201
|
Wang L, He M, Liu X, Jiang BP, Chen H, Shen XC. Dual-Labeled Single Fluorescent Probes for the Simultaneous Two-Color Visualization of Dual Organelles and for Monitoring Cell Autophagy. Anal Chem 2024; 96:876-886. [PMID: 38165226 DOI: 10.1021/acs.analchem.3c04520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Dual-labeled single fluorescent probes are powerful tools for studying autophagy on the molecular scale, yet their development has been hampered by design complexity and a lack of valid strategies. Herein, for the first time, we introduce a combinatorial regulation strategy to fabricate dual-labeled probes for studying autophagy by integrating the specific organelle-targeting group and the functional fluorescence switch into a pentacyclic pyrylium scaffold (latent dual-target scaffold). For proof of concept, we prepared a range of dual-labeled probes (TMOs) that display different emission colors in duple organelles. In these probes, TMO1 and TMO2 enabled the simultaneous two-color visualization of the lysosomes and mitochondria. The other probes (TMO3 and TMO4) discriminatively targeted lysosomes/nucleolus and lysosomes/lipid droplets (LDs) with dual-color emission characteristics, respectively. Intriguingly, by simply connecting the endoplasmic reticulum (ER) targeting group to the pentacyclic pyrylium scaffold, we created the first dual-labeled probe TMO5 for simultaneously labeling lysosomes/ER in distinctive fluorescent colors. Subsequently, using the dual-labeled probe TMO2, drug-induced mitophagy was successfully recorded by evaluating the alterations of multiple mitophagy-related parameters, and the mitophagy defects in a cellular model of Parkinson's disease (PD) were also revealed by simultaneous dual-color/dual-organelle imaging. Further, the probe TMO4 can track the movement of lysosomes and LDs in real time and monitor the dynamic process of lipophagy. Therefore, this work not only presents attractive dual-labeled probes to promote the study of organelle interactions during autophagy but also provides a promising combinatorial regulation strategy that may be generalized for designing other dual-labeled probes with multiple organelle combinations.
Collapse
Affiliation(s)
- Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Mengye He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xingyue Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
202
|
Liang SM, Liang GB, Wang HL, Jiang H, Ma XL, Wei JH, Huang RZ, Zhang Y. Discovery of 4-(N-dithiobenzyl piperazine)-1,8-naphthalimide as a potent multi-target antitumor agent with good efficacy, limited toxicity, and low resistance. Eur J Med Chem 2024; 263:115937. [PMID: 37972528 DOI: 10.1016/j.ejmech.2023.115937] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
A series of 4-(N-dithiobenzyl piperazine)-1,8-naphthalimide derivatives 4-6 were designed, synthesized, and evaluated as novel multi-target antitumor agents. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) results showed that compounds 5j, 5k, and 6j exhibited superior in vitro antiproliferative activity in MGC-803, HepG-2, SKOV-3, and T24 cancer cell lines and the cisplatin-resistant cell line A549/DDP. HepG-2, SKOV-3, and T24 xenograft assay results revealed that compounds 5j, 5k, and 6j exhibited good antitumor effects compared with amonafide. The pathology results indicated that compound 5j exhibited the least comprehensive toxicity among the three compounds, identifying compound 5j as a good candidate antitumor agent with good efficacy, limited toxicity, and low resistance. Compound 5j was thus chose for further antitumor mechanism investigation. Results from the omics research, confocal immunofluorescence, Western blot, transmission electron microscopy, and flow cytometry indicated that compound 5j exerted antitumor effects through multiple mechanisms, including ferroptosis, autophagy, apoptosis, and cell cycle arrest. These results suggest that screening novel 1,8-naphthalimide-based antitumor agents for good efficacy, limited toxicity, and low resistance based on a multi-target drug strategy is feasible.
Collapse
Affiliation(s)
- Si-Min Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Gui-Bin Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hui-Ling Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Hong Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Xian-Li Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China
| | - Jian-Hua Wei
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Ri-Zhen Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| | - Ye Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacy, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
203
|
Gao M, Deng H, Zhang Y, Wang H, Liu R, Hou W, Zhang W. Hyaluronan nanogel co-loaded with chloroquine to enhance intracellular cisplatin delivery through lysosomal permeabilization and lysophagy inhibition. Carbohydr Polym 2024; 323:121415. [PMID: 37940248 DOI: 10.1016/j.carbpol.2023.121415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 11/10/2023]
Abstract
Hyaluronan (HA) has been widely used to construct nanocarriers for cancer-targeted drug delivery, due to its excellent biocompatibility and intrinsic affinity towards CD44 that is overexpressed in most cancer types. However, the HA-based nanocarriers are prone to trapping in lysosomes following the HA-mediated endocytosis, which limited the delivered drug to access its pharmacological action sites and subsequently compromised the therapeutic efficacy. To overcome this intracellular obstacle, here we demonstrated the co-loading of chloroquine (CQ) in HA nanogel could efficiently promote the intracellular delivery of cisplatin. The cisplatin coordination with HA generated the nanogel that could also co-encapsulate CQ (HA/Cis/CQ nanogel). Compared with cisplatin-loaded HA nanogel (HA/Cis), HA/Cis/CQ significantly promoted the lysosomal escape of cisplatin as well as enhanced tumor inhibition in the triple-negative breast cancer model. Mechanism studies suggested that co-delivery of CQ not only induced the lysosomal membrane permeabilization but also inhibited the lysophagy, which collectively contributed to the lysosomal instability and cisplatin escape. This HA/Cis/CQ nanogel elicited less toxicity compared with the combination of free Cis and CQ, thus suggesting a promising HA nanocarrier to boost the cisplatin delivery towards cancer-targeted therapy.
Collapse
Affiliation(s)
- Menghan Gao
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Runmeng Liu
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Weiqi Zhang
- State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
204
|
Wang Z, Shen N, Wang Z, Yu L, Yang S, Wang Y, Liu Y, Han G, Zhang Q. TRIM3 facilitates ferroptosis in non-small cell lung cancer through promoting SLC7A11/xCT K11-linked ubiquitination and degradation. Cell Death Differ 2024; 31:53-64. [PMID: 37978273 PMCID: PMC10781973 DOI: 10.1038/s41418-023-01239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Ferroptosis, a unique form of regulated necrotic cell death, is caused by excessive iron-dependent lipid peroxidation. However, the underlying mechanisms driving ferroptosis in human cancers remain elusive. In this study, we identified TRIM3, an E3 ubiquitin-protein ligase, as a key regulator of ferroptosis. TRIM3 is downregulated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), two major types of non-small cell lung cancer (NSCLC). Forced expression of TRIM3 promotes cell death by enhancing the cellular level of ROS and lipid peroxidation. Moreover, our in vivo study determined that TRIM3 overexpression diminishes the tumorigenicity of NSCLC cells, indicating that TRIM3 functions as a tumor suppressor in NSCLC. Mechanistically, TRIM3 directly interacts with SLC7A11/xCT through its NHL domain, leading to SCL7A11 K11-linked ubiquitination at K37, which promotes SLC7A11 proteasome-mediated degradation. Importantly, TRIM3 expression exhibits a negative correlation with SCL7A11 expression in clinical NSCLC samples, and low TRIM3 expression is associated with a worse prognosis. This study reveals that TRIM3 functions as a tumor suppressor that can impede the tumorigenesis of NSCLC by degrading SLC7A11, suggesting a novel therapeutic strategy against NSCLC.
Collapse
Affiliation(s)
- Zhangjie Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Na Shen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ziao Wang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Lei Yu
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Song Yang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gaohua Han
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Qi Zhang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
205
|
Xu T, Xu S, Ma G, Chang J, Zhang C, Zhou P, Wang C, Xu P, Yang J, Hu Y, Wu Y. Human Chorionic Gonadotropin Regulates the Smad Signaling Pathway by Antagonizing TGF-β in Giant Cell Tumor of Bone. Recent Pat Anticancer Drug Discov 2024; 19:188-198. [PMID: 38214358 PMCID: PMC10804236 DOI: 10.2174/1574892818666230413082909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Giant cell tumor of bone (GCTB) is a locally aggressive bone tumour aggravated by stromal cell proliferation and metastasis. OBJECTIVE We investigated the mechanism of action of human chorionic gonadotropin (HCG) in mediating GCTB proliferation and invasion. METHODS The expression of HCG was quantified using quantitative real-time PCR. After the primary stromal cells were isolated and identified, the function of HCG in GCTB was estimated using the cell counting kit-8, flow cytometry, scratch experiment, transwell assay, Western blot, and immunofluorescence. Moreover, the mechanism of HCG was assessed through western blotting. RESULTS HCG expression was decreased in clinical tissue samples from patients with GCTB. We validated that HCG repressed stromal cell proliferation, migration, invasion, autophagy, and epithelial- mesenchymal transition (EMT) and promoted cell apoptosis in GCTB. We also verified that HCG repressed the autophagy and EMT of stromal cells through the Smad signaling axis in GCTB. HCG inhibited the transduction of the Smad signaling pathway by restraining the binding of the TGF-β II receptor to ligand Activin A. CONCLUSION HCG restrained the Smad signaling pathway by antagonizing TGF-β signaling in GCTB. HCG may serve as a useful patent to treat GCTB.
Collapse
Affiliation(s)
- Tangbing Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Shenglin Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Guangwen Ma
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Jun Chang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Chi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Ping Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Chao Wang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Pengfei Xu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Junjun Yang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
| | - Yunfeng Wu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui Province, China
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, 230000, Anhui Province, China
| |
Collapse
|
206
|
Cheng L, Xu L, Yuan H, Zhao Q, Yue W, Ma S, Wu X, Gu D, Sun Y, Shi H, Xu J. Jianpi Jiedu Recipe Inhibits Proliferation through Reactive Oxygen Species-Induced Incomplete Autophagy and Reduces PD-L1 Expression in Colon Cancer. Integr Cancer Ther 2024; 23:15347354241268064. [PMID: 39155544 PMCID: PMC11331576 DOI: 10.1177/15347354241268064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Jianpi Jiedu Recipe has been used to treat digestive tract tumors in China since ancient times, and its reliability has been proven by clinical research. Currently, the specific biological mechanism of JPJDR in treating tumors is unclear. METHODOLOGY CCK-8 assay was used to detect cell viability. Clone formation assay and EdU assay were used to detect cell proliferation potential. DCFH-DA probe and JC-1 probe were used to detect total intracellular reactive oxygen species and mitochondrial membrane potential, respectively. Western blotting and immunofluorescence were used to detect protein expression level and subcellular localization of cells. The RFP-GFP-LC3B reporter system was used to observe the type of autophagy in cells. The xenograft tumor model was used to study the therapeutic effect of JPJDR in vivo. RESULTS JPJDR has an excellent inhibitory effect on various colorectal cancer cells and effectively reduces the proliferation ability of HT29 cells. After treatment with JPJDR, the amount of reactive oxygen species in HT29 cells increased significantly, and the mitochondrial membrane potential decreased. JPJDR induced the accumulation of autophagosomes in HT29 cells and was shown to be incomplete autophagy. At the same time, JPJDR reduced the expression of PD-L1. Meanwhile, JPJDR can exert an excellent therapeutic effect in xenograft tumor mice. CONCLUSION JPJDR is a low-toxicity and effective anti-tumor agent that can effectively treat colon cancer in vitro and in vivo. Its mechanism may be inducing mitochondrial dysfunction and incomplete autophagy injury to inhibit the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Lingling Cheng
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Liangfeng Xu
- Sheyang County People’s Hospital, Yancheng, Jiangsu, China
| | - Hua Yuan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Qihao Zhao
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Wei Yue
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Shuang Ma
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Xiaojing Wu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Dandan Gu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Yurong Sun
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Haifeng Shi
- Sheyang County People’s Hospital, Yancheng, Jiangsu, China
| | - Jianlin Xu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
207
|
Beilankouhi EAV, Valilo M, Dastmalchi N, Teimourian S, Safaralizadeh R. The Function of Autophagy in the Initiation, and Development of Breast Cancer. Curr Med Chem 2024; 31:2974-2990. [PMID: 37138421 DOI: 10.2174/0929867330666230503145319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/15/2021] [Indexed: 05/05/2023]
Abstract
Autophagy is a significant catabolic procedure that increases in stressful conditions. This mechanism is mostly triggered after damage to the organelles, the presence of unnatural proteins, and nutrient recycling in reaction to these stresses. One of the key points in this article is that cleaning and preserving damaged organelles and accumulated molecules through autophagy in normal cells helps prevent cancer. Since dysfunction of autophagy is associated with various diseases, including cancer, it has a dual function in tumor suppression and expansion. It has newly become clear that the regulation of autophagy can be used for the treatment of breast cancer, which has a promising effect of increasing the efficiency of anticancer treatment in a tissue- and cell-type-specific manner by affecting the fundamental molecular mechanisms. Regulation of autophagy and its function in tumorigenesis is a vital part of modern anticancer techniques. This study discusses the current advances related to the mechanisms that describe essential modulators of autophagy involved in the metastasis of cancers and the development of new breast cancer treatments.
Collapse
Affiliation(s)
| | - Mohammad Valilo
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
208
|
Zheng H, Zhang T, Zhang J, Ning J, Fu W, Wang Y, Shi Y, Wei G, Zhang J, Chen X, Ding S. AUF1-mediated inhibition of autophagic lysosomal degradation contributes to CagA stability and Helicobacter pylori-induced inflammation. Gut Microbes 2024; 16:2382766. [PMID: 39068523 PMCID: PMC11285221 DOI: 10.1080/19490976.2024.2382766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
CagA, a virulence factor of Helicobacter pylori (H. pylori), is known to drive inflammation in gastric epithelial cells and is typically degraded through autophagy. However, the molecular mechanism by which CagA evades autophagy-mediated degradation remains elusive. This study found that H. pylori inhibits autophagic flux by upregulating the expression of AU-rich element RNA-binding factor 1 (AUF1). We confirmed that AUF1 does not affect autophagy initiation but instead hampers lysosomal clearance, as evidenced by treatments with 3-MA, CQ and BafA1. Upregulated AUF1 stabilizes CagA protein levels by inhibiting the autolysosomal degradation of intracellular CagA in H. pylori-infected gastric epithelial cells. Knocking down AUF1 promotes CagA degradation, an effect that can be reversed by the lysosome inhibitor BafA1 and CQ. Transcriptome analysis of AUF1-knockdown gastric epithelial cells infected with H. pylori indicated that AUF1 regulates the expression of lysosomal-associated hydrolase genes, specifically CTSD, to inhibit autolysosomal degradation. Moreover, we observed that knockdown of AUF1 enhanced the stability of CTSD mRNA and identified AUF1 binding to the 3'UTR region of CTSD mRNA. AUF1-mediated downregulation of CTSD expression contributes to CagA stability, and AUF1 overexpression leads to an increase in CagA levels in exosomes, thus promoting extracellular inflammation. In clinical gastric mucosa, the expression of AUF1 and its cytoplasmic translocation are associated with H. pylori-associated gastritis, with CagA being necessary for the translocation of AUF1 into the cytoplasm. Our findings suggest that AUF1 is a novel host-positive regulator of CagA, and dysregulation of AUF1 expression increases the risk of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ye Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, P.R. China
| | - Guochao Wei
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| |
Collapse
|
209
|
Tsopela V, Korakidis E, Lagou D, Kalliampakou KI, Milona RS, Kyriakopoulou E, Mpekoulis G, Gemenetzi I, Stylianaki EA, Sideris CD, Sioli A, Kefallinos D, Sideris DC, Aidinis V, Eliopoulos AG, Kambas K, Vassilacopoulou D, Vassilaki N. L-Dopa decarboxylase modulates autophagy in hepatocytes and is implicated in dengue virus-caused inhibition of autophagy completion. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119602. [PMID: 37778471 DOI: 10.1016/j.bbamcr.2023.119602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.
Collapse
Affiliation(s)
- Vassilina Tsopela
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Evangelos Korakidis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Despoina Lagou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | | | - Raphaela S Milona
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Eirini Kyriakopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - George Mpekoulis
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Ioanna Gemenetzi
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Elli-Anna Stylianaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | | | - Aggelina Sioli
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dionysis Kefallinos
- School of Electrical Engineering and Computer Science, National Technical University of Athens, 157 73 Athens, Greece
| | - Diamantis C Sideris
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, NKUA, 115 27 Athens, Greece; Center of Basic Research, Biomedical Research Foundation Academy of Athens, 115 27 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 115 21 Athens, Greece
| | - Dido Vassilacopoulou
- Section of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 157 01 Athens, Greece
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 115 21 Athens, Greece.
| |
Collapse
|
210
|
Yang X, Liu Z, Xu X, He M, Xiong H, Liu L. Casticin induces apoptosis and cytoprotective autophagy while inhibiting stemness involving Akt/mTOR and JAK2/STAT3 pathways in glioblastoma. Phytother Res 2024; 38:305-320. [PMID: 37869765 DOI: 10.1002/ptr.8048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/10/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023]
Abstract
Glioblastoma (GBM) is the most common malignant glioma. However, the current systemic drugs cannot completely cure GBM. Casticin is a methoxylated flavonol compound isolated from a traditional Chinese medicine Vitex rotundifolia L.f. and exhibits a strong antitumor activity in multiple human malignancies. This study was aimed to explore the effects and underlying mechanisms of casticin in GBM. The MTT assay and colony formation was used to evaluate the casticin-induced cell viability in GBM cells. Apoptosis was assessed by ANNEXIV/PI staining assay. Autophagy was analyzed by transmission electron microscopy and immunofluorescence assays. GBM stem cell (GSC) was analyzed by tumor-sphere formation assay and ALDEFLUOR assay. The anti-GBM effect of casticin was also determined by the U87MG xenograft model. Casticin inhibited tumor cell growth in vitro and in vivo, as well as significantly induced apoptosis and autophagy. Autophagy inhibition augmented casticin-induced apoptosis. Casticin also reduced the GSC population by suppressing Oct4, Nanog, and Sox2. Mechanistically, casticin inhibited Akt/mTOR and JAK2/STAT3 signal pathways. The antitumor effect of casticin in GBM was demonstrated by inducing apoptosis, autophagy, and reducing population of GSCs; thus, it may be a potential GBM therapeutic agent for future clinical usage.
Collapse
Affiliation(s)
- Xun Yang
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
- Department of Spine Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Zeyuan Liu
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Xu Xu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Meng He
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| | - Hongtao Xiong
- Department of Hand & Microvascular Surgery, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Lijun Liu
- Department of Traumatic Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital, Shenzhen University; School of Biomedical Engineering, Shenzhen University Medical School), Shenzhen, China
| |
Collapse
|
211
|
Rajabi S, Irani M, Moeinifard M, Hamzeloo-Moghadam M. Britannin suppresses MCF-7 breast cancer cell growth by inducing apoptosis and inhibiting autophagy. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:90-99. [PMID: 38948174 PMCID: PMC11210692 DOI: 10.22038/ajp.2023.22995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 07/02/2024]
Abstract
Objective Breast cancer is the main reason for cancer-related death in women. Britannin is a sesquiterpene lactone compound derived from Inula aucheriana with anti-tumor properties. We aimed to explore the impacts of britannin on apoptosis and autophagy in MCF-7 breast cancer cell line. Materials and Methods The cytotoxic influences of britannin on MCF-7 cells were estimated by the MTT method. The expression levels of apoptosis-associated genes such as CASP3, BCL2, BCL2L1, STAT3, and JAK2 and transcripts of autophagy markers including ATG1, ATG4, ATG5, ATG7, ATG12, BECN1, and MAP1LC3A were quantified using quantitative real time-PCR (qRT-PCR). Western blotting method was used to evaluate the amount of caspase 3, phosphorylated JAK2, phosphorylated STAT3, ATG1, ATG4, ATG5, Beclin1, and LC-III. Results Treatment of MCF-7 cells with various concentrations of britannin remarkably hindered the viability of these cells compared to the controls. This compound significantly elevated the expression of pro-apoptotic caspase-3 but did not influence the levels of anti-apoptotic BCL2 and BCL2L1. Britannin decreased the levels of phosphorylated forms of JAK2 and STAT3 proteins causing the blockage of the JAK/STAT pathway. Four autophagy factors expressions, including ATG4, ATG5, Beclin1, and LCIII, were reduced due to the effect of britannin on MCF-7 cells. Conclusion Britannin triggered apoptosis in MCF-7 cells by a mechanism that led to the blockade of the JAK/STAT pathway. Moreover, britannin prohibited autophagy in these cancer cells. This may suggest britannin as an agent for the suppression of breast tumors or as an adjutant for the enhancement of anti-breast cancer drugs effect.
Collapse
Affiliation(s)
- Sadegh Rajabi
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Irani
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Moeinifard
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
212
|
Zefrei FJ, Shormij M, Dastranj L, Alvandi M, Shaghaghi Z, Farzipour S, Zarei-Polgardani N. Ferroptosis Inducers as Promising Radiosensitizer Agents in Cancer Radiotherapy. Curr Radiopharm 2024; 17:14-29. [PMID: 37974441 DOI: 10.2174/0118744710262369231110065230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 11/19/2023]
Abstract
Radiotherapy (RT) failure has historically been mostly attributed to radioresistance. Ferroptosis is a type of controlled cell death that depends on iron and is caused by polyunsaturated fatty acid peroxidative damage. Utilizing a ferroptosis inducer may be a successful tactic for preventing tumor growth and radiotherapy-induced cell death. A regulated form of cell death known as ferroptosis is caused by the peroxidation of phospholipids containing polyunsaturated fatty acids in an iron-dependent manner (PUFA-PLs). The ferroptosis pathway has a number of important regulators. By regulating the formation of PUFA-PLs, the important lipid metabolism enzyme ACSL4 promotes ferroptosis, whereas SLC7A11 and (glutathione peroxidase 4) GPX4 prevent ferroptosis. In addition to introducing the ferroptosis inducer chemicals that have recently been demonstrated to have a radiosensitizer effect, this review highlights the function and methods by which ferroptosis contributes to RT-induced cell death and tumor suppression in vitro and in vivo.
Collapse
Affiliation(s)
- Fatemeh-Jalali Zefrei
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammd Shormij
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences-Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Dastranj
- Department of Physics, Hakim Sabzevari University, Sabzevar, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Shaghaghi
- Department of Radiopharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasim Zarei-Polgardani
- Department of Animal Sciences and Marine Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, G.C, Evin, Tehran, Iran
| |
Collapse
|
213
|
Zhou W, Lim A, Edderkaoui M, Osipov A, Wu H, Wang Q, Pandol S. Role of YAP Signaling in Regulation of Programmed Cell Death and Drug Resistance in Cancer. Int J Biol Sci 2024; 20:15-28. [PMID: 38164167 PMCID: PMC10750275 DOI: 10.7150/ijbs.83586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/29/2023] [Indexed: 01/03/2024] Open
Abstract
Although recent advances in cancer treatment significantly improved the prognosis of patients, drug resistance remains a major challenge. Targeting programmed cell death is a major approach of antitumor drug development. Deregulation of programmed cell death (PCD) contributes to resistance to a variety of cancer therapeutics. Yes-associated protein (YAP) and its paralog TAZ, the main downstream effectors of the Hippo pathway, are aberrantly activated in a variety of human malignancies. The Hippo-YAP pathway, which was originally identified in Drosophila, is well conserved in humans and plays a defining role in regulation of cell fate, tissue growth and regeneration. Activation of YAP signaling has emerged as a key mechanism involved in promoting cancer cell proliferation, metastasis, and drug resistance. Understanding the role of YAP/TAZ signaling network in PCD and drug resistance could facilitate the development of effective strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arsen Osipov
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stephen Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
214
|
Wang L, Zhu H, Shi Z, Chen B, Huang H, Lin G, Li J, Yu H, Xu S, Chen G, Ou R, Dai C. MK8722 initiates early-stage autophagy while inhibiting late-stage autophagy via FASN-dependent reprogramming of lipid metabolism. Theranostics 2024; 14:75-95. [PMID: 38164137 PMCID: PMC10750195 DOI: 10.7150/thno.83051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/01/2023] [Indexed: 01/03/2024] Open
Abstract
Background and objective: Epithelial ovarian cancer (EOC) is associated with latent onset and poor prognosis, with drug resistance being a main concern in improving the prognosis of these patients. The resistance of cancer cells to most chemotherapeutic agents can be related to autophagy mechanisms. This study aimed to assess the therapeutic effect of MK8722, a small-molecule compound that activates AMP-activated protein kinase (AMPK), on EOC cells and to propose a novel strategy for the treatment of EOC. Purpose: To explore the therapeutic effects of MK8722 on EOC cells, and to elucidate the underlying mechanism. Methods and results: It was found that MK8722 effectively inhibited the malignant biological behaviors of EOC cells. In vitro experiments showed that MK8722 targeted and decreased the lipid metabolic pathway-related fatty acid synthase (FASN) expression levels, causing the accumulation of lipid droplets. In addition, transmission electron microscopy revealed the presence of autophagosome-affected mitochondria. Western blotting confirmed that MK8722 plays a role in activating autophagy upstream (PI3K/AKT/mTOR) and inhibiting autophagy downstream via FASN-dependent reprogramming of lipid metabolism. Plasmid transient transfection demonstrated that MK8722 suppressed late-stage autophagy by blocking autophagosome-lysosome fusion. Immunofluorescence and gene silencing revealed that this effect was achieved by inhibiting the interaction of FASN with the SNARE complexes STX17-SNP29-VAMP8. Furthermore, the antitumor effect of MK8722 was verified using a subcutaneous xenograft mouse model. Conclusion: The findings suggest that using MK8722 may be a new strategy for treating EOC, as it has the potential to be a new autophagy/mitophagy inhibitor. Its target of action, FASN, is a molecular crosstalk between lipid metabolism and autophagy, and exploration of the underlying mechanism of FASN may provide a new research direction.
Collapse
Affiliation(s)
- Luhui Wang
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, China
| | - Haiyan Zhu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Zhehao Shi
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Ganglian Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Haitao Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Shihao Xu
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Rongying Ou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325015, China
| | - Chunxiu Dai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| |
Collapse
|
215
|
Toriyama K, Okuma T, Abe S, Nakamura H, Aoshiba K. In vitro anticancer effect of azithromycin targeting hypoxic lung cancer cells via the inhibition of mitophagy. Oncol Lett 2024; 27:12. [PMID: 38028184 PMCID: PMC10664065 DOI: 10.3892/ol.2023.14146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Solid tumors are predisposed to hypoxia, which induces tumor progression, and causes resistance to treatment. Hypoxic tumor cells exploit auto- and mitophagy to facilitate metabolism and mitochondrial renewal. Azithromycin (AZM), a widely used macrolide, inhibits autophagy in cancer cells. The aim of the present study was to determine whether AZM targeted hypoxic cancer cells by inhibiting mitophagy. Lung cancer cell lines (A549, H1299 and NCI-H441) were cultured for up to 72 h under normoxic (20% O2) or hypoxic (0.3% O2) conditions in the presence or absence of AZM (≤25 µM), and the cell survival, autophagy flux and mitophagy flux were evaluated. AZM treatment reduced cell survival under hypoxic conditions, caused mitolysosome dysfunction with raised lysosomal pH and impaired the efficient removal of hypoxia-damaged mitochondria, eventually inducing apoptosis in the cancer cells. The cytotoxic effect of AZM under hypoxic conditions was abolished in mitochondria-deficient A549 cells (ρ° cells). The present study demonstrated that AZM reduced lung cancer cell survival under hypoxic conditions by interfering with the efficient removal of damaged mitochondria through mitophagy inhibition. Thus, AZM may be considered as a promising anticancer drug that targets the mitochondrial vulnerability of hypoxic lung cancer cells.
Collapse
Affiliation(s)
- Kazutoshi Toriyama
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki 300-0395, Japan
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Takashi Okuma
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki 300-0395, Japan
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki 300-0395, Japan
| |
Collapse
|
216
|
Adelipour M, Naghashpour M, Roshanazadeh MR, Chenaneh H, Mohammadi A, Pourangi P, Miri SR, Zahedi A, Haghighatnezhad M, Golabi S. Evaluation of Beclin1 and mTOR genes and p62 protein expression in breast tumor tissues of Iranian patients. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:11-19. [PMID: 38164366 PMCID: PMC10644314 DOI: 10.22099/mbrc.2023.47597.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Autophagy is a cellular process that plays a major role in the fate of tumor cells. Understanding the role of autophagy in cancer therapy is a major challenge, particularly for breast cancer as the sole top cause of mortality among women. In this study, we evaluated the gene expression of mTOR and Beclin1 and the levels of p62 protein, in breast tumors and compared them to a control condition. To explore the role of autophagy in breast cancer, we acquired tumor biopsies from 41 new cases of breast cancer patients. We extracted total RNA from each biopsy and used real-time PCR to quantify Beclin1 and mTOR-specific RNA expression. In addition, we evaluated the expression of the p62 protein in paraffin-embedded tumor tissue using the immunohistochemistry technique. The data revealed an upregulation of Beclin1 and a downregulation of mTOR in tumor tissues compared to the control condition. The correlation between p62 expression and Beclin1/mTOR showed a negative and positive correlation, respectively, confirming autophagy activation in the tumor tissues. However, there was no correlation between autophagy markers and tumor size, grade and stage. The findings revealed that autophagy activation was found in breast tumor tissues, suggesting that autophagy can be a target for breast cancer therapy.
Collapse
Affiliation(s)
- Maryam Adelipour
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahshid Naghashpour
- Department of Nutrition, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Mohammad Reza Roshanazadeh
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Chenaneh
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asma Mohammadi
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Pegah Pourangi
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Seyed Rouhollah Miri
- Department of surgical oncology, Cancer institute, Tehran University of Medical Science
| | | | - Mahmood Haghighatnezhad
- Department of Biochemistry, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| | - Sahar Golabi
- Department of Physiology, School of Medicine, Abadan University of Medical Science, Abadan, Iran
| |
Collapse
|
217
|
Yang Y, Liu P, Zhou M, Yin L, Wang M, Liu T, Jiang X, Gao H. Small-molecule drugs of colorectal cancer: Current status and future directions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166880. [PMID: 37696461 DOI: 10.1016/j.bbadis.2023.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the world's fourth most deadly cancer. CRC, as a genetic susceptible disease, faces significant challenges in optimizing prognosis through optimal drug treatment modalities. In recent decades, the development of innovative small-molecule drugs is expected to provide targeted interventions that accurately address the different molecular characteristics of CRC. Although the clinical application of single-target drugs is limited by the heterogeneity and high metastasis of CRC, novel small-molecule drug treatment strategies such as dual/multiple-target drugs, drug repurposing, and combination therapies can help overcome these challenges and provide new insights for improving CRC treatment. In this review, we focus on the current status of a range of small molecule drugs that are being considered for CRC therapy, including single-target drugs, dual/multiple-target drugs, drug repurposing and combination strategies, which will pave the way for targeting CRC vulnerabilities with small-molecule drugs in future personalized treatment.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyang Zhou
- University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ting Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
218
|
Hu X, Ju Y, Zhang YK. Ivermectin as a potential therapeutic strategy for glioma. J Neurosci Res 2024; 102:e25254. [PMID: 37814994 DOI: 10.1002/jnr.25254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023]
Abstract
Ivermectin (IVM), a semi-synthetic macrolide parasiticide, has demonstrated considerable effectiveness in combating internal and external parasites, particularly nematodes and arthropods. Its remarkable ability to control parasites has earned it significant recognition, culminating in Satoshi Omura and William C. Campbell's receipt of the 2015 Nobel Prize in Physiology or Medicine for their contributions to the development of IVM. In recent years, investigations have revealed that IVM possesses antitumor properties. It can suppress the growth of various cancer cells, including glioma, through a multitude of mechanisms such as selective targeting of tumor-specific proteins, inducing programmed cell death, and modulation of tumor-related signaling pathways. Hence, IVM holds tremendous potential as a novel anticancer drug. This review seeks to provide an overview of the underlying mechanisms that enable IVM's capacity to suppress glioma. Furthermore, it aims to elucidate the challenges and prospects associated with utilizing IVM as a new anticancer agent.
Collapse
Affiliation(s)
- Xing Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yan Ju
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yue-Kang Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
219
|
Cui H, Wang Y, Zhou T, Qu L, Zhang X, Wang Y, Han M, Yang S, Ren X, Wang G, Gang X. Targeting DGAT1 inhibits prostate cancer cells growth by inducing autophagy flux blockage via oxidative stress. Oncogene 2024; 43:136-150. [PMID: 37973951 DOI: 10.1038/s41388-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Impaired macroautophagy/autophagy flux has been implicated in the treatment of prostate cancer (PCa). However, the mechanism underlying autophagy dysregulation in PCa remains unknown. In the current study, we investigated the role of diacylglycerol acyltransferases 1 (DGAT1) and its potential effects on cellular energy homeostasis and autophagy flux in PCa. The results of immunohistochemical staining suggested that DGAT1 expression was positively corrected with tumor stage and node metastasis, indicating DGAT1 is an important factor involved in the development and progression of PCa. Furthermore, targeting DGAT1 remarkably inhibited cell proliferation in vitro and suppressed PCa growth in xenograft models by triggering severe oxidative stress and subsequently autophagy flux blockage. Mechanically, DGAT1 promoted PCa progression by maintaining cellular energy homeostasis, preserving mitochondrial function, protecting against reactive oxygen species, and subsequently promoting autophagy flux via regulating lipid droplet formation. Moreover, we found that fenofibrate exhibits as an upstream regulator of DGAT1. Fenofibrate performed its anti-PCa effect involved the aforementioned mechanisms, and partially dependent on the regulation of DGAT1. Collectively. These findings indicate that DGAT1 regulates PCa lipid droplets formation and is essential for PCa progression. Targeting DGAT1 might be a promising method to control the development and progression of PCa. Schematic representation of DGAT1 affects autophagy flux by regulating lipid homeostasis and maintaining mitochondrial function in prostate cancer (PCa). PCa is characterized up-regulation of DGAT1, leading to the translocation of free fatty acids into lipid droplets, thereby preventing PCa cell from lipotoxicity. Inhibition of DGAT1 suppresses growth of PCa by inducing oxidative stress and subsequently autophagy flux blockage. Further, the current results revealed that fenofibrate exhibits as an upstream regulator of DGAT1, and fenofibrate plays an anti-PCa role partially dependent on the regulation of DGAT1, suggesting a potential therapeutic approach to ameliorate this refractory tumor.
Collapse
Affiliation(s)
- Haiying Cui
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, 130021, Jilin Province, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Limei Qu
- Department of Pathology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Yingdi Wang
- Department of Urology, Jilin Oncological Hospital, Changchun, 130021, Jilin Province, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Shuo Yang
- Department of Clinical Nutrition, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
220
|
Peng Q, Wang L, Zuo L, Gao S, Jiang X, Han Y, Lin J, Peng M, Wu N, Tang Y, Tian H, Zhou Y, Liao Q. HPV E6/E7: insights into their regulatory role and mechanism in signaling pathways in HPV-associated tumor. Cancer Gene Ther 2024; 31:9-17. [PMID: 38102462 DOI: 10.1038/s41417-023-00682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
Human papillomavirus (HPV) is a class of envelope-free double-stranded DNA virus. HPV infection has been strongly associated with the development of many malignancies, such as cervical, anal and oral cancers. The viral oncoproteins E6 and E7 perform central roles on HPV-induced carcinogenic processes. During tumor development, it usually goes along with the activation of abnormal signaling pathways. E6 and E7 induces changes in cell cycle, proliferation, invasion, metastasis and other biological behaviors by affecting downstream tumor-related signaling pathways, thus promoting malignant transformation of cells and ultimately leading to tumorigenesis and progression. Here, we summarized that E6 and E7 proteins promote HPV-associated tumorigenesis and development by regulating the activation of various tumor-related signaling pathways, for example, the Wnt/β-catenin, PI3K/Akt, and NF-kB signaling pathway. We also discussed the importance of HPV-encoded E6 and E7 and their regulated tumor-related signaling pathways for the diagnosis and effective treatment of HPV-associated tumors.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Lujuan Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Liang Zuo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shuichao Gao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Mingjing Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hao Tian
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- University of South China, Hengyang, 421001, Hunan, China.
- Public Service Platform of Tumor organoids Technology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
221
|
Bestion E, Rachid M, Tijeras-Raballand A, Roth G, Decaens T, Ansaldi C, Mezouar S, Raymond E, Halfon P. Ezurpimtrostat, A Palmitoyl-Protein Thioesterase-1 Inhibitor, Combined with PD-1 Inhibition Provides CD8 + Lymphocyte Repopulation in Hepatocellular Carcinoma. Target Oncol 2024; 19:95-106. [PMID: 38133710 DOI: 10.1007/s11523-023-01019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Palmitoyl-protein thioesterase-1 (PPT1) is a clinical stage druggable target for inhibiting autophagy in cancer. OBJECTIVE We aimed to determine the cellular and molecular activity of targeting PPT1 using ezurpimtrostat, in combination with an anti-PD-1 antibody. METHODS In this study we used a transgenic immunocompetent mouse model of hepatocellular carcinoma. RESULTS Herein, we revealed that inhibition of PPT1 using ezurpimtrostat decreased the liver tumor burden in a mouse model of hepatocellular carcinoma by inducing the penetration of lymphocytes into tumors when combined with anti-programmed death-1 (PD-1). Inhibition of PPT1 potentiates the effects of anti-PD-1 immunotherapy by increasing the expression of major histocompatibility complex (MHC)-I at the surface of liver cancer cells and modulates immunity through recolonization and activation of cytotoxic CD8+ lymphocytes. CONCLUSIONS Ezurpimtrostat turns cold tumors into hot tumors and, thus, could improve T cell-mediated immunotherapies in liver cancer.
Collapse
Affiliation(s)
- Eloïne Bestion
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France
| | - Madani Rachid
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France
| | | | - Gael Roth
- Centre hospitalouniversitaire Grenoble Alpes/Institute for Advanced Biosciences, Centre national de la recherché scienti-fique, Unité mixte de recherche 5309-Institut national de la santé et de la recherche médicale U1209, University Grenoble Alpes/Hepato-Gastroenterology and Digestive Oncology Department, 38043, Grenoble, France
| | - Thomas Decaens
- Centre hospitalouniversitaire Grenoble Alpes/Institute for Advanced Biosciences, Centre national de la recherché scienti-fique, Unité mixte de recherche 5309-Institut national de la santé et de la recherche médicale U1209, University Grenoble Alpes/Hepato-Gastroenterology and Digestive Oncology Department, 38043, Grenoble, France
| | | | - Soraya Mezouar
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France
- Etablissement français du sang, Centre national de la recherche scientifique, Anthropologie bio-culturelle, droit, éthique et santé, "Biologie des Groupes Sanguins", Aix-Marseille University, Marseille, France
| | - Eric Raymond
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France
- Oncology Department, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Philippe Halfon
- Genoscience Pharma, 10, Rue d'Iéna, 13006, Marseille, France.
| |
Collapse
|
222
|
Boretto C, Actis C, Faris P, Cordero F, Beccuti M, Ferrero G, Muzio G, Moccia F, Autelli R. Tamoxifen Activates Transcription Factor EB and Triggers Protective Autophagy in Breast Cancer Cells by Inducing Lysosomal Calcium Release: A Gateway to the Onset of Endocrine Resistance. Int J Mol Sci 2023; 25:458. [PMID: 38203629 PMCID: PMC10779225 DOI: 10.3390/ijms25010458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Among the several mechanisms accounting for endocrine resistance in breast cancer, autophagy has emerged as an important player. Previous reports have evidenced that tamoxifen (Tam) induces autophagy and activates transcription factor EB (TFEB), which regulates the expression of genes controlling autophagy and lysosomal biogenesis. However, the mechanisms by which this occurs have not been elucidated as yet. This investigation aims at dissecting how TFEB is activated and contributes to Tam resistance in luminal A breast cancer cells. TFEB was overexpressed and prominently nuclear in Tam-resistant MCF7 cells (MCF7-TamR) compared with their parental counterpart, and this was not dependent on alterations of its nucleo-cytoplasmic shuttling. Tam promoted the release of lysosomal Ca2+ through the major transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1) and two-pore channels (TPCs), which caused the nuclear translocation and activation of TFEB. Consistently, inhibiting lysosomal calcium release restored the susceptibility of MCF7-TamR cells to Tam. Our findings demonstrate that Tam drives the nuclear relocation and transcriptional activation of TFEB by triggering the release of Ca2+ from the acidic compartment, and they suggest that lysosomal Ca2+ channels may represent new druggable targets to counteract the onset of autophagy-mediated endocrine resistance in luminal A breast cancer cells.
Collapse
Affiliation(s)
- Cecilia Boretto
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Chiara Actis
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Cordero
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (F.C.); (M.B.)
| | - Marco Beccuti
- Department of Computer Science, University of Turin, 10149 Turin, Italy; (F.C.); (M.B.)
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (C.B.); (C.A.); (G.F.); (G.M.)
| |
Collapse
|
223
|
Wilczyński J, Paradowska E, Wilczyński M. Personalization of Therapy in High-Grade Serous Tubo-Ovarian Cancer-The Possibility or the Necessity? J Pers Med 2023; 14:49. [PMID: 38248751 PMCID: PMC10817599 DOI: 10.3390/jpm14010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
High-grade serous tubo-ovarian cancer (HGSTOC) is the most lethal tumor of the female genital tract. The foregoing therapy consists of cytoreduction followed by standard platinum/taxane chemotherapy; alternatively, for primary unresectable tumors, neo-adjuvant platinum/taxane chemotherapy followed by delayed interval cytoreduction. In patients with suboptimal surgery or advanced disease, different forms of targeted therapy have been accepted or tested in clinical trials. Studies on HGSTOC discovered its genetic and proteomic heterogeneity, epigenetic regulation, and the role of the tumor microenvironment. These findings turned attention to the fact that there are several distinct primary tumor subtypes of HGSTOC and the unique biology of primary, metastatic, and recurrent tumors may result in a differential drug response. This results in both chemo-refractoriness of some primary tumors and, what is significantly more frequent and destructive, secondary chemo-resistance of metastatic and recurrent HGSTOC tumors. Treatment possibilities for platinum-resistant disease include several chemotherapeutics with moderate activity and different targeted drugs with difficult tolerable effects. Therefore, the question appears as to why different subtypes of ovarian cancer are predominantly treated based on the same therapeutic schemes and not in an individualized way, adjusted to the biology of a specific tumor subtype and temporal moment of the disease. The paper reviews the genomic, mutational, and epigenetic signatures of HGSTOC subtypes and the tumor microenvironment. The clinical trials on personalized therapy and the overall results of a new, comprehensive approach to personalized therapy for ovarian cancer have been presented and discussed.
Collapse
Affiliation(s)
- Jacek Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Street, 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland;
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Street, 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Street, 90-419 Lodz, Poland
| |
Collapse
|
224
|
Shi Y, Feng Y, Qiu P, Zhao K, Li X, Deng Z, Wang J. Identifying the programmed cell death index of hepatocellular carcinoma for prognosis and therapy response improvement by machine learning: a bioinformatics analysis and experimental validation. Front Immunol 2023; 14:1298290. [PMID: 38170006 PMCID: PMC10759150 DOI: 10.3389/fimmu.2023.1298290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Background Despite advancements in hepatocellular carcinoma (HCC) treatments, the prognosis for patients remains suboptimal. Cumulative evidence suggests that programmed cell death (PCD) exerts crucial functions in HCC. PCD-related genes are potential predictors for prognosis and therapeutic responses. Methods A systematic analysis of 14 PCD modes was conducted to determine the correlation between PCD and HCC. A novel machine learning-based integrative framework was utilized to construct the PCD Index (PCDI) for prognosis and therapeutic response prediction. A comprehensive analysis of PCDI genes was performed, leveraging data including single-cell sequencing and proteomics. GBA was selected, and its functions were investigated in HCC cell lines by in vitro experiments. Results Two PCD clusters with different clinical and biological characteristics were identified in HCC. With the computational framework, the PCDI was constructed, demonstrating superior prognostic predictive efficacy and surpassing previously published prognostic models. An efficient clinical nomogram based on PCDI and clinicopathological factors was then developed. PCDI was intimately associated with immunological attributes, and PCDI could efficaciously predict immunotherapy response. Additionally, the PCDI could predict the chemotherapy sensitivity of HCC patients. A multilevel panorama of PCDI genes confirmed its stability and credibility. Finally, the knockdown of GBA could suppress both the proliferative and invasive capacities of HCC cells. Conclusion This study systematically elucidated the association between PCD and HCC. A robust PCDI was constructed for prognosis and therapy response prediction, which would facilitate clinical management and personalized therapy for HCC.
Collapse
Affiliation(s)
- Yuanxin Shi
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Qiu
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
225
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
226
|
Chen J, Gao G, He Y, Zhang Y, Wu H, Dai P, Zheng Q, Huang H, Weng J, Zheng Y, Huang Y. Construction and validation of a novel lysosomal signature for hepatocellular carcinoma prognosis, diagnosis, and therapeutic decision-making. Sci Rep 2023; 13:22624. [PMID: 38114725 PMCID: PMC10730614 DOI: 10.1038/s41598-023-49985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Lysosomes is a well-recognized oncogenic driver and chemoresistance across variable cancer types, and has been associated with tumor invasiveness, metastasis, and poor prognosis. However, the significance of lysosomes in hepatocellular carcinoma (HCC) is not well understood. Lysosomes-related genes (LRGs) were downloaded from Genome Enrichment Analysis (GSEA) databases. Lysosome-related risk score (LRRS), including eight LRGs, was constructed via expression difference analysis (DEGs), univariate and LASSO-penalized Cox regression algorithm based on the TCGA cohort, while the ICGC cohort was obtained for signature validation. Based on GSE149614 Single-cell RNA sequencing data, model gene expression and liver tumor niche were further analyzed. Moreover, the functional enrichments, tumor microenvironment (TME), and genomic variation landscape between LRRSlow/LRRShigh subgroup were systematically investigated. A total of 15 Lysosomes-related differentially expressed genes (DELRGs) in HCC were detected, and then 10 prognosis DELRGs were screened out. Finally, the 8 optimal DELRGs (CLN3, GBA, CTSA, BSG, APLN, SORT1, ANXA2, and LAPTM4B) were selected to construct the LRRS prognosis signature of HCC. LRRS was considered as an independent prognostic factor and was associated with advanced clinicopathological features. LRRS also proved to be a potential marker for HCC diagnosis, especially for early-stage HCC. Then, a nomogram integrating the LRRS and clinical parameters was set up displaying great prognostic predictive performance. Moreover, patients with high LRRS showed higher tumor stemness, higher heterogeneity, and higher genomic alteration status than those in the low LRRS group and enriched in metabolism-related pathways, suggesting its underlying role in the progression and development of liver cancer. Meanwhile, the LRRS can affect the proportion of immunosuppressive cell infiltration, making it a vital immunosuppressive factor in the tumor microenvironment. Additionally, HCC patients with low LRRS were more sensitive to immunotherapy, while patients in the high LRRS group responded better to chemotherapy. Upon single-cell RNA sequencing, CLN3, GBA, and LAPTM4B were found to be specially expressed in hepatocytes, where they promoted cell progression. Finally, RT-qPCR and external datasets confirmed the mRNA expression levels of model genes. This study provided a direct links between LRRS signature and clinical characteristics, tumor microenvironment, and clinical drug-response, highlighting the critical role of lysosome in the development and treatment resistance of liver cancer, providing valuable insights into the prognosis prediction and treatment response of HCC, thereby providing valuable insights into prognostic prediction, early diagnosis, and therapeutic response of HCC.
Collapse
Affiliation(s)
- Jianlin Chen
- Shengli Clinical Medical College, Fujian Medical University, Fujian, 350001, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China
- Central Laboratory, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China
| | - Gan Gao
- Department of Clinical Laboratory, Liuzhou Hospital, Guangzhou Women and Children's Medical Center, Liuzhou, 545616, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, Liuzhou, 545616, Guangxi, China
| | - Yufang He
- Shengli Clinical Medical College, Fujian Medical University, Fujian, 350001, Fuzhou, China
| | - Yi Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fujian, 350001, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China
| | - Haixia Wu
- Shengli Clinical Medical College, Fujian Medical University, Fujian, 350001, Fuzhou, China
| | - Peng Dai
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Qingzhu Zheng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Hengbin Huang
- Shengli Clinical Medical College, Fujian Medical University, Fujian, 350001, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China
| | - Jiamiao Weng
- Shengli Clinical Medical College, Fujian Medical University, Fujian, 350001, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China
| | - Yue Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fujian, 350001, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fujian, 350001, Fuzhou, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China.
- Central Laboratory, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China.
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fujian, 350001, Fuzhou, China.
| |
Collapse
|
227
|
Alghamdi RA, Al-Zahrani MH, Altarjami LR, Al Abdulmonem W, Samir N, Said A, Shami AA, Mohamed WS, Ezzeldien M. Biogenic Zinc oxide nanoparticles from Celosia argentea: toward improved antioxidant, antibacterial, and anticancer activities. Front Bioeng Biotechnol 2023; 11:1283898. [PMID: 38162186 PMCID: PMC10757369 DOI: 10.3389/fbioe.2023.1283898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Biogenic Zinc oxide (ZnO) nanoparticles (NPs) were synthesized from Celosia argentea (C. argentea) plant extract. Structural analysis confirms the successful synthesis of biogenic zinc oxide NPs from C. argentea extract. The biogenic ZnO NPs have an average particle size of 21.55 ± 4.73 nm, a semispherical shape, and a specific surface area of about 50 m2/g. The biogenic ZnO NPs have a powerful radical scavenging activity (Ic50 = 91.24 mg/ml) comparable to ascorbic acid (ASC) as a standard (Ic50 = 14.37 mg/ml). The antibacterial efficacy was tested against gram-positive and gram-negative bacteria using an agar disc diffusion method. Gram-positive strains with biogenic ZnO NPs have a greater bactericidal impact than gram-negative strains in a concentration-dependent manner. Anticancer activity against Liver hepatocellular cells (HepG2) and Human umbilical vein endothelial cells (HUVEC) was evaluated using a [3-(4,5-dimethylthiazol-2-yl)-2,5diphenyl tetrazolium bromide] (MTT) assay. The results reflect the concentration-dependent cytotoxic effect of biogenic ZnO NPs against HepG2 cells even at low concentrations (Ic50 = 49.45 μg/ml) compared with doxorubicin (Ic50 = 14.67 μg/ml) and C. argentea extract (Ic50 = 112.24 μg/ml). The cell cycle and gene expression were analyzed to determine the potential anticancer mechanism. The flow cytometric analysis of the cell cycle revealed that biogenic ZnO NPs induce oxidative stress that activates the apoptotic genes NF-κB, CY-C, and P53, leading to cell death. The Celosia argentea improved the antioxidant, antibacterial, and anticancer activities of ZnO NPs without altering their structural properties. The effect of green synthesis on the bioactivity of biogenic ZnO NPs in vivo is recommended for future work.
Collapse
Affiliation(s)
- Rana Abdullah Alghamdi
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Lamaia R. Altarjami
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nadia Samir
- Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Alaa Said
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, Egypt
| | - Ashjan A. Shami
- Department of clinical laboratory sciences, College of applied medical sciences, Taif University, Taif, Saudi Arabia
| | - W. S. Mohamed
- Physics Department, College of Science, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
- Physics Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohammed Ezzeldien
- Physics Department, College of Science, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
- Metallurgy and Material Science Tests Lab, Physics Department, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
228
|
Liao Z, Liu X, Fan D, Sun X, Zhang Z, Wu P. Autophagy-mediated nanomaterials for tumor therapy. Front Oncol 2023; 13:1194524. [PMID: 38192627 PMCID: PMC10773885 DOI: 10.3389/fonc.2023.1194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/30/2023] [Indexed: 01/10/2024] Open
Abstract
Autophagy is a lysosomal self-degradation pathway that plays an important protective role in maintaining intracellular environment. Deregulation of autophagy is related to several diseases, including cancer, infection, neurodegeneration, aging, and heart disease. In this review, we will summarize recent advances in autophagy-mediated nanomaterials for tumor therapy. Firstly, the autophagy signaling pathway for tumor therapy will be reviewed, including oxidative stress, mammalian target of rapamycin (mTOR) signaling and autophagy-associated genes pathway. Based on that, many autophagy-mediated nanomaterials have been developed and applied in tumor therapy. According to the different structure of nanomaterials, we will review and evaluate these autophagy-mediated nanomaterials' therapeutic efficacy and potential clinical application.
Collapse
Affiliation(s)
- Zijian Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xingjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhikun Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
229
|
Yu CL, Lai YW, Chen JJ, Lee JJ, Chou TH, Huang CC, Liu SC, Chen GW, Tsai CH, Wang SW. Cryptocaryone induces apoptosis in human hepatocellular carcinoma cells by inhibiting aerobic glycolysis through Akt and c-Src signaling pathways. J Food Drug Anal 2023; 31:696-710. [PMID: 38526828 PMCID: PMC10962672 DOI: 10.38212/2224-6614.3480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/02/2023] [Indexed: 03/27/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with the second highest mortality rate in all cancer. Energy reprogramming is one of the hallmarks of cancer, and emerging evidence showed that targeting glycolysis is a promising strategy for HCC treatment. Cryptocaryone has been shown to display promising anti-cancer activity against numerous types of cancer. Previous study also indicated that cryptocaryone induces cytotoxicity by inhibiting glucose transport in cancer cells, but the detailed mechanism still needs to be elucidated. Therefore, this study aimed to investigate the relationship between the anti-cancer effect and glycolytic metabolism of cryptocaryone in human HCC cells. In this study, we found that cryptocaryone potently induced growth inhibition by apoptotic cell death in HCC cells. Cryptocaryone also suppressed the ATP synthesis, lactate production and glycolytic capacity of HCC cells. Mechanistic investigations showed that phosphorylation of Akt and c-Src, as well as the expression of HK1 were impeded by cryptocaryone. Moreover, cryptocaryone markedly increased the expression level of transcription factor FoxO1. Importantly, clinical database analysis confirmed the negative correlation between HK1 and FoxO1. High expression levels of HK-1 were positively correlated with poorer survival in patients with HCCs. These results suggest that cryptocaryone may promote cell apoptosis by inhibiting FoxO1-mediated aerobic glycolysis through Akt and c-Src signaling cascades in human HCC cells. This is the first study to indicate that cryptocaryone exerts anti-cancer property against human HCC cells. Cryptocaryone is a potential natural product worthy of further development into a promising candidate for HCC treatment.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Biomedical Science, MacKay Medical College, New Taipei City,
Taiwan
| | - Yu-Wei Lai
- Division of Urology, Taipei City Hospital Renai Branch, Taipei,
Taiwan
- Department of Urology, School of Medicine, National Yang Ming Chiao Tun University, Taipei,
Taiwan
- General Education Center, University of Taipei, Taipei,
Taiwan
| | - Jih-Jung Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei,
Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung,
Taiwan
| | - Jie-Jen Lee
- Department of Medicine, MacKay Medical College, New Taipei City,
Taiwan
| | - Tsung-Hsien Chou
- Public Health Bureau, Pingtung County Government, Pingtung,
Taiwan
- Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung,
Taiwan
| | - Chen-Chen Huang
- Institute of Biomedical Science, MacKay Medical College, New Taipei City,
Taiwan
| | - Shih-Chia Liu
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei,
Taiwan
| | - Guang-Wei Chen
- Department of Chinese Medicine, MacKay Memorial Hospital, Taipei,
Taiwan
| | - Chung-Hsin Tsai
- Department of Medicine, MacKay Medical College, New Taipei City,
Taiwan
- Department of Surgery, MacKay Memorial Hospital, Taipei,
Taiwan
| | - Shih-Wei Wang
- Institute of Biomedical Science, MacKay Medical College, New Taipei City,
Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City,
Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung,
Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung,
Taiwan
| |
Collapse
|
230
|
Xu H, Tan M, Hou GQ, Sang YZ, Lin L, Gan XC, Cao X, Liu AD. Blockade of DDR1/PYK2/ERK signaling suggesting SH2 superbinder as a novel autophagy inhibitor for pancreatic cancer. Cell Death Dis 2023; 14:811. [PMID: 38071340 PMCID: PMC10710504 DOI: 10.1038/s41419-023-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Pancreatic cancer is highly lethal, of which 90% is pancreatic ductal adenocarcinoma (PDAC), with a 5-year survival rate of less than 12%, lacking effective treatment options and late diagnosis. Furthermore, the tumors show an intense resistance to cytotoxic chemotherapies. As autophagy is elevated in PDAC, targeting the autophagic pathway is regarded as a promising strategy for cancer treatment. Immunofluorescence and transmission electron microscopy were utilized to assess the autophagic flux. Label-free quantitative phosphoproteomics was used to figure out critically altered tyrosine phosphorylation of the proteins. Tumor-bearing mice were used to validate that SH2 TrM-(Arg)9 restrained the growth of tumor cells. SH2 TrM-(Arg)9 inhibited collagen-induced autophagy via blocking the DDR1/PYK2/ERK signaling cascades. SH2 TrM-(Arg)9 improved the sensitivity of PANC-1/GEM cells to gemcitabine (GEM). Inhibition of autophagy by SH2 TrM-(Arg)9 may synergized with chemotherapy and robusted tumor suppression in pancreatic cancer xenografts. SH2 TrM-(Arg)9 could enter into PDAC cells and blockade autophagy through inhibiting DDR1/PYK2/ERK signaling and may be a new treatment strategy for targeted therapy of PDAC.
Collapse
Affiliation(s)
- Hui Xu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
- School of Medicine, Taizhou University, 318000, Taizhou, Zhejiang, China
| | - Ming Tan
- School of Medicine, Taizhou University, 318000, Taizhou, Zhejiang, China
| | - Guo-Qing Hou
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Ya-Zhou Sang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Li Lin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xiao-Cai Gan
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Xuan Cao
- School of Medicine, Taizhou University, 318000, Taizhou, Zhejiang, China.
- Wenling First People's Hospital (The Affiliated Wenling Hospital of Taizhou University), School of Medicine, Taizhou University, 318000, Taizhou, Zhejiang, China.
| | - An-Dong Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
- National Demonstration Center for Experimental Basic Medical Education, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
231
|
Zhang X, Zeng Z, Liu Y, Liu D. Emerging Relevance of Ghrelin in Programmed Cell Death and Its Application in Diseases. Int J Mol Sci 2023; 24:17254. [PMID: 38139082 PMCID: PMC10743592 DOI: 10.3390/ijms242417254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Ghrelin, comprising 28 amino acids, was initially discovered as a hormone that promotes growth hormones. The original focus was on the effects of ghrelin on controlling hunger and satiation. As the research further develops, the research scope of ghrelin has expanded to a wide range of systems and diseases. Nevertheless, the specific mechanisms remain incompletely understood. In recent years, substantial studies have demonstrated that ghrelin has anti-inflammatory, antioxidant, antiapoptotic, and other effects, which could affect the signaling pathways of various kinds of programmed cell death (PCD) in treating diseases. However, the regulatory mechanisms underlying the function of ghrelin in different kinds of PCD have not been thoroughly illuminated. This review describes the relationship between ghrelin and four kinds of PCD (apoptosis, necroptosis, autophagy, and pyroptosis) and then introduces the clinical applications based on the different features of ghrelin.
Collapse
Affiliation(s)
- Xue Zhang
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Zihan Zeng
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Yaning Liu
- Queen Mary College, Nanchang University, Xuefu Road, Nanchang 330001, China; (X.Z.); (Z.Z.); (Y.L.)
| | - Dan Liu
- School of Pharmacy, Nanchang University, Nanchang 330006, China
| |
Collapse
|
232
|
Song J, Hu M, Zhou J, Xie S, Li T, Li Y. Targeted protein degradation in drug development: Recent advances and future challenges. Eur J Med Chem 2023; 261:115839. [PMID: 37778240 DOI: 10.1016/j.ejmech.2023.115839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising therapeutic approach with potential advantages over traditional occupancy-based inhibitors in terms of dosing, side effects and targeting "undruggable" proteins. Targeted degraders can theoretically bind any nook or cranny of targeted proteins to drive degradation. This offers convenience versus the small-molecule inhibitors that must function in a well-defined pocket. The degradation process depends mainly on two cell self-destruction mechanisms, namely the ubiquitin-proteasome system and the lysosomal degradation pathway. Various TPD strategies (e.g., proteolytic-targeting chimeras, molecular glues, lysosome-targeting chimeras, and autophagy-targeting chimeras) have been developed. These approaches hold great potential for targeting dysregulated proteins, potentially offering therapeutic benefits. In this article, we systematically review the mechanisms of various TPD strategies, potential applications to drug discovery, and recent advances. We also discuss the benefits and challenges associated with these TPD strategies, aiming to provide insight into the targeting of dysregulated proteins and facilitate their clinical applications.
Collapse
Affiliation(s)
- Jian Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Mingzheng Hu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China; College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Songbo Xie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China; School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Tianliang Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Yan Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
233
|
Low LE, Kong CK, Yap WH, Siva SP, Gan SH, Siew WS, Ming LC, Lai-Foenander AS, Chang SK, Lee WL, Wu Y, Khaw KY, Ong YS, Tey BT, Singh SK, Dua K, Chellappan DK, Goh BH. Hydroxychloroquine: Key therapeutic advances and emerging nanotechnological landscape for cancer mitigation. Chem Biol Interact 2023; 386:110750. [PMID: 37839513 DOI: 10.1016/j.cbi.2023.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.
Collapse
Affiliation(s)
- Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chee Kei Kong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Sangeetaprivya P Siva
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Siew Hua Gan
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wei Sheng Siew
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| | - Ashley Sean Lai-Foenander
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia.
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| |
Collapse
|
234
|
Huang L, Shao J, Xu X, Hong W, Yu W, Zheng S, Ge X. WTAP regulates autophagy in colon cancer cells by inhibiting FLNA through N6-methyladenosine. Cell Adh Migr 2023; 17:1-13. [PMID: 36849408 PMCID: PMC9980444 DOI: 10.1080/19336918.2023.2180196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Our study investigated the role of WTAP in colon cancer. We employed experiments including m6A dot blot hybridization, methylated RNA immunoprecipitation, dual-luciferase, and RNA immunoprecipitation to investigate the regulatory mechanism of WTAP. Western blot was performed to analyze the expression of WTAP, FLNA and autophagy-related proteins in cells. Our results confirmed the up-regulation of WTAP in colon cancer and its promoting effect on proliferation and inhibiting effect on apoptosis. FLNA was the downstream gene of WTAP and WTAP-regulated m6A modification led to post-transcriptional repression of FLNA. The rescue experiments showed that WTAP/FLNA could inhibit autophagy. WTAP-mediated m6A modification was confirmed to be crucial in colon cancer development, providing new insights into colon cancer therapy.
Collapse
Affiliation(s)
- Liang Huang
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Jinfan Shao
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xijuan Xu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Weiwen Hong
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Wenfeng Yu
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Shuang Zheng
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Xiaogang Ge
- Department of General Surgery, Taizhou First People’s Hospital, Taizhou, Zhejiang, China,CONTACT Xiaogang Ge Department of General Surgery, Taizhou First People’s Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China
| |
Collapse
|
235
|
Gustafson DL, Viola LO, Towers CG, Das S, Duval DL, Van Eaton KM. Sensitivity of osteosarcoma cell lines to autophagy inhibition as determined by pharmacologic and genetic manipulation. Vet Comp Oncol 2023; 21:726-738. [PMID: 37724007 PMCID: PMC11470750 DOI: 10.1111/vco.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023]
Abstract
Pharmacologic inhibition of autophagy can be achieved using lysosomotropic agents such as hydroxychloroquine (HCQ) that interfere with fusion of the autophagosome to the lysosome thus preventing completion of the recycling process. The goal of the present study is to determine the sensitivity of eight canine (cOSA) and four human (hOSA) osteosarcoma tumour cell lines to antiproliferative and cytotoxic effects of lysosomal autophagy inhibitors, and to compare these results to the autophagy-dependence measured using a CRISPR/Cas9 live-cell imaging assay in OSA and other tumour cell lines. Antiproliferative and cytotoxic response to HCQ and Lys05 was determined using live cell imaging and YOYO-1 staining. CRISPR/Cas9 live cell imaging screen was done using species specific guide RNA's and transfection of reagents into cells. Response to autophagy core genes was compared to response to an essential (PCNA) and non-essential (FOXO3A) gene. cOSA and hOSA cell lines showed similar antiproliferative and cytotoxic responses to HCQ and Lys05 with median lethal dose (Dm ) values ranging from 4.6-15.8 μM and 2.1-5.1 μM for measures of anti-proliferative response, respectively. A relationship was observed between antiproliferative responses to HCQ and Lys05 and VPS34 CRISPR score with Dm values correlating with VPS34 response (r = 0.968 and 0.887) in a species independent manner. The results show that a subset of cOSA and hOSA cell lines are autophagy-dependent and sensitive to HCQ at pharmacologically-relevant exposures.
Collapse
Affiliation(s)
- Daniel L. Gustafson
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Lindsey O. Viola
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Christina G. Towers
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Sunetra Das
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| | - Dawn L. Duval
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
- Developmental Therapeutics Program, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Kristen M. Van Eaton
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
236
|
Chiou JT, Lee YC, Chang LS. Hydroquinone-selected chronic myelogenous leukemia cells are sensitive to chloroquine-induced cytotoxicity via MCL1 suppression and glycolysis inhibition. Biochem Pharmacol 2023; 218:115934. [PMID: 37989415 DOI: 10.1016/j.bcp.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Previous studies have provided evidence that repeated exposure to the benzene metabolite hydroquinone (HQ) induces malignant transformation and increases basal autophagy in the chronic myeloid leukemia (CML) cell line K562. This study explored the cytotoxicity of the autophagy inhibitor chloroquine (CQ) on parental and HQ-selected K562 (K562/HQ) cells. CQ triggered apoptosis in these cells independently of inhibiting autophagic flux; however, in K562/HQ cells, CQ-induced cytotoxicity was higher than in K562 cells. Mechanistically, CQ-induced NOXA upregulation led to MCL1 downregulation and mitochondrial depolarization in K562/HQ cells. MCL1 overexpression or NOXA silencing attenuated CQ-mediated cytotoxicity in K562/HQ cells. CQ triggered ERK inactivation to increase Sp1, NFκB, and p300 expression, and co-assembly of Sp1, NFκB, and p300 in the miR-29a promoter region coordinately upregulated miR-29a transcription. CQ-induced miR-29a expression destabilized tristetraprolin (TTP) mRNA, which in turn reduced TTP-mediated NOXA mRNA decay, thereby increasing NOXA protein expression. A similar mechanism explained the CQ-induced downregulation of MCL1 in K562 cells. K562/HQ cells relied more on glycolysis for ATP production than K562 cells, whereas inhibition of glycolysis by CQ was greater in K562/HQ cells than in K562 cells. Likewise, CQ-induced MCL1 suppression and glycolysis inhibition resulted in higher cytotoxicity in CML KU812/HQ cells than in KU812 cells. Taken together, our data confirm that CQ inhibits MCL1 expression through the ERK/miR-29a/TTP/NOXA pathway, and that inhibition of glycolysis is positively correlated to higher cytotoxicity of CQ on HQ-selected CML cells.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
237
|
Khalil MI, Ali MM, Holail J, Houssein M. Growth or death? Control of cell destiny by mTOR and autophagy pathways. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:39-55. [PMID: 37944568 DOI: 10.1016/j.pbiomolbio.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
One of the central regulators of cell growth, proliferation, and metabolism is the mammalian target of rapamycin, mTOR, which exists in two structurally and functionally different complexes: mTORC1 and mTORC2; unlike m TORC2, mTORC1 is activated in response to the sufficiency of nutrients and is inhibited by rapamycin. mTOR complexes have critical roles not only in protein synthesis, gene transcription regulation, proliferation, tumor metabolism, but also in the regulation of the programmed cell death mechanisms such as autophagy and apoptosis. Autophagy is a conserved catabolic mechanism in which damaged molecules are recycled in response to nutrient starvation. Emerging evidence indicates that the mTOR signaling pathway is frequently activated in tumors. In addition, dysregulation of autophagy was associated with the development of a variety of human diseases, such as cancer and aging. Since mTOR can inhibit the induction of the autophagic process from the early stages of autophagosome formation to the late stage of lysosome degradation, the use of mTOR inhibitors to regulate autophagy could be considered a potential therapeutic option. The present review sheds light on the mTOR and autophagy signaling pathways and the mechanisms of regulation of mTOR-autophagy.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon; Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Mohamad M Ali
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23, Uppsala, Sweden.
| | - Jasmine Holail
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| | - Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, 11072809, Lebanon.
| |
Collapse
|
238
|
Liu Y, Wei FZ, Zhan YW, Wang R, Mo BY, Lin SD. TLR9 regulates the autophagy-lysosome pathway to promote dendritic cell maturation and activation by activating the TRAF6-cGAS-STING pathway. Kaohsiung J Med Sci 2023; 39:1200-1212. [PMID: 37850718 DOI: 10.1002/kjm2.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
Dysregulated maturation and activation of dendritic cells (DCs) play a significant role in the progression of systemic lupus erythematosus (SLE). The autophagy-lysosome pathway has been identified as a potential mechanism to inhibit DC activation and maturation, but its precise workings remain unclear. We investigated the role and regulatory mechanism of TLR9 in modulating the autophagy-lysosome pathway and DCs activation. The mRNA and protein expressions were assessed using qRT-PCR and/or western blot. NZBW/F1 mice was used to construct a lupus nephritis (LN) model in vivo. Cell apoptosis was analyzed by TUNEL staining. Flow cytometry was adopted to analyze DCs surface markers. Lyso-tracker red staining was employed to analyze lysosome acidification. Levels of anti-dsDNA, cytokines, C3, C4, urine protein and urine creatinine were examined by ELISA. The results showed that TLR9 was markedly increased in SLE patients, and its expression was positively correlated with SLEDAI scores and dsDNA level. Conversely, TLR9 expression showed a negative correlation with C3 and C4 levels. Loss-of function experiments demonstrated that TLR9 depletion exerted a substantial inhibition of renal injury, inflammation, and DCs numbers. Additionally, upregulation of TLR9 promoted DCs maturation and activation through activation of autophagy and lysosome acidification. Further investigation revealed that TLR9 targeted TRAF6 to activate the cGAS-STING pathway. Rescue experiments revealed that inactivation of the cGAS/STING signaling pathway could reverse the promoting effects of TLR9 upregulation on DCs maturation, activation, and autophagy-lysosome pathway. Overall, our findings suggested that TLR9 activated the autophagy-lysosome pathway to promote DCs maturation and activation by activating TRAF6-cGAS-STING pathway, thereby promoting SLE progression.
Collapse
Affiliation(s)
- Ying Liu
- Department of Rheumatology & Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Fang-Zhi Wei
- Traditional Chinese Medicine Department, Boao Yiling Life Care Center, Qionghai, Hainan Province, People's Republic of China
| | - Yu-Wei Zhan
- Department of Rheumatology & Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Ru Wang
- Experimental Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Bi-Yao Mo
- Department of Rheumatology & Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| | - Shu-Dian Lin
- Department of Rheumatology & Immunology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
239
|
Meng L, Gao J, Mo W, Wang B, Shen H, Cao W, Ding M, Diao W, Chen W, Zhang Q, Shu J, Dai H, Guo H. MIOX inhibits autophagy to regulate the ROS -driven inhibition of STAT3/c-Myc-mediated epithelial-mesenchymal transition in clear cell renal cell carcinoma. Redox Biol 2023; 68:102956. [PMID: 37977044 PMCID: PMC10692917 DOI: 10.1016/j.redox.2023.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
The specific mechanism of clear cell renal cell carcinoma (ccRCC) progression, a pathological type that accounts for the highest proportion of RCC, remains unclear. In this study, bioinformatics analysis of scRNA-seq dataset in ccRCC revealed that MIOX was a gene specifically down-regulated in tumor epithelial cells of ccRCC. Analysis of the TCGA database further validated the association between decreased MIOX mRNA levels and ccRCC malignant phenotype and poor prognosis. Immunohistochemistry indicated the down-regulation of MIOX in ccRCC tissues compared to paired adjacent renal tissues, with further down-regulation of MIOX in the primary tumors of patients with primary metastasis compared to those without metastasis. Also, patients with low expression of MIOX showed shorter metastasis-free survival (MFS) compared to those with high MIOX expression. In vitro results showed that overexpression of MIOX in ccRCC cells inhibited the proliferation, migration and invasion and promoted apoptosis. Mechanistically, up-regulation of MIOX inhibited autophagy to elevate the levels of ROS, and thus suppressed STAT3/c-Myc-mediated epithelial-mesenchymal transition in ccRCC cells. In vivo data further confirmed that increased MIOX expression suppressed the growth and proliferation of RCC cells and reduced the ability of RCC cells to form metastases in the lung. This study demonstrates that MIOX is an important regulatory molecule of ccRCC, which is conducive to understanding the potential molecular mechanism of ccRCC progression.
Collapse
Affiliation(s)
- Longxiyu Meng
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jie Gao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenjing Mo
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Baojun Wang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Hongwei Shen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Wenmin Cao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Meng Ding
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wenli Diao
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wei Chen
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Qing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Jiaxin Shu
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Huiqi Dai
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Institute of Urology Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
240
|
Sun X, Du J, Meng H, Liu F, Yang N, Deng S, Wan H, Ye D, Song E, Zeng H. Targeting autophagy with SAR405 alleviates doxorubicin-induced cardiotoxicity. Cell Biol Toxicol 2023; 39:3255-3267. [PMID: 37768392 DOI: 10.1007/s10565-023-09831-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Anthracycline antitumor agents, such as doxorubicin (DOX), are effective in the treatment of solid tumors and hematological malignancies, but anthracycline-induced cardiotoxicity (AIC) limits their application as chemotherapeutics. Dexrazoxane (DEX) has been adopted to prevent AIC. Using a chronic AIC mouse model, we demonstrated that DEX is insufficient to reverse DOX-induced cardiotoxicity. Although therapies targeting autophagy have been explored to prevent AIC, but whether novel autophagy inhibitors could alleviate or prevent AIC in clinically relevant models needs further investigation. Here, we show that genetic ablation of Atg7, a key regulator in the early phase of autophagy, protected mice against AIC. We further demonstrated that SAR405, a novel autophagy inhibitor, attenuated DOX-induced cytotoxicity. Intriguingly, the combination of DEX and SAR405 protected cells against DOX-induced cardiotoxicity in vivo. Using the cardiomyocyte cell lines AC16 and H9c2, we determined that autophagy was initiated during AIC. Our results suggest that inhibition of autophagy at its early phase with SAR405 combined with DEX represents an effective therapeutic strategy to prevent AIC.
Collapse
Affiliation(s)
- Xiaofan Sun
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Heng Meng
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Fangshu Liu
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Nianhui Yang
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Suqi Deng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Heng Wan
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510630, Guangdong, China
| | - Erfei Song
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
241
|
Saadh MJ, Almoyad MAA, Arellano MTC, Maaliw RR, Castillo-Acobo RY, Jalal SS, Gandla K, Obaid M, Abdulwahed AJ, Ibrahem AA, Sârbu I, Juyal A, Lakshmaiya N, Akhavan-Sigari R. Long non-coding RNAs: controversial roles in drug resistance of solid tumors mediated by autophagy. Cancer Chemother Pharmacol 2023; 92:439-453. [PMID: 37768333 DOI: 10.1007/s00280-023-04582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023]
Abstract
Current genome-wide studies have indicated that a great number of long non-coding RNAs (lncRNAs) are transcribed from the human genome and appeared as crucial regulators in a variety of cellular processes. Many studies have displayed a significant function of lncRNAs in the regulation of autophagy. Autophagy is a macromolecular procedure in cells in which intracellular substrates and damaged organelles are broken down and recycled to relieve cell stress resulting from nutritional deprivation, irradiation, hypoxia, and cytotoxic agents. Autophagy can be a double-edged sword and play either a protective or a damaging role in cells depending on its activation status and other cellular situations, and its dysregulation is related to tumorigenesis in various solid tumors. Autophagy induced by various therapies has been shown as a unique mechanism of resistance to anti-cancer drugs. Growing evidence is showing the important role of lncRNAs in modulating drug resistance via the regulation of autophagy in a variety of cancers. The role of lncRNAs in drug resistance of cancers is controversial; they may promote or suppress drug resistance via either activation or inhibition of autophagy. Mechanisms by which lncRNAs regulate autophagy to affect drug resistance are different, mainly mediated by the negative regulation of micro RNAs. In this review, we summarize recent studies that investigated the role of lncRNAs/autophagy axis in drug resistance of different types of solid tumors.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11831, Jordan
| | | | | | - Renato R Maaliw
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines
| | | | - Sarah Salah Jalal
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, University of Chaitanya, Hanamkonda, India
| | | | | | - Azher A Ibrahem
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115, Iași, Romania.
| | - Ashima Juyal
- Department of Electronics & Communication Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
242
|
Jin W, Wu L, Hu L, Fu Y, Fan Z, Mou Y, Ma K. Multi-omics approaches identify novel prognostic biomarkers of autophagy in uveal melanoma. J Cancer Res Clin Oncol 2023; 149:16691-16703. [PMID: 37725244 DOI: 10.1007/s00432-023-05401-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Uveal melanoma (UVM) is a rare yet malignant ocular tumor that metastases in approximately half of all patients, with the majority of those developing metastasis typically succumbing to the disease within a year. Hitherto, no effective treatment for UVM has been identified. Autophagy is a cellular mechanism that has been suggested as an emerging regulatory process for cancer-targeted therapy. Thus, identifying novel prognostic biomarkers of autophagy may help improve future treatment. METHODS Consensus clustering and similarity network fusion approaches were performed for classifying UVM patient subgroups. Weighted correlation network analysis was performed for gene module screening and network construction. Gene set variation analysis was used to evaluate the autophagy activity of the UVM subgroups. Kaplan-Meier survival curves (Log-rank test) were performed to analyze patient prognosis. Gene set cancer analysis was used to estimate the level of immune cell infiltration. RESULTS In this study, we employed multi-omics approaches to classify UVM patient subgroups by molecular and clinical characteristics, ultimately identifying HTR2B, EEF1A2, FEZ1, GRID1, HAP1, and SPHK1 as potential prognostic biomarkers of autophagy in UVM. High expression levels of these markers were associated with poorer patient prognosis and led to reshaping the tumor microenvironment (TME) that promotes tumor progression. CONCLUSION We identified six novel potential prognostic biomarkers in UVM, all of which are associated with autophagy and TME. These findings will shed new light on UVM therapy with inhibitors targeting these biomarkers expected to regulate autophagy and reshape the TME, significantly improving UVM treatment outcomes.
Collapse
Affiliation(s)
- Wenke Jin
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lifeng Wu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Hu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuqi Fu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhichao Fan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi Mou
- Department of Gastroenterology and Hepatology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Ke Ma
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
243
|
Ye Q, Zhou W, Xu S, Que Q, Zhan Q, Zhang L, Zheng S, Ling S, Xu X. Ubiquitin-specific protease 22 promotes tumorigenesis and progression by an FKBP12/mTORC1/autophagy positive feedback loop in hepatocellular carcinoma. MedComm (Beijing) 2023; 4:e439. [PMID: 38045832 PMCID: PMC10691294 DOI: 10.1002/mco2.439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Ubiquitin-specific protease 22 (USP22) has been identified as a potential marker for cancer stem cells in hepatocellular carcinoma (HCC). It can promote HCC stemness, which is considered a driver of tumorigenesis. Here, we sought to determine the role of USP22 in tumorigenesis, elucidate its underlying mechanism, and explore its therapeutic significance in HCC. As a result, we found that tissue-specific Usp22 overexpression accelerated tumorigenesis, whereas Usp22 ablation decelerated it in a c-Myc/NRasGV12-induced HCC mouse model and that the mammalian target of rapamycin complex 1 (mTORC1) pathway was activated downstream. USP22 overexpression resulted in increased tumorigenic properties that were reversed by rapamycin in vitro and in vivo. In addition, USP22 activated mTORC1 by deubiquitinating FK506-binding protein 12 (FKBP12) and activated mTORC1, in turn, further stabilizing USP22 by inhibiting autophagic degradation. Clinically, HCC patients with high USP22 expression tend to benefit from mTOR inhibitors after liver transplantation (LT). Our results revealed that USP22 promoted tumorigenesis and progression via an FKBP12/mTORC1/autophagy positive feedback loop in HCC. Clinically, USP22 may be an effective biomarker for selecting eligible recipients with HCC for anti-mTOR-based therapy after LT.
Collapse
Affiliation(s)
- Qianwei Ye
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- NHC Key Laboratory of Combined Multi‐Organ TransplantationHangzhouChina
| | - Wei Zhou
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Shengjun Xu
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Qingyang Que
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Qifan Zhan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Lincheng Zhang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐Organ TransplantationHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
| | - Sunbin Ling
- Department of General SurgeryHangzhou First People's HospitalHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
244
|
Lu H, Zhou J, Li X, Han X, Ma S, Feng C. MiR-526b-3p enhances sensitivity of head and neck squamous cell carcinoma cells to radiotherapy via suppressing exosomal LAMP3-mediated autophagy. Autoimmunity 2023; 56:2259125. [PMID: 37740656 DOI: 10.1080/08916934.2023.2259125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/10/2023] [Indexed: 09/24/2023]
Abstract
Lysosomal associated membrane protein 3 (LAMP3) has been reported to be a tumour promoter in multiple cancer types by modulating tumour cell autophagy. However, the potential mechanism of LAMP3 in radio-resistance of head and neck squamous cell carcinoma (HNSCC) remains unknown. Therefore, our current study aims to detect the impacts of LAMP3 on the resistance of HNSCC cells to radiotherapy and meanwhile explore its functional mechanism. Through RT-Qpcr examination, LAMP3 expression was identified to be expressed at a significantly high level in irradiation-resistant HNSCC cell lines compared with irradiation-sensitive HNSCC cell lines. Functional assays including CCK-8, colony formation and Transwell assays demonstrated that LAMP3 enhanced the radio-resistance through inducing autophagy to promote HNSCC cell growth. Furthermore, irradiation-resistant HNSCC cells could transfer exosomal LAMP3 to elevate LAMP3 expression in irradiation-sensitive HNSCC cells. Mechanistically, microRNA (miRNA) miR-526b-3p could inhibit LAMP3 expression so as to strengthen sensitivity of HNSCC cells to radiotherapy. In a word, exosomal LAMP3 expression promoted radioresistance of HNSCC cells via inducing autophagy, while this effect could be suppressed by miR-526b-3p in a targeted manner.
Collapse
Affiliation(s)
- Huixiang Lu
- Heavy Ion Radiotherapy Department, Wuwei Cancer Hospital & Institute, Wuwei Academy of Medical Sciences, Wuwei, Gansu, China
| | - Junnian Zhou
- Head, Neck and Maxillofacial Surgery Department, Wuwei Cancer Hospital, Wuwei, Gansu, China
| | - Xiaojun Li
- Heavy Ion Radiotherapy Department, Wuwei Cancer Hospital & Institute, Wuwei Academy of Medical Sciences, Wuwei, Gansu, China
| | - Xiaoqin Han
- Head, Neck and Maxillofacial Surgery Department, Wuwei Cancer Hospital, Wuwei, Gansu, China
| | - Shuping Ma
- Heavy Ion Radiotherapy Department, Wuwei Cancer Hospital & Institute, Wuwei Academy of Medical Sciences, Wuwei, Gansu, China
| | - Chunlan Feng
- Heavy Ion Radiotherapy Department, Wuwei Cancer Hospital & Institute, Wuwei Academy of Medical Sciences, Wuwei, Gansu, China
| |
Collapse
|
245
|
Yoo JG, Lee YK, Lee KH. Enhancing autophagy leads to increased cell death in radiation-treated cervical cancer cells. J OBSTET GYNAECOL 2023; 43:2171281. [PMID: 36757356 DOI: 10.1080/01443615.2023.2171281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This study was carried out to determine the effect of autophagy modulation in radiation treatment of cervical cancer cells. HeLa and CaSki cells were irradiated with γ-rays (2 Gy/min) after treatment with an autophagy inducer (rapamycin) and inhibitor (3-MA). Expression of LC3 and cell death in two cell preparations were examined. In addition, expression of Caspase-3 and PARP were examined after radiation alone and with autophagy inhibitor treatment. A notable increment of LC3 expression was detected after radiation in both cell lines. Cell viability was observed to decrease in 3-MA-treated cells compared to radiation alone, and even further in rapamycin-treated cells. Apoptosis was confirmed to occur later than autophagy in radiation treatment, and inhibition of autophagy derived a decrease in apoptosis. In conclusion, radiation-induced autophagy may be regulated by modulators, and autophagy augmentation yields an increase in cervical cancer cell death under radiation.Impact statementWhat is already known on this subject? Autophagy is known to contribute both to tumour cell survival and death against radiation therapy. The effect of induction or inhibition of radiation-induced autophagy on cervical cancer cell death is not clear.What the results of this study add? Cell viability was observed to decrease in 3-MA-treated cells compared to radiation alone, and even further in rapamycin-treated cells. Apoptosis occurred later than autophagy in radiation treatment, and inhibition of autophagy derived a decrease in apoptosis.What the implications are of these findings for clinical practice and/or further research? Our results suggest that radiation-induced autophagy may be regulated by modulators, and autophagy augmentation yields an increase in cervical cancer cell death under radiation.
Collapse
Affiliation(s)
- Ji Geun Yoo
- Department of Obstetrics and Gynecology, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Yoon Kyung Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun Ho Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
246
|
Wang Y, Dai X, Li H, Jiang H, Zhou J, Zhang S, Guo J, Shen L, Yang H, Lin J, Yan H. The role of mitochondrial dynamics in disease. MedComm (Beijing) 2023; 4:e462. [PMID: 38156294 PMCID: PMC10753647 DOI: 10.1002/mco2.462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023] Open
Abstract
Mitochondria are multifaceted and dynamic organelles regulating various important cellular processes from signal transduction to determining cell fate. As dynamic properties of mitochondria, fusion and fission accompanied with mitophagy, undergo constant changes in number and morphology to sustain mitochondrial homeostasis in response to cell context changes. Thus, the dysregulation of mitochondrial dynamics and mitophagy is unsurprisingly related with various diseases, but the unclear underlying mechanism hinders their clinical application. In this review, we summarize the recent developments in the molecular mechanism of mitochondrial dynamics and mitophagy, particularly the different roles of key components in mitochondrial dynamics in different context. We also summarize the roles of mitochondrial dynamics and target treatment in diseases related to the cardiovascular system, nervous system, respiratory system, and tumor cell metabolism demanding high-energy. In these diseases, it is common that excessive mitochondrial fission is dominant and accompanied by impaired fusion and mitophagy. But there have been many conflicting findings about them recently, which are specifically highlighted in this view. We look forward that these findings will help broaden our understanding of the roles of the mitochondrial dynamics in diseases and will be beneficial to the discovery of novel selective therapeutic targets.
Collapse
Affiliation(s)
- Yujuan Wang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Xinyan Dai
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Hui Li
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huiling Jiang
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Junfu Zhou
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Shiying Zhang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jiacheng Guo
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Lidu Shen
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Huantao Yang
- Immunotherapy LaboratoryQinghai Tibet Plateau Research InstituteSouthwest Minzu UniversityChengduSichuanChina
| | - Jie Lin
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| | - Hengxiu Yan
- Immunotherapy LaboratoryCollege of PharmacologySouthwest Minzu UniversityChengduSichuanChina
| |
Collapse
|
247
|
Wang K, Fu S, Dong L, Zhang D, Wang M, Wu X, Shen E, Luo L, Li C, Nice EC, Huang C, Zou B. Periplocin suppresses the growth of colorectal cancer cells by triggering LGALS3 (galectin 3)-mediated lysophagy. Autophagy 2023; 19:3132-3150. [PMID: 37471054 PMCID: PMC10621285 DOI: 10.1080/15548627.2023.2239042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and remains a major clinical challenge. Periplocin, a major bioactive component of the traditional Chinese herb Cortex periplocae, has recently been reported to be a potential anticancer drug. However, the mechanism of action is poorly understood. Here, we show that periplocin exhibits promising anticancer activity against CRC both in vitro and in vivo. Mechanistically, periplocin promotes lysosomal damage and induces apoptosis in CRC cells. Notably, periplocin upregulates LGALS3 (galectin 3) by binding and preventing LGALS3 from Lys210 ubiquitination-mediated proteasomal degradation, leading to the induction of excessive lysophagy and resultant exacerbation of lysosomal damage. Inhibition of LGALS3-mediated lysophagy attenuates periplocin-induced lysosomal damage and growth inhibition in CRC cells, suggesting a critical role of lysophagy in the anticancer effects of periplocin. Taken together, our results reveal a novel link between periplocin and the lysophagy machinery, and indicate periplocin as a potential therapeutic option for the treatment of CRC.Abbreviations: 3-MA: 3-methyladenine; ACACA/ACC1: acetyl-CoA carboxylase alpha; AMPK: adenosine monophosphate-activated protein kinase; AO: Acridine orange; ATG5: autophagy related 5; ATG7: autophagy related 7; CALM: calmodulin; CHX: cycloheximide; CRC: colorectal cancer; CQ: chloroquine; CTSB: cathepsin B; CTSD: cathepsin D; ESCRT: endosomal sorting complex required for transport; LAMP1: lysosomal associated membrane protein 1; LMP: lysosomal membrane permeabilization; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MKI67/Ki-67: marker of proliferation Ki-67; MTOR: mechanistic target of rapamycin kinase; P2RX4/P2X4: purinergic receptor P2X 4; PARP1/PARP: poly(ADP-ribose) polymerase 1; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TRIM16: tripartite motif containing 16.
Collapse
Affiliation(s)
- Kui Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Shuyue Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Lixia Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Dingyue Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Mao Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xingyun Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Enhao Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Chengdu, Sichuan, P. R. China
- Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, P. R. China
| | - Changlong Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Edouard Collins Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
248
|
Hill RM, Fok M, Grundy G, Parsons JL, Rocha S. The role of autophagy in hypoxia-induced radioresistance. Radiother Oncol 2023; 189:109951. [PMID: 37838322 PMCID: PMC11046710 DOI: 10.1016/j.radonc.2023.109951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Radiotherapy is a widely used treatment modality against cancer, and although survival rates are increasing, radioresistant properties of tumours remain a significant barrier for curative treatment. Tumour hypoxia is one of the main contributors to radioresistance and is common in most solid tumours. Hypoxia is responsible for many molecular changes within the cell which helps tumours to survive under such challenging conditions. These hypoxia-induced molecular changes are predominantly coordinated by the hypoxia inducible factor (HIF) and have been linked with the ability to confer resistance to radiation-induced cell death. To overcome this obstacle research has been directed towards autophagy, a cellular process involved in self degradation and recycling of macromolecules, as HIF plays a large role in its coordination under hypoxic conditions. The role that autophagy has following radiotherapy treatment is conflicted with evidence of both cytoprotective and cytotoxic effects. This literature review aims to explore the intricate relationship between radiotherapy, hypoxia, and autophagy in the context of cancer treatment. It provides valuable insights into the potential of targeting autophagy as a therapeutic strategy to improve the response of hypoxic tumours to radiotherapy.
Collapse
Affiliation(s)
- Rhianna Mae Hill
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L7 8TX, UK
| | - Matthew Fok
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L7 8TX, UK
| | - Gabrielle Grundy
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, L7 8TX, UK
| | - Jason Luke Parsons
- Institute of Cancer and Genomic Sciences, University of Birmingham, B15 2TT, UK
| | - Sonia Rocha
- Department of Biochemistry and Systems Biology, University of Liverpool, L69 7ZB, UK.
| |
Collapse
|
249
|
Ferretti LP, Böhi F, Leslie Pedrioli DM, Cheng PF, Ferrari E, Baumgaertner P, Alvarado-Diaz A, Sella F, Cereghetti A, Turko P, Wright RH, De Bock K, Speiser DE, Ferrari R, Levesque MP, Hottiger MO. Combinatorial Treatment with PARP and MAPK Inhibitors Overcomes Phenotype Switch-Driven Drug Resistance in Advanced Melanoma. Cancer Res 2023; 83:3974-3988. [PMID: 37729428 DOI: 10.1158/0008-5472.can-23-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Metastatic melanoma is either intrinsically resistant or rapidly acquires resistance to targeted therapy treatments, such as MAPK inhibitors (MAPKi). A leading cause of resistance to targeted therapy is a dynamic transition of melanoma cells from a proliferative to a highly invasive state, a phenomenon called phenotype switching. Mechanisms regulating phenotype switching represent potential targets for improving treatment of patients with melanoma. Using a drug screen targeting chromatin regulators in patient-derived three-dimensional MAPKi-resistant melanoma cell cultures, we discovered that PARP inhibitors (PARPi) restore sensitivity to MAPKis, independent of DNA damage repair pathways. Integrated transcriptomic, proteomic, and epigenomic analyses demonstrated that PARPis induce lysosomal autophagic cell death, accompanied by enhanced mitochondrial lipid metabolism that ultimately increases antigen presentation and sensitivity to T-cell cytotoxicity. Moreover, transcriptomic and epigenetic rearrangements induced by PARP inhibition reversed epithelial-mesenchymal transition-like phenotype switching, which redirected melanoma cells toward a proliferative and MAPKi-sensitive state. The combination of PARP and MAPKis synergistically induced cancer cell death both in vitro and in vivo in patient-derived xenograft models. Therefore, this study provides a scientific rationale for treating patients with melanoma with PARPis in combination with MAPKis to abrogate acquired therapy resistance. SIGNIFICANCE PARP inhibitors can overcome resistance to MAPK inhibitors by activating autophagic cell death and reversing phenotype switching, suggesting that this synergistic combination could help improve the prognosis of patients with melanoma.
Collapse
Affiliation(s)
- Lorenza P Ferretti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Flurina Böhi
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Phil F Cheng
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Abdiel Alvarado-Diaz
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Federica Sella
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Alessandra Cereghetti
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Patrick Turko
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Roni H Wright
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona
| | - Katrien De Bock
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
250
|
Meng F, Sun X, Guo W, Shi Y, Cheng W, Zhao L. Recognition and combination of multiple cell-death features showed good predictive value in lung adenocarcinoma. Heliyon 2023; 9:e22434. [PMID: 38076144 PMCID: PMC10709390 DOI: 10.1016/j.heliyon.2023.e22434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Cell death is a key regulatory process in organisms and its study has become increasingly important in the field of cancer. While prior research has primarily centered on the individual pathways of cell death in cancer, there has been a lack of comprehensive investigation into the synergistic effects of multiple cell death pathways. METHODS Genes related to autophagy, apoptosis, necroptosis, pyroptosis, and cuproptosis was selected, and patients' data was collected from The Cancer Genome Atlas (TCGA)project. Cell death features were identified using principal component analysis and combined to create a composite score. A scalable prediction model was then created using LASSO regression after a thorough assessment of the composite scores. The model was subsequently validated across multiple external datasets to establish its robustness and reliability. RESULTS The cell death features effectively represented the gene expression patterns in the samples. The composite score well predicted prognosis, clinical stage, mutation, tumor microenvironment, and immunotherapy effectiveness. The model built on composite scores accurately predicted prognosis and immunotherapy effectiveness across multiple datasets. GJB2 was identified as a potential biomarker. CONCLUSION Models based on multiple cell death pathways have significant predictive power for prognosis and immunotherapy effectiveness in lung adenocarcinoma. This highlights the synergistic role of multiple cell death pathways in cancer development and offers a new perspective for cancer research.
Collapse
Affiliation(s)
- Fanmao Meng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Xin Sun
- Department of Medical Management, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Yong Shi
- Department of Radiation Medicine, Affiliated Tengzhou Central Hospital of Jining Medical University, Tengzhou 277500, PR China
| | - Wenhui Cheng
- Department of Radiation Medicine, Affiliated Tengzhou Central Hospital of Jining Medical University, Tengzhou 277500, PR China
| | - Liang Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| |
Collapse
|