in its regulation on ECM proteins relevant to MS.
Collapse
Affiliation(s)
- Ryan W O'Meara
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Sarah E Cummings
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - John-Paul Michalski
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Rashmi Kothary
- Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Department of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,University of Ottawa Centre for Neuromuscular Disease, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
204
|
WANG HUA, WU JINLIN. 17β-estradiol suppresses hyperoxia-induced apoptosis of oligodendrocytes through paired-immunoglobulin-like receptor B. Mol Med Rep 2016; 13:2892-8. [DOI: 10.3892/mmr.2016.4808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022] Open
|
205
|
Diao HJ, Wang K, Long HY, Wang M, Chew SY. Highly Fluorescent and Photostable Polymeric Nanofibers as Scaffolds for Cell Interfacing and Long-Term Tracking. Adv Healthc Mater 2016; 5:529-33. [PMID: 26773963 DOI: 10.1002/adhm.201500693] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 09/22/2015] [Indexed: 12/22/2022]
Abstract
Highly fluorescent polymeric nanofibers fabricated via electrospinning of PCL-DPP-PCL (photostable polycaprolactones-di(thiophene-2-yl)-diketopyrrolopyrrole-photostable polycaprolactones) and commercial PCL mixture show superior photostability and cytocompatibility for long-term tracking of cell-substrate interaction. As a proof of concept, these PCL-DPP-PCL nanofibers enable clear visualization of intricate cell-substrate interactions such as oligodendrocyte myelination.
Collapse
Affiliation(s)
- Hua Jia Diao
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459
| | - Kai Wang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459
| | - Hong Yan Long
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459
| | - Mingfeng Wang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459
| | - Sing Yan Chew
- School of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore, 637459.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921
| |
Collapse
|
206
|
Sakai K, Shimba K, Kotani K, Jimbo Y. Microfabricated multi-electrode device for detecting oligodendrocyte-regulated changes in axonal conduction velocity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:7127-30. [PMID: 26737935 DOI: 10.1109/embc.2015.7320035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myelin disorders cause cognitive dysfunction, but little is known about how abnormal myelin sheath affects neural activities at the network level. One reason for the lack is a technical difficulty in simultaneous monitoring of changes in both the axonal conduction and network activity. Then, we aimed to develop a culture device to detect myelination dependent changes in axonal conduction velocity in a neuronal network. The photolithographically fabricated device has microtunnels for guiding axons. Two microelectrodes and an oligodendrocyte (OL) culture compartment are set at each microtunnel. This configuration allows us to monitor changes in conduction velocity of axons wrapped by OLs. Neurons and OLs dissected from rat cortical tissues were cultured in the culture device. An immunocytochemical study indicated axonal growth and maturation of OL at 42 days in vitro (DIV), suggesting that neuron-OL co-culture was maintained in microtunnels. Propagating action potentials of individual axons were detected from spontaneous neural activities with a spike sorting method and their conduction velocities were examined. Conduction velocity without seeding OLs was 0.31 m/s, which was consistent with that of previous reports with unmyelinated axons. Although no apparent myelin sheath was observed in OL culture compartments, conduction delay with seeding OLs was approximately half as long as that without seeding OLs at 45 DIV. These results suggest that the culture device enables us to detect the OL-regulated changes in axonal conduction in the neuronal network.
Collapse
|
207
|
Liu XS, Chopp M, Pan WL, Wang XL, Fan BY, Zhang Y, Kassis H, Zhang RL, Zhang XM, Zhang ZG. MicroRNA-146a Promotes Oligodendrogenesis in Stroke. Mol Neurobiol 2016; 54:227-237. [PMID: 26738853 DOI: 10.1007/s12035-015-9655-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 12/17/2015] [Indexed: 11/28/2022]
Abstract
Stroke induces new myelinating oligodendrocytes that are involved in ischemic brain repair. Molecular mechanisms that regulate oligodendrogenesis have not been fully investigated. MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate gene expression. MiR-146a has been reported to regulate immune response, but the role of miR-146a in oligodendrocyte progenitor cells (OPCs) remains unknown. Adult Wistar rats were subjected to the right middle cerebral artery occlusion (MCAo). In situ hybridization analysis with LNA probes against miR-146a revealed that stroke considerably increased miR-146a density in the corpus callosum and subventricular zone (SVZ) of the lateral ventricle of the ischemic hemisphere. In vitro, overexpression of miR-146a in neural progenitor cells (NPCs) significantly increased their differentiation into O4+ OPCs. Overexpression of miR-146a in primary OPCs increased their expression of myelin proteins, whereas attenuation of endogenous miR-146a suppressed generation of myelin proteins. MiR-146a also inversely regulated its target gene-IRAK1 expression in OPCs. Attenuation of IRAK1 in OPCs substantially increased myelin proteins and decreased OPC apoptosis. Collectively, our data suggest that miR-146a may mediate stroke-induced oligodendrogenesis.
Collapse
Affiliation(s)
- Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA.,Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Wan Long Pan
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA.,Medical Imaging Institute of North Sichuan Medical University, Nanchong, Sichuan, China, 637100
| | - Xin Li Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Bao Yan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Haifa Kassis
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Rui Lan Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Xiao Ming Zhang
- Medical Imaging Institute of North Sichuan Medical University, Nanchong, Sichuan, China, 637100
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, 48202, USA
| |
Collapse
|
208
|
Cao L, Pu J, Scott RH, Ching J, McCaig CD. Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion. Stem Cell Rev Rep 2015; 11:75-86. [PMID: 25096637 PMCID: PMC4333314 DOI: 10.1007/s12015-014-9524-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neuroblasts migrate as directed chains of cells during development and following brain damage. A fuller understanding of the mechanisms driving this will help define its developmental significance and in the refinement of strategies for brain repair using transplanted stem cells. Recently, we reported that in adult mouse there are ionic gradients within the extracellular spaces that create an electrical field (EF) within the rostral migratory stream (RMS), and that this acts as a guidance cue for neuroblast migration. Here, we demonstrate an endogenous EF in brain slices and show that mimicking this by applying an EF of physiological strength, switches on chain migration in mouse neurospheres and in the SH-SY5Y neuroblastoma cell line. Firstly, we detected a substantial endogenous EF of 31.8 ± 4.5 mV/mm using microelectrode recordings from explants of the subventricular zone (SVZ). Pharmacological inhibition of this EF, effectively blocked chain migration in 3D cultures of SVZ explants. To mimic this EF, we applied a physiological EF and found that this increased the expression of N-cadherin and β-catenin, both of which promote cell-cell adhesion. Intriguingly, we found that the EF up-regulated P2Y purinoceptor 1 (P2Y1) to contribute to chain migration of neuroblasts through regulating the expression of N-cadherin, β-catenin and the activation of PKC. Our results indicate that the naturally occurring EF in brain serves as a novel stimulant and directional guidance cue for neuronal chain migration, via up-regulation of P2Y1.
Collapse
Affiliation(s)
- Lin Cao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Jin Pu
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Roderick H. Scott
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| | - Jared Ching
- Department of Neurosurgery, Aberdeen Royal Infirmary, Aberdeen, AB25 2ZD UK
| | - Colin D. McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD UK
| |
Collapse
|
209
|
Simon K, Hennen S, Merten N, Blättermann S, Gillard M, Kostenis E, Gomeza J. The Orphan G Protein-coupled Receptor GPR17 Negatively Regulates Oligodendrocyte Differentiation via Gαi/o and Its Downstream Effector Molecules. J Biol Chem 2015; 291:705-18. [PMID: 26620557 DOI: 10.1074/jbc.m115.683953] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 01/08/2023] Open
Abstract
Recent studies have recognized G protein-coupled receptors as important regulators of oligodendrocyte development. GPR17, in particular, is an orphan G protein-coupled receptor that has been identified as oligodendroglial maturation inhibitor because its stimulation arrests primary mouse oligodendrocytes at a less differentiated stage. However, the intracellular signaling effectors transducing its activation remain poorly understood. Here, we use Oli-neu cells, an immortalized cell line derived from primary murine oligodendrocytes, and primary rat oligodendrocyte cultures as model systems to identify molecular targets that link cell surface GPR17 to oligodendrocyte maturation blockade. We demonstrate that stimulation of GPR17 by the small molecule agonist MDL29,951 (2-carboxy-4,6-dichloro-1H-indole-3-propionic acid) decreases myelin basic protein expression levels mainly by triggering the Gαi/o signaling pathway, which in turn leads to reduced activity of the downstream cascade adenylyl cyclase-cAMP-PKA-cAMP response element-binding protein (CREB). In addition, we show that GPR17 activation also diminishes myelin basic protein abundance by lessening stimulation of the exchange protein directly activated by cAMP (EPAC), thus uncovering a previously unrecognized role for EPAC to regulate oligodendrocyte differentiation. Together, our data establish PKA and EPAC as key downstream effectors of GPR17 that inhibit oligodendrocyte maturation. We envisage that treatments augmenting PKA and/or EPAC activity represent a beneficial approach for therapeutic enhancement of remyelination in those demyelinating diseases where GPR17 is highly expressed, such as multiple sclerosis.
Collapse
Affiliation(s)
- Katharina Simon
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | - Stephanie Hennen
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | - Nicole Merten
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | - Stefanie Blättermann
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | | | - Evi Kostenis
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| | - Jesus Gomeza
- From the Institute of Pharmaceutical Biology, Section Molecular, Cellular, and Pharmacobiology, University of Bonn, 53115 Bonn, Germany and
| |
Collapse
|
210
|
Baroti T, Schillinger A, Wegner M, Stolt CC. Sox13 functionally complements the related Sox5 and Sox6 as important developmental modulators in mouse spinal cord oligodendrocytes. J Neurochem 2015; 136:316-28. [PMID: 26525805 DOI: 10.1111/jnc.13414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
The role of transcription factor Sox13, which together with Sox5 and Sox6 belongs to the SoxD family, is only poorly characterized in central nervous system development. Therefore, we analysed whether Sox13 expression and function overlaps with or differs from that of its close relatives Sox5 and Sox6. In the developing mouse spinal cord, we found Sox13 predominantly expressed in neuroepithelial precursors, oligodendroglial and astroglial cells. The substantially overlapping expression with Sox5 and Sox6 in oligodendroglial cells prompted us to study potential roles during specification, lineage progression and differentiation of oligodendrocytes. In contrast to Sox5 and Sox6, Sox13 expression continues after differentiation and even increases in myelinating oligodendrocytes. Sox13 deletion did not interfere with oligodendroglial development, which was normal in Sox13-deficient mice. However, the premature differentiation of oligodendrocyte precursors triggered by loss of Sox6 was slightly more prominent in Sox6/Sox13 double-deficient mice. Sox13 can bind to the same sites in myelin gene promoters as Sox5 and Sox6 in vitro. Reporter gene assays furthermore reveal a similar antagonizing effect on Sox10-dependent transactivation of myelin gene promoters as previously shown for Sox5 and Sox6. This argues that Sox13 is functionally redundant with the other SoxD proteins and complements Sox5 and Sox6 in their role as important modulators of oligodendrocyte development. The transcription factor Sox13 is co-expressed with the related Sox5 and Sox6 in cells of the oligodendroglial lineage. By itself, it has little impact on oligodendrocyte development but supports Sox5 and Sox6 during the process as a functionally redundant transcription factor.
Collapse
Affiliation(s)
- Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Schillinger
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
211
|
Santra M, Chopp M, Santra S, Nallani A, Vyas S, Zhang ZG, Morris DC. Thymosin beta 4 up-regulates miR-200a expression and induces differentiation and survival of rat brain progenitor cells. J Neurochem 2015; 136:118-32. [PMID: 26466330 DOI: 10.1111/jnc.13394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/27/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Thymosin beta 4 (Tβ4), a secreted 43 amino acid peptide, promotes oligodendrogenesis, and improves neurological outcome in rat models of neurologic injury. We demonstrated that exogenous Tβ4 treatment up-regulated the expression of the miR-200a in vitro in rat brain progenitor cells and in vivo in the peri-infarct area of rats subjected to middle cerebral artery occlusion (MCAO). The up-regulation of miR-200a down-regulated the expression of the following targets in vitro and in vivo models: (i) growth factor receptor-bound protein 2 (Grb2), an adaptor protein involved in epidermal growth factor receptor (EGFR)/Grb2/Ras/MEK/ERK1/c-Jun signaling pathway, which negatively regulates the expression of myelin basic protein (MBP), a marker of mature oligodendrocyte; (ii) ERRFI-1/Mig-6, an endogenous potent kinase inhibitor of EGFR, which resulted in activation/phosphorylation of EGFR; (iii) friend of GATA 2, and phosphatase and tensin homolog deleted in chromosome 10 (PTEN), which are potent inhibitors of the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, and resulted in marked activation of AKT; and (iv) transcription factor, p53, which induces pro-apoptotic genes, and possibly reduced apoptosis of the progenitor cells subjected to oxygen glucose deprivation (OGD). Anti-miR-200a transfection reversed all the effects of Tβ4 treatment in vitro. Thus, Tβ4 up-regulated MBP synthesis, and inhibited OGD-induced apoptosis in a novel miR-200a dependent EGFR signaling pathway. Our findings of miR-200a-mediated protection of progenitor cells may provide a new therapeutic importance for the treatment of neurologic injury. Tβ4-induced micro-RNA-200a (miR-200a) regulates EGFR signaling pathways for MBP synthesis and apoptosis: up-regulation of miR-200a after Tβ4 treatment, increases MBP synthesis after targeting Grb2 and thereby inactivating c-Jun from inhibition of MBP synthesis; and also inhibits OGD-mediated apoptosis after targeting EGFR inhibitor (Mig-6), PI3K inhibitors (FOG2 and Pten) and an inducer (p53) of pro-apoptotic genes, for AKT activation and down-regulation of p53. These findings may contribute the therapeutic benefits for stroke and other neuronal diseases associated with demyelination disorders.
Collapse
Affiliation(s)
- Manoranjan Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA.,Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Sutapa Santra
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Ankita Nallani
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Shivam Vyas
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
| | - Daniel C Morris
- Department of Emergency Medicine, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
212
|
Li N, Leung GKK. Oligodendrocyte Precursor Cells in Spinal Cord Injury: A Review and Update. BIOMED RESEARCH INTERNATIONAL 2015; 2015:235195. [PMID: 26491661 PMCID: PMC4600489 DOI: 10.1155/2015/235195] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition to individuals, families, and society. Oligodendrocyte loss and demyelination contribute as major pathological processes of secondary damages after injury. Oligodendrocyte precursor cells (OPCs), a subpopulation that accounts for 5 to 8% of cells within the central nervous system, are potential sources of oligodendrocyte replacement after SCI. OPCs react rapidly to injuries, proliferate at a high rate, and can differentiate into myelinating oligodendrocytes. However, posttraumatic endogenous remyelination is rarely complete, and a better understanding of OPCs' characteristics and their manipulations is critical to the development of novel therapies. In this review, we summarize known characteristics of OPCs and relevant regulative factors in both health and demyelinating disorders including SCI. More importantly, we highlight current evidence on post-SCI OPCs transplantation as a potential treatment option as well as the impediments against regeneration. Our aim is to shed lights on important knowledge gaps and to provoke thoughts for further researches and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Ning Li
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Gilberto K. K. Leung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| |
Collapse
|
213
|
Baroti T, Zimmermann Y, Schillinger A, Liu L, Lommes P, Wegner M, Stolt CC. Transcription factors Sox5 and Sox6 exert direct and indirect influences on oligodendroglial migration in spinal cord and forebrain. Glia 2015; 64:122-38. [DOI: 10.1002/glia.22919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/14/2015] [Accepted: 08/24/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Yvonne Zimmermann
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Anja Schillinger
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Lina Liu
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Petra Lommes
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - C. Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
214
|
Lee H, Bae JS, Jin HK. Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor. Mol Cells 2015; 38:806-13. [PMID: 26282862 PMCID: PMC4588724 DOI: 10.14348/molcells.2015.0117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/06/2015] [Accepted: 06/18/2015] [Indexed: 11/27/2022] Open
Abstract
Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| | - Jae-sung Bae
- Stem Cell Neuroplasticity Research Group, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-842,
Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 700-842,
Korea
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, Cell and Matrix Research Institute, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
215
|
Topographical effects on fiber-mediated microRNA delivery to control oligodendroglial precursor cells development. Biomaterials 2015; 70:105-14. [PMID: 26310106 DOI: 10.1016/j.biomaterials.2015.08.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/15/2015] [Indexed: 11/23/2022]
Abstract
Effective remyelination in the central nervous system (CNS) facilitates the reversal of disability in patients with demyelinating diseases such as multiple sclerosis. Unfortunately until now, effective strategies of controlling oligodendrocyte (OL) differentiation and maturation remain limited. It is well known that topographical and biochemical signals play crucial roles in modulating cell fate commitment. Therefore, in this study, we explored the combined effects of scaffold topography and sustained gene silencing on oligodendroglial precursor cell (OPC) development. Specifically, microRNAs (miRs) were incorporated onto electrospun polycaprolactone (PCL) fiber scaffolds with different fiber diameters and orientations. Regardless of fiber diameter and orientation, efficient knockdown of differentiation inhibitory factors were achieved by either topography alone (up to 70%) or fibers integrated with miR-219 and miR-338 (up to 80%, p < 0.05). Small fiber promoted OPC differentiation by inducing more RIP(+) cells (p < 0.05) while large fiber promoted OL maturation by inducing more MBP(+) cells (p < 0.05). Random fiber enhanced more RIP(+) cells than aligned fibers (p < 0.05), regardless of fiber diameter. Upon miR-219/miR-338 incorporation, 2 μm aligned fibers supported the most MBP(+) cells (∼17%). These findings indicated that the coupling of substrate topographic cues with efficient gene silencing by sustained microRNA delivery is a promising way for directing OPC maturation in neural tissue engineering and controlling remyelination in the CNS.
Collapse
|
216
|
Sgk1 regulates desmoglein 1 expression levels in oligodendrocytes in the mouse corpus callosum after chronic stress exposure. Biochem Biophys Res Commun 2015; 464:76-82. [DOI: 10.1016/j.bbrc.2015.05.109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/29/2015] [Indexed: 11/17/2022]
|
217
|
Involvement of MeCP2 in Regulation of Myelin-Related Gene Expression in Cultured Rat Oligodendrocytes. J Mol Neurosci 2015; 57:176-84. [PMID: 26140854 DOI: 10.1007/s12031-015-0597-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/02/2015] [Indexed: 01/08/2023]
Abstract
Methyl CpG binding protein 2 (MeCP2) is a multifunctional protein which binds to methylated CpG, mutation of which cause a neurodevelopmental disorder, Rett syndrome. MeCP2 can function as both transcriptional activator and repressor of target gene. MeCP2 regulate gene expression in both neuron and glial cells in central nervous system (CNS). Oligodendrocytes, the myelinating cells of CNS, are required for normal functioning of neurons and are regulated by several transcription factors during their differentiation. In current study, we focused on the role of MeCP2 as transcription regulator of myelin genes in cultured rat oligodendrocytes. We have observed expression of MeCP2 at all stages of oligodendrocyte development. MeCP2 knockdown in cultured oligodendrocytes by small interference RNA (siRNA) has shown increase in myelin genes (myelin basic protein (MBP), proteolipid protein (PLP), myelin oligodendrocyte glycoprotein (MOG), and myelin-associated oligodendrocyte basic protein (MOBP)), neurotrophin (brain-derived neurotrophic factor (BDNF)), and transcriptional regulator (YY1) transcripts level, which are involved in regulation of oligodendrocyte differentiation and myelination. Further, we also found that protein levels of MBP, PLP, DM-20, and BDNF also significantly upregulated in MeCP2 knockdown oligodendrocytes. Our study suggests that the MeCP2 acts as a negative regulator of myelin protein expression.
Collapse
|
218
|
Clostridium perfringens Epsilon Toxin Causes Selective Death of Mature Oligodendrocytes and Central Nervous System Demyelination. mBio 2015; 6:e02513. [PMID: 26081637 PMCID: PMC4471556 DOI: 10.1128/mbio.02513-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens epsilon toxin (ε-toxin) is responsible for a devastating multifocal central nervous system (CNS) white matter disease in ruminant animals. The mechanism by which ε-toxin causes white matter damage is poorly understood. In this study, we sought to determine the molecular and cellular mechanisms by which ε-toxin causes pathological changes to white matter. In primary CNS cultures, ε-toxin binds to and kills oligodendrocytes but not astrocytes, microglia, or neurons. In cerebellar organotypic culture, ε-toxin induces demyelination, which occurs in a time- and dose-dependent manner, while preserving neurons, astrocytes, and microglia. ε-Toxin specificity for oligodendrocytes was confirmed using enriched glial culture. Sensitivity to ε-toxin is developmentally regulated, as only mature oligodendrocytes are susceptible to ε-toxin; oligodendrocyte progenitor cells are not. ε-Toxin sensitivity is also dependent on oligodendrocyte expression of the proteolipid myelin and lymphocyte protein (MAL), as MAL-deficient oligodendrocytes are insensitive to ε-toxin. In addition, ε-toxin binding to white matter follows the spatial and temporal pattern of MAL expression. A neutralizing antibody against ε-toxin inhibits oligodendrocyte death and demyelination. This study provides several novel insights into the action of ε-toxin in the CNS. (i) ε-Toxin causes selective oligodendrocyte death while preserving all other neural elements. (ii) ε-Toxin-mediated oligodendrocyte death is a cell autonomous effect. (iii) The effects of ε-toxin on the oligodendrocyte lineage are restricted to mature oligodendrocytes. (iv) Expression of the developmentally regulated proteolipid MAL is required for the cytotoxic effects. (v) The cytotoxic effects of ε-toxin can be abrogated by an ε-toxin neutralizing antibody. Our intestinal tract is host to trillions of microorganisms that play an essential role in health and homeostasis. Disruption of this symbiotic relationship has been implicated in influencing or causing disease in distant organ systems such as the brain. Epsilon toxin (ε-toxin)-carrying Clostridium perfringens strains are responsible for a devastating white matter disease in ruminant animals that shares similar features with human multiple sclerosis. In this report, we define the mechanism by which ε-toxin causes white matter disease. We find that ε-toxin specifically targets the myelin-forming cells of the central nervous system (CNS), oligodendrocytes, leading to cell death. The selectivity of ε-toxin for oligodendrocytes is remarkable, as other cells of the CNS are unaffected. Importantly, ε-toxin-induced oligodendrocyte death results in demyelination and is dependent on expression of myelin and lymphocyte protein (MAL). These results help complete the mechanistic pathway from bacteria to brain by explaining the specific cellular target of ε-toxin within the CNS.
Collapse
|
219
|
Zonouzi M, Scafidi J, Li P, McEllin B, Edwards J, Dupree JL, Harvey L, Sun D, Hübner CA, Cull-Candy SG, Farrant M, Gallo V. GABAergic regulation of cerebellar NG2 cell development is altered in perinatal white matter injury. Nat Neurosci 2015; 18:674-82. [PMID: 25821912 PMCID: PMC4459267 DOI: 10.1038/nn.3990] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/06/2015] [Indexed: 01/11/2023]
Abstract
Diffuse white matter injury (DWMI), a leading cause of neurodevelopmental disabilities in preterm infants, is characterized by reduced oligodendrocyte formation. NG2-expressing oligodendrocyte precursor cells (NG2 cells) are exposed to various extrinsic regulatory signals, including the neurotransmitter GABA. We investigated GABAergic signaling to cerebellar white matter NG2 cells in a mouse model of DWMI (chronic neonatal hypoxia). We found that hypoxia caused a loss of GABAA receptor-mediated synaptic input to NG2 cells, extensive proliferation of these cells and delayed oligodendrocyte maturation, leading to dysmyelination. Treatment of control mice with a GABAA receptor antagonist or deletion of the chloride-accumulating transporter NKCC1 mimicked the effects of hypoxia. Conversely, blockade of GABA catabolism or GABA uptake reduced NG2 cell numbers and increased the formation of mature oligodendrocytes both in control and hypoxic mice. Our results indicate that GABAergic signaling regulates NG2 cell differentiation and proliferation in vivo, and suggest that its perturbation is a key factor in DWMI.
Collapse
MESH Headings
- Action Potentials/drug effects
- Animals
- Animals, Newborn
- Asphyxia Neonatorum/pathology
- Carbachol/pharmacology
- Cell Count
- Cells, Cultured
- Cerebellum/growth & development
- Cerebellum/pathology
- Demyelinating Diseases/chemically induced
- Demyelinating Diseases/etiology
- Disease Models, Animal
- Female
- GABA-A Receptor Antagonists/toxicity
- Hypoxia, Brain/pathology
- Hypoxia, Brain/physiopathology
- Interneurons/pathology
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Neural Stem Cells/cytology
- Neurogenesis/drug effects
- Neurogenesis/physiology
- Nipecotic Acids/pharmacology
- Nipecotic Acids/therapeutic use
- Oligodendroglia/cytology
- Purkinje Cells/pathology
- Receptors, GABA-A/physiology
- Solute Carrier Family 12, Member 2/deficiency
- Solute Carrier Family 12, Member 2/physiology
- Tiagabine
- Vigabatrin/pharmacology
- Vigabatrin/therapeutic use
- White Matter/injuries
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- Marzieh Zonouzi
- 1] Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA. [2] Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Joseph Scafidi
- 1] Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA. [2] Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Peijun Li
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Brian McEllin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Jorge Edwards
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Medical Center, Richmond, Virginia, USA
| | - Lloyd Harvey
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian A Hübner
- Friedrich-Schiller-University Jena, Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
220
|
Hartley MD, Altowaijri G, Bourdette D. Remyelination and multiple sclerosis: therapeutic approaches and challenges. Curr Neurol Neurosci Rep 2015; 14:485. [PMID: 25108747 DOI: 10.1007/s11910-014-0485-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. After acute inflammatory mediated demyelination, some remyelination often occurs, but in chronic demyelinated MS plaques, remyelination frequently fails. Chronically demyelinated axons cause a variety of symptoms and probably are more likely to degenerate, leading to irreversible clinical disability. Oligodendrocyte precursor cells (OPCs) present in the adult brain can proliferate and differentiate to remyelinate lesions. Failure of remyelination in the majority of MS patients is secondary to arrest in OPC differentiation. Many therapies have been developed to modulate the immune response in MS, but no neuroprotective or remyelinating therapies are available. Promoting remyelination is a promising avenue for protecting axons, reversing neurologic disability and preventing progressive disease in MS. This review will begin with an overview of remyelination and remyelination failure, consequences of demyelination, and available animal disease models. In addition, preclinical and clinical studies on the most promising potential therapies for inducing remyelination will be described.
Collapse
Affiliation(s)
- Meredith D Hartley
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, 97239, USA
| | | | | |
Collapse
|
221
|
Shimizu S, Tanaka T, Tohyama M, Miyata S. Yokukansan normalizes glucocorticoid receptor protein expression in oligodendrocytes of the corpus callosum by regulating microRNA-124a expression after stress exposure. Brain Res Bull 2015; 114:49-55. [PMID: 25857947 DOI: 10.1016/j.brainresbull.2015.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/29/2022]
Abstract
Stressful events are known to down-regulate expression levels of glucocorticoid receptors (GRs) in the brain. Recently, we reported that stressed mice with elevated plasma levels of corticosterone exhibit morphological changes in the oligodendrocytes of nerve fiber bundles, such as those in the corpus callosum. However, little is known about the molecular mechanism of GR expression regulation in oligodendrocytes after stress exposure. A previous report has suggested that GR protein levels might be regulated by microRNA (miR)-18 and/or -124a in the brain. In this study, we aimed to elucidate the GR regulation mechanism in oligodendrocytes and evaluate the effects of yokukansan (YKS), a Kampo medicine, on GR protein regulation. Acute exposure to stress increased plasma corticosterone levels, decreased GR protein expression, and increased miR-124a expression in the corpus callosum of adult male mice, though the GR mRNA and miR-18 expression levels were not significant changes. YKS normalized the stress-induced changes in the plasma corticosterone, GR protein, and miR124a expression levels. An oligodendrocyte primary culture study also showed that YKS down-regulated miR-124a, but not miR-18, expression levels in dexamethasone-treated cells. These results suggest that the down-regulation of miR124a expression might be involved in the normalization of stress-induced decreases in GR protein in oligodendrocytes by YKS. This effect may imply the molecular mechanisms underlying the ameliorative effects of YKS on psychological symptoms and stress-related behaviors.
Collapse
Affiliation(s)
- Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Takashi Tanaka
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan; Osaka Prefectural Hospital Organization, Osaka 558-8558, Japan
| | - Shingo Miyata
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-sayama, Osaka 589-8511, Japan.
| |
Collapse
|
222
|
Diao HJ, Low WC, Milbreta U, Lu QR, Chew SY. Nanofiber-mediated microRNA delivery to enhance differentiation and maturation of oligodendroglial precursor cells. J Control Release 2015; 208:85-92. [PMID: 25747407 DOI: 10.1016/j.jconrel.2015.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/18/2015] [Accepted: 03/01/2015] [Indexed: 01/29/2023]
Abstract
Remyelination in the central nervous system (CNS) is critical in the treatment of many neural pathological conditions. Unfortunately, the ability to direct and enhance oligodendrocyte (OL) differentiation and maturation remains limited. It is known that microenvironmental signals, such as substrate topography and biochemical signaling, regulate cell fate commitment. Therefore, in this study, we developed a nanofiber-mediated microRNA (miR) delivery method to control oligodendroglial precursor cell (OPC) differentiation through a combination of fiber topography and gene silencing. Using poly(ε-caprolactone) nanofibers, efficient knockdown of OL differentiation inhibitory regulators were achieved by either nanofiber alone (20-40%, p<0.05) or the synergistic integration with miR-219 and miR-338 (up to 60%, p<0.05). As compared to two-dimensional culture, nanofiber topography enhanced OPC differentiation by inducing 2-fold increase in RIP(+) cells (p<0.01) while the presence of miRs further enhanced the result to 3-fold (p<0.001). In addition, nanofiber-mediated delivery of miR-219 and miR-338 promoted OL maturation by increasing the number of MBP(+) cells significantly (p<0.01). Taken together, the results demonstrate the efficacy of nanofibers in providing topographical cues and microRNA reverse transfection to direct OPC differentiation. Such scaffolds may find useful applications in directing oligodendrocyte differentiation and myelination for treatment of CNS pathological conditions that require remyelination.
Collapse
Affiliation(s)
- Hua Jia Diao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Wei Ching Low
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Ulla Milbreta
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
223
|
Clarner T, Janssen K, Nellessen L, Stangel M, Skripuletz T, Krauspe B, Hess FM, Denecke B, Beutner C, Linnartz-Gerlach B, Neumann H, Vallières L, Amor S, Ohl K, Tenbrock K, Beyer C, Kipp M. CXCL10 Triggers Early Microglial Activation in the Cuprizone Model. THE JOURNAL OF IMMUNOLOGY 2015; 194:3400-13. [DOI: 10.4049/jimmunol.1401459] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
224
|
Development of a nanomaterial bio-screening platform for neurological applications. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:77-87. [DOI: 10.1016/j.nano.2014.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/05/2014] [Accepted: 07/22/2014] [Indexed: 11/23/2022]
|
225
|
Tan B, Wang J, Zhao M, Hu Y, Wang J, Yang B, He Q, Yang XC, Weng Q. TCF7L2 activation is required for myelin regeneration in 5-FU-induced demyelinating mice. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00110b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies have shown that 5-FU (5-fluorouracil) could cause delayed myelin degeneration by inducing oligodendrocyte death.
Collapse
Affiliation(s)
- Biqin Tan
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jing Wang
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Mengting Zhao
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Yan Hu
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Jiajia Wang
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Bo Yang
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - QiaoJun He
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Xiao Chun Yang
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| | - Qinjie Weng
- Institute of Pharmacology
- College of Pharmaceutical Sciences
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
226
|
Zhu B, Zhao C, Young FI, Franklin RJM, Song B. Isolation and long-term expansion of functional, myelinating oligodendrocyte progenitor cells from neonatal rat brain. ACTA ACUST UNITED AC 2014; 31:2D.17.1-15. [PMID: 25366898 DOI: 10.1002/9780470151808.sc02d17s31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). The isolation of purified oligodendrocyte progenitor cells (OPCs) in large numbers has been sought after as a source of cells for repair following CNS-demyelinating diseases and injuries, such as multiple sclerosis (MS) and spinal cord injury (SCI). Methods for isolation of OPCs from rodent neonatal brains are well established and have formed the basis for research in myelin repair within the CNS for many years. However, long-term maintenance of OPCs has been a challenge owing to small cellular yields per animal and spontaneous differentiation within a short period of time. Much effort has been devoted to achieving long-term culture and maintenance of OPCs, but little progress has been made. Here, protocols are presented for preparation of highly enriched rat OPC populations and for their long-term maintenance as oligospheres using mixed-glial-conditioned medium. Functional myelinating oligodendrocytes can be achieved from such protocols, when co-cultured with primary neurons. This approach is an extension of our normal shaking method for isolating OPCs, and incorporates some adaptations from previous OPC culture methods.
Collapse
Affiliation(s)
- Bangfu Zhu
- Cardiff Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
227
|
Iwasa K, Yamamoto S, Takahashi M, Suzuki S, Yagishita S, Awaji T, Maruyama K, Yoshikawa K. Prostaglandin F2α FP receptor inhibitor reduces demyelination and motor dysfunction in a cuprizone-induced multiple sclerosis mouse model. Prostaglandins Leukot Essent Fatty Acids 2014; 91:175-82. [PMID: 25224839 DOI: 10.1016/j.plefa.2014.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/17/2022]
Abstract
Previously, we have demonstrated that prostamide/PGF synthase, which catalyzes the reduction of prostaglandin (PG) H2 to PGF2α, is constitutively expressed in myelin sheaths and cultured oligodendrocytes, suggesting that PGF2α has functional significance in myelin-forming oligodendrocytes. To investigate the effects of PGF2α/FP receptor signaling on demyelination, we administrated FP receptor agonist and antagonist to cuprizone-exposed mice, a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, glial activation, proinflammatory cytokine expression, and motor dysfunction. Administration of the FP receptor antagonist AL-8810 attenuated cuprizone-induced demyelination, glial activation, and TNFα expression in the corpus callosum, and also improved the motor function. These data suggest that during cuprizone-induced demyelination, PGF2α/FP receptor signaling contributes to glial activation, neuroinflammation, and demyelination, resulting in motor dysfunction. Thus, FP receptor inhibition may be a useful symptomatic treatment in multiple sclerosis.
Collapse
Affiliation(s)
- K Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - S Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - M Takahashi
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - S Suzuki
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - S Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - T Awaji
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - K Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan
| | - K Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama 350-0495, Japan.
| |
Collapse
|
228
|
Chew LJ, DeBoy CA, Senatorov VV. Finding degrees of separation: experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. J Neurosci Methods 2014; 236:125-47. [PMID: 25169049 PMCID: PMC4171043 DOI: 10.1016/j.jneumeth.2014.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
The study of CNS glial cell function requires experimental methods to detect, purify, and manipulate each cell population with fidelity and specificity. With the identification and cloning of cell- and stage-specific markers, glial cell analysis techniques have grown beyond physical methods of tissue dissociation and cell culture, and become highly specific with immunoselection of cell cultures in vitro and genetic targeting in vivo. The unique plasticity of glial cells offers the potential for cell replacement therapies in neurological disease that utilize neural cells derived from transplanted neural stem and progenitor cells. In this mini-review, we outline general physical and genetic approaches for macroglial cell generation. We summarize cell culture methods to obtain astrocytes and oligodendrocytes and their precursors, from developing and adult tissue, as well as approaches to obtain human neural progenitor cells through the establishment of stem cells. We discuss popular targeting rodent strains designed for cell-specific detection, selection and manipulation of neuroglial cell progenitors and their committed progeny. Based on shared markers between astrocytes and stem cells, we discuss genetically modified mouse strains with overlapping expression, and highlight SOX-expressing strains available for targeting of stem and progenitor cell populations. We also include recently established mouse strains for detection, and tag-assisted RNA and miRNA analysis. This discussion aims to provide a brief overview of the rapidly expanding collection of experimental approaches and genetic resources for the isolation and targeting of macroglial cells, their sources, progeny and gene products to facilitate our understanding of their properties and potential application in pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, United States.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, United States
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
229
|
Kim JY, Lee EY, Sohn HJ, Kim SW, Kim CH, Ahn HY, Kim DW, Cho SS, Seo JH. Differential expression of αB-crystallin causes maturation-dependent susceptibility of oligodendrocytes to oxidative stress. BMB Rep 2014; 46:501-6. [PMID: 24148771 PMCID: PMC4133838 DOI: 10.5483/bmbrep.2013.46.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are most susceptible to oxidative stress in the brain. However, the cause of differences in susceptibility to oxidative stress between OPCs and mature oligodendrocytes (mOLs) remains unclear. Recently, we identified in vivo that αB-crystallin (aBC) is expressed in mOLs but not in OPCs. Therefore, we examined in the present study whether aBC expression could affect cell survival under oxidative stress induced by hydrogen peroxide using primary cultures of OPCs and mOLs from neonatal rat brains. Expression of aBC was greater in mOLs than in OPCs, and the survival rate of mOLs was significantly higher than that of OPCs under oxidative stress. Suppression of aBC by siRNA transfection resulted in a decrease in the survival rate of mOLs under oxidative stress. These data suggest that higher susceptibility of OPCs than mOLs to oxidative stress is due, at least in part, to low levels of aBC expression. [BMB Reports 2013; 46(10): 501-506]
Collapse
Affiliation(s)
- Ji Young Kim
- Departments of Anatomy, Chungbuk National University School of Medicine, Cheongju 361-763, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Ttyh1 protein is expressed in glia in vitro and shows elevated expression in activated astrocytes following status epilepticus. Neurochem Res 2014; 39:2516-26. [PMID: 25316497 PMCID: PMC4246129 DOI: 10.1007/s11064-014-1455-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 11/29/2022]
Abstract
In a previous study, we showed that Ttyh1 protein is expressed in neurons in vitro and in vivo in the form of punctuate structures, which are localized to neuropil and neuronal somata. Herein, we provide the first description of Ttyh1 protein expression in astrocytes, oligodendrocytes and microglia in vitro. Moreover, using double immunofluorescence, we show Ttyh1 protein expression in activated astrocytes in the hippocampus following amygdala stimulation-induced status epilepticus. We demonstrate that in migrating astrocytes in in vitro wound model Ttyh1 concentrates at the edges of extending processes. These data suggest that Ttyh1 not only participates in shaping neuronal morphology, as previously described, but may also play a role in the function of activated glia in brain pathology. To localize Ttyh1 expression in the cellular compartments of neurons and astrocytes, we performed in vitro double immunofluorescent staining using markers for the following subcellular structures: endoplasmic reticulum (GRP78), Golgi apparatus (GM130), clathrin-coated vehicles (clathrin), early endosomes (Rab5 and APPL2), recycling endosomes (Rab11), trans-Golgi network (TGN46), endoplasmic reticulum membrane (calnexin), late endosomes and lysosomes (LAMP1) and synaptic vesicles (synaptoporin and synaptotagmin 1). We found that Ttyh1 is present in the endoplasmic reticulum, Golgi apparatus and clathrin-coated vesicles (clathrin) in both neurons and astrocytes and also in late endosomes or lysosomes in astrocytes. The presence of Ttyh1 was negligible in early endosomes, recycling endosomes, trans-Golgi network, endoplasmic reticulum membrane and synaptic vesicles.
Collapse
|
231
|
Jing Z, Xing J, Chen X, Stetler RA, Weng Z, Gan Y, Zhang F, Gao Y, Chen J, Leak RK, Cao G. Neuronal NAMPT is released after cerebral ischemia and protects against white matter injury. J Cereb Blood Flow Metab 2014; 34:1613-21. [PMID: 25005877 PMCID: PMC4269719 DOI: 10.1038/jcbfm.2014.119] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/06/2014] [Indexed: 11/09/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) has been implicated in neuroprotection against ischemic brain injury, but the mechanism underlying its protective effect remains largely unknown. To further examine the protective effect of NAMPT against ischemic stroke and its potential mechanism of action, we generated a novel neuron-specific NAMPT transgenic mouse line. Transgenic mice and wild-type littermates were subjected to transient occlusion of the middle cerebral artery (MCAO) for 60 minutes. Neuron-specific NAMPT overexpression significantly reduced infarct volume by 65% (P=0.018) and improved long-term neurologic outcomes (P≤0.05) compared with littermates. Interestingly, neuronal overexpression of NAMPT increased the area of myelinated fibers in the striatum and corpus callosum, indicating that NAMPT protects against white matter injury. The mechanism of protection appeared to be through extracellular release of NAMPT. First, NAMPT was secreted into the extracellular medium by primary cortical neurons exposed to ischemia-like oxygen-glucose deprivation (OGD) in vitro. Second, conditioned medium from NAMPT-overexpressing neurons exposed to OGD protected cultured oligodendrocytes from OGD. Third, the protective effects of conditioned medium were abolished by antibody-mediated NAMPT depletion, strongly suggesting that the protective effect is mediated by the extracellular NAMPT released into in the medium. These data suggest a novel neuroprotective role for secreted NAMPT in the protection of white matter after ischemic injury.
Collapse
Affiliation(s)
- Zheng Jing
- 1] Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA [2] Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Juan Xing
- 1] Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA [2] Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xinzhi Chen
- 1] Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA [2] Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ruth A Stetler
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhongfang Weng
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu Gan
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Feng Zhang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jun Chen
- 1] Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA [2] Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Guodong Cao
- 1] Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA [2] Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
232
|
Yao L, Phan F, Li Y. Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro. Stem Cell Res Ther 2014; 4:109. [PMID: 24018105 PMCID: PMC3854863 DOI: 10.1186/scrt320] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 01/14/2023] Open
Abstract
Introduction Microspheres fabricated from natural materials serve as a promising biodegradable and biocompatible carrier in a small volume for efficient cell delivery to the lesion of the injured neural tissue to generate biological functions. As the major component of extracellular matrix and due to its natural abundance within the body, collagen may be fabricated into microspheres and improve the ability of pre-seeded cells on the microspheres to encounter the hostile micro-environment in the lesion. Methods In this study, collagen microspheres were fabricated using the water-in-oil emulsion technique and cross-linked with 1-ethyl-3-(3-dimethylaminopropryl) carbodiimide. Oligodendrocyte progenitor cells isolated from postnatal day P1 to 2 rats were cultured and differentiated on the microspheres. The microspheres carrying the oligodendrocyte progenitor cells were co-cultured with dorsal root ganglions from 15-day-old rat embryos. The myelination formation was studied for the co-culture of oligodendrocyte progenitor cells and dorsal root ganglions. Results We showed that the viability of oligodendrocyte progenitor cells, B104 cells and PC12 cells grown on microspheres was not significantly different with those in cell culture plates. Oligodendrocyte progenitor cells differentiated into oligodendrocytes on collagen microspheres. The oligodendrocytes grown on microspheres extended processes that wrapped the axons of dorsal root ganglion neurons and the formation of myelin sheath was observed in the co-culture. Conclusions This study demonstrates the feasibility of collagen microspheres in further applications for the delivery of neural progenitor cells for neural regeneration.
Collapse
|
233
|
Namekata K, Kimura A, Harada C, Yoshida H, Matsumoto Y, Harada T. Dock3 protects myelin in the cuprizone model for demyelination. Cell Death Dis 2014; 5:e1395. [PMID: 25165881 PMCID: PMC4454328 DOI: 10.1038/cddis.2014.357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 12/18/2022]
Abstract
Dedicator of cytokinesis 3 (Dock3) belongs to an atypical family of the guanine nucleotide exchange factors. It is predominantly expressed in the neural tissues and causes cellular morphological changes by activating the small GTPase Rac1. We previously reported that Dock3 overexpression protects retinal ganglion cells from excitotoxic cell death. Oligodendrocytes are the myelinating cells of axons in the central nervous system and these cells are damaged in demyelinating disorders including multiple sclerosis (MS) and optic neuritis. In this study, we examined if Dock3 is expressed in oligodendrocytes and if increasing Dock3 signals can suppress demyelination in a cuprizone-induced demyelination model, an animal model of MS. We demonstrate that Dock3 is expressed in oligodendrocytes and Dock3 overexpression protects myelin in the corpus callosum following cuprizone treatment. Furthermore, we show that cuprizone demyelinates optic nerves and the extent of demyelination is ameliorated in mice overexpressing Dock3. Cuprizone treatment impairs visual function, which was demonstrated by multifocal electroretinograms, an established non-invasive method, and Dock3 overexpression prevented this effect. In mice overexpressing Dock3, Erk activation is increased, suggesting this may at least partly explain the observed protective effects. Our findings suggest that Dock3 may be a therapeutic target for demyelinating disorders including optic neuritis.
Collapse
Affiliation(s)
- K Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - A Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - C Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - H Yoshida
- Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Y Matsumoto
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - T Harada
- 1] Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan [2] Department of Neuro-ophthalmology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
234
|
P2Y(12) receptor on the verge of a neuroinflammatory breakdown. Mediators Inflamm 2014; 2014:975849. [PMID: 25180027 PMCID: PMC4142314 DOI: 10.1155/2014/975849] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022] Open
Abstract
In the CNS, neuroinflammation occurring during pathologies as amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) is the consequence of an intricate interplay orchestrated by various cell phenotypes. Among the molecular cues having a role in this process, extracellular nucleotides are responsible for intercellular communication and propagation of inflammatory stimuli. This occurs by binding to several receptor subtypes, defined P2X/P2Y, which are widespread in different tissues and simultaneously localized on multiple cells. For instance, the metabotropic P2Y12 subtype is found in the CNS on microglia, affecting activation and chemotaxis, on oligodendrocytes, possessing a hypothesized role in myelination, and on astrocytes. By comparative analysis, we have established here that P2Y12 receptor immunolabelled by antibodies against C-terminus or second intracellular loop, is, respectively, distributed and modulated under neuroinflammatory conditions on ramified microglia or myelinated fibers, in primary organotypic cerebellar cultures, tissue slices from rat striatum and cerebellum, spinal cord sections from symptomatic/end stage SOD1-G93A ALS mice, and finally autoptic cortical tissue from progressive MS donors. We suggest that modulation of P2Y12 expression might play a dual role as analytic marker of branched/surveillant microglia and demyelinating lesions, thus potentially acquiring a predictive value under neuroinflammatory conditions as those found in ALS and MS.
Collapse
|
235
|
Sun L, Liu S, Sun Q, Li Z, Xu F, Hou C, Harada T, Chu M, Xu K, Feng X, Duan Y, Zhang Y, Wu S. Inhibition of TROY promotes OPC differentiation and increases therapeutic efficacy of OPC graft for spinal cord injury. Stem Cells Dev 2014; 23:2104-18. [PMID: 24749558 DOI: 10.1089/scd.2013.0563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endogenous or graft-derived oligodendrocytes promote myelination and aid in the recovery from central nervous system (CNS) injury. Regulatory mechanisms underlying neural myelination and remyelination in response to injury, including spinal cord injury (SCI), are unclear. In the present study, we demonstrated that TROY serves as an important negative regulator of oligodendrocyte development and that TROY inhibition augments the repair potential of oligodendrocyte precursor cell (OPC) graft for SCI. TROY expression was detected by reverse transcriptase-polymerase chain reaction in OPCs as well as in differentiated premature and mature oligodendrocytes of postnatal mice. Pharmacological inhibition or RNAi-induced knockdown of TROY promotes OPC differentiation, whereas overexpression of TROY dampens oligodendrocyte maturation. Further, treatment of cocultures of DRG neurons and OPCs with TROY inhibitors promotes myelination and myelin-sheath-like structures. Mechanically, protein kinase C (PKC) signaling is involved in the regulation of the inhibitory effects of TROY. Moreover, in situ transplantation of OPCs with TROY knockdown leads to notable remyelination and neurological recovery in rats with SCI. Our results indicate that TROY negatively modulates remyelination in the CNS, and thus may be a suitable target for improving the therapeutic efficacy of cell transplantation for CNS injury.
Collapse
Affiliation(s)
- Liang Sun
- 1 Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University , Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Oliver-De La Cruz J, Carrión-Navarro J, García-Romero N, Gutiérrez-Martín A, Lázaro-Ibáñez E, Escobedo-Lucea C, Perona R, Belda-Iniesta C, Ayuso-Sacido A. SOX2+ cell population from normal human brain white matter is able to generate mature oligodendrocytes. PLoS One 2014; 9:e99253. [PMID: 24901457 PMCID: PMC4047120 DOI: 10.1371/journal.pone.0099253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/13/2014] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES A number of neurodegenerative diseases progress with a loss of myelin, which makes them candidate diseases for the development of cell-replacement therapies based on mobilisation or isolation of the endogenous neural/glial progenitor cells, in vitro expansion, and further implantation. Cells expressing A2B5 or PDGFRA/CNP have been isolated within the pool of glial progenitor cells in the subcortical white matter of the normal adult human brain, all of which demonstrate glial progenitor features. However, the heterogeneity and differentiation potential of this pool of cells is not yet well established. METHODS We used diffusion tensor images, histopathology, and immunostaining analysis to demonstrate normal cytoarchitecture and the absence of abnormalities in human temporal lobe samples from patients with mesial temporal sclerosis. These samples were used to isolate and enrich glial progenitor cells in vitro, and later to detect such cells in vivo. RESULTS We have identified a subpopulation of SOX2+ cells, most of them co-localising with OLIG2, in the white matter of the normal adult human brain in vivo. These cells can be isolated and enriched in vitro, where they proliferate and generate immature (O4+) and mature (MBP+) oligodendrocytes and, to a lesser extent, astrocytes (GFAP+). CONCLUSION Our results demonstrate the existence of a new glial progenitor cell subpopulation that expresses SOX2 in the white matter of the normal adult human brain. These cells might be of use for tissue regeneration procedures.
Collapse
Affiliation(s)
- Jorge Oliver-De La Cruz
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
| | - Josefa Carrión-Navarro
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
| | - Noemí García-Romero
- Nanomedicine Laboratory, Instituto Madrileño de Estudios Avanzados IMDEA nanoscience, Madrid, Spain
| | | | - Elisa Lázaro-Ibáñez
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
- Division of Biopharmaceuticals and Pharmacokinetics, University of Helsinki, Helsinki, Finland
| | - Carmen Escobedo-Lucea
- Division of Biopharmaceuticals and Pharmacokinetics, University of Helsinki, Helsinki, Finland
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain
| | - Cristobal Belda-Iniesta
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
- Nanomedicine Laboratory, Instituto Madrileño de Estudios Avanzados IMDEA nanoscience, Madrid, Spain
| | - Angel Ayuso-Sacido
- Centro Integral Oncológico Clara Campal (CIOCC) and Instituto de Medicina Molecular Aplicada (IMMA), Hospital de Madrid Foundation, Madrid, Spain
- Division of Biopharmaceuticals and Pharmacokinetics, University of Helsinki, Helsinki, Finland
- Nanomedicine Laboratory, Instituto Madrileño de Estudios Avanzados IMDEA nanoscience, Madrid, Spain
- * E-mail:
| |
Collapse
|
237
|
Santra M, Zhang ZG, Yang J, Santra S, Santra S, Chopp M, Morris DC. Thymosin β4 up-regulation of microRNA-146a promotes oligodendrocyte differentiation and suppression of the Toll-like proinflammatory pathway. J Biol Chem 2014; 289:19508-18. [PMID: 24828499 DOI: 10.1074/jbc.m113.529966] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thymosin β4 (Tβ4), a G-actin-sequestering peptide, improves neurological outcome in rat models of neurological injury. Tissue inflammation results from neurological injury, and regulation of the inflammatory response is vital for neurological recovery. The innate immune response system, which includes the Toll-like receptor (TLR) proinflammatory signaling pathway, regulates tissue injury. We hypothesized that Tβ4 regulates the TLR proinflammatory signaling pathway. Because oligodendrogenesis plays an important role in neurological recovery, we employed an in vitro primary rat embryonic cell model of oligodendrocyte progenitor cells (OPCs) and a mouse N20.1 OPC cell line to measure the effects of Tβ4 on the TLR pathway. Cells were grown in the presence of Tβ4, ranging from 25 to 100 ng/ml (RegeneRx Biopharmaceuticals Inc., Rockville, MD), for 4 days. Quantitative real-time PCR data demonstrated that Tβ4 treatment increased expression of microRNA-146a (miR-146a), a negative regulator the TLR signaling pathway, in these two cell models. Western blot analysis showed that Tβ4 treatment suppressed expression of IL-1 receptor-associated kinase 1 (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), two proinflammatory cytokines of the TLR signaling pathway. Transfection of miR-146a into both primary rat embryonic OPCs and mouse N20.1 OPCs treated with Tβ4 demonstrated an amplification of myelin basic protein (MBP) expression and differentiation of OPC into mature MBP-expressing oligodendrocytes. Transfection of anti-miR-146a nucleotides reversed the inhibitory effect of Tβ4 on IRAK1 and TRAF6 and decreased expression of MBP. These data suggest that Tβ4 suppresses the TLR proinflammatory pathway by up-regulating miR-146a.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Chopp
- From the Departments of Neurology, the Department of Physics, Oakland University, Rochester, Michigan 48309
| | - Daniel C Morris
- Emergency Medicine, Henry Ford Health Systems, Detroit, Michigan 48202 and
| |
Collapse
|
238
|
Barateiro A, Fernandes A. Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1917-29. [PMID: 24768715 DOI: 10.1016/j.bbamcr.2014.04.018] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 03/25/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
Oligodendrocytes are neuroglial cells responsible, within the central nervous system, for myelin sheath formation that provides an electric insulation of axons and accelerate the transmission of electrical signals. In order to be able to produce myelin, oligodendrocytes progress through a series of differentiation steps from oligodendrocyte precursor cells to mature oligodendrocytes (migration, increase in morphologic complexity and expression pattern of specific markers), which are modulated by cross talk with other nerve cells. If during the developmental stage any of these mechanisms is affected by toxic or external stimuli it may result into impaired myelination leading to neurological deficits. Such being the case, several approaches have been developed to evaluate how oligodendrocyte development and myelination may be impaired. The present review aims to summarize changes that oligodendrocytes suffer from precursor cells to mature ones, and to describe and discuss the different in vitro models used to evaluate not only oligodendrocyte development (proliferation, migration, differentiation and ability to myelinate), but also their interaction with neurons and other glial cells. First we discuss the temporal oligodendrocyte lineage progression, highlighting the differences between human and rodent, usually used as tissue supply for in vitro cultures. Second we describe how to perform and characterize the different in vitro cultures, as well as the methodologies to evaluate oligodendrocyte functionality in each culture system, discussing their advantages and disadvantages. Finally, we briefly discuss the current status of in vivo models for oligodendrocyte development and myelination.
Collapse
Affiliation(s)
- Andreia Barateiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| |
Collapse
|
239
|
Bonora M, De Marchi E, Patergnani S, Suski JM, Celsi F, Bononi A, Giorgi C, Marchi S, Rimessi A, Duszyński J, Pozzan T, Wieckowski MR, Pinton P. Tumor necrosis factor-α impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ 2014; 21:1198-208. [PMID: 24658399 DOI: 10.1038/cdd.2014.35] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial defects, affecting parameters such as mitochondrial number and shape, levels of respiratory chain complex components and markers of oxidative stress, have been associated with the appearance and progression of multiple sclerosis. Nevertheless, mitochondrial physiology has never been monitored during oligodendrocyte progenitor cell (OPC) differentiation, especially in OPCs challenged with proinflammatory cytokines. Here, we show that tumor necrosis factor alpha (TNF-α) inhibits OPC differentiation, accompanied by altered mitochondrial calcium uptake, mitochondrial membrane potential, and respiratory complex I activity as well as increased reactive oxygen species production. Treatment with a mitochondrial uncoupler (FCCP) to mimic mitochondrial impairment also causes cells to accumulate at the progenitor stage. Interestingly, AMP-activated protein kinase (AMPK) levels increase during TNF-α exposure and inhibit OPC differentiation. Overall, our data indicate that TNF-α induces metabolic changes, driven by mitochondrial impairment and AMPK activation, leading to the inhibition of OPC differentiation.
Collapse
Affiliation(s)
- M Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - E De Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - J M Suski
- 1] Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy [2] Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - F Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - A Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - C Giorgi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - S Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - A Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - J Duszyński
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - T Pozzan
- 1] Istituto Veneto di Medicina Molecolare, Fondazione per la Ricerca Biomedica Avanzata, Padua, Italy [2] Dipartimento di Scienze Biomediche, Università di Padova, Padua, Italy [3] Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Sezione di Padova, Padua, Italy
| | - M R Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - P Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
240
|
Deng Y, Kim B, He X, Kim S, Lu C, Wang H, Cho SG, Hou Y, Li J, Zhao X, Richard Lu Q. Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP. Genesis 2014; 52:341-9. [PMID: 24851283 DOI: 10.1002/dvg.22751] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yaqi Deng
- Department of Pediatrics; West China Second Hospital, State Key Laboratory of Biotherapy, College of Pre-clinical and Forensic Medicine, Sichuan University; Chengdu People's Republic of China
- Department of Pediatrics; Division of Experimental Hematology & Cancer Biology; Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | - BongWoo Kim
- Department of Animal Biotechnology; Konkuk University; Seoul Republic of Korea
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas
| | - Xuelian He
- Department of Pediatrics; West China Second Hospital, State Key Laboratory of Biotherapy, College of Pre-clinical and Forensic Medicine, Sichuan University; Chengdu People's Republic of China
- Department of Pediatrics; Division of Experimental Hematology & Cancer Biology; Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | - Sunja Kim
- Department of Veterinary Integrative Biosciences; Texas A&M University; College Station Texas
| | - Changqing Lu
- Department of Pediatrics; West China Second Hospital, State Key Laboratory of Biotherapy, College of Pre-clinical and Forensic Medicine, Sichuan University; Chengdu People's Republic of China
| | - Haibo Wang
- Department of Pediatrics; Division of Experimental Hematology & Cancer Biology; Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | - Ssang-Goo Cho
- Department of Animal Biotechnology; Konkuk University; Seoul Republic of Korea
| | - Yiping Hou
- Department of Pediatrics; West China Second Hospital, State Key Laboratory of Biotherapy, College of Pre-clinical and Forensic Medicine, Sichuan University; Chengdu People's Republic of China
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences; Texas A&M University; College Station Texas
| | - Xianghui Zhao
- Institute of Neuroscience; Fourth Military Medical University; Xi'an People's Republic of China
| | - Q. Richard Lu
- Department of Pediatrics; Division of Experimental Hematology & Cancer Biology; Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas
| |
Collapse
|
241
|
Hattori T, Shimizu S, Koyama Y, Emoto H, Matsumoto Y, Kumamoto N, Yamada K, Takamura H, Matsuzaki S, Katayama T, Tohyama M, Ito A. DISC1 (disrupted-in-schizophrenia-1) regulates differentiation of oligodendrocytes. PLoS One 2014; 9:e88506. [PMID: 24516667 PMCID: PMC3917910 DOI: 10.1371/journal.pone.0088506] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 01/08/2014] [Indexed: 02/05/2023] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a gene disrupted by a translocation, t(1;11) (q42.1;q14.3), that segregates with major psychiatric disorders, including schizophrenia, recurrent major depression and bipolar affective disorder, in a Scottish family. Here we report that mammalian DISC1 endogenously expressed in oligodendroglial lineage cells negatively regulates differentiation of oligodendrocyte precursor cells into oligodendrocytes. DISC1 expression was detected in oligodendrocytes of the mouse corpus callosum at P14 and P70. DISC1 mRNA was expressed in primary cultured rat cortical oligodendrocyte precursor cells and decreased when oligodendrocyte precursor cells were induced to differentiate by PDGF deprivation. Immunocytochemical analysis showed that overexpressed DISC1 was localized in the cell bodies and processes of oligodendrocyte precursor cells and oligodendrocytes. We show that expression of the myelin related markers, CNPase and MBP, as well as the number of cells with a matured oligodendrocyte morphology, were decreased following full length DISC1 overexpression. Conversely, both expression of CNPase and the number of oligodendrocytes with a mature morphology were increased following knockdown of endogenous DISC1 by RNA interference. Overexpression of a truncated form of DISC1 also resulted in an increase in expression of myelin related proteins and the number of mature oligodendrocytes, potentially acting via a dominant negative mechanism. We also identified involvement of Sox10 and Nkx2.2 in the DISC1 regulatory pathway of oligodendrocyte differentiation, both well-known transcription factors involved in the regulation of myelin genes.
Collapse
Affiliation(s)
- Tsuyoshi Hattori
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Shoko Shimizu
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Sayama, Osaka, Japan
| | - Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hisayo Emoto
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co, Ltd, Suita, Osaka, Japan
| | - Yuji Matsumoto
- Pharmacology Research Laboratories, Dainippon Sumitomo Pharma Co, Ltd, Suita, Osaka, Japan
| | - Natsuko Kumamoto
- Department of Neurobiology and Anatomy, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kohei Yamada
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Hironori Takamura
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Shinsuke Matsuzaki
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Taiichi Katayama
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
| | - Masaya Tohyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Child Development & Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University and Hamamatsu University School of Medicine, Suita, Osaka, Japan
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Sayama, Osaka, Japan
| | - Akira Ito
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
242
|
Didar TF, Bowey K, Almazan G, Tabrizian M. A miniaturized multipurpose platform for rapid, label-free, and simultaneous separation, patterning, and in vitro culture of primary and rare cells. Adv Healthc Mater 2014; 3:253-60. [PMID: 23949952 DOI: 10.1002/adhm.201300099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/10/2013] [Indexed: 11/09/2022]
Abstract
Given that current cell isolation techniques are expensive, time consuming, yield low isolation purities, and/or alter target cell properties, a versatile, cost effective, and easy-to-operate microchip with the capability to simultaneously separate, capture, pattern, and culture rare and primary cells in vitro is developed. The platform is based on target cell adhesion onto the micro-fabricated interfaces produced by microcontact printing of cell-specific antibodies. Results show over 95% separation efficiency in less than 10 min for the separation of oligodendrocyte progenitor cells (OPCs) and cardiomyocytes from rat brain and heart mixtures, respectively. Target cell attachment and single cell spreading can be precisely controlled on the basis of the designed patterns. Both cell types can maintain their biofunctionality. Indeed, isolated OPCs can proliferate and differentiate into mature oligodendrocytes, while isolated cardiomyocytes retain their contractile properties on the separation platform. Successful separation of two dissimilar cell types present in varying concentrations in their respective cell mixtures and the demonstration of their integrity after separation open new avenues for time and cost-effective sorting of various cell types using the developed miniaturized platform.
Collapse
Affiliation(s)
- Tohid Fatanat Didar
- Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4, Canada
| | | | | | | |
Collapse
|
243
|
Lee H, Lee JK, Bae YC, Yang SH, Okino N, Schuchman EH, Yamashita T, Bae JS, Jin HK. Inhibition of GM3 synthase attenuates neuropathology of Niemann-Pick disease Type C. by affecting sphingolipid metabolism. Mol Cells 2014; 37:161-71. [PMID: 24599001 PMCID: PMC3935629 DOI: 10.14348/molcells.2014.2347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/29/2022] Open
Abstract
In several lysosomal storage disorders, including Niemann-Pick disease Type C (NP-C), sphingolipids, including glycosphingolipids, particularly gangliosides, are the predominant storage materials in the brain, raising the possibility that accumulation of these lipids may be involved in the NP-C neurodegenerative process. However, correlation of these accumulations and NP-C neuropathology has not been fully characterized. Here we derived NP-C mice with complete and partial deletion of the Siat9 (encoding GM3 synthase) gene in order to investigate the role of ganglioside in NP-C pathogenesis. According to our results, NPC mice with homozygotic deletion of GM3 synthase exhibited an enhanced neuropathological phenotype and died significantly earlier than NP-C mice. Notably, in contrast to complete depletion, NP-C mice with partial deletion of the GM3 synthase gene showed ameliorated NP-C neuropathology, including motor disability, demyelination, and abnormal accumulation of cholesterol and sphingolipids. These findings indicate the crucial role of GM3 synthesis in the NP-C phenotype and progression of CNS pathologic abnormality, suggesting that well-controlled inhibition of GM3 synthesis could be used as a therapeutic strategy.
Collapse
Affiliation(s)
- Hyun Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| | - Jong Kil Lee
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Physiology, BK21 PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-842,
Korea
| | - Yong Chul Bae
- Department of Oral Anatomy and Neurobiology, Kyungpook National University, Daegu 700-412,
Korea
| | - Song Hyun Yang
- Institute of Metabolism, Green Cross Reference Laboratory, Yongin 446-850,
Korea
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581,
Japan
| | - Edward H. Schuchman
- Departments of Genetics and Genomic Sciences & Gene and Cell Therapy, Mount Sinai School of Medicine, New York,
USA
| | - Tadashi Yamashita
- World Class University Program, Kyungpook National University, Daegu 700-842,
Korea
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University,
Japan
| | - Jae-sung Bae
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Physiology, BK21 PLUS KNU Biomedical Convergence Program for Creative Talent, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-842,
Korea
| | - Hee Kyung Jin
- Stem Cell Neuroplasticity Research Group, Kyungpook National University, Daegu 702-701,
Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
244
|
Abstract
Microglial cells have important roles in maintaining brain homeostasis, and they are implicated in multiple brain diseases. There is currently interest in investigating microglial migration that results in cell accumulation at focal sites of injury. Here we describe a protocol for rapidly triggering and monitoring microglial migration by using a micropipette assay. This protocol is an adaptation of the axon turning assay using microglial cells. Chemoattractants released from the micropipette tip produce a chemotactic gradient that induces robust microglial migration. In combination with microscopic imaging, this assay allows simultaneous recording of cell movement and subcellular compartment trafficking, along with quantitative analysis. The actual handling time for the assay takes ∼2-3 h in total. The protocol is simple, inexpensive and convenient to set up, and it can be adopted to examine cell migration in multiple cell types, including cancer cells with a wide range of chemical signals.
Collapse
|
245
|
Shimizu S, Koyama Y, Hattori T, Tachibana T, Yoshimi T, Emoto H, Matsumoto Y, Miyata S, Katayama T, Ito A, Tohyama M. DBZ, a CNS-specific DISC1 binding protein, positively regulates oligodendrocyte differentiation. Glia 2014; 62:709-24. [PMID: 24481677 DOI: 10.1002/glia.22636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/21/2013] [Accepted: 01/13/2014] [Indexed: 12/19/2022]
Abstract
Recent studies have shown changes in myelin genes and alterations in white matter structure in a wide range of psychiatric disorders. Here we report that DBZ, a central nervous system (CNS)-specific member of the DISC1 interactome, positively regulates the oligodendrocyte (OL) differentiation in vivo and in vitro. In mouse corpus callosum (CC), DBZ mRNA is expressed in OL lineage cells and expression of DBZ protein peaked before MBP expression. In the CC of DBZ-KO mice, we observed delayed myelination during the early postnatal period. Although the myelination delay was mostly recovered by adulthood, OLs with immature structural features were more abundant in adult DBZ-KO mice than in control mice. DBZ was also transiently upregulated during rat OL differentiation in vitro before myelin marker expression. DBZ knockdown by RNA interference resulted in a decreased expression of myelin-related markers and a low number of cells with mature characteristics, but with no effect on the proliferation of oligodendrocyte precursor cells. We also show that the expression levels of transcription factors having a negative-regulatory role in OL differentiation were upregulated when endogenous DBZ was knocked down. These results strongly indicate that OL differentiation in rodents is regulated by DBZ.
Collapse
Affiliation(s)
- Shoko Shimizu
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Kleinsimlinghaus K, Marx R, Serdar M, Bendix I, Dietzel ID. Strategies for repair of white matter: influence of osmolarity and microglia on proliferation and apoptosis of oligodendrocyte precursor cells in different basal culture media. Front Cell Neurosci 2013; 7:277. [PMID: 24421756 PMCID: PMC3872727 DOI: 10.3389/fncel.2013.00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022] Open
Abstract
The aim of the present study has been to obtain high yields of oligodendrocyte precursor cells (OPCs) in culture. This is a first step in facilitation of myelin repair. We show that, in addition to factors, known to promote proliferation, such as basic fibroblast growth factor (FGF-2) and platelet derived growth factor (PDGF) the choice of the basal medium exerts a significant influence on the yield of OPCs in cultures from newborn rats. During a culture period of up to 9 days we observed larger numbers of surviving cells in Dulbecco's Modified Eagle Medium (DMEM), and Roswell Park Memorial Institute Medium (RPMI) compared with Neurobasal Medium (NB). A larger number of A2B5-positive OPCs was found after 6 days in RPMI based media compared with NB. The percentage of bromodeoxyuridine (BrdU)-positive cells was largest in cultures maintained in DMEM and RPMI. The percentage of caspase-3 positive cells was largest in NB, suggesting that this medium inhibits OPC proliferation and favors apoptosis. A difference between NB and DMEM as well as RPMI is the reduced Na+-content. The addition of equiosmolar supplements of mannitol or NaCl to NB medium rescued the BrdU-incorporation rate. This suggested that the osmolarity influences the proliferation of OPCs. Plating density as well as residual microglia influence OPC survival, BrdU incorporation, and caspase-3 expression. We found, that high density cultures secrete factors that inhibit BrdU incorporation whereas the presence of additional microglia induces an increase in caspase-3 positive cells, indicative of enhanced apoptosis. An enhanced number of microglia could thus also explain the stronger inhibition of OPC differentiation observed in high density cultures in response to treatment with the cytokines TNF-α and IFN-γ. We conclude that a maximal yield of OPCs is obtained in a medium of an osmolarity higher than 280 mOsm plated at a relatively low density in the presence of as little microglia as technically achievable.
Collapse
Affiliation(s)
| | - Romy Marx
- Department of Biochemistry II, Ruhr University Bochum Bochum, Germany
| | - Meray Serdar
- Department of Pediatrics I, Neonatology, University Hospital Essen Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology, University Hospital Essen Essen, Germany
| | - Irmgard D Dietzel
- Department of Biochemistry II, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
247
|
Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury. J Neuroinflammation 2013; 10:155. [PMID: 24344836 PMCID: PMC3878417 DOI: 10.1186/1742-2094-10-155] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/09/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Brain injury results in an increase in the activity of the reactive oxygen species generating NADPH oxidase (NOX) enzymes. Preliminary studies have shown that NOX2, NOX3, and NOX4 are the most prominently expressed NOX isotypes in the brain. However, the cellular and temporal expression profile of these isotypes in the injured and non-injured brain is currently unclear. METHODS Double immunofluorescence for NOX isotypes and brain cell types was performed at acute (24 hours), sub-acute (7 days), and chronic (28 days) time points after controlled cortical impact-induced brain injury or sham-injury in rats. RESULTS NOX2, NOX3, and NOX4 isotypes were found to be expressed in neurons, astrocytes, and microglia, and this expression was dependent on both cellular source and post-injury time. NOX4 was found in all cell types assessed, while NOX3 was positively identified in neurons only, and NOX2 was identified in microglia and neurons. NOX2 was the most responsive to injury, increasing primarily in microglia in response to injury. Quantitation of this isotype showed a significant increase in NOX2 expression at 24 hours, with reduced expression at 7 days and 28 days post-injury, although expression remained above sham levels at later time points. Cellular confirmation using purified primary or cell line culture demonstrated similar patterns in microglia, astrocytes, and neurons. Further, inhibition of NOX, and more specifically NOX2, reduced pro-inflammatory activity in microglia, demonstrating that NOX is not only up-regulated after stimulation, but may also play a significant role in post-injury neuroinflammation. CONCLUSIONS This study illustrates the expression profiles of NOX isotypes in the brain after injury, and demonstrates that NOX2, and to a lesser extent, NOX4, may be responsible for the majority of oxidative stress observed acutely after traumatic brain injury. These data may provide insight into the design of future therapeutic approaches.
Collapse
|
248
|
Li Y, Ceylan M, Shrestha B, Wang H, Lu QR, Asmatulu R, Yao L. Nanofibers support oligodendrocyte precursor cell growth and function as a neuron-free model for myelination study. Biomacromolecules 2013; 15:319-26. [PMID: 24304204 DOI: 10.1021/bm401558c] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanofiber-based scaffolds may simultaneously provide immediate contact guidance for neural regeneration and act as a vehicle for therapeutic cell delivery to enhance axonal myelination. Additionally, nanofibers can serve as a neuron-free model to study myelination of oligodendrocytes. In this study, we fabricated nanofibers using a polycaprolactone and gelatin copolymer. The ratio of the gelatin component in the fibers was confirmed by energy dispersive X-ray spectroscopy. The addition of gelatin to the polycaprolactone (PCL) for nanofiber fabrication decreased the contact angle of the electrospun fibers. We showed that both polycaprolactone nanofibers as well as polycaprolactone and gelatin copolymer nanofibers can support oligodendrocyte precursor cell (OPC) growth and differentiation. OPCs maintained their phenotype and viability on nanofibers and were induced to differentiate into oligodendrocytes. The differentiated oligodendrocytes extend their processes along the nanofibers and ensheathed the nanofibers. Oligodendrocytes formed significantly more myelinated segments on the PCL and gelatin copolymer nanofibers than those on PCL nanofibers alone.
Collapse
Affiliation(s)
- Yongchao Li
- Departments of †Biological Sciences and §Mechanical Engineering, Wichita State University , Wichita, Kansas, United States
| | | | | | | | | | | | | |
Collapse
|
249
|
Seki Y, Kato TA, Monji A, Mizoguchi Y, Horikawa H, Sato-Kasai M, Yoshiga D, Kanba S. Pretreatment of aripiprazole and minocycline, but not haloperidol, suppresses oligodendrocyte damage from interferon-γ-stimulated microglia in co-culture model. Schizophr Res 2013; 151:20-8. [PMID: 24100191 DOI: 10.1016/j.schres.2013.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 09/04/2013] [Indexed: 12/17/2022]
Abstract
Recent imaging studies have indicated that the pathophysiology of schizophrenia is closely related to white matter abnormalities and microglial activation. Additionally, recent clinical trials have suggested that atypical antipsychotics may have brain protective properties and that minocycline, an antibiotic with inhibitory effects on microglial activation, improves symptoms of schizophrenia. We have reported that not only atypical antipsychotics with dopamine D2 receptor (D2R) antagonism but also aripiprazole, a unique antipsychotic drug with D2R partial agonism, inhibit microglial activation in vitro. Thus, atypical antipsychotics may exert a beneficial influence on both microglia and oligodendrocytes, while the underlying mechanisms have not been clarified. Here, we investigated whether antipsychotics suppress oligodendrocyte damage by inhibiting microglial activation utilizing a co-culture model with microglia and oligodendrocytes. Pretreatment of aripiprazole and minocycline suppressed apoptosis of oligodendrocytes in the co-culture model with interferon-γ (IFN-γ)-activated microglia, while haloperidol, a traditional antipsychotic drug, did not. Aripiprazole and minocycline inhibited the production of tumor necrosis factor-alpha (TNF-α) from IFN-γ-activated microglia. Moreover, aripiprazole and minocycline attenuated the phosphorylation of signal transducer and activator of transcription 1 (STAT1) in microglia. Overall, our results suggest that aripiprazole and minocycline may have antipsychotic effects through reducing oligodendrocyte damage caused by microglial activation. These results put forward a novel therapeutic hypothesis in schizophrenia research. Future in vivo studies to confirm the present results should be performed.
Collapse
Affiliation(s)
- Yoshihiro Seki
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Medina-Rodríguez EM, Arenzana FJ, Bribián A, de Castro F. Protocol to isolate a large amount of functional oligodendrocyte precursor cells from the cerebral cortex of adult mice and humans. PLoS One 2013; 8:e81620. [PMID: 24303061 PMCID: PMC3841116 DOI: 10.1371/journal.pone.0081620] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/24/2013] [Indexed: 01/09/2023] Open
Abstract
During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.
Collapse
Affiliation(s)
| | | | - Ana Bribián
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Toledo, Spain
- * E-mail:
| |
Collapse
|