201
|
Warner KA, Nör F, Acasigua GA, Martins MD, Zhang Z, McLean SA, Spector ME, Chepeha DB, Helman J, Wick MJ, Moskaluk CA, Castilho RM, Pearson AT, Wang S, Nör JE. Targeting MDM2 for Treatment of Adenoid Cystic Carcinoma. Clin Cancer Res 2016; 22:3550-9. [PMID: 26936915 DOI: 10.1158/1078-0432.ccr-15-1698] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/08/2016] [Indexed: 02/05/2023]
Abstract
PURPOSE There are no effective treatment options for patients with advanced adenoid cystic carcinoma (ACC). Here, we evaluated the effect of a new small molecule inhibitor of the MDM2-p53 interaction (MI-773) in preclinical models of ACC. EXPERIMENTAL DESIGN To evaluate the anti-tumor effect of MI-773, we administered it to mice harboring three different patient-derived xenograft (PDX) models of ACC expressing functional p53. The effect of MI-773 on MDM2, p53, phospho-p53, and p21 was examined by Western blots in 5 low passage primary human ACC cell lines and in MI-773-treated PDX tumors. RESULTS Single-agent MI-773 caused tumor regression in the 3 PDX models of ACC studied here. For example, we observed a tumor growth inhibition index of 127% in UM-PDX-HACC-5 tumors that was associated with an increase in the fraction of apoptotic cells (P = 0.015). The number of p53-positive cells was increased in MI-773-treated PDX tumors (P < 0.001), with a correspondent shift in p53 localization from the nucleus to the cytoplasm. Western blots demonstrated that MI-773 potently induced expression of p53 and its downstream targets p21, MDM2, and induced phosphorylation of p53 (serine 392) in low passage primary human ACC cells. Notably, MI-773 induced a dose-dependent increase in the fraction of apoptotic ACC cells and in the fraction of cells in the G1 phase of cell cycle (P < 0.05). CONCLUSIONS Collectively, these data demonstrate that therapeutic inhibition of the MDM2-p53 interaction with MI-773 activates downstream effectors of apoptosis and causes robust tumor regression in preclinical models of ACC. Clin Cancer Res; 22(14); 3550-9. ©2016 AACR.
Collapse
Affiliation(s)
- Kristy A Warner
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Felipe Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan. Department of Oral Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gerson A Acasigua
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan. Department of Oral Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Manoela D Martins
- Department of Oral Pathology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Scott A McLean
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan. University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Matthew E Spector
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan. University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Douglas B Chepeha
- Department of Otolaryngology, University of Toronto, Ontario, Canada
| | - Joseph Helman
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan. Department of Oral and Maxillofacial Surgery, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Michael J Wick
- South Texas Accelerated Research Therapeutics, San Antonio, Texas
| | | | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Alexander T Pearson
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan. University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan. Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Shaomeng Wang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan. Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, Michigan. Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, Michigan. Department of Medicinal Chemistry, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan. Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, Michigan. University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan. Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, Michigan.
| |
Collapse
|
202
|
Mutations in TP53 increase the risk of SOX2 copy number alterations and silencing of TP53 reduces SOX2 expression in non-small cell lung cancer. BMC Cancer 2016; 16:28. [PMID: 26780934 PMCID: PMC4717590 DOI: 10.1186/s12885-016-2061-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 01/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Amplifications of the transcription factor, SRY (sex determining region Y)-box 2 (SOX2), are common in non-small cell lung cancer (NSCLC). SOX2 signaling is important in maintaining the stem cell-like phenotype of cancer cells and contributes to the pathogenesis of lung cancer. TP53 is known to inhibit gene amplifications and to repress many stem cell-associated genes following DNA damage. The aim of this study was to investigate if TP53 mutational status affected SOX2 copy number variation and gene expression in early-stage NSCLC patients; moreover, to assess if TP53 regulates SOX2 expression in human lung cancer cells. Methods 258 early-stage lung cancer patients were included in the study. Exons 4–9 in the TP53 gene were sequenced for mutations in tumor tissues. SOX2 copy number as well as TP53 and SOX2 gene expression were analyzed in tumor and in adjacent non-tumorous tissues by qPCR. TP53 and SOX2 were silenced using gene-specific siRNAs in human lung adenocarcinoma A427 cells, and the expression of TP53, SOX2 and subset of selected miRNAs was analyzed by qPCR. The odds ratios (ORs) for associations between copy number variation and lung cancer were estimated by conditional logistic regression, and the correlation between gene status and clinicopathological characteristics was assessed by Chi-square or Fisher’s exact test. Gene expression data was analyzed using nonparametric Mann–Whitney test. Results TP53 mutations were associated with an increased risk of acquiring a SOX2 copy number alteration (OR = 2.08, 95 % CI: 1.14–3.79, p = 0.017), which was more frequently occurring in tumor tissues (34 %) than in adjacent non-tumorous tissues (3 %). Moreover, SOX2 and TP53 expression levels were strongly correlated in tumor tissues. In vitro studies showed that a reduction in TP53 was associated with decreased SOX2 expression in A427 cells. Furthermore, TP53 knockdown reduced the miRNA hsa-miR-145, which has previously been shown to regulate SOX2 expression. Conclusions TP53 signaling may be important in the regulation of SOX2 copy number and expression in NSCLC tumors, and the miRNA hsa-miR-145-5p may be one potential driver. This prompts for further studies on the mechanisms behind the TP53-induced regulation of SOX2 expression and the possible importance of hsa-miR-145 in lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2061-3) contains supplementary material, which is available to authorized users.
Collapse
|
203
|
TP53 mutations in older adults with acute myeloid leukemia. Int J Hematol 2016; 103:429-35. [PMID: 26781615 DOI: 10.1007/s12185-016-1942-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 12/28/2015] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
The net benefits of induction therapy for older adults with acute myeloid leukemia (AML) remain controversial. Because AML in older adults is a heterogeneous disease, it is important to identify those who are unlikely to benefit from induction therapy based on information available at the initial assessment. We used next-generation sequencing to analyze TP53 mutation status in AML patients aged 60 years or older, and evaluated its effects on outcomes. TP53 mutations were detected in 12 of 77 patients (16 %), and there was a significant association between TP53 mutations and monosomal karyotype. Patients with TP53 mutations had significantly worse survival than those without (P = 0.009), and multivariate analysis identified TP53 mutation status as the most significant prognostic factor for survival. Neverthelsess, TP53-mutated patients had a 42 % chance of complete remission and a median survival of 8.0 months, which compares favorably with those who did not undergo induction therapy, even in the short term. These results suggest that screening for TP53 mutations at diagnosis is useful for identifying older adults with AML who are least likely to respond to chemotherapy, although the presence of this mutation alone does not seem to justify rejecting induction therapy.
Collapse
|
204
|
Middeke JM, Herold S, Rücker-Braun E, Berdel WE, Stelljes M, Kaufmann M, Schäfer-Eckart K, Baldus CD, Stuhlmann R, Ho AD, Einsele H, Rösler W, Serve H, Hänel M, Sohlbach K, Klesse C, Mohr B, Heidenreich F, Stölzel F, Röllig C, Platzbecker U, Ehninger G, Bornhäuser M, Thiede C, Schetelig J. TP53 mutation in patients with high-risk acute myeloid leukaemia treated with allogeneic haematopoietic stem cell transplantation. Br J Haematol 2016; 172:914-22. [PMID: 26771088 DOI: 10.1111/bjh.13912] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/30/2015] [Indexed: 12/22/2022]
Abstract
Treatment success in patients with acute myeloid leukaemia (AML) is heterogeneous. Cytogenetic and molecular alterations are strong prognostic factors, which have been used to individualize treatment. Here, we studied the impact of TP53 mutations on the outcome of AML patients with adverse cytogenetic risk treated with allogeneic haematopoietic stem cell transplantation (HSCT). Samples of 97 patients with AML and adverse-risk cytogenetics who had received a HSCT within three randomized trials were analysed. Complete sequencing of the TP53 coding region was performed using next generation sequencing. The median age was 51 years. Overall, TP53 mutations were found in 40 patients (41%). With a median follow up of 67 months, the three-year probabilities of overall survival (OS) and event-free survival for patients with TP53 wild type were 33% [95% confidence interval (CI), 21% to 45%] and 24% (95% CI, 13% to 35%) compared to 10% (95% CI, 0% to 19%) and 8% (95% CI, 0% to 16%) (P = 0·002 and P = 0·007) for those with mutated TP53, respectively. In multivariate analysis, the TP53-mutation status had a negative impact on OS (Hazard Ratio = 1·7; P = 0·066). Mutational analysis of TP53 might be an important additional tool to predict outcome after HSCT in patients with adverse karyotype AML.
Collapse
Affiliation(s)
- Jan M Middeke
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Sylvia Herold
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany.,Deutsches Konsortium für Translationale Krebsforschung Deutsches Krebsforschungszentrum Heidelberg, Heidelberg, Germany
| | - Elke Rücker-Braun
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Wolfgang E Berdel
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | - Matthias Stelljes
- Medizinische Klinik A, Universitätsklinikum Münster, Münster, Germany
| | | | | | | | | | - Anthony D Ho
- Medizinische Klinik und Poliklinik, Abteilung Innere Medizin V, Hämatologie, Onkologie und Rheumatologie, Universität Heidelberg, Heidelberg, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Wolf Rösler
- Medizinische Klinik 5, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hubert Serve
- Medizinische Klinik II, Klinikum der J.W. Goethe Universität, Frankfurt, Germany
| | - Mathias Hänel
- Klinikum Chemnitz gGmbH, Klinik für Innere Medizin III, Chemnitz, Germany
| | - Kristina Sohlbach
- Kliniken für Innere Medizin, Hämatologie/Onkologie und Immunologie, Universitätsklinikum Marburg, Marburg, Germany
| | - Christian Klesse
- DKMS German Bone Marrow Donor Centre, Clinical Trials Unit, Dresden, Germany
| | - Brigitte Mohr
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Falk Heidenreich
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Friedrich Stölzel
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Christoph Röllig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany
| | - Christian Thiede
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany.,Deutsches Konsortium für Translationale Krebsforschung Deutsches Krebsforschungszentrum Heidelberg, Heidelberg, Germany
| | - Johannes Schetelig
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der TU Dresden, Dresden, Germany.,DKMS German Bone Marrow Donor Centre, Clinical Trials Unit, Dresden, Germany
| | | |
Collapse
|
205
|
p53 expression and relationship with MDM2 amplification in breast carcinomas. Ann Diagn Pathol 2016; 21:29-34. [PMID: 27040927 DOI: 10.1016/j.anndiagpath.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/06/2016] [Indexed: 11/23/2022]
Abstract
Carcinoma of the breast, like other malignancies, is a genetic disease with multiple genetic events leading to the malignant phenotype. p53 mutations are the most common genetic events in human cancer. Inactivation of p53 can be a result of mutation in gene sequence. One of the main structures that regulate p53 stabilization is MDM2. It suppresses p53 transcriptional activation by recognizing transactivation domain of p53. The loss of MDM2 function on p53 regulation results in deprivation of p53 tumor suppressor ability. Single nucleotide polymorphisms (SNP309 T->G exchange) or MDM2 amplification has been proposed to play a role in this issue. In the present study, our aim is to analyze p53 and MDM2 status and investigate their interactions in human sporadic breast carcinoma. The study groups were separated according to their molecular classifications. In each group, histologic type of the tumor, conventional prognostic parameters, p53, and MDM2 interactions were compared statistically. Tumors are divided into 4 subtypes due to estrogen and progesterone receptor status, HER-2, and Ki-67 proliferation index results. According to this classification, 23 cases are in the luminal A, 32 cases are in the luminal B, 15 cases are in the HER-2 positive, and 22 cases are in the triple-negative group, with a total of 92 cases. p53 expression is low in luminal breast carcinomas than HER-2 and triple-negative subtypes. MDM2 amplification frequency was found to be 5.4% in total. MDM2 gene amplification does not have a significant role in breast carcinogenesis, but other possible mechanisms may play a role in its inactivation.
Collapse
|
206
|
Bayram S, Rencüzoğulları E, Almas AM, Genç A. Effect of p53 Arg72Pro polymorphism on the induction of micronucleus by aflatoxin B1 in in vitro in human blood lymphocytes. Drug Chem Toxicol 2016; 39:331-7. [DOI: 10.3109/01480545.2015.1121275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Süleyman Bayram
- Department of Nursing, Adıyaman School of Health, Adıyaman University, Adıyaman, Turkey,
| | - Eyyüp Rencüzoğulları
- Department of Biology, Faculty of Science and Letters, Adıyaman University, Adıyaman, Turkey,
| | | | - Ahmet Genç
- Vocational School of Health Services, Adıyaman Univesity, Adıyaman, Turkey
| |
Collapse
|
207
|
Lu TX, Young KH, Xu W, Li JY. TP53 dysfunction in diffuse large B-cell lymphoma. Crit Rev Oncol Hematol 2016; 97:47-55. [PMID: 26315382 DOI: 10.1016/j.critrevonc.2015.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/05/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022] Open
Abstract
The aberrations of TP53 gene and dysregulation of the TP53 pathway are important in the pathogenesis of many human cancers, including malignant lymphomas, especially for diffuse large B cell lymphoma (DLBCL). By regulating many downstream target genes or molecules, TP53 governs major defenses against tumor growth and promotes cellular DNA repair, apoptosis, autophagy, cell cycle arrest, signaling, transcription, immune or inflammatory responses and metabolism. Dysfunction of TP53, including microRNA regulations, copy number alterations of TP53 pathway and TP53 itself, dysregulation of TP53 regulators, and somatic mutations by abnormal TP53 function modes, play an important role in lymphoma generation, progression and invasion. The role of TP53 in DLBCL has been widely explored recently. In this review, we summarized recent advances on different mechanisms of TP53 in DLBCL and new therapeutic approaches to overcome TP53 inactivation.
Collapse
Affiliation(s)
- Ting-Xun Lu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214062, Jiangsu Province, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77072, USA
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
208
|
Gohari-Lasaki S, Gharesouran J, Ghojazadeh M, Montazeri V, Mohaddes Ardebili SM. Lack of influence of TP53 Arg72Pro and 16bp duplication polymorphisms on risk of breast cancer in Iran. Asian Pac J Cancer Prev 2015; 16:2971-4. [PMID: 25854391 DOI: 10.7314/apjcp.2015.16.7.2971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
TP53 is assumed to be a very important tumour suppressor gene, as illustrated by recent reports that have shown effects of its polymorphisms on breast cancer risk. Arg72Pro and PIN3(16bp duplication) polymorphisms are proposed to have an effective role in structural changes of p53 and have therefore attracted interest as a risk factor for breast cancer in different populations. The aim of this study was to examine and determine whether p53 codon 72 and PIN3 Ins16 bp may be associated with an increased risk for breast cancer in female patients from the northwest of Iran. Genotyping was performed by PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) method for a total of 100 women with breast cancer and 100 healthy women without any background of cancer, focusing on the TP53 Arg72Pro-16Del/Ins haplotypes and the combined genotypes. The results in this study established no statistical significant distinctions between the genotypes and allele frequency were found for Arg72Pro and PIN3 Ins 16 bp polymorphisms between patients and controls.
Collapse
Affiliation(s)
- Sahar Gohari-Lasaki
- Department of Medical Genetics, School of Medicine, Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran E-mail :
| | | | | | | | | |
Collapse
|
209
|
Breast cancer risk in relation to TP53 codon 72 and CDH1 gene polymorphisms in the Bangladeshi women. Tumour Biol 2015; 37:7229-37. [PMID: 26666818 DOI: 10.1007/s13277-015-4612-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022] Open
Abstract
Pharmacogenomic studies play a significant role in understanding the risk of breast cancer where genetic abnormalities are implicated as the etiology of cancer. Various polymorphisms of tumor suppressor gene TP53 and E-cadherin (CDH1) have been found to be associated with increased breast cancer risk worldwide. This study aimed to analyze the contribution of TP53 and CDH1 gene anomalies in breast cancer risk in the Bangladeshi breast cancer patients. For risk determination, 310 patients with breast cancer and 250 controls from Bangladeshi women were recruited who are matched up with age and use of contraceptives with patients. Genetic polymorphisms were detected by using polymerase chain reaction restriction fragment length polymorphism. A significant association was found between TP53Arg72Pro (rs1042522) and CDH1 -160 C/A (rs16260) polymorphisms and breast cancer risk. In case of P53rs1042522 polymorphism, Arg/Pro (P = 0.0053, odds ratio (OR) = 1.69) and Pro/Pro (P = 0.018, OR = 1.83) genotypes were associated with increased risk of breast cancer in comparison to the Arg/Arg genotype. Arg/Pro + Pro/Pro genotype and Pro allele also increased the risk of breast cancer (P = 0.002, OR = 1.73; P = 0.004, OR = 1.43, respectively). In case of CDH1rs16260 polymorphism, C/A heterozygote and combined C/A + A/A genotypes were found to be strongly associated (P = 0.005, OR = 1.67; P = 0.0037, OR = 1.68) with increased risk of breast cancer. The variant A allele also increased the breast cancer risk (P = 0.0058, OR = 1.52). The present study demonstrates that P53Arg72Pro and CDH1rs16260 polymorphisms are associated with elevated breast cancer risk in the Bangladeshi population.
Collapse
|
210
|
Inhibition of cell proliferation and migration by chondroitin sulfate- g -polyethylenimine-mediated miR-34a delivery. Colloids Surf B Biointerfaces 2015; 136:577-84. [DOI: 10.1016/j.colsurfb.2015.09.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/04/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022]
|
211
|
Deben C, Deschoolmeester V, Lardon F, Rolfo C, Pauwels P. TP53 and MDM2 genetic alterations in non-small cell lung cancer: Evaluating their prognostic and predictive value. Crit Rev Oncol Hematol 2015; 99:63-73. [PMID: 26689115 DOI: 10.1016/j.critrevonc.2015.11.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/23/2015] [Accepted: 11/26/2015] [Indexed: 12/16/2022] Open
Abstract
The p53 pathway has been extensively studied for its role in carcinogenesis. Disruption of the pathway occurs in more than half of all cancers, often leading to a worse prognosis for the patient. In recent years several compounds have been successfully developed to target and restore the p53 pathway, either by blocking the MDM2-p53 interaction, restoring wild type conformation of mutant p53, or exploiting the presence of mutant p53 by blocking DNA damage repair pathways. In this review the known data on the role of p53 on prognosis and response to commonly used chemotherapeutics in non-small cell lung cancer is summarized. The focus is on the presence of genetic alterations in the TP53 or MDM2 gene, p53's main negative regulator. In addition, promising therapeutic options will be discussed in relation to specific alterations in the p53 pathway.
Collapse
Affiliation(s)
- Christophe Deben
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Vanessa Deschoolmeester
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Christian Rolfo
- Department of Medical Oncology, Antwerp University Hospital, Antwerp, Belgium; Phase-1 Early Clinical Trials Unit, Antwerp University Hospital, Antwerp, Belgium.
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
212
|
Variants of ubiquitin-specific peptidase 24 play a crucial role in lung cancer malignancy. Oncogene 2015; 35:3669-80. [PMID: 26568301 DOI: 10.1038/onc.2015.432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/15/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
Ubiquitin is a critical modifier regulating the degradation and function of its target proteins during posttranslational modification. Here we found that ubiquitin-specific peptidase 24 (USP24) is highly expressed in cell lines with enhanced malignancy and in late-stage lung cancer clinical samples. Studying single-nucleotide polymorphisms (SNPs) of USP24 using genomic DNA of lung cancer patients revealed an increase in SNP 7656C/T. When using RNA specimens instead of the genomic DNA of lung cancer patients, we found significant increases in the ratios of variants 930C/T and 7656T/C, suggesting that variants at these two sites are not only caused by the SNP of DNA but also by the RNA editing. USP24-930T and USP24-7656C increase USP24 expression levels by increasing RNA stability. Knocking down USP24 increased Suv39h1 level through a decrease in mouse double-minute 2 homolog levels, thus enhancing lysine-9 methylation of histone H3, and resulting in the prevention of lung cancer malignancy. In conclusion, as USP24 variant analysis revealed a higher ratio of variants in blood specimens of lung cancer patients than that in normal individuals, USP24-930T and USP24-7656C might be useful as diagnostic markers for cancer detection.
Collapse
|
213
|
Fuentes-Raspall MJ, Caragol I, Alonso C, Ramón y Cajal T, Fisas D, Seoane A, Carvajal N, Bonache S, Díez O, Gutiérrez-Enríquez S. Apoptosis for prediction of radiotherapy late toxicity: lymphocyte subset sensitivity and potential effect of TP53 Arg72Pro polymorphism. Apoptosis 2015; 20:371-82. [PMID: 25398538 DOI: 10.1007/s10495-014-1056-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We tested apoptosis levels in in vitro irradiated T-lymphocytes from breast cancer (BC) patients with radiotherapy-induced late effects. Previous results reported in the literature were revised. We also examined the effect of TP53 Arg72Pro polymorphism on irradiation-induced apoptosis (IA). Twenty BC patients, ten with fibrosis and/or telangiectasias and ten matched controls with no late reactions, were selected from those receiving radiotherapy between 1993 and 2007. All patients were followed-up at least 6 years after radiotherapy. Using the combination of both CD3 and CD8 antibodies the in vitro IA was measured in CD3, CD8 and CD4 T-lymphocytes, and CD8 natural killer lymphocytes (CD8 NK) by flow cytometry. The TP53 Arg72Pro genotype was determined by sequencing. Patients with late radiotherapy toxicity showed less IA for all T-lymphocytes except for the CD8 NK. CD8 NK showed the highest spontaneous apoptosis and the lowest IA. IA in patients with toxicity appears to be lower than the control patients only in TP53 Arg/Arg patients (P = 0.077). This difference was not present in patients carrying at least one Pro allele (P = 0.8266). Our data indicate that late side effects induced by radiotherapy of BC are associated to low levels of IA. CD8 NK cells have a different response to in vitro irradiation compared to CD8 T-lymphocytes. It would be advisable to distinguish the CD8 NK lymphocytes from the pool of CD8+ lymphocytes in IA assays using CD8+ cells. Our data suggest that the 72Pro TP53 allele may influence the IA of patients with radiotherapy toxicity.
Collapse
|
214
|
Ruggeri RM, Vicchio TM, Giovinazzo S, Certo R, Alibrandi A, Trimarchi F, Benvenga S, Trovato M. TP53 polymorphism may contribute to genetic susceptibility to develop Hashimoto's thyroiditis. J Endocrinol Invest 2015; 38:1175-82. [PMID: 25935255 DOI: 10.1007/s40618-015-0292-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE p53, which is encoded by the tumor suppressor gene TP53, plays a crucial role in the regulation of mechanisms of cell cycle arrest and apoptosis. Some SNPs of TP53, involving a different apoptotic ability of p53, have been associated with increased susceptibility to develop autoimmune diseases as well as cancer. We investigated the genotypic distribution of TP53 exon 4 SNPs in a cohort of Caucasian patients affected by Hashimoto's thyroiditis (HT). METHODS Peripheral blood for DNA extraction was collected from 109 Caucasian unrelated subjects, 79 HT patients and 30 healthy controls. SNPs analysis was carried out by amplification and sequencing of exon 4 TP53. RESULTS For the Pro72Arg (rs 1042522) SNP we found these rates in HT patients: 11.4% wild-type C/C (Pro72Pro), 24.0% heterozygous G/C (Pro72Arg), 64.6% homozygous G/G (Arg72Arg). The corresponding rates in healthy controls were 10, 46.7 and 43.3%, respectively. Thus, significantly different were G/C heterozygosity (24.0 vs 46.7 %, p = 0.039) and G/G homozygosity (64.6 vs 43.3%, p = 0.042). These differences were also confirmed when comparing our study population to published Caucasian control groups. The other described SNPs (Pro34Pro rs 11575998, Pro36Pro rs1800370, Pro47Ser rs1800371, and Arg110Leu rs 11540654) were absent or very rare in our study population. CONCLUSIONS Our preliminary data, the first on a Caucasian population, indicate an increased prevalence of the homozygous genotype Arg/Arg and a decreased prevalence of heterozygous genotype Arg/Pro of rs 1042522 in HT patients compared to controls, suggesting that such SNP may contribute to confer susceptibility to HT.
Collapse
Affiliation(s)
- R M Ruggeri
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy.
| | - T M Vicchio
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - S Giovinazzo
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - R Certo
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - A Alibrandi
- Department of Statistical Sciences (SEFISAST), University of Messina, Messina, Italy
| | - F Trimarchi
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - S Benvenga
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
| | - M Trovato
- Department of Clinical and Experimental Medicine, Endocrine Unit, University of Messina, Padiglione H, 4 Piano, AOU Policlinico Universitario "G. Martino", via Consolare Valeria, 1, 98125, Messina, Italy
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
215
|
Aroui S, Dardevet L, Ajmia WB, de Boisvilliers M, Perrin F, Laajimi A, Boumendjel A, Kenani A, Muller JM, De Waard M. A Novel Platinum–Maurocalcine Conjugate Induces Apoptosis of Human Glioblastoma Cells by Acting through the ROS-ERK/AKT-p53 Pathway. Mol Pharm 2015; 12:4336-48. [DOI: 10.1021/acs.molpharmaceut.5b00531] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sonia Aroui
- Laboratoire
de Biochimie, Unité de recherche UR 12ES08 “Signalisation
Cellulaire et Pathologies”, Faculté de Médecine
de Monastir, Université de Monastir, 5019 Monastir, Tunisia
| | - Lucie Dardevet
- LabEx
Ion Channels, Science and Therapeutics, INSERM U836, Grenoble Neuroscience Institute, 38042 Grenoble Cedex 09, France
- University Grenoble Alpes, 38000 Grenoble, France
| | - Wafa Ben Ajmia
- Toxicology-Microbiology
and Environnemental Health Unit (UR11ES70), Faculty of Sciences, University of Sfax, Sfax 3072, Tunisia
| | - Madryssa de Boisvilliers
- Equipe
émergente “Récepteurs, régulations et
cellules tumorales” (2RCT), Université de Poitiers, 1 rue Georges
Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Florian Perrin
- Equipe
émergente “Récepteurs, régulations et
cellules tumorales” (2RCT), Université de Poitiers, 1 rue Georges
Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Amel Laajimi
- Laboratoire
de Biochimie, Unité de recherche UR 12ES08 “Signalisation
Cellulaire et Pathologies”, Faculté de Médecine
de Monastir, Université de Monastir, 5019 Monastir, Tunisia
| | - Ahcène Boumendjel
- University Grenoble Alpes, 38000 Grenoble, France
- CNRS
5063, Département de Pharmacochimie Moléculaire, Université Joseph Fourier, 38400 Saint-Martin d’Hères, France
| | - Abderraouf Kenani
- Laboratoire
de Biochimie, Unité de recherche UR 12ES08 “Signalisation
Cellulaire et Pathologies”, Faculté de Médecine
de Monastir, Université de Monastir, 5019 Monastir, Tunisia
| | - Jean Marc Muller
- Equipe
émergente “Récepteurs, régulations et
cellules tumorales” (2RCT), Université de Poitiers, 1 rue Georges
Bonnet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Michel De Waard
- LabEx
Ion Channels, Science and Therapeutics, INSERM U836, Grenoble Neuroscience Institute, 38042 Grenoble Cedex 09, France
- University Grenoble Alpes, 38000 Grenoble, France
- Smartox Biotechnology, 570 Rue
de la Chimie, 38400 Saint-Martin d’Hères, France
| |
Collapse
|
216
|
Wang X, Wang L, Mo Q, Jia A, Dong Y, Wang G. A positive feedback loop of p53/miR-19/TP53INP1 modulates pancreatic cancer cell proliferation and apoptosis. Oncol Rep 2015; 35:518-23. [PMID: 26531836 DOI: 10.3892/or.2015.4361] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is a common malignancy whose prognosis and treatment of pancreatic cancer is extremely poor, with only 20% of patients reaching two years of survival. Previous findings have shown that the tumor suppressor p53 is involved in the development of various types of cancer, including pancreatic cancer. Additionally, p53 is able to activate TP53INP1 transcription by regulating several phenotypes of cancer cells. Using gain and loss-of-function assays, the aim of the present study was to examine the relationships between miR-19a/b and cancer development as well as potential underlying mechanisms. The results showed that miR-19a/b identified a positive feedback regulation of p53/TP53INP1 axis. Additionally, p53 upregulated the TP53INP1 level in pancreatic cancer cells. However, overexpressed miR-19a/b partially restored the TP53 function in the pancreatic cancer cells while miR-19a/b downregulated TP53INP1 protein by directly targeting 3'UTR of its mRNA at the post-transcriptional level. In addition, the patient tissues identified that the miR-19a/b level in pancreatic cancer tissues was conversely correlated with TP53 and TP53INP1 expression. The results provide evidence for revealing the molecular mechanism involved in the development of pancreatic cancer and may be useful in the identification of new therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Lei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Qingjiang Mo
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Ankui Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Yuqian Dong
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Guoqiang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
217
|
Gomez GVB, de Oliveira C, Rinck-Junior JA, de Moraes AM, Lourenço GJ, Lima CSP. XPC (A2920C), XPF (T30028C), TP53 (Arg72Pro), and GSTP1 (Ile105Val) polymorphisms in prognosis of cutaneous melanoma. Tumour Biol 2015; 37:3163-71. [PMID: 26427666 DOI: 10.1007/s13277-015-4123-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/20/2015] [Indexed: 11/30/2022] Open
Abstract
This study aimed to evaluate whether XPC A2920C, XPF T30028C, TP53 Arg72Pro, and GSTP1 Ile105Val polymorphisms alter outcomes of cutaneous melanoma (CM) patients. DNA from 237 CM patients seen at the University of Campinas Teaching Hospital from April 2000 to February 2014 was analyzed by polymerase chain reaction and restriction fragment length polymorphism assays. The prognostic impact of genotypes of polymorphisms on progression-free survival (PFS) and overall survival (OS) of CM patients were examined using the Kaplan-Meier probability estimates and univariate and multivariate Cox regression analyses. At 60 months of follow-up, shorter PFS and OS were seen in patients with XPF CC genotype (48.9 vs. 66.7 %, P = 0.002; 77.9 vs. 83.5 %, P = 0.006, respectively) and XPF CC + TP53 ArgArg (43.6 vs. 65.9 %, P = 0.007; 71.6 vs. 84.8 %, P = 0.006, respectively) compared with those with remaining genotypes (Kaplan-Meier estimates). Patients with XPF CC (hazard ratio (HR) 2.45, P = 0.002; HR 3.77, P = 0.005) and XPF CC + TP53 ArgArg (HR 2.67, P = 0.009; HR 4.04, P = 0.03) genotypes had more chance to present tumor progression in univariate and multivariate analyses, whereas patients with XPF CC (HR 2.78, P = 0.009) and XPF CC + TP53 ArgArg (HR 3.84, P = 0.01) genotypes were under greater risk of progressing to death in univariate analysis, compared with those with the remaining genotypes. The data suggest, for the first time, that inherited abnormalities in DNA repair pathway related to XPF 30028C and TP53 Arg72Pro polymorphisms act as prognostic factors for PFS and OS of CM patients.
Collapse
Affiliation(s)
- Gabriela Vilas Bôas Gomez
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Barão Geraldo, São Paulo, 13083-970, Campinas, Brazil
| | - Cristiane de Oliveira
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Barão Geraldo, São Paulo, 13083-970, Campinas, Brazil
| | - José Augusto Rinck-Junior
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Barão Geraldo, São Paulo, 13083-970, Campinas, Brazil
| | - Aparecida Machado de Moraes
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Barão Geraldo, São Paulo, 13083-970, Campinas, Brazil
| | - Gustavo Jacob Lourenço
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Barão Geraldo, São Paulo, 13083-970, Campinas, Brazil
| | - Carmen Silvia Passos Lima
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Rua Alexander Fleming, 181, Barão Geraldo, São Paulo, 13083-970, Campinas, Brazil.
| |
Collapse
|
218
|
Neamatzadeh H, Soleimanizad R, Atefi A, Zare-Shehneh M, Gharibi S, Shekari A, Rahimzadeh AB. Association between p53 codon 72 (Arg72Pro) polymorphism and primary open-angle glaucoma in Iranian patients. IRANIAN BIOMEDICAL JOURNAL 2015; 19:51-6. [PMID: 25605490 PMCID: PMC4322233 DOI: 10.6091/ibj.1379.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Glaucomatous neuropathy is a type of cell death due to apoptosis. The p53 gene is one of the regulatory genes of apoptosis. Recently, the association between the p53 gene encoding for proline at codon 72 and primary open-angle glaucoma (POAG) has been studied in some ethnic groups. This study is the first association analysis of POAG and p53 codon 72 polymorphism in Iranian patients. METHODS A cohort of 65 unrelated patients with POAG (age range from 12-62 years, mean ± SD of 40.16 ± 17.51 years) and 65 unrelated control subjects (without glaucoma, age range of 14-63 years, mean ± SD of 35.64 ± 13.61 years) were selected. In Iranian POAG patients and normal healthy controls, the p53 codon 72 polymorphism in exon 4 was amplified using polymerase chain reaction. The amplified DNA fragments were digested with the BstUI restriction enzyme, and the digestion patterns were used to identify the alleles for the polymorphic site. RESULTS Comparisons revealed significant differences in allele and genotype frequencies of Pro72Arg between POAG patients and control group. A higher risk of POAG was associated with allele Pro (OR = 2.1, 95% CI = 1.2-3.4) and genotype Pro/Pro (OR = 3.9, 95% CI = 0.13-12.7). CONCLUSION The p53 Pro72 allele was more frequent in Iranian POAG patients than in the control group (P<0.05). The present findings show that the individuals with the Pro/Pro genotype may be more likely to develop POAG. However, additional studies are necessary to confirm this association.
Collapse
Affiliation(s)
- Hossein Neamatzadeh
- Hematology, Oncology and Genetic Research Center, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Reza Soleimanizad
- Dept. of Ophthalmology, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd; Iran
| | - Aref Atefi
- Dept. of Microbial Biotechnology, Payam Noor University, Tehran, Iran
| | - Masoud Zare-Shehneh
- Dept. of Medical Genetics, Shahid Sadoughi University of Medical Sciences and Health Services,
Yazd, Iran
| | - Saba Gharibi
- Dept. of Medical Genetics, Shahid Sadoughi University of Medical Sciences and Health Services,
Yazd, Iran
| | - Abolfazl Shekari
- Dept. of Medical Genetics, Zanjan University of Medical Sciences, Zanjan, Iran
| | | |
Collapse
|
219
|
Saikia BJ, Das M, Sharma SK, Sekhon GS, Zomawia E, Singh YM, Mahanta J, Phukan RK. Association of a p53 codon 72 gene polymorphism with environmental factors and risk of lung cancer: a case control study in Mizoram and Manipur, a high incidence region in North East India. Asian Pac J Cancer Prev 2015; 15:10653-8. [PMID: 25605155 DOI: 10.7314/apjcp.2014.15.24.10653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A very high incidence of lung cancer is observed in Mizoram and Manipur, North East India. We conducted a population based case control study to establish associations of p53 codon 72 polymorphisms and interactions with environmental factors for this high incidence. MATERIAL AND METHODS A total of 272 lung cancer cases and 544 controls matched for age (±5 years), sex and ethnicity were collected and p53 codon 72 polymorphism genotypes were analyzed using a polymerase chain based restriction fragment length polymorphism assay. We used conditional multiple logistic regression analysis to calculate adjusted odds ratios and 95% confidence intervals after adjusting for confounding factors. RESULTS p53 Pro/Pro genotype was significantly associated with increased risk of lung cancer in the study population (adjusted OR=2.14, CI=1.35-3.38, p=0.001). Interactions of the p53 Pro/Pro genotype with exposure to wood smoke (adjusted OR=3.60, CI=1.85-6.98, p<0.001) and cooking oil fumes (adjusted OR=3.27, CI=1.55-6.87, p=0.002), betel quid chewing (adjusted OR=3.85, CI=1.96- 7.55, p<0.001), tobacco smoking (adjusted OR=4.42, CI=2.27-8.63, p<0.001) and alcohol consumption (adjusted OR=3.31, CI=1.10-10.03, p=0.034) were significant regarding the increased risk of lung cancer in the study population. CONCLUSIONS The present study provided preliminary evidence that a p53 codon 72 polymorphism may effect lung cancer risk in the study population, interacting synergistically with environmental factors.
Collapse
Affiliation(s)
- Bhaskar Jyoti Saikia
- Regional Medical Research Centre, N.E. Region (ICMR), Dibrugarh, Assam, India E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Volodko N, Salla M, Eksteen B, Fedorak RN, Huynh HQ, Baksh S. TP53 codon 72 Arg/Arg polymorphism is associated with a higher risk for inflammatory bowel disease development. World J Gastroenterol 2015; 21:10358-10366. [PMID: 26420962 PMCID: PMC4579882 DOI: 10.3748/wjg.v21.i36.10358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/28/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the association between tumor protein 53 (TP53) codon 72 polymorphisms and the risk for inflammatory bowel disease (IBD) development.
METHODS: Numerous genetic and epigenetic drivers have been identified for IBD including the TP53 gene. Pathogenic mutations in TP53 gene have only been reported in 50% of colorectal cancer (CRC) patients. A single nucleotide polymorphism (SNP) in the TP53 gene resulting in the presence of either arginine (Arg) or proline (Pro) or both at codon 72 was shown to alter TP53 tumor-suppressor properties. This SNP has been investigated as a risk factor for numerous cancers, including CRC. In this study we analyzed TP53 codon 72 polymorphism distribution in 461 IBD, 181 primary sclerosing cholangitis patients and 62 healthy controls. Genotyping of TP53 was performed by sequencing and restriction fragment length polymorphism analysis of genomic DNA extracted from peripheral blood.
RESULTS: The most frequent TP53 genotype in IBD patients was Arg/Arg occurring in 54%-64% of cases (and in only 32% of controls). Arg/Pro was the most prevalent genotype in controls (53%) and less common in patients (31%-40%). Pro/Pro frequency was not significantly different between controls and IBD patients.
CONCLUSION: The data suggests that the TP53 codon 72 Arg/Arg genotype is associated with increased risk for IBD development.
Collapse
|
221
|
Jacovas VC, Rovaris DL, Peréz O, de Azevedo S, Macedo GS, Sandoval JR, Salazar-Granara A, Villena M, Dugoujon JM, Bisso-Machado R, Petzl-Erler ML, Salzano FM, Ashton-Prolla P, Ramallo V, Bortolini MC. Genetic Variations in the TP53 Pathway in Native Americans Strongly Suggest Adaptation to the High Altitudes of the Andes. PLoS One 2015; 10:e0137823. [PMID: 26382048 PMCID: PMC4575214 DOI: 10.1371/journal.pone.0137823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/24/2015] [Indexed: 02/05/2023] Open
Abstract
The diversity of the five single nucleotide polymorphisms located in genes of the TP53 pathway (TP53, rs1042522; MDM2, rs2279744; MDM4, rs1563828; USP7, rs1529916; and LIF, rs929271) were studied in a total of 282 individuals belonging to Quechua, Aymara, Chivay, Cabanaconde, Yanke, Taquile, Amantani, Anapia, Uros, Guarani Ñandeva, and Guarani Kaiowá populations, characterized as Native American or as having a high level (> 90%) of Native American ancestry. In addition, published data pertaining to 100 persons from five other Native American populations (Surui, Karitiana, Maya, Pima, and Piapoco) were analyzed. The populations were classified as living in high altitude (≥ 2,500 m) or in lowlands (< 2,500 m). Our analyses revealed that alleles USP7-G, LIF-T, and MDM2-T showed significant evidence that they were selected for in relation to harsh environmental variables related to high altitudes. Our results show for the first time that alleles of classical TP53 network genes have been evolutionary co-opted for the successful human colonization of the Andes.
Collapse
Affiliation(s)
- Vanessa Cristina Jacovas
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Diego Luiz Rovaris
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Orlando Peréz
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Puerto Madryn, Argentina
| | - Soledad de Azevedo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Puerto Madryn, Argentina
| | - Gabriel Souza Macedo
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - José Raul Sandoval
- Facultad de Medicina Humana, Universidad de San Martin de Porres (USMP), Lima, Peru
| | | | - Mercedes Villena
- Instituto Boliviano de Biología de Altura (IBBA), Universidad Mayor de San Andres, La Paz, Bolivia
| | - Jean-Michel Dugoujon
- Anthropologie Moléculaire et Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier Toulouse III, Toulouse, 31000, France
| | - Rafael Bisso-Machado
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - Francisco Mauro Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
| | - Patricia Ashton-Prolla
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
- Serviço de Genética Medica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Virginia Ramallo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Puerto Madryn, Argentina
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
- * E-mail:
| |
Collapse
|
222
|
Zahary MN, Ahmad Aizat AA, Kaur G, Yeong Yeh L, Mazuwin M, Ankathil R. Polymorphisms of cell cycle regulator genes CCND1 G870A and TP53 C215G: Association with colorectal cancer susceptibility risk in a Malaysian population. Oncol Lett 2015; 10:3216-3222. [PMID: 26722315 DOI: 10.3892/ol.2015.3728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) occurs as a more common sporadic form and a less common familial form. Our earlier analysis of germline mutations of mismatch repair genes confirmed only 32% of familial CRC cases as Lynch syndrome cases. It was hypothesized that the remaining familial aggregation may be 'polygenic' due to single nucleotide polymorphisms (SNPs) of low penetrance genes involved in cancer predisposition pathways, such as cell cycle regulation and apoptosis pathways. The current case-control study involving 104 CRC patients (52 sporadic and 52 familial) and 104 normal healthy controls investigated the contribution of the SNPs cyclin D1 (CCND1) G870A and tumor protein p53 (TP53) C215G in modulating familial and sporadic CRC susceptibility risk. DNA was extracted from peripheral blood and the polymorphisms were genotyped by employing a polymerase chain reaction-restriction fragment length polymorphism method. The association between these polymorphisms and CRC susceptibility risk was calculated using a binary logistic regression analysis and deriving odds ratios (ORs). The A/A variant genotype of CCND1 and G/G variant genotype of TP53 exhibited a significantly greater association with the risk of sporadic CRC [CCND1: OR, 3.471; 95% confidence interval (CI), 1.443-8.350; P=0.005. TP53: OR, 2.829; CI, 1.119-7.152; P=0.026] as well as familial CRC susceptibility (CCND1: OR, 3.086; CI, 1.270-7.497; P=0.019. TP53: OR, 3.048; CI, 1.147-8.097; P=0.030). The results suggest a potential role of the SNPs CCND1 G870A and TP53 C215G in the modulation of sporadic and familial CRC susceptibility risk.
Collapse
Affiliation(s)
- Mohd Nizam Zahary
- Human Genome Centre, School of Medical Sciences, University of Science Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia ; School of Diagnostic and Biomedicine, Faculty of Health Sciences, Sultan Zainal Abidin University, Kuala Terengganu, Terengganu 21300, Malaysia
| | - Abdul Aziz Ahmad Aizat
- Human Genome Centre, School of Medical Sciences, University of Science Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Gurjeet Kaur
- Institute for Research in Molecular Medicine, University of Science Malaysia, Minden, Penang 11800, Malaysia
| | - Lee Yeong Yeh
- Department of Medicine, School of Medical Sciences, University of Science Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Maya Mazuwin
- Department of Surgery, School of Medical Sciences, University of Science Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, University of Science Malaysia Health Campus, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
223
|
Sonay TB, Koletou M, Wagner A. A survey of tandem repeat instabilities and associated gene expression changes in 35 colorectal cancers. BMC Genomics 2015; 16:702. [PMID: 26376692 PMCID: PMC4574073 DOI: 10.1186/s12864-015-1902-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/09/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal cancer is a major contributor to cancer morbidity and mortality. Tandem repeat instability and its effect on cancer phenotypes remain so far poorly studied on a genome-wide scale. RESULTS Here we analyze the genomes of 35 colorectal tumors and their matched normal (healthy) tissues for two types of tandem repeat instability, de-novo repeat gain or loss and repeat copy number variation. Specifically, we study for the first time genome-wide repeat instability in the promoters and exons of 18,439 genes, and examine the association of repeat instability with genome-scale gene expression levels. We find that tumors with a microsatellite instable (MSI) phenotype are enriched in genes with repeat instability, and that tumor genomes have significantly more genes with repeat instability compared to healthy tissues. Genes in tumor genomes with repeat instability in their promoters are significantly less expressed and show slightly higher levels of methylation. Genes in well-studied cancer-associated signaling pathways also contain significantly more unstable repeats in tumor genomes. Genes with such unstable repeats in the tumor-suppressor p53 pathway have lower expression levels, whereas genes with repeat instability in the MAPK and Wnt signaling pathways are expressed at higher levels, consistent with the oncogenic role they play in cancer. CONCLUSIONS Our results suggest that repeat instability in gene promoters and associated differential gene expression may play an important role in colorectal tumors, which is a first step towards the development of more effective molecular diagnostic approaches centered on repeat instability.
Collapse
Affiliation(s)
- Tugce Bilgin Sonay
- Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland.
- Institute of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland.
| | | | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Sciences, University of Zurich, Zurich, Switzerland.
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- The Santa Fe Institute, Santa Fe, NM, United States of America.
| |
Collapse
|
224
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
225
|
Zhang J, Wu D, Shi H, Gao S, Chen X, Yang Y, Li Q. A polyethylenimine derivative-based nanocarrier for the highly efficient delivery of p53 gene to inhibit the proliferation of cancer cells. J Control Release 2015; 213:e51. [DOI: 10.1016/j.jconrel.2015.05.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
226
|
Chen R, Liu S, Ye H, Li J, Du Y, Chen L, Liu X, Ding Y, Li Q, Mao Y, Ai S, Zhang P, Ma W, Yang H. Association of p53 rs1042522, MDM2 rs2279744, and p21 rs1801270 polymorphisms with retinoblastoma risk and invasion in a Chinese population. Sci Rep 2015; 5:13300. [PMID: 26289323 PMCID: PMC4642541 DOI: 10.1038/srep13300] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) of p53 rs1042522, MDM2 rs2279744 and p21 rs1801270, all in the p53 pathway, which plays a crucial role in DNA damage and genomic instability, were reported to be associated with cancer risk and pathologic characteristics. This case-control study was designed to analyse the association between these SNPs and retinoblastoma (RB) in a Chinese Han population. These SNPs in 168 RB patients and 185 adult controls were genotyped using genomic DNA from venous blood. No significant difference was observed in allele or genotypic frequencies of these SNPs between Chinese RB patients and controls (all P > 0.05). However, the rs1042522 GC genotype showed a protective effect against RB invasion, as demonstrated by event-free survival (HR = 0.53, P = 0.007 for GC versus GG/CC). This effect was significant for patients with a lag time >1 month and no pre-enucleation treatment (P = 0.007 and P = 0.010, respectively), indicating an interaction between p53 rs1042522 and clinical characteristics, including lag time and pre-enucleation treatment status. Thus, the rs1042522 SNP may be associated with RB invasion in the Han Chinese population; however, further large and functional studies are needed to assess the validity of this association.
Collapse
Affiliation(s)
- Rongxin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shu Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiali Li
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi Du
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lingyan Chen
- Divisions of Genetics and Molecular Medicine, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Xiaoman Liu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Yungang Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuxiang Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Siming Ai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenfang Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
227
|
Genotype and Haplotype Analyses of TP53 Gene in Breast Cancer Patients: Association with Risk and Clinical Outcomes. PLoS One 2015; 10:e0134463. [PMID: 26226484 PMCID: PMC4520609 DOI: 10.1371/journal.pone.0134463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/10/2015] [Indexed: 01/21/2023] Open
Abstract
Variations in the TP53 gene have been suggested to play a role in many cancers, including breast. We previously observed an association between TP53 haplotypes based on four polymorphisms (rs17878362, rs1042522, rs12947788, and rs17884306) and the risk of colorectal and pancreatic cancer. Based on these results, in the present study, we have investigated the same polymorphisms and their haplotypes in 705 breast cancer cases and 611 healthy controls in relation to the disease risk, histopathological features of the tumor and clinical outcomes. In comparison to the most common haplotype A1-G-C-G, all the other identified haplotypes were globally associated with a significantly decreased breast cancer risk (P = 0.006). In particular, the A2-G-C-G haplotype was associated with a marked decreased risk of breast cancer when compared with the common haplotype (P = 0.0001). Moreover, rs1042522 in patients carrying the GC genotype and receiving only the anthracycline-based chemotherapy was associated with both overall and disease-free survival (recessive model for overall survival HR = 0.30 95% CI 0.11–0.80, P = 0.02 and for disease-free survival HR = 0.42 95% CI 0.21–0.84, P = 0.01). Present results suggest common genetic features in the susceptibility to breast and gastrointestinal cancers in respect to TP53 variations. In fact, similar haplotype distributions were observed for breast, colorectal, and pancreatic patients in associations with cancer risk. Rs1042522 polymorphism (even after applying the Dunn-Bonferroni correction for multiple testing) appears to be an independent prognostic marker in breast cancer patients.
Collapse
|
228
|
Potential impact of (rs 4645878) BAX promoter -248G>A and (rs 1042522) TP53 72Arg>pro polymorphisms on epithelial ovarian cancer patients. Clin Transl Oncol 2015. [PMID: 26209050 DOI: 10.1007/s12094-015-1338-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In India, Epithelial ovarian cancer has emerged as one of the most common malignancies affecting women. Tumor protein 53 (TP53) induces expression of the B cell lymphoma 2-associated X protein (BAX) gene by directly binding to the TP53-binding element in the BAX promoter. Therefore, we hypothesized that single-nucleotide polymorphism of BAX promoter -248G>A and TP53 72Arg>Pro gene may jointly contribute to ovarian cancer risk. OBJECTIVES This study aimed at exploring the association of BAX promoter -248G>A and TP53 72Arg>Pro gene polymorphism with risk of developing EOC and its clinicopathological features and to evaluate gene-gene interaction of these two polymorphisms with risk of developing EOC. MATERIALS The study was conducted on 70 Epithelial ovarian cancer patients and 70 healthy controls. Genotyping of p53 codon 72 and BAX promoter gene was examined by ASO-PCR and PICA-PCR, respectively. Odds ratios and 95 % confidence intervals were calculated. RESULTS We found an increased cancer risk associated with the BAX AA (ORs = 4.1, 95 %, CI = 1.23-13.97) genotype. An increased risk was also associated with the TP53 Pro/Pro (OR = 4.4, 95 % CI = 1.40-13.99) and Arg/Pro genotype (OR = 2.3, 95 % CI = 1.13-4.86). The gene-gene interaction of these polymorphisms increased EOC risk in a more than additive manner (ORs for the presence of both BAX AA and TP53 Arg/Pro genotypes = 8.7, 95 % CI = 1.66-45.48). BAX GG genotype was associated with adverse staging of cancer (P = 0.01). CONCLUSIONS The findings suggest that polymorphism of BAX and TP53 genes may be potential genetic modifiers for developing ovarian cancer.
Collapse
|
229
|
Hedberg Oldfors C, Dios DG, Linder A, Visuttijai K, Samuelson E, Karlsson S, Nilsson S, Behboudi A. Analysis of an independent tumor suppressor locus telomeric to Tp53 suggested Inpp5k and Myo1c as novel tumor suppressor gene candidates in this region. BMC Genet 2015; 16:80. [PMID: 26170120 PMCID: PMC4501283 DOI: 10.1186/s12863-015-0238-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 01/26/2023] Open
Abstract
Background Several reports indicate a commonly deleted chromosomal region independent from, and distal to the TP53 locus in a variety of human tumors. In a previous study, we reported a similar finding in a rat tumor model for endometrial carcinoma (EC) and through developing a deletion map, narrowed the candidate region to 700 kb, harboring 19 genes. In the present work real-time qPCR analysis, Western blot, semi-quantitative qPCR, sequencing, promoter methylation analysis, and epigenetic gene expression restoration analyses (5-aza-2´-deoxycytidine and/or trichostatin A treatments) were used to analyze the 19 genes located within the candidate region in a panel of experimental tumors compared to control samples. Results Real-time qPCR analysis suggested Hic1 (hypermethylated in cancer 1), Inpp5k (inositol polyphosphate-5-phosphatase K; a.k.a. Skip, skeletal muscle and kidney enriched inositol phosphatase) and Myo1c (myosin 1c) as the best targets for the observed deletions. No mutation in coding sequences of these genes was detected, hence the observed low expression levels suggest a haploinsufficient mode of function for these potential tumor suppressor genes. Both Inpp5k and Myo1c were down regulated at mRNA and/or protein levels, which could be rescued in gene expression restoration assays. This could not be shown for Hic1. Conclusion Innp5k and Myo1c were identified as the best targets for the deletions in the region. INPP5K and MYO1C are located adjacent to each other within the reported independent region of tumor suppressor activity located at chromosome arm 17p distal to TP53 in human tumors. There is no earlier report on the potential tumor suppressor activity of INPP5K and MYO1C, however, overlapping roles in phosphoinositide (PI) 3-kinase/Akt signaling, known to be vital for the cell growth and survival, are reported for both. Moreover, there are reports on tumor suppressor activity of other members of the gene families that INPP5K and MYO1C belong to. Functional significance of these two candidate tumor suppressor genes in cancerogenesis pathways remains to be investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0238-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carola Hedberg Oldfors
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Diego Garcia Dios
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Anna Linder
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Kittichate Visuttijai
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden. .,Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| | - Emma Samuelson
- Department of Medical and Clinical Genetics, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Sandra Karlsson
- Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| | - Staffan Nilsson
- Institute of Mathematical Statistics, Chalmers University of Technology, SE-41296, Gothenburg, Sweden.
| | - Afrouz Behboudi
- Tumor Biology Research Group, School of Bioscience, University of Skövde, SE-54128, Skövde, Sweden.
| |
Collapse
|
230
|
Heyne K, Kölsch K, Bruand M, Kremmer E, Grässer FA, Mayer J, Roemer K. Np9, a cellular protein of retroviral ancestry restricted to human, chimpanzee and gorilla, binds and regulates ubiquitin ligase MDM2. Cell Cycle 2015; 14:2619-33. [PMID: 26103464 DOI: 10.1080/15384101.2015.1064565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Humans and primates are long-lived animals with long reproductive phases. One factor that appears to contribute to longevity and fertility in humans, as well as to cancer-free survival, is the transcription factor and tumor suppressor p53, controlled by its main negative regulator MDM2. However, p53 and MDM2 homologs are found throughout the metazoan kingdom from Trichoplacidae to Hominidae. Therefore the question arises, if p53/MDM2 contributes to the shaping of primate features, then through which mechanisms. Previous findings have indicated that the appearances of novel p53-regulated genes and wild-type p53 variants during primate evolution are important in this context. Here, we report on another mechanism of potential relevance. Human endogenous retrovirus K subgroup HML-2 (HERV-K(HML-2)) type 1 proviral sequences were formed in the genomes of the predecessors of contemporary Hominoidea and can be identified in the genomes of Nomascus leucogenys (gibbon) up to Homo sapiens. We previously reported on an alternative splicing event in HERV-K(HML-2) type 1 proviruses that can give rise to nuclear protein of 9 kDa (Np9). We document here the evolution of Np9-coding capacity in human, chimpanzee and gorilla, and show that the C-terminal half of Np9 binds directly to MDM2, through a domain of MDM2 that is known to be contacted by various cellular proteins in response to stress. Np9 can inhibit the MDM2 ubiquitin ligase activity toward p53 in the cell nucleus, and can support the transactivation of genes by p53. Our findings point to the possibility that endogenous retrovirus protein Np9 contributes to the regulation of the p53-MDM2 pathway specifically in humans, chimpanzees and gorillas.
Collapse
Affiliation(s)
- Kristina Heyne
- a José Carreras Center and Internal Medicine I; University of Saarland Medical Center ; Homburg , Germany
| | | | | | | | | | | | | |
Collapse
|
231
|
Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood 2015; 126:508-19. [PMID: 26082451 DOI: 10.1182/blood-2014-11-611194] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 06/03/2015] [Indexed: 12/30/2022] Open
Abstract
The pathogenesis of mycosis fungoides (MF), the most common cutaneous T-cell lymphoma (CTCL), is unknown. Although genetic alterations have been identified, none are considered consistently causative in MF. To identify potential drivers of MF, we performed whole-genome sequencing of MF tumors and matched normal skin. Targeted ultra-deep sequencing of MF samples and exome sequencing of CTCL cell lines were also performed. Multiple mutations were identified that affected the same pathways, including epigenetic, cell-fate regulation, and cytokine signaling, in MF tumors and CTCL cell lines. Specifically, interleukin-2 signaling pathway mutations, including activating Janus kinase 3 (JAK3) mutations, were detected. Treatment with a JAK3 inhibitor significantly reduced CTCL cell survival. Additionally, the mutation data identified 2 other potential contributing factors to MF, ultraviolet light, and a polymorphism in the tumor suppressor p53 (TP53). Therefore, genetic alterations in specific pathways in MF were identified that may be viable, effective new targets for treatment.
Collapse
|
232
|
Sharma S, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, Singh NR, Bansal D, Gupta A. TP53 polymorphisms in sporadic North Indian breast cancer patients. Asian Pac J Cancer Prev 2015; 15:6871-9. [PMID: 25169539 DOI: 10.7314/apjcp.2014.15.16.6871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the potential association of five (p.P47S, p.R72P, PIN3 Ins16bp, p.R213R and r.13494g>a) polymorphisms of TP53 with the risk of developing breast cancer in North Indian Punjabi population. METHODS We screened DNA samples of 200 sporadic breast cancer patients (197 females and 3 males) and 200 unrelated healthy, gender and age matched individuals for the polymorphisms. RESULTS For the p.P47S polymorphism, we observed the PP genotype in 99.5% of the patients and PS genotype in only 1 patient. All the controls had the wild type PP genotype. The frequency of RR, RP and PP genotype of p.R72P was 23.5% vs 33.5%, 51.5% vs 45.5% and 25% vs 21% in patients and controls respectively. Heterozygous (RP) genotype was increased in breast cancer patients as compared to controls (51.5 vs 45.5%) and showed 1.61 fold significantly increased risk for breast cancer (OR=1.61, 95% CI, 1.01-2.58, p=0.04). In breast cancer patients the frequencies of A1A1, A1A2 and A2A2 genotypes of PIN3 Ins16bp polymorphism were 67%, 26% and 7% respectively whereas in controls the genotype frequencies were 68.5%, 27.5% and 4% respectively, with no significant difference. For p.R213R (c.639A>G), all individuals had homozygous wild type genotype. The frequencies of GG, GA and AA genotypes of TP53 r.13494g>a polymorphism were 62 vs 67.5%, 33 vs 28% and 5 vs 4.5% in patients and controls respectively, again without significant difference. We observed that RP- A1A1 genotype combination of p.R72P and PIN3 Ins16bp and RP-GG combination of p.R72P and r.13494g>a polymorphism showed significant risk of breast cancer (OR=1.65, 95%CI: 0.98-2.78, p=0.05; OR=1.72, 95%CI: 1.01-2.92, p=0.04). CONCLUSION The results of present study indicated that among the five TP53 polymorphisms investigated, the p.R72P polymorphism, and the RP-A1A1 and RP-GG genotype combination contribute to breast cancer susceptibility in North Indians.
Collapse
Affiliation(s)
- Sarika Sharma
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Punjab, India E-mail :
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Moradi MT, Salehi Z, Aminian K, Yazdanbod A. Effects of p53 codon 72 and MDM2 SNP309 polymorphisms on gastric cancer risk among the Iranian population. Asian Pac J Cancer Prev 2015; 15:7413-7. [PMID: 25227851 DOI: 10.7314/apjcp.2014.15.17.7413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Development of gastric cancer (GC) is a multistep process that requires alterations in the expression of oncogenes and tumor suppressor genes, occurring over several decades. The p53 tumor suppressor protein is involved in cell-cycle control, apoptosis and DNA repair. One of the most important regulators of p53 is MDM2, which acts as a negative regulator in the p53 pathway. Based on the key role of p53 and MDM2 in tumor suppression, polymorphisms that cause change in their function might affect cancer risk. We therefore elevated associations of the polymorphisms of p53 (R72P) and MDM2 (SNP309) with GC in Iran. MATERIALS AND METHODS A total of 104 patients with gastric cancer and 100 controls were recruited. Genomic DNA was extracted from fresh gastric samples. Genotyping of the p53 and MDM2 genes was performed using allele specific PCR (AS-PCR). RESULTS There was no significant difference between the p53 codon 72 polymorphism distribution in control and patient groups (p=0.54), but the G allele of MDM2 was found to be over-represented in patients (p=0. 01, Odds Ratio=2. 08, 95% Confidence Interval= 1.37-4.34). CONCLUSIONS The p53 R72P seems not to be a potential risk factor for development of GC among Iranian patients, but our data suggest that MDM2 SNP309 might modify the risk related to GC.
Collapse
Affiliation(s)
- Mohammad-Taher Moradi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran E-mail :
| | | | | | | |
Collapse
|
234
|
Cui H, Dhroso A, Johnson N, Korkin D. The variation game: Cracking complex genetic disorders with NGS and omics data. Methods 2015; 79-80:18-31. [PMID: 25944472 DOI: 10.1016/j.ymeth.2015.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in Next Generation Sequencing (NGS) and high-throughput omics methods have brought us one step closer towards mechanistic understanding of the complex disease at the molecular level. In this review, we discuss four basic regulatory mechanisms implicated in complex genetic diseases, such as cancer, neurological disorders, heart disease, diabetes, and many others. The mechanisms, including genetic variations, copy-number variations, posttranscriptional variations, and epigenetic variations, can be detected using a variety of NGS methods. We propose that malfunctions detected in these mechanisms are not necessarily independent, since these malfunctions are often found associated with the same disease and targeting the same gene, group of genes, or functional pathway. As an example, we discuss possible rewiring effects of the cancer-associated genetic, structural, and posttranscriptional variations on the protein-protein interaction (PPI) network centered around P53 protein. The review highlights multi-layered complexity of common genetic disorders and suggests that integration of NGS and omics data is a critical step in developing new computational methods capable of deciphering this complexity.
Collapse
Affiliation(s)
- Hongzhu Cui
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Andi Dhroso
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Nathan Johnson
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Dmitry Korkin
- Department of Computer Science, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States; Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| |
Collapse
|
235
|
Wang HG, Wu QY, Zhou H, Peng XS, Shi MJ, Li JM, Zhou YF. The MDM2 SNP309T>G polymorphism increases bladder cancer risk among Caucasians: a meta-analysis. Asian Pac J Cancer Prev 2015; 15:5277-81. [PMID: 25040988 DOI: 10.7314/apjcp.2014.15.13.5277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Published studies have evaluated associations between the MDM2 SNP309T>G polymorphism and bladder cancer susceptibility. However, these generated inconsistent results. The aim of the present investigation was to quantify the strength of association between MDM2 SNP309T>G polymorphism and bladder cancer risk by conducting a meta-analysis. We searched PubMed and Embase for related studies that had been published in English before April 1, 2014 and associations were assessed by summarizing the odds ratios (ORs) with the corresponding 95% confidence intervals (CIs). Five case-control studies with a total of 972 cases and 1,012 controls were finally identified to be eligible for the meta-analysis. Overall, the results indicated that there was no significant association between the MDM2 SNP309T>G polymorphism and bladder cancer risk (for the allele model G vs. T: OR=1.08, 95% CI 0.85-1.36, p=0.54; for the co-dominant model GG vs. TT: OR=1.20, 95% CI 0.74-1.93, p=0.46; for the dominant model GG+GT vs. TT: OR=0.98, 95% CI 0.80-1.20, p=0.83; for the recessive model GG vs. GT+TT: OR=1.20, 95% CI 0.83-1.74, p=0.33). However, on subgroup analysis by ethnicity, significant associations were found in Caucasians in three models (for the allele model G vs. T: OR=1.41, 95% CI 1.10-1.81, p=0.006; for the co-dominant model GG vs. TT: OR=2.16, 95% CI 1.28-3.63, p=0.004; for the recessive model GG vs. GT+TT: OR=2.06, 95% CI 1.31-3.22, p=0.002). In summary, the present meta-analysis provides evidence that the genotype for the MDM2 SNP309T>G polymorphism may be associated with genetic susceptibility to bladder cancer among Caucasians.
Collapse
Affiliation(s)
- Huai-Gao Wang
- Department of Pathophysiology, Guangdong Medical College, Dongguan, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
236
|
Association of TP53 gene polymorphisms with susceptibility of bladder cancer in Bangladeshi population. Tumour Biol 2015; 36:6369-74. [DOI: 10.1007/s13277-015-3324-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/12/2015] [Indexed: 01/23/2023] Open
|
237
|
N-Isopropylacrylamide-modified polyethylenimine-mediated p53 gene delivery to prevent the proliferation of cancer cells. Colloids Surf B Biointerfaces 2015; 129:54-62. [PMID: 25829127 DOI: 10.1016/j.colsurfb.2015.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 01/05/2023]
Abstract
In this paper, N-isopropylacrylamide-modified polyethylenimine (PEN) was constructed through Michael addition and employed as a carrier to achieve the p53 gene delivery, using HeLa (p53wt) and PC-3 cells (p53null) as models. After PEN-mediated p53 transfection, expression level of p53 in HeLa and PC3 cells was up-regulated at both mRNA and protein levels. Due to the exogenous p53 expression, the inhibition of cell proliferation was observed through MTT analysis, attributing to the activation of apoptosis and cell cycle arrest. Using flow cytometric analysis, early apoptotic ratios of 54.95% and 27.06% after PEN-mediated p53 transfection were detected in PC-3 and HeLa cells, respectively, indicating that PC-3 cells were more sensitive to the exogenous p53 transfection than HeLa cells. Meanwhile, G1 phase arrest was detected in PC-3 cells while a unique G2 phase arrest was identified in HeLa cells after p53 transfection. Through Western blotting, activity analysis of caspase-3, caspase-8 and caspase-9 and mitochondrial membrane potential measurement, the apoptosis induced by PEN-mediated p53 transfection was conducted in a mitochondria-dependent apoptosis pathway. These results demonstrated that PEN could successfully mediate the p53 gene delivery and up-regulate the cellular p53 expression level, triggering a significant p53-dependent anti-proliferative effect on tumor cells.
Collapse
|
238
|
Geng P, Liao Y, Ruan Z, Liang H. Increased risk of cutaneous melanoma associated with p53 Arg72Pro polymorphism. PLoS One 2015; 10:e0118112. [PMID: 25774791 PMCID: PMC4361629 DOI: 10.1371/journal.pone.0118112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 01/07/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The objective of this study was to test the hypothesis that p53 Arg72Pro polymorphism may contribute to an increased risk of cutaneous melanoma (CM). METHODS By searching the databases of PubMed, EMBASE, and Web of Science, a total of 8 eligible case-control studies with 1,957 CM cases and 2,887 controls were included in this meta-analysis. Stata software was used to analyze all the statistical data. RESULTS The pooled data by a fixed-effects model suggested an increased risk of CM associated with p53 Arg72Pro polymorphism under the genetic model of Arg/Pro vs. Pro/Pro without heterogeneity (ORArg/Pro vs. Pro/Pro = 1.76, 95% CI = 1.55-1.99, Pheterogeneity = 0.075). A similar trend was seen in subgroups of hospital-based studies and population-based studies. CONCLUSION Our meta-analysis based on all studies shows that the p53 Arg72Pro polymorphism may increase individual susceptibility to CM, particularly in Caucasians and could serve as a biomarker to predict the population at high risk of CM.
Collapse
Affiliation(s)
- Peiliang Geng
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, China
| | - Yunmei Liao
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, China
| | - Zhihua Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, China
| |
Collapse
|
239
|
Sensitive detection of point mutation using exponential strand displacement amplification-based surface enhanced Raman spectroscopy. Biosens Bioelectron 2015; 65:191-7. [DOI: 10.1016/j.bios.2014.10.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 12/29/2022]
|
240
|
Behfarjam F, Rostamzadeh J, Zarei MA, Nikkhoo B. Association of Two Polymorphic Codons in P53 and ABCC1 Promoter with Prostate Cancer. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:49-54. [PMID: 28959281 DOI: 10.15171/ijb.1096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND In prostate cancer, mutated p53 alleles typically contain missense single-base substitution in codon 72 that resides within exons 5-8. Stable p53 proteins in tumor cell nuclei have been associated with malignancy. A role of p53 is the regulation of drug transporters like ABCC1 (MRP1) by an effect on promoter region. OBJECTIVES The objective of this study was to identify association of mutations of p53 at codon 72 and 282 and promoter region of ABCC1 with increased risks of prostate cancer. MATERIALS AND METHODS Formalin fixed, paraffin-embedded malignant tissues of 45 patients and 45 control samples were evaluated. PCR-RFLP using BstUI for codon 72 and HpaII restriction enzyme for codon 282 p53 gene, and G-1666A promoter region of ABCC1 gene was performed. To assess the frequency of these mutations and to detect new mutations in cancerous samples, PCR-SSCP analysis was performed. RESULTS The frequencies of CC, GC and GG genotypes of codon 72 of p53 were 33.33%, 46.67% and 20.00% in patients with cancer and 15.56%, 48.89% and 35.55% in controls, respectively. The relative allele frequencies of ABCC1 promoter polymorphism were 60.00% A and 40.00% G in patients as opposed to 37.78% for A and 62.22% for G in controls. Genotypic frequencies of p53 codon 72 and G1666A of ABCC1 in patients vs. Controls were statistically significant(p<0.05). The study of these samples with PCR-SSCP displayed some new banding patterns. CONCLUSIONS The present findings suggest that CC homozygosity in codon 72 of p53 gene and AA genotype in G-1666A of ABCC1 gene may play a role in combination in prostate cancer and increased susceptibility for this malignancy in the Iranian Kurdish population.
Collapse
Affiliation(s)
- Farinaz Behfarjam
- Department of Biology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Jalal Rostamzadeh
- Department of Animal Sciences, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Mohammad Ali Zarei
- Department of Biology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Bahram Nikkhoo
- Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran
| |
Collapse
|
241
|
Rangel-Aldao R. The unfolded protein response, inflammation, oscillators, and disease: a systems biology approach. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2015. [DOI: 10.1515/ersc-2015-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNon-communicable diseases (NCDs) such as cardiovascular disease, cancers, diabetes and obesity are responsible for about two thirds of mortality worldwide, and all of these ailments share a common low-intensity systemic chronic inflammation, endoplasmic reticulum stress (ER stress), and the ensuing Unfolded Protein Response (UPR). These adaptive mechanisms are also responsible for significant metabolic changes that feedback with the central clock of the suprachiasmatic nucleus (SCN) of the hypothalamus, as well as with oscillators of peripheral tissues. In this review we attempt to use a systems biology approach to explore such interactions as a whole; to answer two fundamental questions: (1) how dependent are these adaptive responses and subsequent events leading to NCD with their state of synchrony with the SCN and peripheral oscillators? And, (2) How could modifiers of the activity of SCN for instance, food intake, exercise, and drugs, be potentially used to modulate systemic inflammation and ER stress to ameliorate or even prevent NCDs?
Collapse
Affiliation(s)
- Rafael Rangel-Aldao
- 1Department of Technology of Biological Processes and Group of Digital Science, Simon Bolivar University, Caracas, 1083, Venezuela
| |
Collapse
|
242
|
Krivokuca AM, Malisic EJ, Dobricic JD, Brotto KV, Cavic MR, Jankovic RN, Tomasevic ZI, Brankovic-Magic MV. RAD51 135G>C and TP53 Arg72Pro polymorphisms and susceptibility to breast cancer in Serbian women. Fam Cancer 2015; 13:173-80. [PMID: 24114315 DOI: 10.1007/s10689-013-9690-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is a complex disease with both genetic and environmental factors involved in its etiology. An important role of polymorphisms in genes involved in DNA repair has been reported related to breast cancer risk. We conducted a case-control study in order to investigate the association of RAD51 135G>C and TP53 Arg72Pro polymorphisms with breast cancer in Serbian women.48 BRCA negative women with breast cancer and family history of breast/ovarian cancer (hereditary group), 107 women with breast cancer but without family history of the disease (sporadic group) and 114 healthy women without a history of the disease (control group) were included. Restriction fragment length polymorphism was used for genotyping. Genotype and allelic frequencies, the odds ratio (OR) and the 95 % confidence interval (CI) were calculated as an estimate of relative risk. The Hardy-Weinberg equilibrium was tested using χ(2) test. Significance was considered for p < 0.05. RAD51 135G>C showed statistically significant association of CC genotype and increased breast cancer risk (OR 10.28, 95 % CI 1.12-94.5) in hereditary group of patients compared to the control group. Regarding the TP53 Arg72Pro, we showed statistical significance for ProPro + ProArg comparing to ArgArg (OR 2.34, 95 %, CI 1.17-4.70) in hereditary compared to sporadic group. RAD51 135G>C contributes to hereditary breast cancer in Serbian population, with CC genotype as a risk factor. We also found that carriers of Pro allele of TP53 codon 72 is related to hereditary cancer comparing to sporadic one, which indicates it as a potential risk factor for hereditary form of disease.
Collapse
Affiliation(s)
- Ana M Krivokuca
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000, Belgrade, Serbia,
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Mantovani F, Zannini A, Rustighi A, Del Sal G. Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochim Biophys Acta Gen Subj 2015; 1850:2048-60. [PMID: 25641576 DOI: 10.1016/j.bbagen.2015.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The p53 protein family, comprising p53, p63 and p73, is primarily involved in preserving genome integrity and preventing tumor onset, and also affects a range of physiological processes. Signal-dependent modifications of its members and of other pathway components provide cells with a sophisticated code to transduce a variety of stress signaling into appropriate responses. TP53 mutations are highly frequent in cancer and lead to the expression of mutant p53 proteins that are endowed with oncogenic activities and sensitive to stress signaling. SCOPE OF REVIEW p53 family proteins have unique structural and functional plasticity, and here we discuss the relevance of prolyl-isomerization to actively shape these features. MAJOR CONCLUSIONS The anti-proliferative functions of the p53 family are carefully activated upon severe stress and this involves the interaction with prolyl-isomerases. In particular, stress-induced stabilization of p53, activation of its transcriptional control over arrest- and cell death-related target genes and of its mitochondrial apoptotic function, as well as certain p63 and p73 functions, all require phosphorylation of specific S/T-P motifs and their subsequent isomerization by the prolyl-isomerase Pin1. While these functions of p53 counteract tumorigenesis, under some circumstances their activation by prolyl-isomerases may have negative repercussions (e.g. tissue damage induced by anticancer therapies and ischemia-reperfusion, neurodegeneration). Moreover, elevated Pin1 levels in tumor cells may transduce deregulated phosphorylation signaling into activation of mutant p53 oncogenic functions. GENERAL SIGNIFICANCE The complex repertoire of biological outcomes induced by p53 finds mechanistic explanations, at least in part, in the association between prolyl-isomerases and the p53 pathway. This article is part of a Special Issue entitled Proline-directed foldases: Cell signaling catalysts and drug targets.
Collapse
Affiliation(s)
- Fiamma Mantovani
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandro Zannini
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Alessandra Rustighi
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy.
| |
Collapse
|
244
|
Glucocorticoid receptor status is a principal determinant of variability in the sensitivity of non-small-cell lung cancer cells to pemetrexed. J Thorac Oncol 2015; 9:519-26. [PMID: 24736075 DOI: 10.1097/jto.0000000000000111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pemetrexed is an S-phase targeted drug in front-line or maintenance therapy of advanced nonsquamous non-small-cell lung cancer (NSCLC) but methods are needed for predicting the drug response. Dexamethasone is typically administered the day before, the day of, and the day after pemetrexed. As dexamethasone strongly regulates many genes including p53 through the glucocorticoid receptor (GR), we hypothesized that dexamethasone influences tumor response to pemetrexed. METHODS Eight nonsquamous NSCLC cell line models with varied p53 and GRα/GRβ status were used for gene expression and cell-cycle analyses and for loss- or gain-of-function experiments. RESULTS In three cell lines dexamethasone profoundly, but reversibly, suppressed the fraction of S-phase cells. Dexamethasone also reversibly repressed expression of thymidylate synthase and dihydrofolate reductase, which are primary targets of pemetrexed but are also quintessential S-phase enzymes as well as the S-phase-dependent expression of thymidine kinase 1. Dexamethasone also decreased expression of the major pemetrexed transporters, the reduced folate carrier and the proton coupled folate transporter. Only cells expressing relatively high GRα showed these dexamethasone effects, regardless of p53 status. In cells expressing low GRα, the dexamethasone response was rescued by ectopic GRα. Further, depletion of p53 did not attenuate the dexamethasone effects. The presence of dexamethasone during pemetrexed treatment protected against pemetrexed cytotoxicity in only the dexamethasone responsive cells. CONCLUSIONS The results predict that in nonsquamous NSCLC tumors, reversible S-phase suppression by dexamethasone, possibly combined with a reduction in the drug transporters, attenuates responsiveness to pemetrexed and that GR status is a principal determinant of tumor variability of this response.
Collapse
|
245
|
Chao A, Lai CH, Lee YS, Ueng SH, Lin CY, Wang TH. Molecular characteristics of endometrial cancer coexisting with peritoneal malignant mesothelioma in Li-Fraumeni-like syndrome. BMC Cancer 2015; 15:8. [PMID: 25588929 PMCID: PMC4312462 DOI: 10.1186/s12885-015-1010-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/06/2015] [Indexed: 11/22/2022] Open
Abstract
Background Endometrial cancer that occurs concurrently with peritoneal malignant mesothelioma (PMM) is difficult to diagnose preoperatively. Case presentation A postmenopausal woman had endometrial cancer extending to the cervix, vagina and pelvic lymph nodes, and PMM in bilateral ovaries, cul-de-sac, and multiple peritoneal sites. Adjuvant therapies included chemotherapy and radiotherapy. Targeted, massively parallel DNA sequencing and molecular inversion probe microarray analysis revealed a germline TP53 mutation compatible with Li-Fraumeni-like syndrome, somatic mutations of PIK3CA in the endometrial cancer, and a somatic mutation of GNA11 and JAK3 in the PMM. Large-scale genomic amplifications and some deletions were found in the endometrial cancer. The patient has been stable for 24 months after therapy. One of her four children was also found to carry the germline TP53 mutation. Conclusions Molecular characterization of the coexistent tumors not only helps us make the definite diagnosis, but also provides information to select targeted therapies if needed in the future. Identification of germline TP53 mutation further urged us to monitor future development of malignancies in this patient and encourage cancer screening in her family. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1010-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.
| | - Yun-Shien Lee
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Department of Biotechnology, Ming-Chuan University, Taoyuan, Taiwan.
| | - Shir-Hwa Ueng
- Department of Pathology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.
| | - Chiao-Yun Lin
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.
| | - Tzu-Hao Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan. .,Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
246
|
Yang H, Liang W, He N, Deng Y, Li Z. Chemiluminescent labels released from long spacer arm-functionalized magnetic particles: a novel strategy for ultrasensitive and highly selective detection of pathogen infections. ACS APPLIED MATERIALS & INTERFACES 2015; 7:774-781. [PMID: 25553360 DOI: 10.1021/am507203s] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Previously, the unique advantages provided by chemiluminescence (CL) and magnetic particles (MPs) have resulted in the development of many useful nucleic acid detection methods. CL is highly sensitive, but when applied to MPs, its intensity is limited by the inner filter-like effect arising from excess dark MPs. Herein, we describe a modified strategy whereby CL labels are released from MPs to eliminate this negative effect. This approach relies on (1) the magnetic capture of target molecules on long spacer arm-functionalized magnetic particles (LSA-MPs), (2) the conjugation of streptavidin-alkaline phosphatase (SA-AP) to biotinylated amplicons of target pathogens, (3) the release of CL labels (specifically, AP tags), and (4) the detection of the released labels. CL labels were released from LSA-MPs through LSA ultrasonication or DNA enzymolysis, which proved to be the superior method. In contrast to conventional MPs, LSA-MPs exhibited significantly improved CL detection, because of the introduction of LSA, which was made of water-soluble carboxymethylated β-1,3-glucan. Detection of hepatitis B virus with this technique revealed a low detection limit of 50 fM, high selectivity, and excellent reproducibility. Thus, this approach may hold great potential for early stage clinical diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Haowen Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | | | | | | | | |
Collapse
|
247
|
Pouladi N, Kouhsari SM, Feizi MH, Dehghan R, Azarfam P, Farajzadeh D. Lack of association of intron 3 16 bp polymorphism of TP53 with breast cancer among Iranian-Azeri patients. Asian Pac J Cancer Prev 2015; 15:2631-4. [PMID: 24761875 DOI: 10.7314/apjcp.2014.15.6.2631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND p53 gene is a well-known tumor suppressor gene that has several polymorphisms in both its exons and introns. It has been suggested that intron 3 16 bp duplication polymorphism may affect the gene function resulting in reduction or suppression of p53 anti tumor activity. In most case control studies a duplicated allele has been noticeably more frequent in cases rather than controls but there are also conflicting results. The aim of this study was to assess the association of intron 3 16 bp duplication polymorphism of p53 with breast cancer risk among Iranian-Azeri population. We also analyzed the clinicopathological information of patients as an epidemiological description of breast cancer in the north-west of Iran. MATERIALS AND METHODS This case-control study was performed on 221 breast cancer patients and 170 controls. Genomic DNA was extracted from peripheral blood samples and tumor tissues. p53 PIN3 genotype was determined using electrophoresis of PCR products on 8% non-denaturing polyacrylamide gels and silver staining. RESULTS In the control and case groups, respectively, 62.9% and 61.1% had no 16 bp insertion (A1A1 genotype), 7.1% and 7.7% had insertion in both p53 alleles (A2A2) and 30% and 31.2% were heterozygous (A1A2). There was no significant difference between genotype frequencies as well as allelic frequencies in two case and control groups. CONCLUSIONS According to the result of the present study, the intron 3 16 bp duplication polymorphism of p53 could not be assessed as a marker of risk factor for predisposition to breast cancer in Azeri population. However, a high frequency of A2 allele (22.1%) in our population suggested that intron 3 16 bp duplication polymorphism may be a valuable marker for study in other cancers with well designed large groups.
Collapse
Affiliation(s)
- Nasser Pouladi
- Department of Cellular and Molecular Biology, School of Biology, College of Sciences, University of Tehran, Tehran, Iran E-mail : ,
| | | | | | | | | | | |
Collapse
|
248
|
Brownell SE, Hekmat-Scafe DS, Singla V, Chandler Seawell P, Conklin Imam JF, Eddy SL, Stearns T, Cyert MS. A high-enrollment course-based undergraduate research experience improves student conceptions of scientific thinking and ability to interpret data. CBE LIFE SCIENCES EDUCATION 2015; 14:14:ar21. [PMID: 26033869 PMCID: PMC4477737 DOI: 10.1187/cbe.14-05-0092] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 02/05/2015] [Indexed: 05/06/2023]
Abstract
We present an innovative course-based undergraduate research experience curriculum focused on the characterization of single point mutations in p53, a tumor suppressor gene that is mutated in more than 50% of human cancers. This course is required of all introductory biology students, so all biology majors engage in a research project as part of their training. Using a set of open-ended written prompts, we found that the course shifts student conceptions of what it means to think like a scientist from novice to more expert-like. Students at the end of the course identified experimental repetition, data analysis, and collaboration as important elements of thinking like a scientist. Course exams revealed that students showed gains in their ability to analyze and interpret data. These data indicate that this course-embedded research experience has a positive impact on the development of students' conceptions and practice of scientific thinking.
Collapse
Affiliation(s)
- Sara E Brownell
- *Department of Biology, Stanford University, Stanford, CA 94305-5020
| | | | - Veena Singla
- *Department of Biology, Stanford University, Stanford, CA 94305-5020
| | | | | | - Sarah L Eddy
- Department of Biology, University of Washington, Seattle, WA 98195
| | - Tim Stearns
- *Department of Biology, Stanford University, Stanford, CA 94305-5020
| | - Martha S Cyert
- *Department of Biology, Stanford University, Stanford, CA 94305-5020
| |
Collapse
|
249
|
Wang Y, Wee EJH, Trau M. Highly sensitive DNA methylation analysis at CpG resolution by surface-enhanced Raman scattering via ligase chain reaction. Chem Commun (Camb) 2015; 51:10953-6. [DOI: 10.1039/c5cc03921e] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly sensitive DNA methylation analysis at CpG resolution is demonstrated by employing SERS nanotags via ligase chain reaction (LCR) and validated with sequencing.
Collapse
Affiliation(s)
- Yuling Wang
- Centre for Personalized NanoMedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Corner College and Cooper Roads (Bldg 75)
- Australia
| | - Eugene J. H. Wee
- Centre for Personalized NanoMedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Corner College and Cooper Roads (Bldg 75)
- Australia
| | - Matt Trau
- Centre for Personalized NanoMedicine
- Australian Institute for Bioengineering and Nanotechnology (AIBN)
- Corner College and Cooper Roads (Bldg 75)
- Australia
- School of Chemistry and Molecular Biosciences
| |
Collapse
|
250
|
Abderrahmane R, Louhibi L, Moghtit FZ, Boubekeur A, Benseddik K, Boudjema A, Benrrahal F, Aberkane M, Fodil M, Saidi-Mehtar N. TP53 Arg 72Pro and MDM2 SNP309 Polymorphisms and Colorectal Cancer Risk: A West Algerian Population Study. Pathol Oncol Res 2014; 21:629-35. [DOI: 10.1007/s12253-014-9867-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 11/04/2014] [Indexed: 11/29/2022]
|