201
|
Emambux S, Italiano A. Clinical efficacy of eribulin mesylate for the treatment of metastatic soft tissue sarcoma. Expert Opin Pharmacother 2017; 18:819-824. [PMID: 28468516 DOI: 10.1080/14656566.2017.1326908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Metastatic soft tissue sarcoma, a devastating disease, has a median overall survival of only 12-18 months. Treatment options remain scarce. However, eribulin mesylate, a first-in-class halichondrin B-based microtubule dynamics inhibitor, has recently been approved for the management of patients with advanced liposarcoma. Areas covered: Based on a review of the literature between 2005 and 2017, we present a summary of eribulin mesylate's mechanism of action and the studies showing its clinical efficacy in locally advanced or metastatic sarcomas. Expert commentary: Future development includes the definition of a biomarker signature related to patient outcome with eribulin. Further investigation via controlled clinical trials is needed to identify combination regimens that can optimize the efficacy of eribulin while providing an acceptable safety profile in sarcoma patients.
Collapse
Affiliation(s)
- Sheik Emambux
- a Early Phase Trials and Sarcoma Units , Institut Bergonié , Bordeaux , France
| | - Antoine Italiano
- a Early Phase Trials and Sarcoma Units , Institut Bergonié , Bordeaux , France
| |
Collapse
|
202
|
Hao Y, Peng J, Zhang Y, Chen L, Luo F, Wang C, Qian Z. Tumor Neovasculature-Targeted APRPG-PEG-PDLLA/MPEG-PDLLA Mixed Micelle Loading Combretastatin A-4 for Breast Cancer Therapy. ACS Biomater Sci Eng 2017; 4:1986-1999. [PMID: 33445269 DOI: 10.1021/acsbiomaterials.7b00523] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Breast cancer has been the first killer among women. In this study, combretastatin A-4 (CA-4) loaded 5-amino acid peptide Ala-Pro-Arg-Pro-Gly (APRPG) modified PEG-PDLLA mixed micelles was developed to target tumor neovasculature for breast cancer therapy. CA-4 is an effective vascular disrupting agent. The APRPG-modified PEG-PDLLA polymer was successfully synthesized and thin-film hydration method was used to prepare APRPG-PEG-PDLLA/MPEG-PDLLA mixed micelles. Drug loading capacity (DL), encapsulation efficiency (EE), and the optimized ratio of APRPG-PEG-PDLLA: MPEG-PDLLA for efficient drug loading was investigated. The particle size, zeta potential, morphology, and the crystallographic study were carried out to characterize the micelles. In vitro release study revealed a sustained release of CA-4 from the mixed micelles while compared to free CA-4. Moreover, the cytotoxicity data of blank and drug loaded mixed micelles suggested that the APRPG-PEG-PDLLA/MPEG-PDLLA mixed micelles were safe drug carriers and the encapsulated CA-4 remained potent antitumor effect. The cellular uptake study and the in vivo imaging and biodistribution study demonstrated that the APRPG peptide modified mixed micelles has the higher cellular uptake efficiency and could significantly facilitate the accumulation at tumor site. Furthermore, the micelles were slowly extravasated from blood vessels and inhibited embryonic angiogenesis in the transgenic zebrafish model. Consequently, the CA-4 loaded APRPG-PEG-PDLLA/MPEG-PDLLA mixed micelles group demonstrated a significant inhibition of tumor growth in 4T1 breast cancer model. In short, the CA-4 loaded APRPG-PEG-PDLLA/MPEG-PDLLA mixed micelles might have great potential for breast cancer therapy.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Feng Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Cheng Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| |
Collapse
|
203
|
Shepherd J, Fisher M, Welford A, McDonald DM, Kanthou C, Tozer GM. The protective role of sphingosine-1-phosphate against the action of the vascular disrupting agent combretastatin A-4 3- O-phosphate. Oncotarget 2017; 8:95648-95661. [PMID: 29221156 PMCID: PMC5707050 DOI: 10.18632/oncotarget.21172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023] Open
Abstract
Solid tumours vary in sensitivity to the vascular disrupting agent combretastatin A-4 3-O-phosphate (CA4P), but underlying factors are poorly understood. The signaling sphingolipid, sphingosine-1-phosphate (S1P), promotes vascular barrier integrity by promoting assembly of VE-cadherin/β-catenin complexes. We tested the hypothesis that tumour pre-treatment with S1P would render tumours less susceptible to CA4P. S1P (1μM) pretreatment attenuated an increase in endothelial cell (HUVEC) monolayer permeability induced by 10μM CA4P. Intravenously administered S1P (8mg/kg/hr for 20 minutes then 2mg/kg/hr for 40 minutes), reduced CA4P-induced (30mg/kg) blood flow shut-down in fibrosarcoma tumours in SCID mice (n≥7 per group), as measured by tumour retention of an intravenously administered fluorescent lectin. A trend towards in vivo protection was also found using laser Doppler flowmetry. Immunohistochemical staining of tumours ex vivo revealed disrupted patterns of VE-cadherin in vasculature of mice treated with CA4P, which were decreased by pretreatment with S1P. S1P treatment also stabilized N-cadherin junctions between endothelial cells and smooth muscle cells in culture, and stabilized tubulin filaments in HUVEC monolayers. We conclude that the rapid shutdown of tumour microvasculature by CA4P is due in part to disruption of adherens junctions and that S1P has a protective effect on both adherens junctions and the endothelial cell cytoskeleton.
Collapse
Affiliation(s)
- Joanna Shepherd
- Current/Present address: School of Clinical Dentistry, The University of Sheffield, Claremont Crescent, Sheffield, UK
| | - Matthew Fisher
- Tumour Microcirculation Group, The University of Sheffield, Department of Oncology and Metabolism, School of Medicine, Sheffield, UK
| | - Abigail Welford
- Tumour Microcirculation Group, The University of Sheffield, Department of Oncology and Metabolism, School of Medicine, Sheffield, UK
| | - Donald M McDonald
- UCSF Comprehensive Cancer Center, Cardiovascular Research Institute, and Department of Anatomy, University of California, San Francisco, CA, USA
| | - Chryso Kanthou
- Tumour Microcirculation Group, The University of Sheffield, Department of Oncology and Metabolism, School of Medicine, Sheffield, UK
| | - Gillian M Tozer
- Tumour Microcirculation Group, The University of Sheffield, Department of Oncology and Metabolism, School of Medicine, Sheffield, UK
| |
Collapse
|
204
|
Siemann DW, Chaplin DJ, Horsman MR. Realizing the Potential of Vascular Targeted Therapy: The Rationale for Combining Vascular Disrupting Agents and Anti-Angiogenic Agents to Treat Cancer. Cancer Invest 2017; 35:519-534. [DOI: 10.1080/07357907.2017.1364745] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- D. W. Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | | - M. R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University, Denmark
| |
Collapse
|
205
|
Sharma S, Guru SK, Manda S, Kumar A, Mintoo MJ, Prasad VD, Sharma PR, Mondhe DM, Bharate SB, Bhushan S. A marine sponge alkaloid derivative 4-chloro fascaplysin inhibits tumor growth and VEGF mediated angiogenesis by disrupting PI3K/Akt/mTOR signaling cascade. Chem Biol Interact 2017; 275:47-60. [DOI: 10.1016/j.cbi.2017.07.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
|
206
|
Chen M, Lei X, Shi C, Huang M, Li X, Wu B, Li Z, Han W, Du B, Hu J, Nie Q, Mai W, Ma N, Xu N, Zhang X, Fan C, Hong A, Xia M, Luo L, Ma A, Li H, Yu Q, Chen H, Zhang D, Ye W. Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents. J Clin Invest 2017; 127:3689-3701. [PMID: 28846068 DOI: 10.1172/jci94258] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 01/10/2023] Open
Abstract
Blood vessels in the tumor periphery have high pericyte coverage and are resistant to vascular disrupting agents (VDAs). VDA treatment resistance leads to a viable peripheral tumor rim that contributes to treatment failure and disease recurrence. Here, we provide evidence to support a hypothesis that shifting the target of VDAs from tumor vessel endothelial cells to pericytes disrupts tumor peripheral vessels and the viable rim, circumventing VDA treatment resistance. Through chemical engineering, we developed Z-GP-DAVLBH (from the tubulin-binding VDA desacetylvinblastine monohydrazide [DAVLBH]) as a prodrug that can be selectively activated by fibroblast activation protein α (FAPα) in tumor pericytes. Z-GP-DAVLBH selectively destroys the cytoskeleton of FAPα-expressing tumor pericytes, disrupting blood vessels both within the core and around the periphery of tumors. As a result, Z-GP-DAVLBH treatment eradicated the otherwise VDA-resistant tumor rim and led to complete regression of tumors in multiple lines of xenografts without producing the drug-related toxicity that is associated with similar doses of DAVLBH. This study demonstrates that targeting tumor pericytes with an FAPα-activated VDA prodrug represents a potential vascular disruption strategy in overcoming tumor resistance to VDA treatments.
Collapse
Affiliation(s)
- Minfeng Chen
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xueping Lei
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Changzheng Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Maohua Huang
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xiaobo Li
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Baojian Wu
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Zhengqiu Li
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Weili Han
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Bin Du
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jianyang Hu
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Qiulin Nie
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Weiqian Mai
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nan Ma
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nanhui Xu
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xinyi Zhang
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Chunlin Fan
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Aihua Hong
- Analytical and Testing Center, Jinan University, Guangzhou, China
| | - Minghan Xia
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liangping Luo
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ande Ma
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Hongsheng Li
- Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Qiang Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Heru Chen
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
207
|
Ran D, Mao J, Zhan C, Xie C, Ruan H, Ying M, Zhou J, Lu WL, Lu W. d-Retroenantiomer of Quorum-Sensing Peptide-Modified Polymeric Micelles for Brain Tumor-Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25672-25682. [PMID: 28548480 DOI: 10.1021/acsami.7b03518] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Compared to that of other tumors, various barriers, such as the blood-brain barrier (BBB), enzymatic barriers, and the blood-brain tumor barrier, severely impede the successful treatment of gliomas. Peptide ligands were frequently used as targeting moieties to mediate brain tumor-targeted drug delivery. LWSW (SYPGWSW) is a recently reported quorum-sensing (QS) peptide that is able to efficiently cross the BBB. Even though linear LWSW traverses the BBB in vitro, its in vivo targeting ability has been greatly impaired due to proteolysis. Here, we developed a stable peptide, DWSW (DWDSDWDGDPDYDS), using the retro-inverso isomerization technique to achieve an enhanced antiglioma effect. In vitro studies have demonstrated that both the LWSW and DWSW peptides possessed excellent tumor-homing properties and barrier-penetration abilities, whereas DWSW exhibited exceptional stability in serum and maintained its targeting ability after serum preincubation. In vivo, DWSW-modified probes and micelles accumulated more efficiently in the glioma region in comparison with LWSW-modified probes and micelles because of full resistance to proteolysis in blood circulation. As expected, DWSW-modified paclitaxel (PTX)-loaded micelles (DWSW Micelle/PTX) exhibited the longest median survival time among glioma-bearing nude mice. Our results suggested that the QS peptide appears to be a promising targeting moiety, with potential applications in glioma-targeted drug delivery.
Collapse
Affiliation(s)
- Danni Ran
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education , Shanghai 201203, China
| | - Jiani Mao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education , Shanghai 201203, China
| | - Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education , Shanghai 201203, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University , Shanghai 200032, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education , Shanghai 201203, China
| | - Huitong Ruan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education , Shanghai 201203, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education , Shanghai 201203, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education , Shanghai 201203, China
| | - Wan-Liang Lu
- State Kay Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Science, Peking University , Beijing 100191, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education , Shanghai 201203, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University , Shanghai 200433, China
| |
Collapse
|
208
|
Thermo-sensitive polypeptide hydrogel for locally sequential delivery of two-pronged antitumor drugs. Acta Biomater 2017; 58:44-53. [PMID: 28576715 DOI: 10.1016/j.actbio.2017.05.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/14/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022]
Abstract
In the synergistic treatment with cytotoxic drug and vascular disrupting agent, the order of drug release shows great importance to enhance the antitumor efficacy. When vascular disrupting agent is firstly administrated, the reduced blood supply and overexpressed hypoxia-inducible factor-1α greatly limit the efficiency of chemotherapy. In this work, an injectable thermo-sensitive polypeptide hydrogel was firstly developed for the locally sequential delivery of hydrophilic doxorubicin (DOX, a cytotoxic agent) and hydrophobic combretastatin A4 (CA4, a vascular disrupting drug). The aqueous solution of polypeptide at low temperature transformed into hydrogel under the body temperature after subcutaneous injection and completely degraded after four weeks with excellent biocompatibility. DOX and CA4 were co-loaded into the hydrogel, and the release of DOX showed much faster than that of CA4 due to their difference in water solubility. The superior inhibition of tumor volume after treatment with DOX and CA4 co-loaded hydrogel occurred in the treatment of grafted mouse U14 cervical tumor compared with both free drugs and single drug-loaded hydrogels. In addition, the co-loaded hydrogel obtained enhanced apoptosis of tumor cells, significant shutdown of blood vessels, and wholly regional tumor apoptosis, which indicated the eradication of solid tumor. Moreover, treatments with the drug-loaded hydrogels showed negligible damage to normal tissues, suggesting their low systemic toxicity. The locally sequential delivery system had great potential for in situ synergistic chemotherapy. STATEMENT OF SIGNIFICANCE The release order makes great difference in the synergistic efficacies of cytotoxic drug and vascular disrupting agent. When cytotoxic drug is administrated before vascular disrupting agent, an eradication of tumor might be obtained. On the contrary, the antitumor efficiency will be greatly hindered by limited penetration of later cytotoxic drug and drug resistant induced by vascular disrupting agent. Therefore, the adjustment of the delivery behaviors of such two-pronged agents in one platform was significant for their efficiently synergistic chemotherapy. The present study originally provides a convenient strategy and an advanced sample for sequential administration of cytotoxic drug and vascular disrupting agent in one platform based on their water solubility to achieve upregulated efficacy and safety.
Collapse
|
209
|
Early Actions of Anti-Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor Drugs on Angiogenic Blood Vessels. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2337-2347. [PMID: 28736316 DOI: 10.1016/j.ajpath.2017.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022]
Abstract
Tumors induce their heterogeneous vasculature by secreting vascular endothelial growth factor (VEGF)-A. Anti-VEGF/VEGF receptor (VEGFR) drugs treat cancer, but the underlying mechanisms remain unclear. An adenovirus expressing VEGF-A (Ad-VEGF-A164) replicates the tumor vasculature in mice without tumor cells. Mother vessels (MV) are the first angiogenic vessel type to form in tumors and after Ad-VEGF-A164. Multiday treatments with a VEGF trap reverted MV back to normal microvessels. We now show that, within hours, a single dose of several anti-VEGF drugs collapsed MV to form glomeruloid microvascular proliferations (GMP), accompanied by only modest endothelial cell death. GMP, common in many human cancers but of uncertain origin, served as an intermediary step in MV reversion to normal microvessels. The vasodisruptive drug combretastatin CA4 also targeted MV selectively but acted differently, extensively killing MV endothelium. Antivascular changes were quantified with a novel Evans blue dye assay that measured vascular volumes. As in tumors, Ad-VEGF-A164 strikingly increased endothelial nitric oxide synthase (eNOS) expression. The eNOS inhibitor N(G)-Nitro-l-arginine methyl ester mimicked anti-VEGF/VEGFR drugs, rapidly collapsing MV to GMP. Inhibition of eNOS reduces synthesis of its vasodilatory product, nitric oxide, leading to arterial contraction. Patients and mice receiving anti-VEGF/VEGFR drugs develop hypertension, reflecting systemic arterial contraction. Together, anti-VEGF/VEGFR drugs act in part by inhibiting eNOS, causing vasocontraction, MV collapse to GMP, and subsequent reversion of GMP to normal microvessels, all without extensive vascular killing.
Collapse
|
210
|
Liu Y, Yin T, Keyzer FD, Feng Y, Chen F, Liu J, Song S, Yu J, Vandecaveye V, Swinnen J, Bormans G, Himmelreich U, Oyen R, Zhang J, Huang G, Ni Y. Micro-HCCs in rats with liver cirrhosis: paradoxical targeting effects with vascular disrupting agent CA4P. Oncotarget 2017; 8:55204-55215. [PMID: 28903414 PMCID: PMC5589653 DOI: 10.18632/oncotarget.19339] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
We sought to investigate anticancer efficacy of a vascular disrupting agent (VDA) combretastatin A-4 phosphate (CA4P) in relation to tumor size among hepatocellular carcinomas (HCCs) in rats using magnetic resonance imaging (MRI) and postmortem techniques. Nineteen rats with 43 chemically-induced HCCs of 2.8–20.9 mm in size on liver cirrhosis received CA4P intravenously at 10 mg/kg. Tumor-diameter was measured by T2-weighted imaging (T2WI) to define microcancers (< 5 mm) versus larger HCCs. Vascular responses and tissue necrosis were detected by diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (CE-T1WI) and dynamic contrast enhanced (DCE-) MRI, which were validated by microangiography and histopathology. MRI revealed nearly complete necrosis in 5 out of 7 micro-HCCs, but diverse therapeutic necrosis in larger HCCs with a positive correlation with tumor size. Necrosis in micro-HCCs was 36.9% more than that in larger HCCs. While increased diffusion coefficient (ADCdiff) suggested tumor necrosis, perfusion coefficient (ADCperf) indicated sharply decreased blood perfusion in cirrhotic liver together with a reduction in micro-HCCs. DCE revealed lowered tumor blood flow from intravascular into extravascular extracellular space (EES). Microangiography and histopathology revealed hypo- and hypervascularity in 4 and 3 micro-HCCs, massive, partial and minor degrees of tumoral necrosis in 5, 1 and 1 micro-HCCs respectively, and patchy necrotic foci in cirrhotic liver. CD34-PAS staining implicated that poorly vascularized micro-HCCs growing on liver cirrhosis tended to respond better to CA4P treatment. In this study, more complete CA4P-response occurred unexpectedly in micro-HCCs in rats, along with CA4P-induced necrotic foci in cirrhotic liver. These may help to plan clinical applications of VDAs in patients with HCCs and liver cirrhosis.
Collapse
Affiliation(s)
- Yewei Liu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.,Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Ting Yin
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | | | - Yuanbo Feng
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Feng Chen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jianjun Liu
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shaoli Song
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jie Yu
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | | | - Johan Swinnen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Guy Bormans
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Uwe Himmelreich
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Raymond Oyen
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Gang Huang
- Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.,Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Yicheng Ni
- Biomedical Group, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
211
|
Zhou Y, Deng R, Zhen M, Li J, Guan M, Jia W, Li X, Zhang Y, Yu T, Zou T, Lu Z, Guo J, Sun L, Shu C, Wang C. Amino acid functionalized gadofullerene nanoparticles with superior antitumor activity via destruction of tumor vasculature in vivo. Biomaterials 2017; 133:107-118. [DOI: 10.1016/j.biomaterials.2017.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 11/16/2022]
|
212
|
Mohanty S, Chen Z, Li K, Morais GR, Klockow J, Yerneni K, Pisani L, Chin FT, Mitra S, Cheshier S, Chang E, Gambhir SS, Rao J, Loadman PM, Falconer RA, Daldrup-Link HE. A Novel Theranostic Strategy for MMP-14-Expressing Glioblastomas Impacts Survival. Mol Cancer Ther 2017; 16:1909-1921. [PMID: 28659432 DOI: 10.1158/1535-7163.mct-17-0022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/09/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) has a dismal prognosis. Evidence from preclinical tumor models and human trials indicates the role of GBM-initiating cells (GIC) in GBM drug resistance. Here, we propose a new treatment option with tumor enzyme-activatable, combined therapeutic and diagnostic (theranostic) nanoparticles, which caused specific toxicity against GBM tumor cells and GICs. The theranostic cross-linked iron oxide nanoparticles (CLIO) were conjugated to a highly potent vascular disrupting agent (ICT) and secured with a matrix-metalloproteinase (MMP-14) cleavable peptide. Treatment with CLIO-ICT disrupted tumor vasculature of MMP-14-expressing GBM, induced GIC apoptosis, and significantly impaired tumor growth. In addition, the iron core of CLIO-ICT enabled in vivo drug tracking with MR imaging. Treatment with CLIO-ICT plus temozolomide achieved tumor remission and significantly increased survival of human GBM-bearing mice by more than 2-fold compared with treatment with temozolomide alone. Thus, we present a novel therapeutic strategy with significant impact on survival and great potential for clinical translation. Mol Cancer Ther; 16(9); 1909-21. ©2017 AACR.
Collapse
Affiliation(s)
- Suchismita Mohanty
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Zixin Chen
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Kai Li
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Jessica Klockow
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Ketan Yerneni
- Department of Biology, Skidmore College, Saratoga Springs, New York
| | - Laura Pisani
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Siddharta Mitra
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, California
| | - Samuel Cheshier
- Department of Neurosurgery, Institute for Stem Cell Biology and Regenerative Medicine and Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Stanford, California
| | | | - Sanjiv Sam Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
- Department of Materials Science & Engineering, Stanford University, Stanford, California
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.
| |
Collapse
|
213
|
Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies - A review. J Adv Res 2017; 8:591-605. [PMID: 28808589 PMCID: PMC5544473 DOI: 10.1016/j.jare.2017.06.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023] Open
Abstract
Recent strategies for the treatment of cancer, other than just tumor cell killing have been under intensive development, such as anti-angiogenic therapeutic approach. Angiogenesis inhibition is an important strategy for the treatment of solid tumors, which basically depends on cutting off the blood supply to tumor micro-regions, resulting in pan-hypoxia and pan-necrosis within solid tumor tissues. The differential activation of angiogenesis between normal and tumor tissues makes this process an attractive strategic target for anti-tumor drug discovery. The principles of anti-angiogenic treatment for solid tumors were originally proposed in 1972, and ever since, it has become a putative target for therapies directed against solid tumors. In the early twenty first century, the FDA approved anti-angiogenic drugs, such as bevacizumab and sorafenib for the treatment of several solid tumors. Over the past two decades, researches have continued to improve the performance of anti-angiogenic drugs, describe their drug interaction potential, and uncover possible reasons for potential treatment resistance. Herein, we present an update to the pre-clinical and clinical situations of anti-angiogenic agents and discuss the most recent trends in this field.
Collapse
Affiliation(s)
- Ahmed M Al-Abd
- Pharmacology Department, Medical Division, National Research Centre, Dokki, Giza, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Biomedical Research Section, Nawah Scientific, Mokkatam, Cairo, Egypt
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Thikryat A Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
214
|
Cui MT, Jiang L, Goto M, Hsu PL, Li L, Zhang Q, Wei L, Yuan SJ, Hamel E, Morris-Natschke SL, Lee KH, Xie L. In Vivo and Mechanistic Studies on Antitumor Lead 7-Methoxy-4-(2-methylquinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-one and Its Modification as a Novel Class of Tubulin-Binding Tumor-Vascular Disrupting Agents. J Med Chem 2017; 60:5586-5598. [PMID: 28653846 DOI: 10.1021/acs.jmedchem.7b00273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
7-Methoxy-4-(2-methylquinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-one (2), a promising anticancer lead previously identified by us, inhibited tumor growth by 62% in mice at 1.0 mg/kg without obvious signs of toxicity. Moreover, compound 2 exhibited extremely high antiproliferative activity in the NIH-NCI 60 human tumor cell line panel, with low to sub-nanomolar GI50 values (10-10 M level). It also showed a suitable balance between aqueous solubility and lipophilicity, as well as moderate metabolic stability in vivo. Mechanistic studies using Mayer's hematoxylin and eosin and immunohistochemistry protocols on xenograft tumor tissues showed that 2 inhibited tumor cell proliferation, induced apoptosis, and disrupted tumor vasculature. Moreover, evaluation of new synthetic analogues (6a-6t) of 2 indicated that appropriate 2-substitution on the quinazoline ring could enhance antitumor activity and improve druglike properties. Compound 2 and its analogues with a 4-(2-methylquinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-one scaffold thus represent a novel class of tubulin-binding tumor-vascular disrupting agents (tumor-VDAs) that target established blood vessels in tumors.
Collapse
Affiliation(s)
- Mu-Tian Cui
- Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road, Beijing 100850, China
| | - Li Jiang
- Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road, Beijing 100850, China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Pei-Ling Hsu
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Linna Li
- Beijing Institute of Radiation Medicine , 27 Tai-Ping Road, Beijing 100850, China
| | - Qi Zhang
- Beijing Institute of Radiation Medicine , 27 Tai-Ping Road, Beijing 100850, China
| | - Lei Wei
- Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road, Beijing 100850, China
| | - Shou-Jun Yuan
- Beijing Institute of Radiation Medicine , 27 Tai-Ping Road, Beijing 100850, China
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health , Frederick, Maryland 21702, United States
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States.,Chinese Medicine Research and Development Center, China Medical University and Hospital , Taichung 40402, Taiwan
| | - Lan Xie
- Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road, Beijing 100850, China.,Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
215
|
Chen H, Tong X, Lang L, Jacobson O, Yung BC, Yang X, Bai R, Kiesewetter DO, Ma Y, Wu H, Niu G, Chen X. Quantification of Tumor Vascular Permeability and Blood Volume by Positron Emission Tomography. Am J Cancer Res 2017; 7:2363-2376. [PMID: 28744320 PMCID: PMC5525742 DOI: 10.7150/thno.19898] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 12/24/2022] Open
Abstract
Purpose: Evans Blue (EB) is an azo dye that binds quantitatively with serum albumin. With an albumin binding, NOTA conjugated truncated Evan's blue (NEB) dye derived PET tracer, we aimed to establish a strategy for evaluating vascular permeability in malignant tumors via non-invasive PET. Experimental design: Sixty-minute dynamic PET using [18F]FAl-NEB was performed in three xenograft tumor models including INS-1 rat insulinoma, UM-SCC-22B human head and neck carcinoma and U-87 MG human glioblastoma. Tumor vascular permeability was quantified by the difference of the slopes between tumor and blood time-activity curve (TACs, expressed as Ps ). The method was further substantiated by EB extraction and colorimetric assay and correlates with that calculated from dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). The changes in tumor vasculature at different time points were assessed with NEB PET in U-87 MG and UM-SCC-22B tumor models after treatment with bevacizumab or doxorubicin. Result: The Ps values calculated from tumor and blood TACs from multiple time-point static images are consistent with those from dynamic images. Moreover, the Ps showed a positive and significant correlation with extracted EB concentration and KPS-MRI generated from DCE-MRI, which further confirmed the soundness of this methodology. The antiangiogenic effect of bevacizumab could be revealed by NEB PET in U-87 MG tumors as early as 8 hrs after therapy, demonstrated by a substantial decrease of Ps. On the contrary, there was no significant change of Ps in bevacizumab treated UM-SCC-22B tumors, compared with control group. However, the significant changes of Ps were overestimated in doxorubicin treated UM-SCC-22B tumors. Conclusions: We successfully developed a relatively convenient and novel strategy to evaluate vascular permeability and blood volume using NEB PET. This method will be advantageous in evaluating vascular permeability, promoting drug delivery, and monitoring tumor response to therapeutics that affect tumor angiogenesis.
Collapse
|
216
|
Shen Y, Wu L, Qiu L. Water-Soluble Combretastatin A4 Phosphate Orally Delivered via Composite Nanoparticles With Improved Inhibition Effect Toward S180 Tumors. J Pharm Sci 2017; 106:3076-3083. [PMID: 28619603 DOI: 10.1016/j.xphs.2017.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 01/15/2023]
Abstract
Combretastatin A4 phosphate (CA4P) is a novel vascular disrupting agent for cancer therapy. However, frequent dosing and negative patient compliance have been encountered over CA4P by injection administration due to its quite short-term action and acute side effects. Therefore, it is significant to develop an oral formulation of CA4P. We established a novel method to prepare CA4P-loaded nanoparticles (CA4P-NPs) for oral administration by combining methoxy poly(ethylene glycol)-b-polylactide (PELA) and poly(d,l-lactic-co-glycolic acid) (PLGA) polymers. Transport study in vitro was evaluated on Madin-Darby canine kidney cell models, and antitumor effect evaluation in vivo was performed on S180 subcutaneous xenotransplanted tumor models in mice. The highest entrapment efficiency of CA4P-NPs was achieved when the weight ratio of PELA to PLGA was optimized to 1:1. The apparent permeability coefficient of CA4P-NPs was found to be 2.08-fold higher than that of free CA4P in transport study. CA4P-NPs reached an absolute bioavailability of 77.6% with the tumor inhibition ratio of 41.2% that was significantly superior to free CA4P. These results suggest a promising application of this composite nanoparticle for the oral delivery of water-soluble drugs.
Collapse
Affiliation(s)
- Yurun Shen
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liping Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
217
|
Izumi Y, Aoshima K, Hoshino Y, Takagi S. Effects of combretastatin A-4 phosphate on canine normal and tumor tissue-derived endothelial cells. Res Vet Sci 2017; 112:222-228. [DOI: 10.1016/j.rvsc.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Accepted: 05/12/2017] [Indexed: 12/09/2022]
|
218
|
Nanoformulation-based sequential combination cancer therapy. Adv Drug Deliv Rev 2017; 115:57-81. [PMID: 28412324 DOI: 10.1016/j.addr.2017.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
Abstract
Although combining two or more treatments is regarded as an indispensable approach for effectively treating cancer, the traditional cocktail-based combination therapies are seriously limited by coordination issues that fail to account for differences in the pharmacokinetics and action sites of each drug. The careful manipulation of dosing regimens, such as by the sequential application of combination treatments, may satisfy the temporal and spatial needs of each drug and achieve successful combination antitumor therapy. Nanotechnology-based carriers might be the best tools for sequential combination therapy, as they can be loaded with multiple cargos and may provide targeted and sustained delivery to target tumor cells. Single nanoformulations capable of sequentially releasing drugs have shown synergistic anticancer activity, such as by sensitizing tumor cells through cascaded drug delivery or remodeling the tumor vasculature and microenvironment to enhance the tumor distribution of nanotherapeutics. This review highlights the use of nanotechnology-based multistage drug delivery for cancer treatment, focusing on the ability of such formulations to enhance antitumor efficacy by applying sequential treatment and modulating dosing regimens, which are challenges currently being faced in the clinic.
Collapse
|
219
|
Abstract
Tumor-targeted nanomedicines have been extensively applied to alter the drawbacks and enhance the efficacy of chemotherapeutics. Despite the large number of preclinical nanomedicine studies showing initial success, their therapeutic benefit in the clinic has been rather modest, which is partially due to the inefficient tumor penetration caused by the tumor microenvironment (high density of cells and extracellular matrix, increased interstitial fluid pressure). Furthermore, tumor penetration of nanomedicines is significantly influenced by physicochemical characteristics, such as size, surface chemistry, and shape. The effect of size on tumor penetration has been exploited to design nanomedicines with switchable size to tackle this challenge. Moreover, several pharmacological and physical approaches have been developed to enhance the tumor penetration of nanomedicines, by penetration-promoting ligands, intratumoral drug release, and modulating the tumor microenvironment and vasculature. Overall, these efforts have resulted in nanomedicines with better tumor penetration properties and with enhanced therapeutic efficacy. Future research should be directed to penetration-promoting strategies with broad applicability and with high translational potential.
Collapse
Affiliation(s)
- Qingxue Sun
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Tarun Ojha
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany
| |
Collapse
|
220
|
Mico V, Charalambous A, Peyman SA, Abou-Saleh RH, Markham AF, Coletta PL, Evans SD. Evaluation of lipid-stabilised tripropionin nanodroplets as a delivery route for combretastatin A4. Int J Pharm 2017; 526:547-555. [PMID: 28495582 DOI: 10.1016/j.ijpharm.2017.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/04/2017] [Indexed: 01/22/2023]
Abstract
Lipid-based nanoemulsions are a cheap and elegant route for improving the delivery of hydrophobic drugs. Easy and quick to prepare, nanoemulsions have promise for the delivery of different therapeutic agents. Although multiple studies have investigated the effects of the oil and preparation conditions on the size of the nanoemulsion nanodroplets for food applications, analogous studies for nanoemulsions for therapeutic applications are limited. Here we present a study on the production of lipid-stabilised oil nanodroplets (LONDs) towards medical applications. A number of biocompatible oils were used to form LONDs with phospholipid coatings, and among these, squalane and tripropionin were chosen as model oils for subsequent studies. LONDs were formed by high pressure homogenisation, and their size was found to decrease with increasing production pressure. When produced at 175MPa, all LONDs samples exhibited sizes between 100 and 300nm, with polydispersity index PI between 0.1 and 0.3. The LONDs were stable for over six weeks, at 4°C, and also under physiological conditions, showing modest changes in size (<10%). The hydrophobic drug combretastatin A4 (CA4) was encapsulated in tripropionin LONDs with an efficiency of approximately 76%, achieving drug concentration of approximately 1.3mg/ml. SVR mouse endothelial cells treated with CA4 tripropionin LONDs showed the microtubule disruption, characteristic of drug uptake for all tested doses, which suggests successful release of the CA4 from the LONDs.
Collapse
Affiliation(s)
- Victoria Mico
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK
| | - Antonia Charalambous
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, LS9 7TF, UK
| | - Sally A Peyman
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK
| | - Radwa H Abou-Saleh
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK; Biophysics Group, Department of Physics, Faculty of Science, Mansoura University, Egypt
| | - Alexander F Markham
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, LS9 7TF, UK
| | - P Louise Coletta
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, LS9 7TF, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, LS2 9JT, UK.
| |
Collapse
|
221
|
Zampanolide, a Microtubule-Stabilizing Agent, Is Active in Resistant Cancer Cells and Inhibits Cell Migration. Int J Mol Sci 2017; 18:ijms18050971. [PMID: 28467385 PMCID: PMC5454884 DOI: 10.3390/ijms18050971] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022] Open
Abstract
Zampanolide, first discovered in a sponge extract in 1996 and later identified as a microtubule-stabilizing agent in 2009, is a covalent binding secondary metabolite with potent, low nanomolar activity in mammalian cells. Zampanolide was not susceptible to single amino acid mutations at the taxoid site of β-tubulin in human ovarian cancer 1A9 cells, despite evidence that it selectively binds to the taxoid site. As expected, it did not synergize with other taxoid site microtubule-stabilizing agents (paclitaxel, ixabepilone, discodermolide), but surprisingly also did not synergize in 1A9 cells with laulimalide/peloruside binding site agents either. Efforts to generate a zampanolide-resistant cell line were unsuccessful. Using a standard wound scratch assay in cell culture, it was an effective inhibitor of migration of human umbilical vein endothelial cells (HUVEC) and fibroblast cells (D551). These properties of covalent binding, the ability to inhibit cell growth in paclitaxel and epothilone resistant cells, and the ability to inhibit cell migration suggest that it would be of interest to investigate zampanolide in preclinical animal models to determine if it is effective in vivo at preventing tumor growth and metastasis.
Collapse
|
222
|
Kulshrestha A, Katara GK, Ibrahim SA, Patil R, Patil SA, Beaman KD. Microtubule inhibitor, SP-6-27 inhibits angiogenesis and induces apoptosis in ovarian cancer cells. Oncotarget 2017; 8:67017-67028. [PMID: 28978013 PMCID: PMC5620153 DOI: 10.18632/oncotarget.17549] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/21/2017] [Indexed: 01/21/2023] Open
Abstract
In ovarian cancer (OVCA), treatment failure due to chemo-resistance is a serious challenge. It is therefore critical to identify new therapies that are effective against resistant tumors and have reduced side effects. We recently identified 4-H-chromenes as tubulin depolymerizing agents that bind to colchicine site of beta-tubulin. Here, we screened a chemical library of substituted 4-H-chromenes and identified SP-6-27 to exhibit most potent anti-proliferative activity towards a panel of human cisplatin sensitive and resistant OVCA cell lines with 50% inhibitory concentration (IC50; mean ± SD) ranging from 0.10 ± 0.01 to 0.84 ± 0.20 μM. SP-6-27 exhibited minimum cytotoxicity to normal ovarian epithelia. A pronounced decrease in microtubule density as well as G2/M cell cycle arrest was observed in SP-6-27 treated cisplatin sensitive/resistant OVCA cells. The molecular mechanism of SP-6-27 induced cell death revealed modulation in cell-cycle regulation by upregulation of growth arrest and DNA damage inducible alpha transcripts (GADD45). An enhanced intrinsic apoptosis was observed in OVCA cells through upregulation of Bax, Apaf-1, caspase-6, -9, and caspase-3. In vitro wound healing assay revealed reduced OVCA cell migration upon SP-6-27 treatment. Additionally, SP-6-27 and cisplatin combinatorial treatment showed enhanced cytotoxicity in chemo-sensitive/resistant OVCA cells. Besides effect on cancer cells, SP-6-27 further restrained angiogenesis by inhibiting capillary tube formation by human umbilical vein endothelial cells (HUVEC). Together, these findings show that the chromene analog SP-6-27 is a novel chemotherapeutic agent that offers important advantages for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Arpita Kulshrestha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Gajendra K Katara
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Safaa A Ibrahim
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA.,Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Renukadevi Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Shivaputra A Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, USA
| |
Collapse
|
223
|
Chase DM, Chaplin DJ, Monk BJ. The development and use of vascular targeted therapy in ovarian cancer. Gynecol Oncol 2017; 145:393-406. [DOI: 10.1016/j.ygyno.2017.01.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/08/2023]
|
224
|
Zhu J, Hu M, Qiu L. Drug resistance reversal by combretastatin-A4 phosphate loaded with doxorubicin in polymersomes independent of angiogenesis effect. ACTA ACUST UNITED AC 2017; 69:844-855. [PMID: 28425588 DOI: 10.1111/jphp.12725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/12/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVES This study aimed to evaluate that the polymersomes (Ps-DOX-CA4P) dual-loaded with combretastatin-A4 phosphate (CA4P) and doxorubicin (DOX) overcame drug resistance and sensitized tumour cells to chemotherapeutic drugs. METHODS Ps-DOX-CA4P were prepared by solvent evaporation method using mPEG-b-PLA as carriers. The potential capability of CA4P to reverse DOX resistance was verified by cytotoxicity test, apoptosis assay and cellular uptake of DOX. The comparison between free drugs and drug-loaded polymersomes was also made on a single-layer cell model and multicellular tumour spheroids to display the superiority of the drug vehicles. Furthermore, we put the emphasis on the investigation into underlying mechanisms for CA4P overcoming DOX resistance. KEY FINDINGS Results showed Ps-DOX-CA4P achieved increased uptake of DOX, enhanced cytotoxicity and apoptotic rate in MCF-7/ADR cells as well as MCF-7/ADR tumour spheroids. The potential molecular mechanisms may be related to inhibiting P-glycoprotein function by downregulating protein kinase Cα, stimulating ATPase activity, depleting ATP and increasing intracellular reactive oxygen species levels. CONCLUSIONS The findings validated the sensitization property of CA4P on DOX independent of its well-known angiogenesis effect, which would provide a novel and promising strategy for drug-resistant cancer therapy.
Collapse
Affiliation(s)
- Jinfang Zhu
- College of Food Science and Pharmaceutical Science, Xinjiang Agricultural University, Urumqi, China.,College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mengying Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
225
|
Hu Q, Sun W, Qian C, Bomba HN, Xin H, Gu Z. Relay Drug Delivery for Amplifying Targeting Signal and Enhancing Anticancer Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605803. [PMID: 28160337 DOI: 10.1002/adma.201605803] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/21/2016] [Indexed: 06/06/2023]
Abstract
A "relay drug delivery" system based on two distinct modules, which is composed of a signal transmission nanocarrier A (NCA ) that can specifically induce tumor blood vessel inflammation generation and an execution biomimetic nanocarrier B (NCB ) that can accumulate at the tumor site by receiving the broadcasting signals generated by NCA , is developed for amplifying active tumor targeting signal and enhancing antitumor therapy.
Collapse
Affiliation(s)
- Quanyin Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chenggen Qian
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Polymer Science and Engineering and Key Laboratory of High Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hunter N Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongliang Xin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| |
Collapse
|
226
|
Tian Y, Jiang X, Zhao W, Pan L, Li B, Wang Z, Su Y, Lian X, Huang J. Acupuncture enhances anticancer effects of cyclophosphamide on 4T1 tumors via suppression of angiogenesis in BALB/c mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2017. [DOI: 10.1016/j.jtcms.2017.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
227
|
Liu J, Zhang J, Wang H, Liu Z, Zhang C, Jiang Z, Chen H. Synthesis of xanthone derivatives and studies on the inhibition against cancer cells growth and synergistic combinations of them. Eur J Med Chem 2017; 133:50-61. [PMID: 28376372 DOI: 10.1016/j.ejmech.2017.03.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/05/2017] [Accepted: 03/26/2017] [Indexed: 12/12/2022]
Abstract
34 Xanthones were synthesized by microwave assisted technique. Their in vitro inhibition activities against five cell lines growth were evaluated. The SAR has been thoroughly discussed. 7-Bromo-1,3-dihydroxy-9H-xanthen-9-one (3-1) was confirmed as the most active agent against MDA-MB-231 cell line growth with an IC50 of 0.46 ± 0.03 μM. Combination of 3-1 and 5,6-dimethylxanthone-4-acetic acid (DMXAA) showed the best synergistic effect. Apoptosis analysis indicated different contributions of early/late apoptosis and necrosis to cell death for both monomers and the combination. Western Blot implied that the combination regulated p53/MDM2 to a better healthy state. Furthermore, 3-1 and DMXAA arrested more cells on G2/M phase; while the combination arrested more cells on S phase. All the evidences support that the 3-1/DMXAA combination is a better anti-cancer therapy.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jianrun Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Huailing Wang
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhijun Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Cao Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhenlei Jiang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Heru Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
228
|
Wang H, Wu J, Xie K, Fang T, Chen C, Xie H, Zhou L, Zheng S. Precise Engineering of Prodrug Cocktails into Single Polymeric Nanoparticles for Combination Cancer Therapy: Extended and Sequentially Controllable Drug Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10567-10576. [PMID: 28271714 DOI: 10.1021/acsami.7b01938] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The synergistic combination of two or more chemotherapeutics frequently requires packaging in single delivery vehicles for the sequential release of each substance in a predictable manner. Here, we demonstrate for the first time that the rational engineering of a prodrug cocktail into single polymeric nanoparticles (NPs) can enable the sequential release of chemotherapeutics in a controllable manner. Exploiting combretastatin-A4 (CA4, 1) as a model antiangiogenesis agent, two ester derivatives, 2 and 3, tethered with saturated fatty acids (butanoic and heptanoic acid for 2 and 3, respectively) were synthesized. 7-Ethyl-10-hydroxycamptothecin (SN38) derivative 4, esterified with α-linolenic acid, was used as a cytotoxic drug. Because of their augmented lipophilicity and miscibility, all constructed prodrugs readily assembled with clinically approved polymeric matrices. Results showed that altering the aliphatic chains of modifiers for CA4 chemical derivatization enabled the drug retention capacity within particle systems to be adjusted, leading to the identification of the prodrug cocktail of 2 and 4 as an optimal combination for subsequent preclinical studies. Furthermore, in vivo assessements indicated that the resulting NPs simultaneously formulating 2 and 4 exhibited synergistic activities and outperformed NPs loaded with individual prodrugs 2 or 4 in terms of therapeutic efficacy. These findings highlight a novel and versatile strategy for tailoring chemically disparate prodrug cocktails for adaptation within a single nanoplatform as a potential modality for synergistic cancer therapy.
Collapse
Affiliation(s)
- Hangxiang Wang
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Jiaping Wu
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Ke Xie
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Tao Fang
- Jinhua People's Hospital , Jinhua, Zhejiang Province 321000, P.R. China
| | - Chao Chen
- College of Life Sciences, Huzhou University , Huzhou, Zhejiang Province 313000, P.R. China
| | - Haiyang Xie
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Lin Zhou
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| | - Shusen Zheng
- The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health and Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University , Hangzhou 310003, P.R. China
| |
Collapse
|
229
|
Winn BA, Shi Z, Carlson GJ, Wang Y, Nguyen BL, Kelly EM, Ross RD, Hamel E, Chaplin DJ, Trawick ML, Pinney KG. Bioreductively activatable prodrug conjugates of phenstatin designed to target tumor hypoxia. Bioorg Med Chem Lett 2017; 27:636-641. [PMID: 28007448 PMCID: PMC5319644 DOI: 10.1016/j.bmcl.2016.11.093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 01/17/2023]
Abstract
A variety of solid tumor cancers contain significant regions of hypoxia, which provide unique challenges for targeting by potent anticancer agents. Bioreductively activatable prodrug conjugates (BAPCs) represent a promising strategy for therapeutic intervention. BAPCs are designed to be biologically inert until they come into contact with low oxygen tension, at which point reductase enzyme mediated cleavage releases the parent anticancer agent in a tumor-specific manner. Phenstatin is a potent inhibitor of tubulin polymerization, mimicking the chemical structure and biological activity of the natural product combretastatin A-4. Synthetic approaches have been established for nitrobenzyl, nitroimidazole, nitrofuranyl, and nitrothienyl prodrugs of phenstatin incorporating nor-methyl, mono-methyl, and gem-dimethyl variants of the attached nitro compounds. A series of BAPCs based on phenstatin have been prepared by chemical synthesis and evaluated against the tubulin-microtubule protein system. In a preliminary study using anaerobic conditions, the gem-dimethyl nitrothiophene and gem-dimethyl nitrofuran analogues were shown to undergo efficient enzymatic cleavage in the presence of NADPH cytochrome P450 oxidoreductase. Each of the eleven BAPCs evaluated in this study demonstrated significantly reduced inhibitory activity against tubulin in comparison to the parent anti-cancer agent phenstatin (IC50=1.0μM). In fact, the majority of the BAPCs (seven of the eleven analogues) were not inhibitors of tubulin polymerization (IC50>20μM), which represents an anticipated (and desirable) attribute for these prodrugs, since they are intended to be biologically inactive prior to enzyme-mediated cleavage to release phenstatin.
Collapse
Affiliation(s)
- Blake A Winn
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Zhe Shi
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Graham J Carlson
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Yifan Wang
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Benson L Nguyen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Evan M Kelly
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - R David Ross
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States; Mateon Therapeutics, Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, CA 94080, United States
| | - Mary L Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, United States.
| |
Collapse
|
230
|
Ho YJ, Yeh CK. Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization. Acta Biomater 2017; 49:472-485. [PMID: 27836803 DOI: 10.1016/j.actbio.2016.11.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/03/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Drug-loaded nanodroplets (NDs) can be converted into gas bubbles through ultrasound (US) stimulation, termed acoustic droplet vaporization (ADV), which provides a potential strategy to simultaneously induce vascular disruption and release drugs for combined physical anti-vascular therapy and chemotherapy. Doxorubicin-loaded NDs (DOX-NDs) with a mean size of 214nm containing 2.48mg DOX/mL were used in this study. High-speed images displayed bubble formation and cell debris, demonstrating the reduction in cell viability after ADV. Intravital imaging provided direct visualization of disrupted tumor vessels (vessel size <30μm), the extravasation distance was 12μm in the DOX-NDs group and increased over 100μm in the DOX-NDs+US group. Solid tumor perfusion on US imaging was significantly reduced to 23% after DOX-NDs vaporization, but gradually recovered to 41%, especially at the tumor periphery after 24h. Histological images of the DOX-NDs+US group revealed tissue necrosis, a large amount of drug extravasation, vascular disruption, and immune cell infiltration at the tumor center. Tumor sizes decreased 22%, 36%, and 68% for NDs+US, DOX-NDs, and DOX-NDs+US, respectively, to prolong the survival of tumor-bearing mice. Therefore, this study demonstrates that the combination of physical anti-vascular therapy and chemotherapy with DOX-NDs vaporization promotes uniform treatment to improve therapeutic efficacy. STATEMENT OF SIGNIFICANCE Tumor vasculature plays an important role for tumor cell proliferation by transporting oxygen and nutrients. Previous studies combined anti-vascular therapy and drug release to inhibit tumor growth by ultrasound-stimulated microbubble destruction or acoustic droplet vaporization. Although the efficacy of combined therapy has been demonstrated; the relative spatial distribution of vascular disruption, drug delivery, and accompanied immune responses within solid tumors was not discussed clearly. Herein, our study used drug-loaded nanodroplets to combined physical anti-vascular and chemical therapy. The in vitro cytotoxicity, intravital imaging, and histological assessment were used to evaluate the temporal and spatial cooperation between physical and chemical effect. These results revealed some evidences for complementary action to explain the high efficacy of tumor inhibition by combined therapy.
Collapse
|
231
|
ZLM-7 exhibits anti-angiogenic effects via impaired endothelial cell function and blockade of VEGF/VEGFR-2 signaling. Oncotarget 2017; 7:19018-30. [PMID: 26967559 PMCID: PMC4951348 DOI: 10.18632/oncotarget.7968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/05/2016] [Indexed: 12/12/2022] Open
Abstract
Inhibition of angiogenesis is a promising therapeutic strategy against cancer. In this study, we reported that ZLM-7, a combretastain A-4 (CA-4) derivative, exhibited anti-angiogenic activity in vitro and in vivo. In vitro, ZLM-7 induced microtubule cytoskeletal disassembly. It decreased VEGF-induced proliferation, migration, invasion and tube formation in endothelial cells, which are critical steps in angiogenesis. In vivo, ZLM-7 significantly inhibited neovascularization in a chicken chorioallantoic membrane (CAM) model and reduced the microvessel density in tumor tissues of MCF-7 xenograft mouse model. ZLM-7 also displayed comparable antiangiogenic and anti-tumor activities associated with the lead compound CA-4, but exhibited lower toxicity compared with CA-4. The anti-angiogenic effect of ZLM-7 was exerted via blockade of VEGF/VEGFR-2 signaling. ZLM-7 treatment suppressed the expression and secretion of VEGF in endothelial cells and MCF-7 cells under hypoxia. Further, ZLM-7 suppressed the VEGF-induced phosphorylation of VEGFR-2 and its downstream signaling mediators including activated AKT, MEK and ERK in endothelial cells. Overall, these results demonstrate that ZLM-7 exhibits anti-angiogenic activities by impairing endothelial cell function and blocking VEGF/VEGFR-2 signaling, suggesting that ZLM-7 might be a potential angiogenesis inhibitor.
Collapse
|
232
|
Brand C, Schliemann C, Ring J, Kessler T, Bäumer S, Angenendt L, Mantke V, Ross R, Hintelmann H, Spieker T, Wardelmann E, Mesters RM, Berdel WE, Schwöppe C. NG2 proteoglycan as a pericyte target for anticancer therapy by tumor vessel infarction with retargeted tissue factor. Oncotarget 2017; 7:6774-89. [PMID: 26735180 PMCID: PMC4872748 DOI: 10.18632/oncotarget.6725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/25/2015] [Indexed: 12/16/2022] Open
Abstract
tTF-TAA and tTF-LTL are fusion proteins consisting of the extracellular domain of tissue factor (TF) and the peptides TAASGVRSMH and LTLRWVGLMS, respectively. These peptides represent ligands of NG2, a surface proteoglycan expressed on angiogenic pericytes and some tumor cells. Here we have expressed the model compound tTF-NGR, tTF-TAA, and tTF-LTL with different lengths in the TF domain in E. coli and used these fusion proteins for functional studies in anticancer therapy. We aimed to retarget TF to tumor vessels leading to tumor vessel infarction with two barriers of selectivity, a) the leaky endothelial lining in tumor vessels with the target NG2 being expressed on pericytes on the abluminal side of the endothelial cell barrier and b) the preferential expression of NG2 on angiogenic vessels such as in tumors. Chromatography-purified tTF-TAA showed identical Factor X (FX)-activating procoagulatory activity as the model compound tTF-NGR with Km values of approx. 0.15 nM in Michaelis-Menten kinetics. The procoagulatory activity of tTF-LTL varied with the chosen length of the TF part of the fusion protein. Flow cytometry revealed specific binding of tTF-TAA to NG2-expressing pericytes and tumor cells with low affinity and dissociation KD in the high nM range. In vivo and ex vivo fluorescence imaging of tumor xenograft-carrying animals and of the explanted tumors showed reduction of tumor blood flow upon tTF-TAA application. Therapeutic experiments showed a reproducible antitumor activity of tTF-TAA against NG2-expressing A549-tumor xenografts, however, with a rather small therapeutic window (active/toxic dose in mg/kg body weight).
Collapse
Affiliation(s)
- Caroline Brand
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Janine Ring
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Torsten Kessler
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Sebastian Bäumer
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Linus Angenendt
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Verena Mantke
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Rebecca Ross
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Heike Hintelmann
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Tilmann Spieker
- Gerhard-Domagk Institute for Pathology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Eva Wardelmann
- Gerhard-Domagk Institute for Pathology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Rolf M Mesters
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| | - Christian Schwöppe
- Department of Medicine A, Hematology, Oncology and Pneumology, University of Muenster, Albert-Schweitzer-Campus 1, D-48129 Muenster, Germany
| |
Collapse
|
233
|
Rossington SB, Hadfield JA, Shnyder SD, Wallace TW, Williams KJ. Tubulin-binding dibenz[c,e]oxepines: Part 2. Structural variation and biological evaluation as tumour vasculature disrupting agents. Bioorg Med Chem 2017; 25:1630-1642. [PMID: 28143677 DOI: 10.1016/j.bmc.2017.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
5,7-Dihydro-3,9,10,11-tetramethoxybenz[c,e]oxepin-4-ol 1, prepared from a dibenzyl ether precursor via Pd-catalysed intramolecular direct arylation, possesses broad-spectrum in vitro cytotoxicity towards various tumour cell lines, and induces vascular shutdown, necrosis and growth delay in tumour xenografts in mice at sub-toxic doses. The biological properties of 1 and related compounds can be attributed to their ability to inhibit microtubule assembly at the micromolar level, by binding reversibly to the same site of the tubulin αβ-heterodimer as colchicine 2 and the allocolchinol, N-acetylcolchinol 4.
Collapse
Affiliation(s)
- Steven B Rossington
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - John A Hadfield
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
| | - Steven D Shnyder
- Institute of Cancer Therapeutics, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | - Timothy W Wallace
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Kaye J Williams
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
234
|
Jahanban-Esfahlan R, Seidi K, Zarghami N. Tumor vascular infarction: prospects and challenges. Int J Hematol 2017; 105:244-256. [DOI: 10.1007/s12185-016-2171-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
235
|
Sun L, Wu Y, Liu Y, Chen X, Hu L. Novel carbazole sulfonamide derivatives of antitumor agent: Synthesis, antiproliferative activity and aqueous solubility. Bioorg Med Chem Lett 2017; 27:261-265. [DOI: 10.1016/j.bmcl.2016.11.068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
|
236
|
Fruytier AC, Le Duff CS, Po C, Magat J, Bouzin C, Neveu MA, Feron O, Jordan BF, Gallez B. The Blood Flow Shutdown Induced by Combretastatin A4 Impairs Gemcitabine Delivery in a Mouse Hepatocarcinoma. Front Pharmacol 2016; 7:506. [PMID: 28066252 PMCID: PMC5179558 DOI: 10.3389/fphar.2016.00506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/07/2016] [Indexed: 01/31/2023] Open
Abstract
In recent clinical studies, vascular disrupting agents (VDAs) are mainly used in combination with chemotherapy. However, an often overlooked concern in treatment combination is the VDA-induced impairment of chemotherapy distribution in the tumor. The work presented here investigated the impact of blood flow shutdown induced by Combretastatin A4 (CA4) on gemcitabine uptake into mouse hepatocarcinoma. At 2 h after CA4 treatment, using DCE-MRI, a significant decrease in the perfusion-relevant parameters Ktrans and Vp were observed in treated group compared with the control group. The blood flow shutdown was indeed confirmed by a histology study. In a third experiment, the total gemcitabine uptake was found to be significantly lower in treated tumors, as assessed in a separate experiment using ex vivo fluorine nuclear magnetic resonance spectroscopy. The amount of active metabolite gemcitabine triphosphate was also lower in treated tumors. In conclusion, the blood flow shutdown induced by VDAs can impact negatively on the delivery of small cytotoxic agents in tumors. The present study outlines the importance of monitoring the tumor vascular function when designing drug combinations.
Collapse
Affiliation(s)
- Anne-Catherine Fruytier
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Cecile S Le Duff
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain Louvain-la-Neuve, Belgium
| | - Chrystelle Po
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Julie Magat
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Caroline Bouzin
- Institut de Recherche Expérimentale et Clinique, Pole of Pharmacology, Angiogenesis and Cancer Research Laboratory, Université Catholique de Louvain Brussels, Belgium
| | - Marie-Aline Neveu
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Olivier Feron
- Institut de Recherche Expérimentale et Clinique, Pole of Pharmacology, Angiogenesis and Cancer Research Laboratory, Université Catholique de Louvain Brussels, Belgium
| | - Benedicte F Jordan
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| |
Collapse
|
237
|
Herdman CA, Strecker TE, Tanpure RP, Chen Z, Winters A, Gerberich J, Liu L, Hamel E, Mason RP, Chaplin DJ, Trawick ML, Pinney KG. Synthesis and Biological Evaluation of Benzocyclooctene-based and Indene-based Anticancer Agents that Function as Inhibitors of Tubulin Polymerization. MEDCHEMCOMM 2016; 7:2418-2427. [PMID: 28217276 PMCID: PMC5308454 DOI: 10.1039/c6md00459h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The natural products colchicine and combretastatin A-4 (CA4) have been inspirational for the design and synthesis of structurally related analogues and spin-off compounds as inhibitors of tubulin polymerization. The discovery that a water-soluble phosphate prodrug salt of CA4 (referred to as CA4P) is capable of imparting profound and selective damage to tumor-associated blood vessels paved the way for the development of a new therapeutic approach for cancer treatment utilizing small-molecule inhibitors of tubulin polymerization that also act as vascular disrupting agents (VDAs). Combination of salient structural features associated with colchicine and CA4 led to the design and synthesis of a variety of fused aryl-cycloalkyl and aryl-heterocyclic compounds that function as inhibitors of tubulin polymerization. Prominent among these compounds is a benzosuberene analogue (referred to as KGP18), which demonstrates sub-nM cytotoxicity against human cancer cell lines and functions (when administered as a water-soluble prodrug salt) as a VDA in mouse models. Structure activity relationship considerations led to the evaluation of benzocyclooctyl [6,8 fused] and indene [6,5 fused] ring systems. Four benzocyclooctene and four indene analogues were prepared and evaluated biologically. Three of the benzocyclooctene analogues were active as inhibitors of tubulin polymerization (IC50 < 5 μM), and benzocyclooctene phenol 23 was comparable to KGP18 in terms of potency. The analogous indene-based compound 31 also functioned as an inhibitor of tubulin polymerization (IC50 = 11 μM) with reduced potency. The most potent inhibitor of tubulin polymerization from this group was benzocyclooctene analogue 23, and it was converted to its water-soluble prodrug salt 24 to assess its potential as a VDA. Preliminary in vivo studies, which utilized the MCF7-luc-GFP-mCherry breast tumor in a SCID mouse model, demonstrated that treatment with 24 (120 mg/kg) resulted in significant vascular shutdown, as evidenced by bioluminescence imaging at 4 h post administration, and that the effect continued at both 24 and 48 h. Contemporaneous studies with CA4P, a clinically relevant VDA, were carried out as a positive control.
Collapse
Affiliation(s)
- Christine A Herdman
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Tracy E Strecker
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Rajendra P Tanpure
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Zhi Chen
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Alex Winters
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Jeni Gerberich
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Li Liu
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, United States
| | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9058, United States
| | - David J Chaplin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States; Mateon Therapeutics, Inc., 701 Gateway Boulevard, Suite 210, South San Francisco, California 94080, United States
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States
| |
Collapse
|
238
|
Bukhvalova SY, Ivanov MA, Malysheva YB, Fedorov AY. Synthesis of polymethoxy-substituted triazolobenzoxazepines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1070428016100183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
239
|
Banerjee S, Hwang DJ, Li W, Miller DD. Current Advances of Tubulin Inhibitors in Nanoparticle Drug Delivery and Vascular Disruption/Angiogenesis. Molecules 2016; 21:molecules21111468. [PMID: 27827858 PMCID: PMC6272853 DOI: 10.3390/molecules21111468] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
Extensive research over the last decade has resulted in a number of highly potent tubulin polymerization inhibitors acting either as microtubule stabilizing agents (MSAs) or microtubule destabilizing agents (MDAs). These inhibitors have potent cytotoxicity against a broad spectrum of human tumor cell lines. In addition to cytotoxicity, a number of these tubulin inhibitors have exhibited abilities to inhibit formation of new blood vessels as well as disrupt existing blood vessels. Tubulin inhibitors as a vascular disrupting agents (VDAs), mainly from the MDA family, induce rapid tumor vessel occlusion and massive tumor necrosis. Thus, tubulin inhibitors have become increasingly popular in the field of tumor vasculature. However, their pharmaceutical application is halted by a number of limitations including poor solubility and toxicity. Thus, recently, there has been considerable interests in the nanoparticle drug delivery of tubulin inhibitors to circumvent those limitations. This article reviews recent advances in nanoparticle based drug delivery for tubulin inhibitors as well as their tumor vasculature disruption properties.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| |
Collapse
|
240
|
Takahashi S, Nakano K, Yokota T, Shitara K, Muro K, Sunaga Y, Ecstein-Fraisse E, Ura T. Phase 1 study of ombrabulin in combination with cisplatin (CDDP) in Japanese patients with advanced solid tumors. Jpn J Clin Oncol 2016; 46:1000-1007. [PMID: 27566973 DOI: 10.1093/jjco/hyw122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE In clinical studies in Western countries, the recommended dose of combination ombrabulin a vascular disrupting agent, with cisplatin is 25 mg/m2 ombrabulin with 75 mg/m2 cisplatin every 3 weeks. Here, we report the first Phase 1 study of this treatment regimen in Japanese patients with advanced solid tumors. METHODS This was an open-label, multicenter, sequential cohort, dose-escalation Phase 1 study of ombrabulin with cisplatin administered once every 3 weeks. The study used a 3 + 3 design without intrapatient dose escalation. The investigated dose levels of ombrabulin were 15.5 and 25 mg/m2 combined with cisplatin 75 mg/m2. The latter dose level was regarded as the maximum administered dose if more than one patient experienced dose-limiting toxicities. RESULTS Ten patients were treated, but no dose-limiting toxicity was observed at both dose levels. Ombrabulin 25 mg/m2 with cisplatin 75 mg/m2 was the maximum administered dose and regarded as the recommended dose in the combination regimen for Japanese patients with cancer. The most frequently reported drug-related adverse events were neutropenia, decreased appetite, constipation, nausea and fatigue. One partial response and five cases of stable disease were reported as the best overall responses. Pharmacokinetic parameters of ombrabulin and cisplatin were comparable with those in non-Japanese patients. CONCLUSIONS Ombrabulin 25 mg/m2 with cisplatin 75 mg/m2 once every 3 weeks was well tolerated and established as the recommended dose in Japanese patients with advanced solid tumors. The safety and pharmacokinetic profiles were comparable between Japanese and Caucasian patients.
Collapse
Affiliation(s)
- Shunji Takahashi
- Department of Medical Oncology, Cancer Chemotherapy Center and Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo
| | - Kenji Nakano
- Department of Medical Oncology, Cancer Chemotherapy Center and Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo
| | - Tomoya Yokota
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Aichi, Japan.,Present address: Shizuoka Cancer Center, Japan
| | - Kohei Shitara
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Aichi, Japan.,Present address: National Cancer Center Hospital East, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| | | | | | - Takashi Ura
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Aichi, Japan
| |
Collapse
|
241
|
Brown AW, Fisher M, Tozer GM, Kanthou C, Harrity JPA. Sydnone Cycloaddition Route to Pyrazole-Based Analogs of Combretastatin A4. J Med Chem 2016; 59:9473-9488. [PMID: 27690431 DOI: 10.1021/acs.jmedchem.6b01128] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combretastatins are an important class of tubulin-binding agents. Of this family, a number of compounds are potent tumor vascular disrupting agents (VDAs) and have shown promise in the clinic for cancer therapy. We have developed a modular synthetic route to combretastatin analogs based on a pyrazole core through highly regioselective alkyne cycloaddition reactions of sydnones. These compounds show modest to high potency against human umbilical vein endothelial cell proliferation. Moreover, evidence is presented that these novel VDAs have the same mode of action as CA4P and bind reversibly to β-tubulin, believed to be a key feature in avoiding toxicity. The most active compound from in vitro studies was taken forward to an in vivo model and instigated an increase in tumor cell necrosis.
Collapse
Affiliation(s)
- Andrew W Brown
- Department of Chemistry, University of Sheffield , Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.,Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Matthew Fisher
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Gillian M Tozer
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Chryso Kanthou
- Department of Oncology and Metabolism, The Medical School, University of Sheffield , Beech Hill Road, Sheffield S10 2RX, U.K
| | - Joseph P A Harrity
- Department of Chemistry, University of Sheffield , Dainton Building, Brook Hill, Sheffield S3 7HF, U.K
| |
Collapse
|
242
|
Multiphoton imaging reveals that nanosecond pulsed electric fields collapse tumor and normal vascular perfusion in human glioblastoma xenografts. Sci Rep 2016; 6:34443. [PMID: 27698479 PMCID: PMC5048165 DOI: 10.1038/srep34443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022] Open
Abstract
Despite the biomedical advances of the last century, many cancers including glioblastoma are still resistant to existing therapies leaving patients with poor prognoses. Nanosecond pulsed electric fields (nsPEF) are a promising technology for the treatment of cancer that have thus far been evaluated in vitro and in superficial malignancies. In this paper, we develop a tumor organoid model of glioblastoma and apply intravital multiphoton microscopy to assess their response to nsPEFs. We demonstrate for the first time that a single 10 ns, high voltage electric pulse (35–45 kV/cm), collapses the perfusion of neovasculature, and also alters the diameter of capillaries and larger vessels in normal tissue. These results contribute to the fundamental understanding of nsPEF effects in complex tissue environments, and confirm the potential of nsPEFs to disrupt the microenvironment of solid tumors such as glioblastoma.
Collapse
|
243
|
Quantitative Evaluation of Tumor Early Response to a Vascular-Disrupting Agent with Dynamic PET. Mol Imaging Biol 2016; 17:865-73. [PMID: 25896816 DOI: 10.1007/s11307-015-0854-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The purpose of this study is to evaluate the early response of tumors to a vascular-disrupting agent (VDA) VEGF121/recombinant toxin gelonin (rGel) using dynamic [(18)F]FPPRGD2 positron emission tomography (PET) and kinetic parameter estimation. PROCEDURES Two tumor xenograft models: U87MG (highly vascularized) and A549 (moderately vascularized), were selected, and both were randomized into treatment and control groups. Sixty-minute dynamic PET scans with [(18)F]FPPRGD2 that targets to integrin αvβ3 were performed at days 0 (baseline), 1, and 3 since VEGF121/rGel treatment started. Dynamic PET-derived binding potential (BPND) and parametric maps were compared with tumor uptake (%ID/g) and the static PET image at 1 h after the tracer administration. RESULTS The growth of U87MG tumor was obviously delayed upon VEGF121/rGel treatment. A549 tumor was not responsive to the same treatment. BPND of treated U87MG tumors decreased significantly at day 1 (p < 0.05), and the difference was more significant at day 3 (p < 0.01), compared with the control group. However, the tracer uptake (%ID/g) derived from static images at 1-h time point did not show significant difference between the treated and control tumors until day 3. Little difference in tracer uptake (%ID/g) or BPND was found between treated and control A549 tumors. Considering the tracer retention in tumor and the slower clearance due to damaged tumor vasculature after treatment, BPND representing the actual specific binding portion appears to be more sensitive and accurate than the semiquantitative parameters (such as %ID/g) derived from static images to assess the early response of tumor to VDA treatment. CONCLUSIONS Quantitative analysis based on dynamic PET with [(18)F]FPPRGD2 shows advantages in distinguishing effective from ineffective treatment during the course of VEGF121/rGel therapy at early stage and is therefore more sensitive in assessing therapy response than static PET.
Collapse
|
244
|
Segaoula Z, Leclercq J, Verones V, Flouquet N, Lecoeur M, Ach L, Renault N, Barczyk A, Melnyk P, Berthelot P, Thuru X, Lebegue N. Synthesis and Biological Evaluation of N-[2-(4-Hydroxyphenylamino)-pyridin-3-yl]-4-methoxy-benzenesulfonamide (ABT-751) Tricyclic Analogues as Antimitotic and Antivascular Agents with Potent in Vivo Antitumor Activity. J Med Chem 2016; 59:8422-40. [PMID: 27538123 DOI: 10.1021/acs.jmedchem.6b00847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzopyridothiadiazepine (2a) and benzopyridooxathiazepine (2b) were modified to produce tricyclic quinazolinone 15-18 or benzothiadiazine 26-27 derivatives. These compounds were evaluated in cytotoxicity and tubulin inhibition assays and led to potent inhibitors of tubulin polymerization. N-[2(4-Methoxyphenyl)ethyl]-1,2-dihydro-pyrimidino[2,1-b]quinazolin-6-one (16a) exhibited the best in vitro cytotoxic activity (GI50 10-66.9 nM) against the NCI 60 human tumor cell line and significant potency against tubulin assembly (IC50 0.812 μM). In mechanism studies, 16a was shown to block cell cycle in G2/M phase and to disrupt microtubule formation and displayed good antivascular properties as inhibition of cell migration, invasion, and endothelial tube formation. Compound 16a was evaluated in C57BL/6 mouse melanoma B16F10 xenograft model to validate its antitumor activity, in comparison with reference ABT-751 (1). Compound 16a displayed strong in vivo antitumor and antivascular activities at a dose of 5 mg/kg without obvious toxicity, whereas 1 needed a 10-fold higher concentration to reach similar effects.
Collapse
Affiliation(s)
- Zacharie Segaoula
- Univ. Lille, Inserm, CHU Lille , UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
- Oncovet Clinical Research , SIRIC ONCOLille, Parc Eurasante, Rue du Dr Alexandre Yersin, F-59120 Loos, France
| | - Julien Leclercq
- Univ. Lille, Inserm, CHU Lille , UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Valérie Verones
- Univ. Lille, Inserm, CHU Lille , UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Nathalie Flouquet
- Univ. Lille, Inserm, CHU Lille , UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Marie Lecoeur
- Univ. Lille, CHU Lille , EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Lionel Ach
- Univ. Lille, CHU Lille , EA 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000 Lille, France
| | - Nicolas Renault
- Univ. Lille, Inserm, CHU Lille , U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Amélie Barczyk
- Univ. Lille, Inserm, CHU Lille , U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille , UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Pascal Berthelot
- Univ. Lille, Inserm, CHU Lille , UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Xavier Thuru
- Univ. Lille, Inserm, CHU Lille , UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Nicolas Lebegue
- Univ. Lille, Inserm, CHU Lille , UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| |
Collapse
|
245
|
Discovery and Optimization of N-Substituted 2-(4-pyridinyl)thiazole carboxamides against Tumor Growth through Regulating Angiogenesis Signaling Pathways. Sci Rep 2016; 6:33434. [PMID: 27633259 PMCID: PMC5025770 DOI: 10.1038/srep33434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/26/2016] [Indexed: 11/16/2022] Open
Abstract
Inhibition of angiogenesis is considered as one of the desirable pathways for the treatment of tumor growth and metastasis. Herein we demonstrated that a series of pyridinyl-thiazolyl carboxamide derivatives were designed, synthesized and examined against angiogenesis through a colony formation and migration assays of human umbilical vein endothelial cells (HUVECs) in vitro. A structure-activity relationship (SAR) study was carried out and optimization toward this series of compounds resulted in the discovery of N-(3-methoxyphenyl)-4-methyl-2-(2-propyl-4-pyridinyl)thiazole-5-carboxamide (3k). The results indicated that compound 3k showed similar or better effects compared to Vandetanib in suppressing HUVECs colony formation and migration as well as VEGF-induced angiogenesis in the aortic ring spreading model and chick embryo chorioallantoic membrane (CAM) model. More importantly, compound 3k also strongly blocked tumor growth with the dosage of 30 mg/kg/day, and subsequent mechanism exploration suggested that this series of compounds took effect mainly through angiogenesis signaling pathways. Together, these results suggested compound 3k may serve as a lead for a novel class of angiogenesis inhibitors for cancer treatments.
Collapse
|
246
|
Thomas C, Movva S. Eribulin in the management of inoperable soft-tissue sarcoma: patient selection and survival. Onco Targets Ther 2016; 9:5619-27. [PMID: 27672333 PMCID: PMC5024770 DOI: 10.2147/ott.s93517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Patients diagnosed with metastatic soft-tissue sarcoma (STS) have a poor prognosis. Additionally, after failure of first-line therapy, there are relatively few treatment options from which to choose. The novel tubulin-binding drug, eribulin, with a unique mechanism of action from taxanes or vinca alkaloids, has shown clinical activity in several different types of cancers. Eribulin has been approved by the US Food and Drug Administration (FDA) for patients with metastatic breast cancer previously treated with an anthracycline or a taxane and has recently been FDA approved for patients with unresectable or metastatic liposarcoma who have failed a previous anthracycline regimen. Here, we review current standard treatments of STS, a background of eribulin, the studies that have propelled eribulin to FDA approval for liposarcoma, and future directions of the drug. The benefits of eribulin in STS are discussed in detail, especially with regard to the recent pivotal Phase III study comparing eribulin to dacarbazine for leiomyosarcoma and adipocytic sarcoma.
Collapse
Affiliation(s)
- Colin Thomas
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sujana Movva
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
247
|
Longitudinal imaging of the ageing mouse. Mech Ageing Dev 2016; 160:93-116. [PMID: 27530773 DOI: 10.1016/j.mad.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/30/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
Abstract
Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging.
Collapse
|
248
|
Magalhaes LG, Marques FB, da Fonseca MB, Rogério KR, Graebin CS, Andricopulo AD. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity. PLoS One 2016; 11:e0160842. [PMID: 27508497 PMCID: PMC4980028 DOI: 10.1371/journal.pone.0160842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays.
Collapse
Affiliation(s)
- Luma G. Magalhaes
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, 13563–120, São Carlos-SP, Brazil
| | - Fernando B. Marques
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23897–000, Seropédica-RJ, Brazil
| | - Marina B. da Fonseca
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23897–000, Seropédica-RJ, Brazil
| | - Kamilla R. Rogério
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23897–000, Seropédica-RJ, Brazil
| | - Cedric S. Graebin
- Laboratório de Diversidade Molecular e Química Medicinal, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, 23897–000, Seropédica-RJ, Brazil
| | - Adriano D. Andricopulo
- Laboratório de Química Medicinal e Computacional, Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos, Universidade de São Paulo, 13563–120, São Carlos-SP, Brazil
- * E-mail:
| |
Collapse
|
249
|
Kalmuk J, Folaron M, Buchinger J, Pili R, Seshadri M. Multimodal imaging guided preclinical trials of vascular targeting in prostate cancer. Oncotarget 2016. [PMID: 26203773 PMCID: PMC4695192 DOI: 10.18632/oncotarget.4463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The high mortality rate associated with castration-resistant prostate cancer (CRPC) underscores the need for improving therapeutic options for this patient population. The purpose of this study was to examine the potential of vascular targeting in prostate cancer. Experimental studies were carried out in subcutaneous and orthotopic Myc-CaP prostate tumors implanted into male FVB mice to examine the efficacy of a novel microtubule targeted vascular disrupting agent (VDA), EPC2407 (Crolibulin™). A non-invasive multimodality imaging approach based on magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and ultrasound (US) was utilized to guide preclinical trial design and monitor tumor response to therapy. Imaging results were correlated with histopathologic assessment, tumor growth and survival analysis. Contrast-enhanced MRI revealed potent antivascular activity of EPC2407 against subcutaneous and orthotopic Myc-CaP tumors. Longitudinal BLI of Myc-CaP tumors expressing luciferase under the androgen response element (Myc-CaP/ARE-luc) revealed changes in AR signaling and reduction in intratumoral delivery of luciferin substrate following castration suggestive of reduced blood flow. This reduction in blood flow was validated by US and MRI. Combination treatment resulted in sustained vascular suppression, inhibition of tumor regrowth and conferred a survival benefit in both models. These results demonstrate the therapeutic potential of vascular targeting in combination with androgen deprivation against prostate cancer.
Collapse
Affiliation(s)
- James Kalmuk
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: SUNY Upstate Medical University, Syracuse, NY, USA
| | - Margaret Folaron
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Julian Buchinger
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Current address: University at Buffalo - School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Roberto Pili
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
250
|
Abstract
Tumours contain multiple different cell populations, including cells derived from the bone marrow as well as cancer-associated fibroblasts and various stromal populations including the vasculature. The microenvironment of the tumour cells plays a significant role in the response of the tumour to radiation treatment. Low levels of oxygen (hypoxia) caused by the poorly organized vasculature in tumours have long been known to affect radiation response; however, other aspects of the microenvironment may also play important roles. This article reviews some of the old literature concerning tumour response to irradiation and relates this to current concepts about the role of the tumour microenvironment in tumour response to radiation treatment. Included in the discussion are the role of cancer stem cells, radiation damage to the vasculature and the potential for radiation to enhance immune activity against tumour cells. Radiation treatment can cause a significant influx of bone marrow-derived cell populations into both normal tissues and tumours. Potential roles of such cells may include enhancing vascular recovery as well as modulating immune reactivity.
Collapse
Affiliation(s)
- Richard P Hill
- 1 Ontario Cancer Institute, Princess Margaret Cancer Centre, Toronto, ON, Canada.,2 Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|