201
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
202
|
Wang G, Jiang X, Torabian P, Yang Z. Investigating autophagy and intricate cellular mechanisms in hepatocellular carcinoma: Emphasis on cell death mechanism crosstalk. Cancer Lett 2024; 588:216744. [PMID: 38431037 DOI: 10.1016/j.canlet.2024.216744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a formidable global health challenge due to its prevalence, marked by high mortality and morbidity rates. This cancer type exhibits a multifaceted etiology, prominently linked to viral infections, non-alcoholic fatty liver disease, and genomic mutations. The inherent heterogeneity of HCC, coupled with its proclivity for developing drug resistance, presents formidable obstacles to effective therapeutic interventions. Autophagy, a fundamental catabolic process, plays a pivotal role in maintaining cellular homeostasis, responding to stressors such as nutrient deprivation. In the context of HCC, tumor cells exploit autophagy, either augmenting or impeding its activity, thereby influencing tumorigenesis. This comprehensive review underscores the dualistic role of autophagy in HCC, acting as both a pro-survival and pro-death mechanism, impacting the trajectory of tumorigenesis. The anti-carcinogenic potential of autophagy is evident in its ability to enhance apoptosis and ferroptosis in HCC cells. Pertinently, dysregulated autophagy fosters drug resistance in the carcinogenic context. Both genomic and epigenetic factors can regulate autophagy in HCC progression. Recognizing the paramount importance of autophagy in HCC progression, this review introduces pharmacological compounds capable of modulating autophagy-either inducing or inhibiting it, as promising avenues in HCC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Interventional, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110020, PR China
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
203
|
Liu J, Xie Y, Ma J, Chu H. New Ca 2+ based anticancer nanomaterials trigger multiple cell death targeting Ca 2+ homeostasis for cancer therapy. Chem Biol Interact 2024; 393:110948. [PMID: 38479714 DOI: 10.1016/j.cbi.2024.110948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Calcium ion (Ca2+) is a necessary element for human and Ca2+ homeostasis plays important roles in various cellular process and functions. Recent reaches have targeted on inducing Ca2+ overload (both intracellular and transcellular) for tumor therapy. With the development of nanotechnology, nanoplatform-mediated Ca2+ overload has been safe theranostic model for cancer therapy, and defined a special calcium overload-induced tumor cell death as "calcicoptosis". However, the underlying mechanism of calcicoptosis in cancer cells remains further identification. In this review, we summarized multiple cell death types due to Ca2+ overload that induced by novel anticancer nanomaterials in tumor cells, including apoptosis, autophagy, pyroptosis, and ferroptosis. We reviewed the roles of these anticancer nanomaterials on Ca2+ homeostasis, including transcellular Ca2+ influx and efflux, and intracellular Ca2+ change in the cytosolic and organelles, and connection of Ca2+ overload with other metal ions. This review provides the knowledge of these nano-anticancer materials-triggered calcicoptosis accompanied with multiple cell death by regulating Ca2+ homeostasis, which could not only enhance their efficiency and specificity, but also enlighten to design new cancer therapeutic strategies and biomedical applications.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Yimin Xie
- Department of Urology, Affiliated Hospital of Jiangsu University-Yixing Hospital, Yixing, Jiangsu, 214200, China
| | - Jun Ma
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China
| | - Hezhen Chu
- Department of Urology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, 214200, China.
| |
Collapse
|
204
|
KARIM SHAHID, ALGHANMI ALANOUDNAHER, JAMAL MAHA, ALKREATHY HUDA, JAMAL ALAM, ALKHATABI HINDA, BAZUHAIR MOHAMMED, AHMAD AFTAB. A comparative in vitro study on the effect of SGLT2 inhibitors on chemosensitivity to doxorubicin in MCF-7 breast cancer cells. Oncol Res 2024; 32:817-830. [PMID: 38686050 PMCID: PMC11055986 DOI: 10.32604/or.2024.048988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
Cancer frequently develops resistance to the majority of chemotherapy treatments. This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors, specifically Canagliflozin (CAN), Dapagliflozin (DAP), Empagliflozin (EMP), and Doxorubicin (DOX), using in vitro experimentation. The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin (DOX) in MCF-7 cells. Interestingly, it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth. Notably, when these medications were combined with DOX, there was a considerable inhibition of glucose consumption, as well as reductions in intracellular ATP and lactate levels. Moreover, this effect was found to be dependent on the dosages of the drugs. In addition to effectively inhibiting the cell cycle, the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression. This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications, namely CAN, DAP, and EMP, on the responsiveness to the anticancer properties of DOX. The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.
Collapse
Affiliation(s)
- SHAHID KARIM
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - ALANOUD NAHER ALGHANMI
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - MAHA JAMAL
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - HUDA ALKREATHY
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - ALAM JAMAL
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - HIND A. ALKHATABI
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21959, Saudi Arabia
| | - MOHAMMED BAZUHAIR
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - AFTAB AHMAD
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacovigilance and Medication Safety Unit, Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
205
|
Li XQ, Cheng XJ, Wu J, Wu KF, Liu T. Targeted inhibition of the PI3K/AKT/mTOR pathway by (+)-anthrabenzoxocinone induces cell cycle arrest, apoptosis, and autophagy in non-small cell lung cancer. Cell Mol Biol Lett 2024; 29:58. [PMID: 38649803 PMCID: PMC11036658 DOI: 10.1186/s11658-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), characterized by low survival rates and a high recurrence rate, is a major cause of cancer-related mortality. Aberrant activation of the PI3K/AKT/mTOR signaling pathway is a common driver of NSCLC. Within this study, the inhibitory activity of (+)-anthrabenzoxocinone ((+)-ABX), an oxygenated anthrabenzoxocinone compound derived from Streptomyces, against NSCLC is demonstrated for the first time both in vitro and in vivo. Mechanistically, it is confirmed that the PI3K/AKT/mTOR signaling pathway is targeted and suppressed by (+)-ABX, resulting in the induction of S and G2/M phase arrest, apoptosis, and autophagy in NSCLC cells. Additionally, the augmentation of intracellular ROS levels by (+)-ABX is revealed, further contributing to the inhibition of the signaling pathway and exerting inhibitory effects on tumor growth. The findings presented in this study suggest that (+)-ABX possesses the potential to serve as a lead compound for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiao-Qian Li
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Xiao-Ju Cheng
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Jie Wu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Kai-Feng Wu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China.
| | - Tie Liu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China.
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
206
|
Chen C, Liu J, Lin X, Xiang A, Ye Q, Guo J, Rui T, Xu J, Hu S. Crosstalk between cancer-associated fibroblasts and regulated cell death in tumors: insights into apoptosis, autophagy, ferroptosis, and pyroptosis. Cell Death Discov 2024; 10:189. [PMID: 38649701 PMCID: PMC11035635 DOI: 10.1038/s41420-024-01958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), the main stromal component of the tumor microenvironment (TME), play multifaceted roles in cancer progression through paracrine signaling, exosome transfer, and cell interactions. Attractively, recent evidence indicates that CAFs can modulate various forms of regulated cell death (RCD) in adjacent tumor cells, thus involving cancer proliferation, therapy resistance, and immune exclusion. Here, we present a brief introduction to CAFs and basic knowledge of RCD, including apoptosis, autophagy, ferroptosis, and pyroptosis. In addition, we further summarize the different types of RCD in tumors that are mediated by CAFs, as well as the effects of these modes of RCD on CAFs. This review will deepen our understanding of the interactions between CAFs and RCD and might offer novel therapeutic avenues for future cancer treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xia Lin
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Aizhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Qianwei Ye
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Tao Rui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Xu
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
207
|
Naldi L, Fibbi B, Anceschi C, Nardini P, Guasti D, Peri A, Marroncini G. Effects of Reduced Extracellular Sodium Concentrations on Cisplatin Treatment in Human Tumor Cells: The Role of Autophagy. Int J Mol Sci 2024; 25:4377. [PMID: 38673964 PMCID: PMC11050238 DOI: 10.3390/ijms25084377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Hyponatremia is the prevalent electrolyte imbalance in cancer patients, and it is associated with a worse outcome. Notably, emerging clinical evidence suggests that hyponatremia adversely influences the response to anticancer treatments. Therefore, this study aims to investigate how reduced extracellular [Na+] affects the responsiveness of different cancer cell lines (from human colon adenocarcinoma, neuroblastoma, and small cell lung cancer) to cisplatin and the underlying potential mechanisms. Cisplatin dose-response curves revealed higher IC50 in low [Na+] than normal [Na+]. Accordingly, cisplatin treatment was less effective in counteracting the proliferation and migration of tumor cells when cultured in low [Na+], as demonstrated by colony formation and invasion assays. In addition, the expression analysis of proteins involved in autophagosome-lysosome formation and the visualization of lysosomal areas by electron microscopy revealed that one of the main mechanisms involved in chemoresistance to cisplatin is the promotion of autophagy. In conclusion, our data first demonstrate that the antitumoral effect of cisplatin is markedly reduced in low [Na+] and that autophagy is an important mechanism of drug escape. This study indicates the role of hyponatremia in cisplatin chemoresistance and reinforces the recommendation to correct this electrolyte alteration in cancer patients.
Collapse
Affiliation(s)
- Laura Naldi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
| | - Benedetta Fibbi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
- Pituitary Diseases and Sodium Alterations Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Cecilia Anceschi
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
| | - Patrizia Nardini
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, 50134 Florence, Italy; (P.N.); (D.G.)
| | - Daniele Guasti
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, 50134 Florence, Italy; (P.N.); (D.G.)
| | - Alessandro Peri
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
- Pituitary Diseases and Sodium Alterations Unit, Careggi University Hospital, 50139 Florence, Italy
| | - Giada Marroncini
- Endocrinology, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, Careggi University Hospital, University of Florence, 50139 Florence, Italy; (L.N.); (C.A.); (A.P.); (G.M.)
| |
Collapse
|
208
|
Horváth L, Biri-Kovács B, Baranyai Z, Stipsicz B, Méhes E, Jezsó B, Krátký M, Vinšová J, Bősze S. New Salicylanilide Derivatives and Their Peptide Conjugates as Anticancer Compounds: Synthesis, Characterization, and In Vitro Effect on Glioblastoma. ACS OMEGA 2024; 9:16927-16948. [PMID: 38645331 PMCID: PMC11024950 DOI: 10.1021/acsomega.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
Collapse
Affiliation(s)
- Lilla Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Zsuzsa Baranyai
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Bence Stipsicz
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
- Institute
of Biology, Doctoral School of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Előd Méhes
- Institute
of Physics, Department of Biological Physics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Jezsó
- Research
Centre for Natural Sciences, Institute of
Enzymology, Budapest 1053, Hungary
- ELTE-MTA
“Momentum” Motor Enzymology Research Group, Department
of Biochemistry, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Martin Krátký
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| |
Collapse
|
209
|
Zhang W, Du D, Lu H, Zhang D, Liu L, Li J, Chen Z, Yu X, Ye M, Wang W, Chen L, Shao J. FAT10 mediates the sorafenib-resistance of hepatocellular carcinoma cells by stabilizing E3 ligase NEDD4 to enhance PTEN/AKT pathway-induced autophagy. Am J Cancer Res 2024; 14:1523-1544. [PMID: 38726263 PMCID: PMC11076247 DOI: 10.62347/epit4481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
Although sorafenib is the first-line therapeutic agent for advanced hepatocellular carcinoma (HCC), the development of drug resistance in HCC cells limits its clinical efficacy. However, the key factors involved in mediating the sorafenib resistance of HCC cells and the underlying mechanisms have not been elucidated. In this study, we generated sorafenib-resistant HCC cell lines, and our data demonstrate that HLA-F locus-adjacent transcript 10 (FAT10), a ubiquitin-like protein, is markedly upregulated in sorafenib-resistant HCC cells and that reducing the expression of FAT10 in sorafenib-resistant HCC cells increases sensitivity to sorafenib. Mechanistically, FAT10 stabilizes the expression of the PTEN-specific E3 ubiquitin ligase NEDD4 that causes downregulation of PTEN, thereby inducing AKT-mediated autophagy and promoting the resistance of HCC cells to sorafenib. Moreover, we screened the small molecule Compound 7695-0983, which increases the sensitivity of sorafenib-resistant HCC cells to sorafenib by inhibiting the expression of FAT10 to inhibit NEDD4-PTEN/AKT axis-mediated autophagy. Collectively, our preclinical findings identify FAT10 as a key factor in the sorafenib resistance of HCC cells and elucidate its underlying mechanism. This study provides new mechanistic insight for the exploitation of novel sorafenib-based tyrosine kinase inhibitor (TKI)-targeted drugs for treating advanced HCC.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Dongnian Du
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Dandan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Lingpeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Jiajuan Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Zehao Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Xuzhe Yu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Miao Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Wei Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Leifeng Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| | - Jianghua Shao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
- Liver Cancer Institute, Nanchang UniversityNanchang 330000, Jiangxi, China
- Jiangxi Province Clinical Research Center of General Surgery, The Second Affiliated Hospital of Nanchang UniversityNanchang 330000, Jiangxi, China
| |
Collapse
|
210
|
Wang PX, Mu XN, Huang SH, Hu K, Sun ZG. Cellular and molecular mechanisms of oroxylin A in cancer therapy: Recent advances. Eur J Pharmacol 2024; 969:176452. [PMID: 38417609 DOI: 10.1016/j.ejphar.2024.176452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Seeking an effective and safe scheme is the common goal of clinical treatment of tumor patients. In recent years, traditional Chinese medicine has attracted more and more attention in order to discover new drugs with good anti-tumor effects. Oroxylin A (OA) is a compound found in natural Oroxylum indicum and Scutellaria baicalensis Georgi plants and has been used in the treatment of various cancers. Studies have shown that OA has a wide range of powerful biological activities and plays an important role in neuroprotection, anti-inflammation, anti-virus, anti-allergy, anti-tumor and so on. OA shows high efficacy in tumor treatment. Therefore, it has attracted great attention of researchers all over the world. This review aims to discuss the anti-tumor effects of OA from the aspects of cell cycle arrest, induction of cell proliferation and apoptosis, induction of autophagy, anti-inflammation, inhibition of glycolysis, angiogenesis, invasion, metastasis and reversal of drug resistance. In addition, the safety and toxicity of the compound were also discussed. As a next step, to clarify the benefits and adverse effects of Oroxylin A in cancer patients further experiments, especially clinical trials, are needed.
Collapse
Affiliation(s)
- Peng-Xin Wang
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China; Medical College, Jining Medical University, Jining 272067, Shandong, China
| | - Xiao-Nan Mu
- Health Care (& Geriatrics) Ward 1, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, Shandong, China
| | - Shu-Hong Huang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250062, Shandong, China
| | - Kang Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Zhi-Gang Sun
- Departments of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
211
|
Yao Y, Wang D, Zheng L, Zhao J, Tan M. Advances in prognostic models for osteosarcoma risk. Heliyon 2024; 10:e28493. [PMID: 38586328 PMCID: PMC10998144 DOI: 10.1016/j.heliyon.2024.e28493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.
Collapse
Affiliation(s)
- Yi Yao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Dapeng Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Manli Tan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| |
Collapse
|
212
|
de Zhu W, Rao J, Zhang LH, Xue KM, Li L, Li JJ, Chen QZ, Fu R. OMA1 competitively binds to HSPA9 to promote mitophagy and activate the cGAS-STING pathway to mediate GBM immune escape. J Immunother Cancer 2024; 12:e008718. [PMID: 38604814 PMCID: PMC11015223 DOI: 10.1136/jitc-2023-008718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Immunotherapy with checkpoint inhibitors, especially those targeting programmed death receptor 1 (PD-1)/PD-1 ligand (PD-L1), is increasingly recognized as a highly promising therapeutic modality for malignancies. Nevertheless, the efficiency of immune checkpoint blockade therapy in treating glioblastoma (GBM) is constrained. Hence, it is imperative to expand our comprehension of the molecular mechanisms behind GBM immune escape (IE). METHODS Protein chip analysis was performed to screen aberrantly expressed OMA1 protein in PD-1 inhibitor sensitive or resistant GBM. Herein, public databases and bioinformatics analysis were employed to investigate the OMA1 and PD-L1 relation. Then, this predicted relation was verified in primary GBM cell lines through distinct experimental methods. To investigate the molecular mechanism behind OMA1 in immunosuppression, a series of experimental methods were employed, including Western blotting, co-immunoprecipitation (Co-IP), mass spectrometry (MS), immunofluorescence, immunohistochemistry, and qRT-PCR. RESULTS Our findings revealed that OMA1 competitively binds to HSPA9 to induce mitophagy and mediates the IE of GBM. Data from TCGA indicated a significant correlation between OMA1 and immunosuppression. OMA1 promoted PD-L1 levels in primary cells from patients with GBM. Next, the results of Co-IP and MS conducted on GBM primary cells revealed that OMA1 interacts with HSPA9 and induces mitophagy. OMA1 promoted not only cGAS-STING activity by increasing mitochondrial DNA release but also PD-L1 transcription by activating cGAS-STING. Eventually, OMA1 has been found to induce immune evasion in GBM through its regulation of PD-1 binding and PD-L1 mediated T cell cytotoxicity. CONCLUSIONS The OMA1/HSPA9/cGAS/PD-L1 axis is elucidated in our study as a newly identified immune therapeutic target in GBM.
Collapse
Affiliation(s)
- Wen de Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Rao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li hua Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ka ming Xue
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun jun Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian zhi Chen
- Department of Breast and Thyroid Surgery, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rong Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
213
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
214
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
215
|
Qin P, Li Q, Zu Q, Dong R, Qi Y. Natural products targeting autophagy and apoptosis in NSCLC: a novel therapeutic strategy. Front Oncol 2024; 14:1379698. [PMID: 38628670 PMCID: PMC11019012 DOI: 10.3389/fonc.2024.1379698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) being the predominant type. The roles of autophagy and apoptosis in NSCLC present a dual and intricate nature. Additionally, autophagy and apoptosis interconnect through diverse crosstalk molecules. Owing to their multitargeting nature, safety, and efficacy, natural products have emerged as principal sources for NSCLC therapeutic candidates. This review begins with an exploration of the mechanisms of autophagy and apoptosis, proceeds to examine the crosstalk molecules between these processes, and outlines their implications and interactions in NSCLC. Finally, the paper reviews natural products that have been intensively studied against NSCLC targeting autophagy and apoptosis, and summarizes in detail the four most retrieved representative drugs. This paper clarifies good therapeutic effects of natural products in NSCLC by targeting autophagy and apoptosis and aims to promote greater consideration by researchers of natural products as candidates for anti-NSCLC drug discovery.
Collapse
Affiliation(s)
- Peiyi Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Qingchen Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Zu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ruxue Dong
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
216
|
Mongiardi MP, Pallini R, D'Alessandris QG, Levi A, Falchetti ML. Regorafenib and glioblastoma: a literature review of preclinical studies, molecular mechanisms and clinical effectiveness. Expert Rev Mol Med 2024; 26:e5. [PMID: 38563164 PMCID: PMC11062143 DOI: 10.1017/erm.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Glioblastoma IDH wild type (GBM) is a very aggressive brain tumour, characterised by an infiltrative growth pattern and by a prominent neoangiogenesis. Its prognosis is unfortunately dismal, and the median overall survival of GBM patients is short (15 months). Clinical management is based on bulk tumour removal and standard chemoradiation with the alkylating drug temozolomide, but the tumour invariably recurs leading to patient's death. Clinical options for GBM patients remained unaltered for almost two decades until the encouraging results obtained by the phase II REGOMA trial allowed the introduction of the multikinase inhibitor regorafenib as a preferred regimen in relapsed GBM treatment by the National Comprehensive Cancer Network (NCCN) 2020 Guideline. Regorafenib, a sorafenib derivative, targets kinases associated with angiogenesis (VEGFR 1-3), as well as oncogenesis (c-KIT, RET, FGFR) and stromal kinases (FGFR, PDGFR-b). It was already approved for metastatic colorectal cancers and hepatocellular carcinomas. The aim of the present review is to focus on both the molecular and clinical knowledge collected in these first three years of regorafenib use in GBM.
Collapse
Affiliation(s)
| | - Roberto Pallini
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Andrea Levi
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Monterotondo, Rome, Italy
| | | |
Collapse
|
217
|
Lopes RM, Souza ACS, Otręba M, Rzepecka-Stojko A, Tersariol ILS, Rodrigues T. Targeting autophagy by antipsychotic phenothiazines: potential drug repurposing for cancer therapy. Biochem Pharmacol 2024; 222:116075. [PMID: 38395266 DOI: 10.1016/j.bcp.2024.116075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Cancer is recognized as the major cause of death worldwide and the most challenging public health issues. Tumor cells exhibit molecular adaptations and metabolic reprograming to sustain their high proliferative rate and autophagy plays a pivotal role to supply the high demand for metabolic substrates and for recycling cellular components, which has attracted the attention of the researchers. The modulation of the autophagic process sensitizes tumor cells to chemotherapy-induced cell death and reverts drug resistance. In this regard, many in vitro and in vivo studies having shown the anticancer activity of phenothiazine (PTZ) derivatives due to their potent cytotoxicity in tumor cells. Interestingly, PTZ have been used as antiemetics in antitumor chemotherapy-induced vomiting, maybe exerting a combined antitumor effect. Among the mechanisms of cytotoxicity, the modulation of autophagy by these drugs has been highlighted. Therefore, the use of PTZ derivatives can be considered as a repurposing strategy in antitumor chemotherapy. Here, we provided an overview of the effects of antipsychotic PTZ on autophagy in tumor cells, evidencing the molecular targets and discussing the underlying mechanisms. The modulation of autophagy by PTZ in tumor cells have been consistently related to their cytotoxic action. These effects depend on the derivative, their concentration, and also the type of cancer. Most data have shown the impairment of autophagic flux by PTZ, probably due to the blockade of lysosome-autophagosome fusion, but some studies have also suggested the induction of autophagy. These data highlight the therapeutic potential of targeting autophagy by PTZ in cancer chemotherapy.
Collapse
Affiliation(s)
- Rayssa M Lopes
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Ana Carolina S Souza
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| | - Michał Otręba
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Anna Rzepecka-Stojko
- Department of Drug and Cosmetics Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Poland.
| | - Ivarne L S Tersariol
- Departament of Molecular Biology, Federal University of São Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - Tiago Rodrigues
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo Andre, SP, Brazil.
| |
Collapse
|
218
|
Shang X, Chen Z, Liu J, Xu S, Li L, Yang Z, Cui Y, Ruan P, Peng X. Physalin A Induces Apoptosis and Autophagy in Hepatocellular Carcinoma via Inhibition of PI3K/Akt Signaling Pathway. Biochem Genet 2024; 62:633-644. [PMID: 37400742 DOI: 10.1007/s10528-023-10429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Physalin A (PA) is a bioactive withanolide with multiple pharmacological properties and has been indicated to be cytotoxic to hepatocellular carcinoma (HCC) cell line HepG2. This study aims to explore the mechanisms underlying PA antitumor activity in HCC. HepG2 cells were exposed to various concentrations of PA. Cell counting kit-8 assay and flow cytometry were implemented for evaluating cell viability and apoptosis, respectively. Immunofluorescence staining was utilized for detecting autophagic protein LC3. Western blotting was employed for measuring levels of autophagy-, apoptosis- and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling-related proteins. A xenograft mouse model was established to verify the antitumor activity of PA in vivo. PA impaired HepG2 cell viability, and triggered apoptosis as well as autophagy. Inhibiting autophagy augmented PA-evoked HepG2 cell apoptosis. PA repressed PI3K/Akt signaling in HCC cells and activating PI3K/Akt reversed PA-triggered apoptosis and autophagy. PA treatment inhibited tumor growth in tumor-bearing mice. PA triggers HCC cell apoptosis and autophagy by inactivating PI3K/Akt signaling.
Collapse
Affiliation(s)
- Xiang Shang
- Department of Interventional Radiology, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jianxiong Liu
- Department of Interventional Radiology, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Shuguo Xu
- Department of Interventional Radiology, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Longbiao Li
- Department of Interventional Radiology, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Zhihong Yang
- Department of Interventional Radiology, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Yuansheng Cui
- Department of Interventional Radiology, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Pingzhao Ruan
- Department of Interventional Radiology, Ningde Municipal Hospital of Ningde Normal University, Ningde, 352100, China
| | - Xiaolan Peng
- Department of Radiology, Ningde Municipal Hospital of Ningde Normal University, 13 Mindong East Road, Jiaocheng District, Ningde, 352100, China.
| |
Collapse
|
219
|
Zhu Z, Ren W, Li S, Gao L, Zhi K. Functional significance of O-linked N-acetylglucosamine protein modification in regulating autophagy. Pharmacol Res 2024; 202:107120. [PMID: 38417774 DOI: 10.1016/j.phrs.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Autophagy is a core molecular pathway that preserves cellular and organismal homeostasis. Being susceptible to nutrient availability and stress, eukaryotic cells recycle or degrade internal components via membrane transport pathways to provide sustainable biological molecules and energy sources. The dysregulation of this highly conserved physiological process has been strongly linked to human disease. Post-translational modification, a mechanism that regulates protein function, plays a crucial role in autophagy regulation. O-linked N-acetylglucosamine protein modification (O-GlcNAcylation), a monosaccharide post-translational modification of intracellular proteins, is essential in nutritional and stress regulatory mechanisms. O-GlcNAcylation has emerged as an essential regulatory mechanism of autophagy. It regulates autophagy throughout its lifetime by targeting the core components of the autophagy regulatory network. This review provides an overview of the O-GlcNAcylation of autophagy-associated proteins and their regulation and function in the autophagy pathway. Therefore, this article may contribute to further understanding of the role of O-GlcNAc-regulated autophagy and provide new perspectives for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhuang Zhu
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, the Affiliated Hospital of Qingdao University, Qingdao 266555, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Key Lab of Oral Clinical Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266003, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266555, China.
| |
Collapse
|
220
|
Faghfuri E, Hosseinzadeh S, Faghfouri AH. Modulation of Autophagy in Gastric Cancer Cells and Sensitization to 5-Fluorouracil by Combination Therapy with Se–FA Nanoparticles. J CLUST SCI 2024; 35:975-982. [DOI: 10.1007/s10876-023-02509-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/04/2023] [Indexed: 01/04/2025]
|
221
|
Nie J, Li Q, Yin H, Yang J, Li M, Li Q, Fan X, Zhao Q, Wen Z. NPS-2143 inhibit glioma progression by suppressing autophagy through mediating AKT-mTOR pathway. J Cell Mol Med 2024; 28:e18221. [PMID: 38509759 PMCID: PMC10955153 DOI: 10.1111/jcmm.18221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 μM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.
Collapse
Affiliation(s)
- Jia‐Li Nie
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Qi Li
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Hai‐Tang Yin
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Ji‐Hong Yang
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Ming Li
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Qin Li
- Centre of Clinical TrialsAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
| | - Xing‐Hua Fan
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Qing‐Qing Zhao
- Clinical Research CenterAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
| | - Zhi‐Peng Wen
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| |
Collapse
|
222
|
Li HM, Li X, Xia R, Zhang X, Jin TZ, Zhang HS. PHGDH knockdown increases sensitivity to SR1, an aryl hydrocarbon receptor antagonist, in colorectal cancer by activating the autophagy pathway. FEBS J 2024; 291:1780-1794. [PMID: 38317509 DOI: 10.1111/febs.17080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
Colorectal cancer (CRC) has emerged as the third most prevalent and second deadliest cancer worldwide. Metabolic reprogramming is a key hallmark of cancer cells. Phosphoglycerate dehydrogenase (PHGDH) is over-expressed in multiple cancers, including CRC. Although the role of PHGDH in metabolism has been extensively investigated, its effects on CRC development remains to be elucidated. In the present study, it was demonstrated that PHGDH expression was significantly up-regulated in colorectal cancer. PHGDH expression was positively correlated with that of the aryl hydrocarbon receptor (AhR) and its target genes, CYP1A1 and CYP1B1, in CRC cells. Knockdown of PHGDH reduced AhR levels and activity, as well as the ratio of reduced to oxidized glutathione. The selective AhR antagonist stemregenin 1 induced cell death through reactive oxygen species-dependent autophagy in CRC cells. PHGDH knockdown induced CRC cell sensitivity to stemregenin 1 via the autophagy pathway. Our findings suggest that PHGDH modulates AhR signaling and the redox-dependent autophagy pathway in CRC, and that the combination of inhibition of both PHGDH and AhR may be a novel therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Hong-Ming Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xiang Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tong-Zhao Jin
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| |
Collapse
|
223
|
Shen W, Zeng X, Zeng X, Hu B, Ren C, Lin Z, Zhang L, Rui G, Yasen M, Chen X. Trifluoperazine activates AMPK / mTOR / ULK1 signaling pathway to induce mitophagy in osteosarcoma cells. Chem Biol Interact 2024; 392:110904. [PMID: 38360085 DOI: 10.1016/j.cbi.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Osteosarcoma is a prevalent kind of primary bone malignancy. Trifluoperazine, as an antipsychotic drug, has anti-tumor activity against a variety of cancers. Nevertheless, the impact of trifluoperazine on osteosarcoma is unclear. Our investigation aimed to explore the mechanism of trifluoperazine's effect on osteosarcoma. We found that trifluoperazine inhibited 143B and U2-OS osteosarcoma cell proliferation in a method based on the dose. Furthermore, it was shown that trifluoperazine induced the accumulation of reactive oxygen species (ROS) to cause mitochondrial damage and induced mitophagy in osteosarcoma cells. Finally, combined with RNA-seq results, we first demonstrated the AMPK/mTOR/ULK1 signaling pathway as a potential mechanism of trifluoperazine-mediated mitophagy in osteosarcoma cells and can be suppressed by AMPK inhibitor Compound C.
Collapse
Affiliation(s)
- Wenhui Shen
- Department of Orthopedic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, China
| | - Xiangchen Zeng
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xianhui Zeng
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, 570206, China
| | - Baoshan Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, China
| | - Chong Ren
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Zhiming Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, China
| | - Long Zhang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, China
| | - Miersalijiang Yasen
- Department of Orthopedic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361000, China.
| | - Xiaohui Chen
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361001, China.
| |
Collapse
|
224
|
Ostacolo K, de Lomana ALG, Larat C, Hjaltalin V, Holm KY, Hlynsdóttir SS, Soucheray M, Sooman L, Rolfsson O, Krogan NJ, Steingrimsson E, Swaney DL, Ogmundsdottir MH. ATG7(2) Interacts With Metabolic Proteins and Regulates Central Energy Metabolism. Traffic 2024; 25:e12933. [PMID: 38600522 PMCID: PMC11480896 DOI: 10.1111/tra.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Macroautophagy/autophagy is an essential catabolic process that targets a wide variety of cellular components including proteins, organelles, and pathogens. ATG7, a protein involved in the autophagy process, plays a crucial role in maintaining cellular homeostasis and can contribute to the development of diseases such as cancer. ATG7 initiates autophagy by facilitating the lipidation of the ATG8 proteins in the growing autophagosome membrane. The noncanonical isoform ATG7(2) is unable to perform ATG8 lipidation; however, its cellular regulation and function are unknown. Here, we uncovered a distinct regulation and function of ATG7(2) in contrast with ATG7(1), the canonical isoform. First, affinity-purification mass spectrometry analysis revealed that ATG7(2) establishes direct protein-protein interactions (PPIs) with metabolic proteins, whereas ATG7(1) primarily interacts with autophagy machinery proteins. Furthermore, we identified that ATG7(2) mediates a decrease in metabolic activity, highlighting a novel splice-dependent function of this important autophagy protein. Then, we found a divergent expression pattern of ATG7(1) and ATG7(2) across human tissues. Conclusively, our work uncovers the divergent patterns of expression, protein interactions, and function of ATG7(2) in contrast to ATG7(1). These findings suggest a molecular switch between main catabolic processes through isoform-dependent expression of a key autophagy gene.
Collapse
Affiliation(s)
- Kevin Ostacolo
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Adrián López García de Lomana
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Clémence Larat
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Valgerdur Hjaltalin
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Kristrun Yr Holm
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sigríður S. Hlynsdóttir
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Margaret Soucheray
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Linda Sooman
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Ottar Rolfsson
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Nevan J. Krogan
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Eirikur Steingrimsson
- Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Danielle L. Swaney
- Gladstone Institutes, San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
| | - Margret H. Ogmundsdottir
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
225
|
Liu ZD, Shi YH, Xu QC, Zhao GY, Zhu YQ, Li FX, Ma MJ, Ye JY, Huang XT, Wang XY, Xu X, Wang JQ, Zhao W, Yin XY. CSNK2A1 confers gemcitabine resistance to pancreatic ductal adenocarcinoma via inducing autophagy. Cancer Lett 2024; 585:216640. [PMID: 38290659 DOI: 10.1016/j.canlet.2024.216640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Gemcitabine, a pivotal chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), frequently encounters drug resistance, posing a significant clinical challenge with implications for PDAC patient prognosis. In this study, employing an integrated approach involving bioinformatic analyses from multiple databases, we unveil CSNK2A1 as a key regulatory factor. The patient-derived xenograft (PDX) model further substantiates the critical role of CSNK2A1 in gemcitabine resistance within the context of PDAC. Additionally, targeted silencing of CSNK2A1 expression significantly enhances sensitivity of PDAC cells to gemcitabine treatment. Mechanistically, CSNK2A1's transcriptional regulation is mediated by H3K27 acetylation in PDAC. Moreover, we identify CSNK2A1 as a pivotal activator of autophagy, and enhanced autophagy drives gemcitabine resistance. Silmitasertib, an established CSNK2A1 inhibitor, can effectively inhibit autophagy. Notably, the combinatorial treatment of Silmitasertib with gemcitabine demonstrates remarkable efficacy in treating PDAC. In summary, our study reveals CSNK2A1 as a potent predictive factor for gemcitabine resistance in PDAC. Moreover, targeted CSNK2A1 inhibition by Silmitasertib represents a promising therapeutic strategy to restore gemcitabine sensitivity in PDAC, offering hope for improved clinical outcomes.
Collapse
Affiliation(s)
- Zhi-De Liu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yin-Hao Shi
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Yin Zhao
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Qin Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fu-Xi Li
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Jian Ma
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Yuan Ye
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xi-Tai Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Qin Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
226
|
Liu J, Xiao Y, Cao L, Lu S, Zhang S, Yang R, Wang Y, Zhang N, Yu Y, Wang X, Guo W, Wang Z, Xu H, Xing C, Song X, Cao L. Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Commun Biol 2024; 7:382. [PMID: 38553562 PMCID: PMC10980737 DOI: 10.1038/s42003-024-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Cardiology, First Hospital of China Medical University, Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Zhuo Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
227
|
Sun G, Li X, Liu P, Wang Y, Yang C, Zhang S, Wang L, Wang X. PPARδ agonist protects against osteoarthritis by activating AKT/mTOR signaling pathway-mediated autophagy. Front Pharmacol 2024; 15:1336282. [PMID: 38576477 PMCID: PMC10991777 DOI: 10.3389/fphar.2024.1336282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease, and PPARs are involved in its pathogenesis; however, the specific mechanisms by which changes in PPARδ impact the OA pathogenesis yet to be discovered. The purpose of this study was to ascertain how PPARδ affects the onset and development of OA. In vitro, we found that PPARδ activation ameliorated apoptosis and extracellular matrix (ECM) degradation in OA chondrocytes stimulated by IL-1β. In addition, PPARδ activation may modulate AKT/mTOR signaling to partially regulate chondrocyte autophagy and apoptosis. In vivo, injection of PPARδ agonist into the articular cavity improved ECM degradation, apoptosis and autophagy in rats OA models generated by destabilization medial meniscus (DMM), eventually delayed degeneration of articular cartilage. Thus, targeting PPARδ for OA treatment may be a possibility.
Collapse
Affiliation(s)
- Guantong Sun
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Li
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Yang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhong Zhang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Wang
- Department of Orthopedics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
228
|
Guo Y, Tong Z, Huang Y, Tang J, Xue X, Yang D, Yao C. Dynamic Assembly of DNA Nanostructures in Cancer Cells Enables the Coupling of Autophagy Activating and Real-Time Tracking. NANO LETTERS 2024; 24:3532-3540. [PMID: 38457281 DOI: 10.1021/acs.nanolett.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing dynamic nanostructures for in situ regulation of biological processes inside living cells is of great importance in biomedical research. Herein we report the cascaded assembly of Y-shaped branched DNA nanostructure (YDN) during intracellular autophagy. YDN contains one arm with semi-i-motif sequence and Cy3-BHQ2, and another arm with an apurinic/apyrimidinic (AP) site and Cy5-BHQ3. Upon uptake by cancer cells, intermolecular i-motif structures are formed in response to lysosomal H+, causing the formation of YDN-dimer and the recovery of Cy3 fluorescence; when escapes occur from the lysosome to the cytoplasm, the YDN-dimer responds to the overexpressed APE1, leading to the assembly of YDN into the DNA network and the fluorescence recovery of Cy5. Simultaneously, the cascaded assembly activates autophagy, and thus the process of assembly of YDN and autophagy flux can be spatiotemporally coupled. This work illustrates the potential of DNA nanostructures for the in situ regulation of intracellular dynamic events with spatiotemporal control.
Collapse
Affiliation(s)
- Yanfei Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Yan Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
229
|
Liu Z, Lu T, Qian R, Wang Z, Qi R, Zhang Z. Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine. Int J Nanomedicine 2024; 19:2507-2528. [PMID: 38495752 PMCID: PMC10944250 DOI: 10.2147/ijn.s455407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Cancer continues to be a prominent issue in the field of medicine, as demonstrated by recent studies emphasizing the significant role of autophagy in the development of cancer. Traditional Chinese Medicine (TCM) provides a variety of anti-tumor agents capable of regulating autophagy. However, the clinical application of autophagy-modulating compounds derived from TCM is impeded by their restricted water solubility and bioavailability. To overcome this challenge, the utilization of nanotechnology has been suggested as a potential solution. Nonetheless, the current body of literature on nanoparticles delivering TCM-derived autophagy-modulating anti-tumor compounds for cancer treatment is limited, lacking comprehensive summaries and detailed descriptions. Methods Up to November 2023, a comprehensive research study was conducted to gather relevant data using a variety of databases, including PubMed, ScienceDirect, Springer Link, Web of Science, and CNKI. The keywords utilized in this investigation included "autophagy", "nanoparticles", "traditional Chinese medicine" and "anticancer". Results This review provides a comprehensive analysis of the potential of nanotechnology in overcoming delivery challenges and enhancing the anti-cancer properties of autophagy-modulating compounds in TCM. The evaluation is based on a synthesis of different classes of autophagy-modulating compounds in TCM, their mechanisms of action in cancer treatment, and their potential benefits as reported in various scholarly sources. The findings indicate that nanotechnology shows potential in enhancing the availability of autophagy-modulating agents in TCM, thereby opening up a plethora of potential therapeutic avenues. Conclusion Nanotechnology has the potential to enhance the anti-tumor efficacy of autophagy-modulating compounds in traditional TCM, through regulation of autophagy.
Collapse
Affiliation(s)
- Zixian Liu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Tianming Lu
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruoning Qian
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zian Wang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Ruogu Qi
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| | - Zhengguang Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, People’s Republic of China
| |
Collapse
|
230
|
Liu B, Yao X, Shang Y, Dai J. The multiple roles of autophagy in uveal melanoma and the microenvironment. J Cancer Res Clin Oncol 2024; 150:121. [PMID: 38467935 PMCID: PMC10927889 DOI: 10.1007/s00432-023-05576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 03/13/2024]
Abstract
PURPOSE Uveal melanoma (UM) is the most common primary malignant intraocular tumor in adults, and effective clinical treatment strategies are still lacking. Autophagy is a lysosome-dependent degradation system that can encapsulate abnormal proteins, damaged organelles. However, dysfunctional autophagy has multiple types and plays a complex role in tumorigenicity depending on many factors, such as tumor stage, microenvironment, signaling pathway activation, and application of autophagic drugs. METHODS A systematic review of the literature was conducted to analyze the role of autophagy in UM, as well as describing the development of autophagic drugs and the link between autophagy and the tumor microenvironment. RESULTS In this review, we summarize current research advances regarding the types of autophagy, the mechanisms of autophagy, the application of autophagy inhibitors or agonists, autophagy and the tumor microenvironment. Finally, we also discuss the relationship between autophagy and UM. CONCLUSION Understanding the molecular mechanisms of how autophagy differentially affects tumor progression may help to design better therapeutic regimens to prevent and treat UM.
Collapse
Affiliation(s)
- Bo Liu
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shang
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jinhui Dai
- Department of Ophthalmology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
231
|
Li N, Deng L, Zhang Y, Tang X, Lei B, Zhang Q. IGF2BP2 modulates autophagy and serves as a prognostic marker in glioma. IBRAIN 2024; 10:19-33. [PMID: 38682020 PMCID: PMC11045200 DOI: 10.1002/ibra.12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
Glioma, a malignant brain tumor originating from neural glial cells, presents significant treatment challenges. However, the underlying mechanisms of glioma development are not fully understood, and effective targets are lacking. This study provides insights into the role of insulin-like growth factor 2 messenger RNA-binding protein 2 (IGF2BP2) in glioma progression and its therapeutic potential. Our analysis illustrated that elevated IGF2BP2 expression associated with significantly shorter survival among patients with low-grade glioma (LGG) in The Cancer Genome Atlas (TCGA) database. IGF2BP2 depletion led to compromised cell viability, G0/G1 phase arrest, and reduced colony-formation ability. Furthermore, ultrastructural analysis and mCherry-GFP-LC3 reporter assay revealed an increased abundance of autophagosomes upon IGF2BP2 knockdown. Western blot analysis corroborated these findings by showing reduced p62 levels coupled with increased LC3-ІІ/LC3-I ratio upon IGF2BP2 knockdown. A multicolor immunohistochemistry assay demonstrated the positive correlation between IGF2BP2 and p62 expression in glioma patient samples. Additionally, our analysis suggested a link between IGF2BP2 expression and drug-resistant markers in TCGA-LGG samples, and Cell Counting Kit-8 cell viability assay revealed that knockdown of IGF2BP2 sensitized cells to temozolomide treatment. This comprehensive exploration unveils the role of IGF2BP2 in glioma progression, shedding light on autophagy modulation and chemosensitization strategies for glioma therapy.
Collapse
Affiliation(s)
- Ning Li
- Department of HematologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Limei Deng
- Department of HematologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
- Department of Obstetrics and GynecologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Yuming Zhang
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangChina
| | - Xilian Tang
- Department of HematologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Qingyu Zhang
- Department of Obstetrics and GynecologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
232
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
233
|
Ebrahimi M, Ebrahimi M, Vergroesen JE, Aschner M, Sillanpää M. Environmental exposures to cadmium and lead as potential causes of eye diseases. J Trace Elem Med Biol 2024; 82:127358. [PMID: 38113800 DOI: 10.1016/j.jtemb.2023.127358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Humans are exposed to cadmium and lead in various regions of the world daily due to industrial development and climate change. Increasing numbers of preclinical and clinical studies indicate that heavy metals, such as cadmium and lead, play a role in the pathogenesis of eye diseases. Excessive exposure to heavy metals such as cadmium and lead can increase the risk of impaired vision. Therefore, it is essential to better characterize the role of these non-essential metals in disease etiology and progression. This article discusses the potential role of cadmium and lead in the development of age-related eye diseases, including age-related macular degeneration, cataracts, and glaucoma. Furthermore, we discuss how cadmium and lead affect ocular cells and provide an overview of putative pathological mechanisms associated with their propensity to damage the eye.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Ebrahimi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Joëlle E Vergroesen
- Department of Ophthalmology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
234
|
Li J, Jiang H, Zhu Y, Ma Z, Li B, Dong J, Xiao C, Hu A. Fine particulate matter (PM 2.5) induces the stem cell-like properties of hepatocellular carcinoma by activating ROS/Nrf2/Keap1-mediated autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116052. [PMID: 38325274 DOI: 10.1016/j.ecoenv.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Exposure to fine particulate matter (PM2.5) has been linked to an increased incidence and mortality of hepatocellular carcinoma (HCC). However, the impact of PM2.5 exposure on HCC progression and the underlying mechanisms remain largely unknown. This study aimed to investigate the effects of PM2.5 exposure on the stem cell-like properties of HCC cells. Our findings indicate that PM2.5 exposure significantly enhances the stemness of HCC cells (p < 0.01). Subsequently, male nude mice were divided into two groups (n = 8/group for tumor-bearing assay, n = 5/group for metastasis assay) for control and PM2.5 exposure. In vivo assays revealed that exposure to PM2.5 promoted the growth, metastasis, and epithelial-mesenchymal transition (EMT) of HCC cells (p < 0.01). Further exploration demonstrated that PM2.5 enhances the stemness of HCC cells by inducing cellular reactive oxygen species (ROS) generation (p < 0.05). Mechanistic investigation indicated that elevated intracellular ROS inhibited kelch-like ECH-associated protein 1 (Keap1) levels, promoting the upregulation and nucleus translocation of NFE2-like bZIP transcription factor 2 (Nrf2). This, in turn, induced autophagy activation, thereby promoting the stemness of HCC cells (p < 0.01). Our present study demonstrates the adverse effects of PM2.5 exposure on HCC development and highlights the mechanism of ROS/Nrf2/Keap1-mediated autophagy. For the first time, we reveal the impact of PM2.5 exposure on the poor prognosis-associated cellular phenotype of HCC and its underlying mechanism, which is expected to provide new theoretical basis for the improvement of public health.
Collapse
Affiliation(s)
- Jiujiu Li
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Haoqi Jiang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yu Zhu
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Zijian Ma
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Bin Li
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jun Dong
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, Hefei 230032, China.
| | - Anla Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
235
|
Fan K, Liao Q, Yuan P, Xu R, Liu Z. Defective autophagy contributes to bupivacaine-induced aggravation of painful diabetic neuropathy in db/db mice. Neuropharmacology 2024; 245:109814. [PMID: 38104768 DOI: 10.1016/j.neuropharm.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Current evidence suggests that hyperactivated or impaired autophagy can lead to neuronal death. The effect of local anesthetics on painful diabetic neuropathy (PDN) and the role of autophagy in the above pathological process remain unclear, warranting further studies. So, PDN models were established by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in leptin gene-mutation (db/db) mice. Wild type (WT) and PDN mice received intrathecal 0.75% bupivacaine or/with intraperitoneal drug treatment (rapamycin or bafilomycin A1). Subsequently, the PWT and PWL were measured to assess hyperalgesia at 6 h, 24 h, 30 h, and 48 h after intrathecal bupivacaine. Also, sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) were measured before and 48 h after intrathecal bupivacaine treatment. The spinal cord tissue of L4-L6 segments and serum were harvested to evaluate the change of autophagy, oxidative stress, oxidative injury, and apoptosis. We found that bupivacaine induced the activation of autophagy but did not affect the pain threshold, SNCV and MNCV in WT mice at predefined time points. Conversely, bupivacaine lowered autophagosome generation and degradation, slowed SNCV and aggravated spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. The autophagy activator (rapamycin) could decrease spinal dorsal horn neuron oxidative injury, alleviate the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Meanwhile, the autophagy inhibitor (bafilomycin A1) could exacerbate spinal dorsal horn neuron oxidative injury, the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Our results showed that bupivacaine could induce defective autophagy, slowed SNCV and aggravate spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. Restoring autophagy may represent a potential therapeutic approach against nerve injury in PDN patients with local anesthesia and analgesia.
Collapse
Affiliation(s)
- Keke Fan
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China.
| | - Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China.
| | - Pengfei Yuan
- Department of Anesthesiology, South China Hospital of Shenzhen University, Fuxin Road 1, ShenZhen, 518116, Guangdong Province, China.
| | - Rui Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| |
Collapse
|
236
|
Tong L, Zheng X, Wang T, Gu W, Shen T, Yuan W, Wang S, Xing S, Liu X, Zhang C, Zhang C. Inhibition of UBA52 induces autophagy via EMC6 to suppress hepatocellular carcinoma tumorigenesis and progression. J Cell Mol Med 2024; 28:e18164. [PMID: 38445807 PMCID: PMC10915828 DOI: 10.1111/jcmm.18164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Ubiquitin A-52 residue ribosomal protein fusion product 1 (UBA52) has a role in the occurrence and development of tumours. However, the mechanism by which UBA52 regulates hepatocellular carcinoma (HCC) tumorigenesis and progression remains poorly understood. By using the Cell Counting Kit (CCK-8), colony formation, wound healing and Transwell assays, we assessed the effects of UBA52 knockdown and overexpression on the proliferation and migration of HCC cells in vitro. By establishing subcutaneous and metastatic tumour models in nude mice, we evaluated the effects of UBA52 on HCC cell proliferation and migration in vivo. Through bioinformatic analysis of data from the Gene Expression Profiling Interactive Analysis (GEPIA) and The Cancer Genome Atlas (TCGA) databases, we discovered that UBA52 is associated with autophagy. In addition, we discovered that HCC tissues with high UBA52 expression had a poor prognosis in patients. Moreover, knockdown of UBA52 reduced HCC cell growth and metastasis both in vitro and in vivo. Mechanistically, knockdown of UBA52 induced autophagy through EMC6 in HCC cells. These findings suggest that UBA52 promoted the proliferation and migration of HCC cells through autophagy regulation via EMC6 and imply that UBA52 may be a viable novel treatment target for HCC patients.
Collapse
Affiliation(s)
- Li Tong
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiaofei Zheng
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Tianqi Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wang Gu
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Tingting Shen
- Department of PathologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wenkang Yuan
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Siyu Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Songlin Xing
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiaoying Liu
- College of Life Sciences of Anhui Medical UniversityHefeiChina
| | - Chong Zhang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Chao Zhang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
237
|
Wu Z, Zhang W, Chen L, Wang T, Wang X, Shi H, Zhang L, Zhong M, Shi X, Mao X, Chen H, Li Q. CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in colorectal cancer. Pharmacol Res 2024; 201:107097. [PMID: 38354870 DOI: 10.1016/j.phrs.2024.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
As the world's fourth most deadly cancer, colorectal cancer (CRC) still needed the novel therapeutic drugs and target urgently. Although cyclin-dependent kinase 12 (CDK12) has been shown to be implicated in the malignancy of several types of cancer, its functional role and mechanism in CRC remain largely unknown. Here, we found that suppression of CDK12 inhibited tumor growth in CRC by inducing apoptosis. And CDK12 inhibition triggered autophagy by upregulating autophagy related gene 7 (ATG7) expression. Inhibition of autophagy by ATG7 knockdown and chloroquine (CQ) further decreased cell viability induced by CDK12 inhibition. Further mechanism exploration showed that CDK12 interacted with protein kinase B (AKT) regulated autophagy via AKT/forkhead box O3 (AKT/FOXO3) pathway. FOXO3 transcriptionally upregulated ATG7 expression and autophagy when CDK12 inhibition in CRC. Level of CDK12 and p-FOXO3/FOXO3 ratio were correlated with survival in CRC patients. Moreover, CDK12 inhibition improved the efficacy of anti-programmed cell death 1(PD-1) therapy in CRC murine models by enhancing CD8 + T cells infiltration. Thus, our study founded that CDK12 inhibition upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-PD-1 efficacy in CRC. We revealed the roles of CDK12/FOXO3/ATG7 in regulating CRC progression, suggesting potential biomarkers and therapeutic target for CRC.
Collapse
Affiliation(s)
- Zimei Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Huanying Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Mao
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
238
|
Bi J, Witt E, McGovern MK, Cafi AB, Rosenstock LL, Pearson AB, Brown TJ, Karasic TB, Absler LC, Machkanti S, Boyce H, Gallo D, Becker SL, Ishida K, Jenkins J, Hayward A, Scheiflinger A, Bodeker KL, Kumar R, Shaw SK, Jabbour SK, Lira VA, Henry MD, Tift MS, Otterbein LE, Traverso G, Byrne JD. Oral Carbon Monoxide Enhances Autophagy Modulation in Prostate, Pancreatic, and Lung Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308346. [PMID: 38084435 PMCID: PMC10916612 DOI: 10.1002/advs.202308346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Indexed: 01/22/2024]
Abstract
Modulation of autophagy, specifically its inhibition, stands to transform the capacity to effectively treat a broad range of cancers. However, the clinical efficacy of autophagy inhibitors has been inconsistent. To delineate clinical and epidemiological features associated with autophagy inhibition and a positive oncological clinical response, a retrospective analysis of patients is conducted treated with hydroxychloroquine, a known autophagy inhibitor. A direct correlation between smoking status and inhibition of autophagy with hydroxychloroquine is identified. Recognizing that smoking is associated with elevated circulating levels of carbon monoxide (CO), it is hypothesized that supplemental CO can amplify autophagy inhibition. A novel, gas-entrapping material containing CO in a pre-clinical model is applied and demonstrated that CO can dramatically increase the cytotoxicity of autophagy inhibitors and significantly inhibit the growth of tumors when used in combination. These data support the notion that safe, therapeutic levels of CO can markedly enhance the efficacy of autophagy inhibitors, opening a promising new frontier in the quest to improve cancer therapies.
Collapse
|
239
|
Koh M, Lim H, Jin H, Kim M, Hong Y, Hwang YK, Woo Y, Kim ES, Kim SY, Kim KM, Lim HK, Jung J, Kang S, Park B, Lee HB, Han W, Lee MS, Moon A. ANXA2 (annexin A2) is crucial to ATG7-mediated autophagy, leading to tumor aggressiveness in triple-negative breast cancer cells. Autophagy 2024; 20:659-674. [PMID: 38290972 PMCID: PMC10936647 DOI: 10.1080/15548627.2024.2305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with a poor prognosis and metastatic growth. TNBC cells frequently undergo macroautophagy/autophagy, contributing to tumor progression and chemotherapeutic resistance. ANXA2 (annexin A2), a potential therapeutic target for TNBC, has been reported to stimulate autophagy. In this study, we investigated the role of ANXA2 in autophagic processes in TNBC cells. TNBC patients exhibited high levels of ANXA2, which correlated with poor outcomes. ANXA2 increased LC3B-II levels following bafilomycin A1 treatment and enhanced autophagic flux in TNBC cells. Notably, ANXA2 upregulated the phosphorylation of HSF1 (heat shock transcription factor 1), resulting in the transcriptional activation of ATG7 (autophagy related 7). The mechanistic target of rapamycin kinase complex 2 (MTORC2) played an important role in ANXA2-mediated ATG7 transcription by HSF1. MTORC2 did not affect the mRNA level of ANXA2, but it was involved in the protein stability of ANXA2. HSPA (heat shock protein family A (Hsp70)) was a potential interacting protein with ANXA2, which may protect ANXA2 from lysosomal proteolysis. ANXA2 knockdown significantly increased sensitivity to doxorubicin, the first-line chemotherapeutic regimen for TNBC treatment, suggesting that the inhibition of autophagy by ANXA2 knockdown may overcome doxorubicin resistance. In a TNBC xenograft mouse model, we demonstrated that ANXA2 knockdown combined with doxorubicin administration significantly inhibited tumor growth compared to doxorubicin treatment alone, offering a promising avenue to enhance the effectiveness of chemotherapy. In summary, our study elucidated the molecular mechanism by which ANXA2 modulates autophagy, suggesting a potential therapeutic approach for TNBC treatment.Abbreviation: ATG: autophagy related; ChIP: chromatin-immunoprecipitation; HBSS: Hanks' balanced salt solution; HSF1: heat shock transcription factor 1; MTOR: mechanistic target of rapamycin kinase; TNBC: triple-negative breast cancer; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3.
Collapse
Affiliation(s)
- Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Minjoo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yeji Hong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Young Keun Hwang
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Yunjung Woo
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women’s University, Seoul, Korea
| | - Kyung Mee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Hyun Kyung Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women’s University, Seoul, Korea
| |
Collapse
|
240
|
Ma C, Zhang X, Mo X, Yu Y, Xiao Z, Wu J, Ding L, Lei C, Zhu Y, Zhang H. Xie-Bai-San increases NSCLC cells sensitivity to gefitinib by inhibiting Beclin-1 mediated autophagosome formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155351. [PMID: 38232540 DOI: 10.1016/j.phymed.2024.155351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Autophagy, a cellular process involving lysosomal self-digestion, plays a crucial role in recycling biomolecules and degrading dysfunctional proteins and damaged organelles. However, in non-small cell lung cancer (NSCLC), cancer cells can exploit autophagy to survive metabolic stress and develop resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which reduce treatment efficacies. Currently, most studies have found that late-stage autophagy inhibitors can hinder EGFR-TKIs resistance, while research on early-stage autophagy inhibitors is still limited. PURPOSE This study investigates the mechanism via which the Xie-Bai-San (XBS) formula enhances NSCLC cell sensitivity to gefitinib, revealing the relationship between XBS-induced cell death and the inhibition of autophagosome formation. METHODS Cell viability was assessed using CCK-8 and EdU assays, lentivirus transfection was utilized to generate PC9 cells harboring the PIK3CA E545K mutation (referred to as PC9-M), autophagic flux was monitored using mCherry-GFP-LC3 adenovirus. Protein expression and colocalization were observed through immunofluorescence staining. The interaction between Bcl-2 and Beclin-1 in PC9-GR and PC9-M cells was determined via co-immunoprecipitation (Co-IP) assay, cell apoptosis was assessed by flow cytometry and PI staining, and overall survival analysis of lung adenocarcinoma patients was conducted using the TCGA database. In vivo experiments included a patient-derived xenograft (PDX) model with EGFR and PIK3CA mutations and subcutaneous mice xenografts of NSCLC cell lines (PC9 and PC9-GR). In addition, autophagic vesicles in mouse tumor tissues were observed via transmission electron microscopy analysis. RESULTS XBS effectively inhibits the proliferation of gefitinib-resistant NSCLC cells and induces apoptosis both in vitro and in vivo. Mechanistically, XBS suppresses gefitinib-induced autophagic flux by inhibiting autophagy through the upregulation of p-mTOR and Bcl-2 and downregulation of Beclin-1. Additionally, XBS enhances the interaction between Bcl-2 and Beclin-1, and the overexpression of Beclin-1 promotes NSCLC cell proliferation and counteracts XBS-induced cell death, while XBS demonstrates minimal impact on autophagosome-lysosome fusion or lysosome function. CONCLUSION This study reveals a novel role for the XBS formula in impeding autophagy initiation and demonstrates its potential as a candidate drug to counteract autophagy-induced treatment resistance in NSCLC.
Collapse
Affiliation(s)
- Changju Ma
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Xin Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaomin Mo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yaya Yu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Zhenzhen Xiao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Jingjing Wu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lina Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chenjing Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yanjuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China.
| | - Haibo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
241
|
Hu M, Fan JX, He ZY, Zeng J. The regulatory role of autophagy between TAMs and tumor cells. Cell Biochem Funct 2024; 42:e3984. [PMID: 38494666 DOI: 10.1002/cbf.3984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Cancer has become a global public health problem and its harmful effects have received widespread attention. Conventional treatments such as surgical resection, radiotherapy and other techniques are applicable to clinical practice, but new drugs are constantly being developed and other therapeutic approaches, such as immunotherapy are being applied. In addition to studying the effects on individual tumor cells, it is important to explore the role of tumor microenvironment on tumor cell development since tumor cells do not exist alone but in the tumor microenvironment. In the tumor microenvironment, tumor cells are interconnected with other stromal cells and influence each other, among which tumor-associated macrophages (TAMs) are the most numerous immune cells. At the same time, it was found that cancer cells have different levels of autophagy from normal cells. In cancer therapy, the occurrence of autophagy plays an important role in promoting tumor cell death or inhibiting tumor cell death, and is closely related to the environment. Therefore, elucidating the regulatory role of autophagy between TAMs and tumor cells may be an important breakthrough, providing new perspectives for further research on antitumor immune mechanisms and improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Min Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jiao-Xiu Fan
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zi-Yue He
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jun Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
- Animal Biology Key Laboratory of Chongqing Education Commission of China
| |
Collapse
|
242
|
Dou Z, Lei H, Su W, Zhang T, Chen X, Yu B, Zhen X, Si J, Sun C, Zhang H, Di C. Modification of BCLX pre-mRNA splicing has antitumor efficacy alone or in combination with radiotherapy in human glioblastoma cells. Cell Death Dis 2024; 15:160. [PMID: 38383492 PMCID: PMC10881996 DOI: 10.1038/s41419-024-06507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Dysregulation of anti-apoptotic and pro-apoptotic protein isoforms arising from aberrant splicing is a crucial hallmark of cancers and may contribute to therapeutic resistance. Thus, targeting RNA splicing to redirect isoform expression of apoptosis-related genes could lead to promising anti-cancer phenotypes. Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. In this study, through RT-PCR and Western Blot analysis, we found that BCLX pre-mRNA is aberrantly spliced in GBM cells with a favored splicing of anti-apoptotic Bcl-xL. Modulation of BCLX pre-mRNA splicing using splice-switching oligonucleotides (SSOs) efficiently elevated the pro-apoptotic isoform Bcl-xS at the expense of the anti-apoptotic Bcl-xL. Induction of Bcl-xS by SSOs activated apoptosis and autophagy in GBM cells. In addition, we found that ionizing radiation could also modulate the alternative splicing of BCLX. In contrast to heavy (carbon) ion irradiation, low energy X-ray radiation-induced an increased ratio of Bcl-xL/Bcl-xS. Inhibiting Bcl-xL through splicing regulation can significantly enhance the radiation sensitivity of 2D and 3D GBM cells. These results suggested that manipulation of BCLX pre-mRNA alternative splicing by splice-switching oligonucleotides is a novel approach to inhibit glioblastoma tumorigenesis alone or in combination with radiotherapy.
Collapse
Affiliation(s)
- Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Boyi Yu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xiaogang Zhen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jing Si
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Chao Sun
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
243
|
Chu Y, Yuan Q, Jiang H, Wu L, Xie Y, Zhang X, Li L. A comprehensive review of the anticancer effects of decursin. Front Pharmacol 2024; 15:1303412. [PMID: 38444945 PMCID: PMC10912667 DOI: 10.3389/fphar.2024.1303412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Cancer is a globally complex disease with a plethora of genetic, physiological, metabolic, and environmental variations. With the increasing resistance to current anticancer drugs, efforts have been made to develop effective cancer treatments. Currently, natural products are considered promising cancer therapeutic agents due to their potent anticancer activity and low intrinsic toxicity. Decursin, a coumarin analog mainly derived from the roots of the medicinal plant Angelica sinensis, has a wide range of biological activities, including anti-inflammatory, antioxidant, neuroprotective, and especially anticancer activities. Existing studies indicate that decursin affects cell proliferation, apoptosis, autophagy, angiogenesis, and metastasis. It also indirectly affects the immune microenvironment and can act as a potential anticancer agent. Decursin can exert synergistic antitumor effects when used in combination with a number of common clinical anticancer drugs, enhancing chemotherapy sensitivity and reversing drug resistance in cancer cells, suggesting that decursin is a good drug combination. Second, decursin is also a promising lead compound, and compounds modifying its structure and formulation form also have good anticancer effects. In addition, decursin is not only a key ingredient in several natural herbs and dietary supplements but is also available through a biosynthetic pathway, with anticancer properties and a high degree of safety in cells, animals, and humans. Thus, it is evident that decursin is a promising natural compound, and its great potential for cancer prevention and treatment needs to be studied and explored in greater depth to support its move from the laboratory to the clinic.
Collapse
Affiliation(s)
- Yueming Chu
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Qiang Yuan
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Hangyu Jiang
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Liang Wu
- Institute of Tissue Engineering and Stem Cells, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
| | - Yutao Xie
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Xiaofen Zhang
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong, China
| | - Lin Li
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
244
|
Wang Y, Lyu L, Vu T, McCarty N. WITHDRAWN: TRIM44 promotes autophagy through SQSTM1 oligomerization in the response to oxidative stress induced by Arsenic Trioxide in cancer cells. RESEARCH SQUARE 2024:rs.3.rs-3951960. [PMID: 38464079 PMCID: PMC10925436 DOI: 10.21203/rs.3.rs-3951960/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The authors have requested that this preprint be removed from Research Square.
Collapse
|
245
|
Cancemi G, Caserta S, Gangemi S, Pioggia G, Allegra A. Exploring the Therapeutic Potential of Ganoderma lucidum in Cancer. J Clin Med 2024; 13:1153. [PMID: 38398467 PMCID: PMC10889924 DOI: 10.3390/jcm13041153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Triterpenoids, such as ganoderic acid, and polysaccharides, including β-D-glucans, α-D-glucans, and α-D-mannans, are the main secondary metabolites of the medicinal fungus Ganoderma lucidum. There is evidence of the effects of ganoderic acid in hematological malignancies, whose mechanisms involve the stimulation of immune response, the macrophage-like differentiation, the activation of MAP-K pathway, an IL3-dependent cytotoxic action, the induction of cytoprotective autophagy, and the induction of apoptosis. In fact, this compound has been tested in twenty-six different human cancer cell types and has shown an anti-proliferative activity, especially in leukemia, lymphoma, and myeloma lines. Moreover, research clarified the capability of molecules from Ganoderma lucidum to induce mitochondrial damage in acute promyelocytic leukemia cells, without cytotoxic effects in normal mononuclear cells. Active lipids extracted from the spores of this fungus have also been shown to induce apoptosis mediated by downregulation of P-Akt and upregulation of caspases-3, -8, and -9. Among in vivo studies, a study in BALB/c mice injected with WEHI-3 leukemic cells suggested that treatment with Ganoderma lucidum promotes differentiation of T- and B-cell precursors, phagocytosis by PBMCs, and NK cell activity. Our review presents data revealing the possibility of employing Ganoderma lucidum in hematological malignancies and incorporating it into clinical practice.
Collapse
Affiliation(s)
- Gabriella Cancemi
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
246
|
Wang Y, Shi L, He Y, Gong W, Cui Y, Zuo R, Wang Y, Luo Y, Chen L, Liu Z, Chen P, Guo H. OVOL2 induces autophagy-mediated epithelial-mesenchymal transition by the ERK1/2 MAPK signaling in lung adenocarcinoma. iScience 2024; 27:108873. [PMID: 38318371 PMCID: PMC10838806 DOI: 10.1016/j.isci.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. Epithelial-mesenchymal transition (EMT) plays an important role in malignant tumor progression. Recently, accumulating evidence has shown that autophagy is involved in the regulation of EMT-induced migration. Therefore, the exploration of targets to inhibit EMT by targeting autophagy is important. In this study, we found that OVO-like zinc finger 2 (OVOL2) may be a key target for regulating autophagy-induced EMT. Firstly, we found that OVOL2 expression was dramatically downregulated in LUAD. Low expression of OVOL2 is an indicator of poor prognosis in LUAD. In vitro experiments have shown that downregulation of OVOL2 expression induces EMT, thereby promoting malignant biological behavior, such as proliferation, migration, and invasion of LUAD cells. Interestingly, autophagy is a key step in regulating OVOL2 and inducing EMT. Furthermore, OVOL2 regulates autophagy through the MAPK signaling pathway, ultimately inhibiting the malignant progression of LUAD.
Collapse
Affiliation(s)
- Yali Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Lin Shi
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Oncology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, Inner Mongolia 010000, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yanyan Cui
- Department of Oncology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia 024000, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin 300060, China
| |
Collapse
|
247
|
Liu X, Li D, Ma T, Luo X, Peng Y, Wang T, Zuo C, Cai J. Autophagy inhibition improves the targeted radionuclide therapy efficacy of 131I-FAP-2286 in pancreatic cancer xenografts. J Transl Med 2024; 22:156. [PMID: 38360704 PMCID: PMC10870561 DOI: 10.1186/s12967-024-04958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
PURPOSES Radiotherapy can induce tumor cell autophagy, which might impair the antitumoral effect. This study aims to investigate the effect of autophagy inhibition on the targeted radionuclide therapy (TRT) efficacy of 131I-FAP-2286 in pancreatic cancer. METHODS Human pancreatic cancer PANC-1 cells were exposed to 131I-FAP-2286 radiotherapy alone or with the autophagy inhibitor 3-MA. The autophagy level and proliferative activity of PANC-1 cells were analyzed. The pancreatic cancer xenograft-bearing nude mice were established by the co-injection of PANC-1 cells and pancreatic cancer-associated fibroblasts (CAFs), and then were randomly divided into four groups and treated with saline (control group), 3-MA, 131I-FAP-2286 and 131I-FAP-2286 + 3-MA, respectively. SPECT/CT imaging was performed to evaluate the bio-distribution of 131I-FAP-2286 in pancreatic cancer-bearing mice. The therapeutic effect of tumor was evaluated by 18F-FDG PET/CT imaging, tumor volume measurements, and the hematoxylin and eosin (H&E) staining, and immunohistochemical staining assay of tumor tissues. RESULTS 131I-FAP-2286 inhibited proliferation and increased the autophagy level of PANC-1 cells in a dose-dependent manner. 3-MA promoted 131I-FAP-2286-induced apoptosis of PANC-1 cells via suppressing autophagy. SPECT/CT imaging of pancreatic cancer xenograft-bearing nude mice showed that 131I-FAP-2286 can target the tumor effectively. According to 18F-FDG PET/CT imaging, the tumor growth curves and immunohistochemical analysis, 131I-FAP-2286 TRT was capable of suppressing the growth of pancreatic tumor accompanying with autophagy induction, but the addition of 3-MA enabled 131I-FAP-2286 to achieve a better therapeutic effect along with the autophagy inhibition. In addition, 3-MA alone did not inhibit tumor growth. CONCLUSIONS 131I-FAP-2286 exposure induces the protective autophagy of pancreatic cancer cells, and the application of autophagy inhibitor is capable of enhancing the TRT therapeutic effect.
Collapse
Affiliation(s)
- Xingyu Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Danni Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Tianbao Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xiu Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Ye Peng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Changjing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
248
|
Zhao M, Xu P, Shi W, Wang J, Wang T, Li P. Icariin exerts anti-tumor activity by inducing autophagy via AMPK/mTOR/ULK1 pathway in triple-negative breast cancer. Cancer Cell Int 2024; 24:74. [PMID: 38355608 PMCID: PMC10868106 DOI: 10.1186/s12935-024-03266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Breast cancer is the most prevalent female tumor, of which triple-negative breast cancer (TNBC) accounts for about 15%. Characterized by its aggressive nature and limited treatment options, TNBC currently stands as a significant clinical challenge. This study aimed to investigate the effects of icariin (ICA) on TNBC and explore the underlying molecular mechanism. METHODS Cell viability was assessed using CCK-8 assay, whereas the impact of ICA on cell proliferation was determined using colony formation assay and detection of proliferating cell nuclear antigen protein. Wound healing and transwell assays were used to evaluate the effects of ICA on cell migration and invasion, respectively. Flow cytometry was used to analyze cell cycle distribution and apoptosis. Transmission electron microscopy and monodansylcaverine staining were performed to detect the induction of autophagy, whereas molecular docking was conducted to predict the potential targets associated with autophagy. The in vivo anti-tumor effects of ICA were evaluated using a TNBC 4T1 xenograft mouse model. Protein expression levels were examined using immunoblotting and immunohistochemistry. RESULTS In vitro, ICA effectively suppressed the viability, proliferation, migration, and invasion of TNBC cells and induced G0/G1 phase cell cycle arrest, apoptosis, and autophagy in TNBC cells by regulating the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) signaling pathway. The knockdown of AMPK and inhibition of autophagy with 3-methyladenine reversed the effects of ICA, highlighting the importance of AMPK and autophagy in the anti-cancer mechanism of ICA. In vivo, ICA significantly inhibited TNBC growth, promoted autophagy, and regulated AMPK/mTOR/ULK1 pathway. CONCLUSIONS Our findings demonstrated that ICA exerts anti-cancer effects against TNBC and the associated molecular mechanisms. This study will help to facilitate further preclinical and clinical investigations for the treatment of TNBC.
Collapse
Affiliation(s)
- Mei Zhao
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
| | - Panling Xu
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China
| | - Wenjing Shi
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
| | - Juan Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
| | - Ting Wang
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China
| | - Ping Li
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, 120 Wanshui Road, Hefei, 230032, Anhui, People's Republic of China.
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China.
- Graduate School of Anhui University of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
249
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
250
|
Khan SU, Fatima K, Aisha S, Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun Signal 2024; 22:109. [PMID: 38347575 PMCID: PMC10860306 DOI: 10.1186/s12964-023-01302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/30/2023] [Indexed: 02/15/2024] Open
Abstract
Cancer treatment faces many hurdles and resistance is one among them. Anti-cancer treatment strategies are evolving due to innate and acquired resistance capacity, governed by genetic, epigenetic, proteomic, metabolic, or microenvironmental cues that ultimately enable selected cancer cells to survive and progress under unfavorable conditions. Although the mechanism of drug resistance is being widely studied to generate new target-based drugs with better potency than existing ones. However, due to the broader flexibility in acquired drug resistance, advanced therapeutic options with better efficacy need to be explored. Combination therapy is an alternative with a better success rate though the risk of amplified side effects is commonplace. Moreover, recent groundbreaking precision immune therapy is one of the ways to overcome drug resistance and has revolutionized anticancer therapy to a greater extent with the only limitation of being individual-specific and needs further attention. This review will focus on the challenges and strategies opted by cancer cells to withstand the current therapies at the molecular level and also highlights the emerging therapeutic options -like immunological, and stem cell-based options that may prove to have better potential to challenge the existing problem of therapy resistance. Video Abstract.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd, Houston, TX, 77030, USA.
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Shariqa Aisha
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar-190005, Jammu and Kashmir, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|