201
|
Geng Y, Liu X, Liang J, Habiel DM, Kulur V, Coelho AL, Deng N, Xie T, Wang Y, Liu N, Huang G, Kurkciyan A, Liu Z, Tang J, Hogaboam CM, Jiang D, Noble PW. PD-L1 on invasive fibroblasts drives fibrosis in a humanized model of idiopathic pulmonary fibrosis. JCI Insight 2019; 4:125326. [PMID: 30763282 DOI: 10.1172/jci.insight.125326] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/13/2019] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with unremitting extracellular matrix deposition, leading to a distortion of pulmonary architecture and impaired gas exchange. Fibroblasts from IPF patients acquire an invasive phenotype that is essential for progressive fibrosis. Here, we performed RNA sequencing analysis on invasive and noninvasive fibroblasts and found that the immune checkpoint ligand CD274 (also known as PD-L1) was upregulated on invasive lung fibroblasts and was required for the invasive phenotype of lung fibroblasts, is regulated by p53 and FAK, and drives lung fibrosis in a humanized IPF model in mice. Activating CD274 in IPF fibroblasts promoted invasion in vitro and pulmonary fibrosis in vivo. CD274 knockout in IPF fibroblasts and targeting CD274 by FAK inhibition or CD274-neutralizing antibodies blunted invasion and attenuated fibrosis, suggesting that CD274 may be a novel therapeutic target in IPF.
Collapse
Affiliation(s)
- Yan Geng
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,School of Pharmaceutical Science, Jiangnan University, Wuxi, Jiangsu, China
| | - Xue Liu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jiurong Liang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M Habiel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vrishika Kulur
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ana Lucia Coelho
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nan Deng
- Biostatistics & Bioinformatics Core
| | - Ting Xie
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Ningshan Liu
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Guanling Huang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Adrianne Kurkciyan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | | | - Cory M Hogaboam
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dianhua Jiang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Paul W Noble
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
202
|
Zhou Y, Niu W, Luo Y, Li H, Xie Y, Wang H, Liu Y, Fan S, Li Z, Xiong W, Li X, Ren C, Tan M, Li G, Zhou M. p53/Lactate dehydrogenase A axis negatively regulates aerobic glycolysis and tumor progression in breast cancer expressing wild-type p53. Cancer Sci 2019; 110:939-949. [PMID: 30618169 PMCID: PMC6398928 DOI: 10.1111/cas.13928] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor suppressor p53 is a master regulator of apoptosis and plays key roles in cell cycle checkpoints. p53 responds to metabolic changes and alters metabolism through several mechanisms in cancer. Lactate dehydrogenase A (LDHA), a key enzyme in glycolysis, is highly expressed in a variety of tumors and catalyzes pyruvate to lactate. In the present study, we first analyzed the association and clinical significance of p53 and LDHA in breast cancer expressing wild-type p53 (wt-p53) and found that LDHA mRNA levels are negatively correlated with wt-p53 but not with mutation p53 mRNA levels, and low p53 and high LDHA expression are significantly associated with poor overall survival rates. Furthermore, p53 negatively regulates LDHA expression by directly binding its promoter region. Moreover, a series of LDHA gain-of-function and rescore experiments were carried out in breast cancer MCF7 cells expressing endogenous wt-p53, showing that ectopic expression of p53 decreases aerobic glycolysis, cell proliferation, migration, invasion and tumor formation of breast cancer cells and that restoration of the expression of LDHA in p53-overexpressing cells could abolish the suppressive effect of p53 on aerobic glycolysis and other malignant phenotypes. In conclusion, our findings showed that repression of LDHA induced by wt-p53 blocks tumor growth and invasion through downregulation of aerobic glycolysis in breast cancer, providing new insights into the mechanism by which p53 contributes to the development and progression of breast cancer.
Collapse
Affiliation(s)
- Yao Zhou
- The Affiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaChina
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthThe Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationXiangya HospitalCentral South UniversityChangshaChina
| | - Weihong Niu
- The Affiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaChina
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthThe Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationXiangya HospitalCentral South UniversityChangshaChina
| | - Yanwei Luo
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthThe Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationXiangya HospitalCentral South UniversityChangshaChina
| | - Hui Li
- The Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Yong Xie
- The Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Heran Wang
- The Affiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaChina
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Yukun Liu
- The Affiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaChina
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Songqing Fan
- The Second Xiang‐Ya HospitalCentral South UniversityChangshaChina
| | - Zheng Li
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthThe Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationXiangya HospitalCentral South UniversityChangshaChina
- High Resolution Mass Spectrometry Laboratory of Advanced Research CenterCentral South UniversityChangshaChina
| | - Wei Xiong
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthThe Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationXiangya HospitalCentral South UniversityChangshaChina
| | - Xiaoling Li
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthThe Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationXiangya HospitalCentral South UniversityChangshaChina
| | - Caiping Ren
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
| | - Ming Tan
- Mitchell Cancer InstituteUniversity of South AlabamaMobileUSA
| | - Guiyuan Li
- The Affiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaChina
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthThe Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationXiangya HospitalCentral South UniversityChangshaChina
| | - Ming Zhou
- The Affiliated Tumor Hospital of Xiangya Medical SchoolCentral South UniversityChangshaChina
- Cancer Research InstituteSchool of Basic Medical SciencesCentral South UniversityChangshaChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthThe Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
203
|
Sensors for Lung Cancer Diagnosis. J Clin Med 2019; 8:jcm8020235. [PMID: 30754727 PMCID: PMC6406777 DOI: 10.3390/jcm8020235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022] Open
Abstract
The positive outcome of lung cancer treatment is strongly related to the earliness of the diagnosis. Thus, there is a strong requirement for technologies that could provide an early detection of cancer. The concept of early diagnosis is immediately extended to large population screening, and then, it is strongly related to non-invasiveness and low cost. Sensor technology takes advantage of the microelectronics revolution, and then, it promises to develop devices sufficiently sensitive to detect lung cancer biomarkers. A number of biosensors for the detection of cancer-related proteins have been demonstrated in recent years. At the same time, the interest is growing towards the analysis of volatile metabolites that could be measured directly from the breath. In this paper, a review of the state-of-the-art of biosensors and volatile compound sensors is presented.
Collapse
|
204
|
p53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer. Oncogene 2019; 38:3729-3742. [PMID: 30664690 DOI: 10.1038/s41388-019-0697-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
Abstract
The role of p53 in genotoxic therapy-induced metabolic shift in cancers is not yet known. In this study, we investigated the role of p53 in the glycolytic shift in head and neck squamous cell carcinoma cell lines following irradiation. Isogenic p53-null radioresistant cancer cells established through cumulative irradiation showed decreased oxygen consumption and increased glycolysis with compromised mitochondria, corresponding with their enhanced sensitivity to drugs that target glycolysis. In contrast, radioresistant cancer cells with wild-type p53 preserved their primary metabolic profile with intact mitophagic processes and maintained their mitochondrial integrity. Moreover, we identified a previously unappreciated link between p53 and mitophagy, which limited the glycolytic shift through the BNIP3-dependent clearance of abnormal mitochondria. Thus, drugs targeting glycolysis could be used as an alternative strategy for overcoming radioresistant cancers, and the p53 status could be used as a biomarker for selecting participants for clinical trials.
Collapse
|
205
|
Principles of Exercise Prescription, and How They Influence Exercise-Induced Changes of Transcription Factors and Other Regulators of Mitochondrial Biogenesis. Sports Med 2019; 48:1541-1559. [PMID: 29675670 DOI: 10.1007/s40279-018-0894-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Physical inactivity represents the fourth leading risk factor for mortality, and it has been linked with a series of chronic disorders, the treatment of which absorbs ~ 85% of healthcare costs in developed countries. Conversely, physical activity promotes many health benefits; endurance exercise in particular represents a powerful stimulus to induce mitochondrial biogenesis, and it is routinely used to prevent and treat chronic metabolic disorders linked with sub-optimal mitochondrial characteristics. Given the importance of maintaining a healthy mitochondrial pool, it is vital to better characterize how manipulating the endurance exercise dose affects cellular mechanisms of exercise-induced mitochondrial biogenesis. Herein, we propose a definition of mitochondrial biogenesis and the techniques available to assess it, and we emphasize the importance of standardizing biopsy timing and the determination of relative exercise intensity when comparing different studies. We report an intensity-dependent regulation of exercise-induced increases in nuclear peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, nuclear phosphorylation of p53 (serine 15), and PGC-1α messenger RNA (mRNA), as well as training-induced increases in PGC-1α and p53 protein content. Despite evidence that PGC-1α protein content plateaus within a few exercise sessions, we demonstrate that greater training volumes induce further increases in PGC-1α (and p53) protein content, and that short-term reductions in training volume decrease the content of both proteins, suggesting training volume is still a factor affecting training-induced mitochondrial biogenesis. Finally, training-induced changes in mitochondrial transcription factor A (TFAM) protein content are regulated in a training volume-dependent manner and have been linked with training-induced changes in mitochondrial content.
Collapse
|
206
|
Xue YN, Yu BB, Li JL, Guo R, Zhang LC, Sun LK, Liu YN, Li Y. Zinc and p53 disrupt mitochondrial binding of HK2 by phosphorylating VDAC1. Exp Cell Res 2019; 374:249-258. [DOI: 10.1016/j.yexcr.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
207
|
Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP, Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, Xue W, Ho YJ, Baslan T, Li X, Mayle A, de Stanchina E, Zender L, Tong DR, D'Alessandro A, Lowe SW, Prives C. p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell 2018; 176:564-580.e19. [PMID: 30580964 DOI: 10.1016/j.cell.2018.11.011] [Citation(s) in RCA: 268] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/24/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.
Collapse
Affiliation(s)
- Sung-Hwan Moon
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shauna L Houlihan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kausik Regunath
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - John P Morris
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Darjus F Tschaharganeh
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edward R Kastenhuber
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony M Barsotti
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wen Xue
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiang Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Allison Mayle
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lars Zender
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
208
|
Galicia-Vázquez G, Aloyz R. Metabolic rewiring beyond Warburg in chronic lymphocytic leukemia: How much do we actually know? Crit Rev Oncol Hematol 2018; 134:65-70. [PMID: 30771875 DOI: 10.1016/j.critrevonc.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common adult leukemia in the western world. CLL consists of the accumulation of malignant B-cells in the blood stream and homing tissues. Although treatable, this disease is not curable, and resistance or relapse is often present. In many cancers, the study of metabolic reprograming has uncovered novel targets that are already being exploited in the clinic. However, CLL metabolism is still poorly understood. The ability of CLL lymphocytes to adapt to diverse microenvironments is accompanied by modifications in cell metabolism, revealing the challenge of targeting the CLL lymphocytes present in all different compartments. Despite this, the study of CLL metabolism led to an ongoing clinical trial using glucose uptake and mitochondrial respiration inhibitors. In contrast, glutamine and fatty acid metabolism remain to be further exploited in CLL. Here, we summarize the present knowledge of CLL metabolism, as well as the metabolic influence of Myc, ATM and p53 on CLL lymphocytes.
Collapse
Affiliation(s)
- Gabriela Galicia-Vázquez
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, 3755 Cote Ste. Catherine Road, Montreal, Quebec, Canada, H3T 1E2
| | - Raquel Aloyz
- Lady Davis Institute for Medical Research and Segal Cancer Center, Jewish General Hospital, 3755 Cote Ste. Catherine Road, Montreal, Quebec, Canada, H3T 1E2; Department of Oncology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
209
|
Shahid M, Lee MY, Piplani H, Andres AM, Zhou B, Yeon A, Kim M, Kim HL, Kim J. Centromere protein F (CENPF), a microtubule binding protein, modulates cancer metabolism by regulating pyruvate kinase M2 phosphorylation signaling. Cell Cycle 2018; 17:2802-2818. [PMID: 30526248 PMCID: PMC6343699 DOI: 10.1080/15384101.2018.1557496] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PC) is the most commonly diagnosed cancer in men and is the second leading cause of male cancer-related death in North America. Metabolic adaptations in malignant PC cells play a key role in fueling the growth and progression of the disease. Unfortunately, little is known regarding these changes in cellular metabolism. Here, we demonstrate that centromere protein F (CENPF), a protein associated with the centromere-kinetochore complex and chromosomal segregation during mitosis, is mechanically linked to altered metabolism and progression in PC. Using the CRISPR-Cas9 system, we silenced the gene for CENPF in human PC3 cells. These cells were found to have reduced levels of epithelial-mesenchymal transition markers and inhibited cell proliferation, migration, and invasion. Silencing of CENPF also simultaneously improved sensitivity to anoikis-induced apoptosis. Mass spectrometry analysis of tyrosine phosphorylated proteins from CENPF knockout (CENPFKO) and control cells revealed that CENPF silencing increased inactive forms of pyruvate kinase M2, a rate limiting enzyme needed for an irreversible reaction in glycolysis. Furthermore, CENPFKO cells had reduced global bio-energetic capacity, acetyl-CoA production, histone acetylation, and lipid metabolism, suggesting that CENPF is a critical regulator of cancer metabolism, potentially through its effects on mitochondrial functioning. Additional quantitative immunohistochemistry and imaging analyzes on a series of PC tumor microarrays demonstrated that CENPF expression is significantly increased in higher-risk PC patients. Based on these findings, we suggest the CENPF may be an important regulator of PC metabolism through its role in the mitochondria.
Collapse
Affiliation(s)
- Muhammad Shahid
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Honit Piplani
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Allen M. Andres
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Heart Institute, Los Angeles, CA, USA
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Austin Yeon
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minjung Kim
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Hyung L. Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Ga Cheon University College of Medicine, Incheon, South Korea
| |
Collapse
|
210
|
Andjelković A, Mordas A, Bruinsma L, Ketola A, Cannino G, Giordano L, Dhandapani PK, Szibor M, Dufour E, Jacobs HT. Expression of the Alternative Oxidase Influences Jun N-Terminal Kinase Signaling and Cell Migration. Mol Cell Biol 2018; 38:e00110-18. [PMID: 30224521 PMCID: PMC6275184 DOI: 10.1128/mcb.00110-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.
Collapse
Affiliation(s)
- Ana Andjelković
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Amelia Mordas
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Lyon Bruinsma
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Annika Ketola
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Giuseppe Cannino
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Luca Giordano
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Praveen K Dhandapani
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marten Szibor
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
211
|
GongSun X, Zhao Y, Jiang B, Xin Z, Shi M, Song L, Qin Q, Wang Q, Liu X. Inhibition of MUC1-C regulates metabolism by AKT pathway in esophageal squamous cell carcinoma. J Cell Physiol 2018; 234:12019-12028. [PMID: 30523643 PMCID: PMC6587484 DOI: 10.1002/jcp.27863] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive tumors worldwide. The Mucin 1 (MUC1) heterodimeric protein has been confirmed that is overexpressed in ESCC and induced adverse outcomes. However, the detailed mechanism(s) remained challenging. So, we investigated the relationship between MUC1‐C and metabolism in ESCC cells. In the results, TP53‐induced glycolysis and apoptosis regulator (TIGAR) was overexpressed and correlative with MUC1‐C positively in ESCC tissue. Targeting MUC1‐C inhibits AKT–mTORC–S6K1 signaling and blocks TIGAR translation. We found that the inhibitory effect of GO‐203 on TIGAR was mediated by inhibition of AKT–mTOR–S6K1 pathway. The findings also demonstrated that the suppressive effect of GO‐203 on TIGAR is related to the decrease of glutathione level, the increase of reactive oxygen species and the loss of mitochondrial transmembrane membrane potential. In xenograft tissues, GO‐203 inhibited the growth of ESCC cells and lead to the low expression of transmembrane C‐terminal subunit (MUC1‐C) and TIGAR. This evidence supports the contention that MUC1‐C is significant for metabolism in ESCC and indicated that MUC1‐C is a potential target for the treatment of ESCC.
Collapse
Affiliation(s)
- Xin GongSun
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - YongQiang Zhao
- Department of Thoracic Surgery, Laiwu City People's Hospital, Laiwu, Shandong, China
| | - Bin Jiang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - ZhongWei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - QiMing Qin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qiang Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - XiangYan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
212
|
Abstract
Purpose of Review Metabolic reprogramming is essential for the rapid proliferation of cancer cells and is thus recognized as a hallmark of cancer. In this review, we will discuss the etiologies and effects of metabolic reprogramming in colorectal cancer. Recent Findings Changes in cellular metabolism may precede the acquisition of driver mutations ultimately leading to colonocyte transformation. Oncogenic mutations and loss of tumor suppressor genes further reprogram CRC cells to upregulate glycolysis, glutaminolysis, one-carbon metabolism, and fatty acid synthesis. These metabolic changes are not uniform throughout tumors, as subpopulations of tumor cells may rely on different pathways to adapt to nutrient availability in the local tumor microenvironment. Finally, metabolic cross-communication between stromal cells, immune cells, and the gut microbiota enable CRC growth, invasion, and metastasis. Summary Altered cellular metabolism occurs in CRC at multiple levels, including in the cells that make up the bulk of CRC tumors, cancer stem cells, the tumor microenvironment, and host-microbiome interactions. This knowledge may inform the development of improved screening and therapeutics for CRC.
Collapse
Affiliation(s)
- Rachel E Brown
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Sarah P Short
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, B2215 Garland Ave., 1065D MRB-IV, Nashville, TN 37232-0252, USA
| | - Christopher S Williams
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, B2215 Garland Ave., 1065D MRB-IV, Nashville, TN 37232-0252, USA.,Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, USA
| |
Collapse
|
213
|
Xue C, Xiao S, Ouyang CH, Li CC, Gao ZH, Shen ZF, Wu ZS. Inverted mirror image molecular beacon-based three concatenated logic gates to detect p53 tumor suppressor gene. Anal Chim Acta 2018; 1051:179-186. [PMID: 30661615 DOI: 10.1016/j.aca.2018.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Mutation of p53 tumor suppressor gene represents one of the early molecular events in tumor initiation and progression. Although molecular computing holds tremendous potential with important applications in diagnosis, prognosis and treatment of human diseases at the molecular level, designing molecular logic gates to implement cascade amplification via operating autonomously for the detection of point mutations still remains challenging. In this contribution, we developed a three concatenated logic gates (TCLG) to perform multiple strand displacement amplification (m-SDA) for screening the cancer-related point mutations only via designing an innovative molecular beacon (MB). Specifically, using p53 gene as model target, extending the two ends of a MB via adding two fragments with the same sequence achieves two unique terminal single-stranded (ss) overhangs. After self-folding of MB into hairpin structure, the two overhangs exhibit a near inverted mirror image (IM) relationship if taking the base nature and direction into account. For this, the probe is called IM-MB. Because cascade SDAs can occur on IM-MB and promote each other, the target gene can be detected down to 10 pM. Along this line, the TCLG circuit was proposed, and two primers and target gene serve as the indispensable input signals. Utilizing this logic circuit, the point mutation or absence of target gene can be sensitively screened. Moreover, its potential application in the recognition of point mutations in complex biomatrix has been demonstrated via blind test. The proof-of-concept scheme is expected to provide new insight into the development of DNA-based molecular logic gates and their applications in basic research, medical diagnosis and precise treatment and treatment of genetic diseases.
Collapse
Affiliation(s)
- Chang Xue
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Shuai Xiao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chang-He Ouyang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Cong-Cong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Zhi-Hua Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhi-Fa Shen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China.
| |
Collapse
|
214
|
Mutant p53-dependent mitochondrial metabolic alterations in a mesenchymal stem cell-based model of progressive malignancy. Cell Death Differ 2018; 26:1566-1581. [PMID: 30413783 PMCID: PMC6748146 DOI: 10.1038/s41418-018-0227-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/28/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
It is well accepted that malignant transformation is associated with unique metabolism. Malignant transformation involves a variety of cellular pathways that are associated with initiation and progression of the malignant process that remain to be deciphered still. Here we used a mouse model of mutant p53 that presents a stepwise progressive transformation of adult Mesenchymal Stem Cells (MSCs). While the established parental p53Mut-MSCs induce tumors, the parental p53WT-MSCs that were established in parallel, did not. Furthermore, tumor lines derived from the parental p53Mut-MSCs (p53Mut-MSC-TLs), exhibited yet a more aggressive transformed phenotype, suggesting exacerbation in tumorigenesis. Metabolic tracing of these various cell types, indicated that while malignant transformation is echoed by a direct augmentation in glycolysis, the more aggressive p53Mut-MSC-TLs demonstrate increased mitochondrial oxidation that correlates with morphological changes in mitochondria mass and function. Finally, we show that these changes are p53Mut-dependent. Computational transcriptional analysis identified a mitochondrial gene signature specifically downregulated upon knock/out of p53Mut in MSC-TLs. Our results suggest that stem cells exhibiting different state of malignancy are also associated with a different quantitative and qualitative metabolic profile in a p53Mut-dependent manner. This may provide important insights for cancer prognosis and the use of specific metabolic inhibitors in a personalized designed cancer therapy.
Collapse
|
215
|
Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Sports Med 2018; 48:1809-1828. [PMID: 29934848 DOI: 10.1007/s40279-018-0936-y] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A sedentary lifestyle has been linked to a number of metabolic disorders that have been associated with sub-optimal mitochondrial characteristics and an increased risk of premature death. Endurance training can induce an increase in mitochondrial content and/or mitochondrial functional qualities, which are associated with improved health and well-being and longer life expectancy. It is therefore important to better define how manipulating key parameters of an endurance training intervention can influence the content and functionality of the mitochondrial pool. This review focuses on mitochondrial changes taking place following a series of exercise sessions (training-induced mitochondrial adaptations), providing an in-depth analysis of the effects of exercise intensity and training volume on changes in mitochondrial protein synthesis, mitochondrial content and mitochondrial respiratory function. We provide evidence that manipulation of different exercise training variables promotes specific and diverse mitochondrial adaptations. Specifically, we report that training volume may be a critical factor affecting changes in mitochondrial content, whereas relative exercise intensity is an important determinant of changes in mitochondrial respiratory function. As a consequence, a dissociation between training-induced changes in mitochondrial content and mitochondrial respiratory function is often observed. We also provide evidence that exercise-induced changes are not necessarily predictive of training-induced adaptations, we propose possible explanations for the above discrepancies and suggestions for future research.
Collapse
|
216
|
Kato S, Liberona MF, Cerda-Infante J, Sánchez M, Henríquez J, Bizama C, Bravo ML, Gonzalez P, Gejman R, Brañes J, García K, Ibañez C, Owen GI, Roa JC, Montecinos V, Cuello MA. Simvastatin interferes with cancer 'stem-cell' plasticity reducing metastasis in ovarian cancer. Endocr Relat Cancer 2018; 25:821-836. [PMID: 29848667 DOI: 10.1530/erc-18-0132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
Cell plasticity of 'stem-like' cancer-initiating cells (CICs) is a hallmark of cancer, allowing metastasis and cancer progression. Here, we studied whether simvastatin, a lipophilic statin, could impair the metastatic potential of CICs in high-grade serous ovarian cancer (HGS-ovC), the most lethal among the gynecologic malignancies. qPCR, immunoblotting and immunohistochemistry were used to assess simvastatin effects on proteins involved in stemness and epithelial-mesenchymal cell plasticity (EMT). Its effects on tumor growth and metastasis were evaluated using different models (e.g., spheroid formation and migration assays, matrigel invasion assays, 3D-mesomimetic models and cancer xenografts). We explored also the clinical benefit of statins by comparing survival outcomes among statin users vs non-users. Herein, we demonstrated that simvastatin modifies the stemness and EMT marker expression patterns (both in mRNA and protein levels) and severely impairs the spheroid assembly of CICs. Consequently, CICs become less metastatic in 3D-mesomimetic models and show fewer ascites/tumor burden in HGS-ovC xenografts. The principal mechanism behind statin-mediated effects involves the inactivation of the Hippo/YAP/RhoA pathway in a mevalonate synthesis-dependent manner. From a clinical perspective, statin users seem to experience better survival and quality of life when compared with non-users. Considering the high cost and the low response rates obtained with many of the current therapies, the use of orally or intraperitoneally administered simvastatin offers a cost/effective and safe alternative to treat and potentially prevent recurrent HGS-ovCs.
Collapse
Affiliation(s)
- S Kato
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - M F Liberona
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - J Cerda-Infante
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
- Department of Cellular and MolecularFaculty of Biological Sciences, PUC, Santiago, Chile
| | - M Sánchez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - J Henríquez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - C Bizama
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
| | - M L Bravo
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - P Gonzalez
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
| | - R Gejman
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
| | - J Brañes
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - K García
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - C Ibañez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - G I Owen
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - J C Roa
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - V Montecinos
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - M A Cuello
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| |
Collapse
|
217
|
Marbaniang C, Kma L. Dysregulation of Glucose Metabolism by Oncogenes and Tumor Suppressors in Cancer Cells. Asian Pac J Cancer Prev 2018; 19:2377-2390. [PMID: 30255690 PMCID: PMC6249467 DOI: 10.22034/apjcp.2018.19.9.2377] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Cancers are complex diseases having several unique features, commonly described as ‘hallmarks of cancer’. Among them, altered signaling pathways are the common characteristic features that drive cancer progression; this is achieved due to mutations that lead to the activation of growth promoting(s) oncogenes and inactivation of tumor suppressors. As a result of which, cancer cells increase their glycolytic rate by consuming a large amount of glucose, and convert a majority of glucose to lactate even in the presence of oxygen known as the “Warburg effect”. Tumor cells like other cells are strictly dependent on energy for growth and survival; therefore, understanding energy metabolism will give us an idea to develop new effective anti-cancer therapies that target cancer energy production pathways. This review summarizes the roles of tumor suppressors and oncogenes and their products that provide metabolic advantages to cancer cells which in turn leads to the establishment of the “Warburg effect” and ultimately leads to cancer progression. Understanding cancer cell’s vulnerability will provide potential targets for its control.
Collapse
Affiliation(s)
- Casterland Marbaniang
- Department of Biochemistry, Cancer and Radiation Countermeasures Unit,North-Eastern Hill University, Shillong, Meghalaya, India.
| | | |
Collapse
|
218
|
Galicia-Vázquez G, Aloyz R. Ibrutinib Resistance Is Reduced by an Inhibitor of Fatty Acid Oxidation in Primary CLL Lymphocytes. Front Oncol 2018; 8:411. [PMID: 30319974 PMCID: PMC6168640 DOI: 10.3389/fonc.2018.00411] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/06/2018] [Indexed: 01/10/2023] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is an incurable disease, characterized by the accumulation of malignant B-lymphocytes in the blood stream (quiescent state) and homing tissues (where they can proliferate). In CLL, the targeting of B-cell receptor signaling through a Burton's tyrosine kinase inhibitor (ibrutinib) has rendered outstanding clinical results. However, complete remission is not guaranteed due to drug resistance or relapse, revealing the need for novel approaches for CLL treatment. The characterization of metabolic rewiring in proliferative cancer cells is already being applied for diagnostic and therapeutic purposes, but our knowledge of quiescent cell metabolism—relevant for CLL cells—is still fragmentary. Recently, we reported that glutamine metabolism in primary CLL cells bearing the del11q deletion is different from their del11q negative counterparts, making del11q cells especially sensitive to glutaminase and glycolysis inhibitors. In this work, we used our primary CLL lymphocyte bank and compounds interfering with central carbon metabolism to define metabolic traits associated with ibrutinib resistance. We observe a differential basal metabolite uptake linked to ibrutinib resistance, favoring glutamine uptake and catabolism. Upon ibrutinib treatment, the redox balance in ibrutinib resistant cells is shifted toward NADPH accumulation, without an increase in glutamine uptake, suggesting alternative metabolic rewiring such as the activation of fatty acid oxidation. In accordance to this idea, the curtailing of fatty acid oxidation by CPT1 inhibition (etomoxir) re-sensitized resistant cells to ibrutinib. Our results suggest that fatty acid oxidation could be explored as a target to overcome ibrutinib resistance.
Collapse
Affiliation(s)
- Gabriela Galicia-Vázquez
- Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Raquel Aloyz
- Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
219
|
Malik D, Kaul D. Human cellular mitochondrial remodelling is governed by miR-2909 RNomics. PLoS One 2018; 13:e0203614. [PMID: 30252847 PMCID: PMC6155498 DOI: 10.1371/journal.pone.0203614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/23/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND There exists a general recognition of the fact that mitochondrial remodelling as a result of aerobic glycolysis ensures human somatic cells to revert to a more primitive-form exhibiting stem-like phenotype. The present study is an attempt to demonstrate that miR-2909 RNomics within human peripheral blood mononuclear cells (PBMCs) has the inherent capacity to re-program these cells to exhibit mitochondrial remodelling paralleled by aerobic glycolysis together with intracellular lipid inclusions. Such re-programmed PBMCs also expressed genes having ability to sustain their de-differentiation state and survival. MATERIAL AND METHODS Human PBMCs were programed to ectopically express miR-2909. Expression levels of genes including glucose transporter-1 (Glut-1), hexokinase (HK), hypoxia inducia factor-1 (HIF-1α), c-Myc, p53,mechanistic target of rapamycin complex (mTORC1), polycombcomplex protein (Bmi-1), Notch,Nanog,Tie-2, Oct-4,CD59, p53, CD34, B-cell lymphoma-2 (Bcl2),sterol regulatory element-binding protein2 (SREBP2), peroxisome proliferator-activated receptor gamma (PPARγ) nuclear respiratory factor 1 (NRF1), mitochondrial transcription factor A (Tfam), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) within miR-2909 expression vector transfected human PBMCs as well as PBMCs transfected with control vector containing scrambled sequence after 48h post-transfection using RT-qPCR and cellular ultrastructural features induced by miR-2909 ectopic expression were observed using transmission electron microscopy and morphometric analysis of an electron micrograph. RESULTS Ectopic expression of miR-2909 within human PBMCs resulted in their reprogramming into stem-like phenotype indicated by mitochondrial globular shaped coupled with cristae-poor morphology. Nuclear to cytoplasmic ratio (N/C), quantification of ATP levels, GSSG/GSH ratio, mitochondrial cytochrome c oxidase activity, secreted lactate concentrations, activity of antioxidant enzymes, levels of esterified cholesterol and triglycerides and flow-cytometric detection of apoptosis confirmed the compromised nature of mitochondrial function induced by ectopic miR-2909 expression in human PBMCs. CONCLUSION Based upon these results we propose that AATF gene-encoded miR-2909 may act as an epigenetic switch for cellular aerobic-glycolysis to ensure de-differentiation.
Collapse
Affiliation(s)
- Deepti Malik
- Molecular Biology Unit, Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh (India)
| | - Deepak Kaul
- Molecular Biology Unit, Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh (India)
| |
Collapse
|
220
|
Chen H, Chen F, Liu N, Wang X, Gou S. Chemically induced degradation of CK2 by proteolysis targeting chimeras based on a ubiquitin-proteasome pathway. Bioorg Chem 2018; 81:536-544. [PMID: 30245235 DOI: 10.1016/j.bioorg.2018.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
Abstract
As a ubiquitous, highly pleiotropic and constitutively active serine/threonine protein kinase, casein kinase 2 (CK2) is closely associated with tumorigenesis by its overexpression in cancer cells. Here we report several proteolysis targeting chimeras (PROTACs) via "click reaction" to connect a CK2 inhibitor (CX-4945) and pomalidomide for degradation of CK2 protein. Among them, compound 2 degraded CK2 in a dose and time-dependent manner, and kept CK2 at a low basal level by recruiting ubiquitin-proteasome system. The degradation of CK2 resulted in the reduced phosphorylation of Akt and the up-regulation of p53. As a CK2 protein degrader, 2 showed the analogous cytotoxicity to CX-4945 but with a quite different mechanism of action from the CK2 inhibitor, hinting that degradation of CK2 proteins by PROTACs is a potential way for cancer treatments.
Collapse
Affiliation(s)
- Hong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Feihong Chen
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Nannan Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
221
|
p53 in AgRP neurons is required for protection against diet-induced obesity via JNK1. Nat Commun 2018; 9:3432. [PMID: 30143607 PMCID: PMC6109113 DOI: 10.1038/s41467-018-05711-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/19/2018] [Indexed: 12/13/2022] Open
Abstract
p53 is a well-known tumor suppressor that has emerged as an important player in energy balance. However, its metabolic role in the hypothalamus remains unknown. Herein, we show that mice lacking p53 in agouti-related peptide (AgRP), but not proopiomelanocortin (POMC) or steroidogenic factor-1 (SF1) neurons, are more prone to develop diet-induced obesity and show reduced brown adipose tissue (BAT) thermogenic activity. AgRP-specific ablation of p53 resulted in increased hypothalamic c-Jun N-terminal kinase (JNK) activity before the mice developed obesity, and central inhibition of JNK reversed the obese phenotype of these mice. The overexpression of p53 in the ARC or specifically in AgRP neurons of obese mice decreased body weight and stimulated BAT thermogenesis, resulting in body weight loss. Finally, p53 in AgRP neurons regulates the ghrelin-induced food intake and body weight. Overall, our findings provide evidence that p53 in AgRP neurons is required for normal adaptations against diet-induced obesity. Emerging studies suggest that p53 is an important regulator of energy metabolism, yet there is little known about the metabolic function of this tumor suppressor in the hypothalamus. Here, authors illustrate that p53, specifically in AgRP neurons, is required for adaptation to diet-induced obesity.
Collapse
|
222
|
Barnoud T, Budina-Kolomets A, Basu S, Leu JIJ, Good M, Kung CP, Liu J, Liu Q, Villanueva J, Zhang R, George DL, Murphy ME. Tailoring Chemotherapy for the African-Centric S47 Variant of TP53. Cancer Res 2018; 78:5694-5705. [PMID: 30115697 DOI: 10.1158/0008-5472.can-18-1327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023]
Abstract
The tumor suppressor TP53 is the most frequently mutated gene in human cancer and serves to restrict tumor initiation and progression. Single-nucleotide polymorphisms (SNP) in TP53 and p53 pathway genes can have a marked impact on p53 tumor suppressor function, and some have been associated with increased cancer risk and impaired response to therapy. Approximately 6% of Africans and 1% of African Americans express a p53 allele with a serine instead of proline at position 47 (Pro47Ser). This SNP impairs p53-mediated apoptosis in response to radiation and genotoxic agents and is associated with increased cancer risk in humans and in a mouse model. In this study, we compared the ability of wild-type (WT) and S47 p53 to suppress tumor development and respond to therapy. Our goal was to find therapeutic compounds that are more, not less, efficacious in S47 tumors. We identified the superior efficacy of two agents, cisplatin and BET inhibitors, on S47 tumors compared with WT. Cisplatin caused dramatic decreases in the progression of S47 tumors by activating the p53/PIN1 axis to drive the mitochondrial cell death program. These findings serve as important proof of principle that chemotherapy can be tailored to p53 genotype.Significance: A rare African-derived radioresistant p53 SNP provides proof of principle that chemotherapy can be tailored to TP53 genotype. Cancer Res; 78(19); 5694-705. ©2018 AACR.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Anna Budina-Kolomets
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Che-Pei Kung
- ICCE Institute and Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Jingjing Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jessie Villanueva
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Donna L George
- Department of Genetics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
223
|
Muir A, Danai LV, Vander Heiden MG. Microenvironmental regulation of cancer cell metabolism: implications for experimental design and translational studies. Dis Model Mech 2018; 11:dmm035758. [PMID: 30104199 PMCID: PMC6124553 DOI: 10.1242/dmm.035758] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancers have an altered metabolism, and there is interest in understanding precisely how oncogenic transformation alters cellular metabolism and how these metabolic alterations can translate into therapeutic opportunities. Researchers are developing increasingly powerful experimental techniques to study cellular metabolism, and these techniques have allowed for the analysis of cancer cell metabolism, both in tumors and in ex vivo cancer models. These analyses show that, while factors intrinsic to cancer cells such as oncogenic mutations, alter cellular metabolism, cell-extrinsic microenvironmental factors also substantially contribute to the metabolic phenotype of cancer cells. These findings highlight that microenvironmental factors within the tumor, such as nutrient availability, physical properties of the extracellular matrix, and interactions with stromal cells, can influence the metabolic phenotype of cancer cells and might ultimately dictate the response to metabolically targeted therapies. In an effort to better understand and target cancer metabolism, this Review focuses on the experimental evidence that microenvironmental factors regulate tumor metabolism, and on the implications of these findings for choosing appropriate model systems and experimental approaches.
Collapse
Affiliation(s)
- Alexander Muir
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura V Danai
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Dana-Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
224
|
Pei Z, Deng S, Xie D, Lv M, Guo W, Liu D, Zheng Z, Long X. Protective role of fenofibrate in sepsis-induced acute kidney injury in BALB/c mice. RSC Adv 2018; 8:28510-28517. [PMID: 35542461 PMCID: PMC9083917 DOI: 10.1039/c8ra00488a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/04/2018] [Indexed: 01/12/2023] Open
Abstract
Acute kidney injury (AKI) is a severe complication of sepsis, which largely contributes to the associated high mortality rate. Fenofibrate, a peroxisome proliferator activated receptor α (PPARα) agonist, has received considerable attention because of its effects related to renal damage-related energy metabolism and inflammation. The present study investigated the effects of fenofibrate on sepsis-associated AKI in BALB/c mice subjected to caecal ligation and puncture (CLP). Eight-week-old male BALB/c mice were divided into four groups: control group, fenofibrate group, caecal ligation and puncture (CLP) group, and fenofibrate + CLP group. CLP was performed after mice were gavaged with fenofibrate for 2 weeks. After 48 hours, we measured the histopathological alterations of the kidney tissue and plasma levels of serum creatinine (CRE), neutrophil gelatinase-associated lipocalin (NGAL), reactive oxygen species (ROS), ATP, and ADP. We evaluated PPARα and P53 protein levels as well as interleukin (IL)-1β, IL-6, and tumour necrosis factor-α mRNA levels. Our results showed that administering fenofibrate significantly reduced kidney histological alterations caused by CLP. Fenofibrate inhibited the plasma levels of ROS, CRE, NGAL, and increased the ATP/ADP ratio. Fenofibrate significantly inhibited elevations in P53, IL-1β, IL-6, and tumour necrosis factor-α expression. The results suggest that fenofibrate administration effectively modulates energy metabolism and may be a novel approach to treat sepsis-induced renal damage.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University No. 6 Jiefang Street Dalian China
| | - Shuling Deng
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University No. 6 Jiefang Street Dalian China +86-0411-62893373 +86-0411-62893373
| | - Dengmei Xie
- Department of Clinical Pharmacy, Affiliated Zhongshan Hospital of Dalian University No. 6 Jiefang Street Dalian China
| | - Mingyi Lv
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University No. 6 Jiefang Street Dalian China +86-0411-62893373 +86-0411-62893373
| | - Wenyan Guo
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University No. 6 Jiefang Street Dalian China +86-0411-62893373 +86-0411-62893373
| | - Duping Liu
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University No. 6 Jiefang Street Dalian China +86-0411-62893373 +86-0411-62893373
| | - Zhenzhen Zheng
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University No. 6 Jiefang Street Dalian China +86-0411-62893373 +86-0411-62893373
| | - Xiaofeng Long
- Department of Intensive Care Units, Affiliated Zhongshan Hospital of Dalian University No. 6 Jiefang Street Dalian China +86-0411-62893373 +86-0411-62893373
| |
Collapse
|
225
|
Hyttinen JMT, Viiri J, Kaarniranta K, Błasiak J. Mitochondrial quality control in AMD: does mitophagy play a pivotal role? Cell Mol Life Sci 2018; 75:2991-3008. [PMID: 29777261 PMCID: PMC11105454 DOI: 10.1007/s00018-018-2843-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Accepted: 05/16/2018] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is the predominant cause of visual loss in old people in the developed world, whose incidence is increasing. This disease is caused by the decrease in macular function, due to the degeneration of retinal pigment epithelium (RPE) cells. The aged retina is characterised by increased levels of reactive oxygen species (ROS), impaired autophagy, and DNA damage that are linked to AMD pathogenesis. Mitophagy, a mitochondria-specific type of autophagy, is an essential part of mitochondrial quality control, the collective mechanism responsible for this organelle's homeostasis. The abundance of ROS, DNA damage, and the excessive energy consumption in the ageing retina all contribute to the degeneration of RPE cells and their mitochondria. We discuss the role of mitophagy in the cell and argue that its impairment may play a role in AMD pathogenesis. Thus, mitophagy as a potential therapeutic target in AMD and other degenerative diseases is as well explored.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Johanna Viiri
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| |
Collapse
|
226
|
p53-inducible DPYSL4 associates with mitochondrial supercomplexes and regulates energy metabolism in adipocytes and cancer cells. Proc Natl Acad Sci U S A 2018; 115:8370-8375. [PMID: 30061407 PMCID: PMC6099896 DOI: 10.1073/pnas.1804243115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tumor suppressor p53 regulates multiple cellular functions, including energy metabolism. Metabolic deregulation is implicated in the pathogenesis of some cancers and in metabolic disorders and may result from the inactivation of p53 functions. Using RNA sequencing and ChIP sequencing of cancer cells and preadipocytes, we demonstrate that p53 modulates several metabolic processes via the transactivation of energy metabolism genes including dihydropyrimidinase-like 4 (DPYSL4). DPYSL4 is a member of the collapsin response mediator protein family, which is involved in cancer invasion and progression. Intriguingly, DPYSL4 overexpression in cancer cells and preadipocytes up-regulated ATP production and oxygen consumption, while DPYSL4 knockdown using siRNA or CRISPR/Cas9 down-regulated energy production. Furthermore, DPYSL4 was associated with mitochondrial supercomplexes, and deletion of its dihydropyrimidinase-like domain abolished its association and its ability to stimulate ATP production and suppress the cancer cell invasion. Mouse-xenograft and lung-metastasis models indicated that DPYSL4 expression compromised tumor growth and metastasis in vivo. Consistently, database analyses demonstrated that low DPYSL4 expression was significantly associated with poor survival of breast and ovarian cancers in accordance with its reduced expression in certain types of cancer tissues. Moreover, immunohistochemical analysis using the adipose tissue of obese patients revealed that DPYSL4 expression was positively correlated with INFg and body mass index in accordance with p53 activation. Together, these results suggest that DPYSL4 plays a key role in the tumor-suppressor function of p53 by regulating oxidative phosphorylation and the cellular energy supply via its association with mitochondrial supercomplexes, possibly linking to the pathophysiology of both cancer and obesity.
Collapse
|
227
|
Kasomva K, Sen A, Paulraj MG, Sailo S, Raphael V, Puro KU, Assumi SR, Ignacimuthu S. Roles of microRNA in prostate cancer cell metabolism. Int J Biochem Cell Biol 2018; 102:109-116. [PMID: 30010013 DOI: 10.1016/j.biocel.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 02/08/2023]
Abstract
MicroRNAs are non-coding RNA which functions as regulators of genes expression. MicroRNAs have shown their biological functions in cell proliferation, cell cycle, cell metabolism, apoptosis, invasion and metastasis. Cancer cells have the ability to grow in the absence of growth factors by increased metabolic activity. MicroRNAs regulate cell metabolic processes by targeting the key enzymes or transporters and change the metabolic activities by interfering with oncogenes/tumor suppressors, hypoxia, signalling pathways and cell adhesion. This review mainly explains the roles of microRNAs in prostate cancer cell metabolism, such as glucose uptake, glycolysis and lactate secretion, lipid metabolism and interaction with signalling pathways. The relation of microRNAs with hypoxia and cell adhesion in cell metabolism is also highlighted. Therefore, miRNAs help in regulating the metabolism of survived tumor cells, understanding such miRNA-mediated interaction could lead to new avenues in therapeutic application to treat PCa.
Collapse
Affiliation(s)
- Khanmi Kasomva
- Biotechnology & Molecular Biology Unit, Entomology Research Institute, Loyola College, Chennai, 600 034, India; Division of Animal health, ICAR Research Complex for NEH Region, Umiam, 793 103, Meghalaya, India; Department of Urology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, 793 018, Meghalaya, India
| | - Arnab Sen
- Division of Animal health, ICAR Research Complex for NEH Region, Umiam, 793 103, Meghalaya, India
| | - Michael Gabriel Paulraj
- Biotechnology & Molecular Biology Unit, Entomology Research Institute, Loyola College, Chennai, 600 034, India
| | - Stephen Sailo
- Department of Urology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, 793 018, Meghalaya, India
| | - Vandana Raphael
- Department of Pathology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, 793 018, Meghalaya, India
| | - Kekungu-U Puro
- Division of Animal health, ICAR Research Complex for NEH Region, Umiam, 793 103, Meghalaya, India
| | | | - Savarimuthu Ignacimuthu
- Biotechnology & Molecular Biology Unit, Entomology Research Institute, Loyola College, Chennai, 600 034, India; International Scientific Partnership Program, King Saud University, Saudi Arabia.
| |
Collapse
|
228
|
Abstract
SIGNIFICANCE The p53 family of transcription factors, including p53, p63, and p73, plays key roles in both biological and pathological processes, including cancer and neural development. Recent Advances: In recent years, a growing body of evidence has indicated that the entire p53 family is involved in the regulation of the central nervous system (CNS) functions as well as in the pathogenesis of several neurological disorders. Mechanistically, the p53 proteins control neuronal cell fate, terminal differentiation, and survival, via a complex interplay among the family members. CRITICAL ISSUES In this article, we discuss the involvement of the p53 family in neurobiology and in pathological conditions affecting the CNS, including neuroinflammation. FUTURE DIRECTIONS Understanding the molecular mechanism(s) underlying the function of the p53 family could improve our general knowledge of the pathogenesis of brain disorders and potentially pave the road for new therapeutic intervention. Antioxid. Redox Signal. 29, 1-14.
Collapse
Affiliation(s)
- Massimiliano Agostini
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Gerry Melino
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy .,2 Medical Research Council, Toxicology Unit, Leicester University , Leicester, United Kingdom
| | - Francesca Bernassola
- 1 Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
229
|
Uehara I, Tanaka N. Role of p53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression. Cancers (Basel) 2018; 10:cancers10070219. [PMID: 29954119 PMCID: PMC6071291 DOI: 10.3390/cancers10070219] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
p53 has functional roles in tumor suppression as a guardian of the genome, surveillant of oncogenic cell transformation, and as recently demonstrated, a regulator of intracellular metabolism. Accumulating evidence has shown that the tumor microenvironment, accompanied by inflammation and tissue remodeling, is important for cancer proliferation, metastasis, and maintenance of cancer stem cells (CSCs) that self-renew and generate the diverse cells comprising the tumor. Furthermore, p53 has been demonstrated to inhibit inflammatory responses, and functional loss of p53 causes excessive inflammatory reactions. Moreover, the generation and maintenance of CSCs are supported by the inflammatory tumor microenvironment. Considering that the functions of p53 inhibit reprogramming of somatic cells to stem cells, p53 may have a major role in the inflammatory microenvironment as a tumor suppressor. Here, we review our current understanding of the mechanisms underlying the roles of p53 in regulation of the inflammatory microenvironment, tumor microenvironment, and tumor suppression.
Collapse
Affiliation(s)
- Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| |
Collapse
|
230
|
Durán-Acevedo CM, Jaimes-Mogollón AL, Gualdrón-Guerrero OE, Welearegay TG, Martinez-Marín JD, Caceres-Tarazona JM, Sánchez-Acevedo ZC, Beleño-Saenz KDJ, Cindemir U, Österlund L, Ionescu R. Exhaled breath analysis for gastric cancer diagnosis in Colombian patients. Oncotarget 2018; 9:28805-28817. [PMID: 29988892 PMCID: PMC6034740 DOI: 10.18632/oncotarget.25331] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/28/2018] [Indexed: 01/15/2023] Open
Abstract
We present here the first study that directly correlates gastric cancer (GC) with specific biomarkers in the exhaled breath composition on a South American population, which registers one of the highest global incidence rates of gastric affections. Moreover, we demonstrate a novel solid state sensor that predicts correct GC diagnosis with 97% accuracy. Alveolar breath samples of 30 volunteers (patients diagnosed with gastric cancer and a controls group formed of patients diagnosed with other gastric diseases) were collected and analyzed by gas-chromatography/mass-spectrometry (GC-MS) and with an innovative chemical gas sensor based on gold nanoparticles (AuNP) functionalized with octadecylamine ligands. Our GC-MS analyses identified 6 volatile organic compounds that showed statistically significant differences between the cancer patients and the controls group. These compounds were different from those identified in previous studied performed on other populations with high incidence rates of this malady, such as China (representative for Eastern Asia region) and Latvia (representative for Baltic States), attributable to lifestyle, alimentation and genetics differences. A classification model based on principal component analysis of our sensor data responses to the breath samples yielded 97% accuracy, 100% sensitivity and 93% specificity. Our results suggest a new and non-intrusive methodology for early diagnosis of gastric cancer that may be deployed in regions lacking well-developed health care systems as a prediagnosis test for selecting the patients that should undergo deeper investigations (e.g., endoscopy and biopsy).
Collapse
Affiliation(s)
- Cristhian Manuel Durán-Acevedo
- Multisensor System and Pattern Recognition Research Group (GISM), Electronic Engineering Program, Universidad de Pamplona, Pamplona, Colombia
| | - Aylen Lisset Jaimes-Mogollón
- Multisensor System and Pattern Recognition Research Group (GISM), Electronic Engineering Program, Universidad de Pamplona, Pamplona, Colombia
| | - Oscar Eduardo Gualdrón-Guerrero
- Multisensor System and Pattern Recognition Research Group (GISM), Electronic Engineering Program, Universidad de Pamplona, Pamplona, Colombia
| | | | - Julián Davíd Martinez-Marín
- GASTROSUR S.A., Universidad Nacional de Colombia, Facultad de Medicina, Bogotá, Colombia.,Hospital Universitario la Samaritana, Bogotá, Colombia
| | - Juan Martín Caceres-Tarazona
- Multisensor System and Pattern Recognition Research Group (GISM), Electronic Engineering Program, Universidad de Pamplona, Pamplona, Colombia
| | - Zayda Constanza Sánchez-Acevedo
- Multisensor System and Pattern Recognition Research Group (GISM), Electronic Engineering Program, Universidad de Pamplona, Pamplona, Colombia
| | | | - Umut Cindemir
- Molecular Fingerprint Sweden AB, Uppsala, Sweden.,Department of Solid State Physics, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Österlund
- Molecular Fingerprint Sweden AB, Uppsala, Sweden.,Department of Solid State Physics, The Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Radu Ionescu
- Department of Electronics, Electrical and Automatic Engineering, Rovira i Virgili University, Tarragona, Spain
| |
Collapse
|
231
|
Moulder DE, Hatoum D, Tay E, Lin Y, McGowan EM. The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer? Cancers (Basel) 2018; 10:cancers10060189. [PMID: 29890631 PMCID: PMC6024909 DOI: 10.3390/cancers10060189] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer research has been heavily geared towards genomic events in the development and progression of cancer. In contrast, metabolic regulation, such as aberrant metabolism in cancer, is poorly understood. Alteration in cellular metabolism was once regarded simply as a consequence of cancer rather than as playing a primary role in cancer promotion and maintenance. Resurgence of cancer metabolism research has identified critical metabolic reprogramming events within biosynthetic and bioenergetic pathways needed to fulfill the requirements of cancer cell growth and maintenance. The tumor suppressor protein p53 is emerging as a key regulator of metabolic processes and metabolic reprogramming in cancer cells—balancing the pendulum between cell death and survival. This review provides an overview of the classical and emerging non-classical tumor suppressor roles of p53 in regulating mitochondrial dynamics: mitochondrial engagement in cell death processes in the prevention of cancer. On the other hand, we discuss p53 as a key metabolic switch in cellular function and survival. The focus is then on the conceivable roles of p53 in breast cancer metabolism. Understanding the metabolic functions of p53 within breast cancer metabolism will, in due course, reveal critical metabolic hotspots that cancers advantageously re-engineer for sustenance. Illustration of these events will pave the way for finding novel therapeutics that target cancer metabolism and serve to overcome the breast cancer burden.
Collapse
Affiliation(s)
- David E Moulder
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Enoch Tay
- Viral Hepatitis Pathogenesis Group, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia.
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Eileen M McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| |
Collapse
|
232
|
Liao PH, Yang WK, Yang CH, Lin CH, Hwang CC, Chen PJ. Illicit drug ketamine induces adverse effects from behavioral alterations and oxidative stress to p53-regulated apoptosis in medaka fish under environmentally relevant exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:1062-1071. [PMID: 29146197 DOI: 10.1016/j.envpol.2017.11.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
With increasing problems of drug abuse worldwide, aquatic ecosystems are contaminated by human pharmaceuticals from the discharge of hospital or municipal effluent. However, ecotoxicity data and related toxic mechanism for neuroactive controlled or illicit drugs are still lacking, so assessing the associated hazardous risk is difficult. This study aims to investigate the behavioral changes, oxidative stress, gene expression and neurotoxic or apoptosis effect(s) in larvae of medaka fish (Oryzias latipes) with environmentally relevant exposures of ketamine (KET) solutions for 1-14 days. KET exposure at an environmentally relevant concentration (0.004 μM) to 40 μM conferred specific patterns in larval swimming behavior during 24 h. At 14 days, such exposure induced dose- and/or time-dependent alteration on reactive oxygen species induction, the activity of antioxidants catalase and superoxide dismutase, glutathione S-transferase and malondialdehyde contents in fish bodies. KET-induced oxidative stress disrupted the expression of acetylcholinesterase and p53-regulated apoptosis pathways and increased caspase expression in medaka larvae. The toxic responses of medaka larvae, in terms of chemical effects, were qualitatively analogous to those of zebrafish and mammals. Our results implicate a toxicological impact of waterborne KET on fish development and human health, for potential ecological risks of directly releasing neuroactive drugs-containing wastewater into the aquatic environment.
Collapse
Affiliation(s)
- Pei-Han Liao
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wen-Kai Yang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsin Yang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chun-Hon Lin
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chin-Chu Hwang
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
233
|
McGowan EM, Lin Y, Hatoum D. Good Guy or Bad Guy? The Duality of Wild-Type p53 in Hormone-Dependent Breast Cancer Origin, Treatment, and Recurrence. Cancers (Basel) 2018; 10:cancers10060172. [PMID: 29857525 PMCID: PMC6025368 DOI: 10.3390/cancers10060172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
"Lactation is at one point perilously near becoming a cancerous process if it is at all arrested", Beatson, 1896. Most breast cancers arise from the milk-producing cells that are characterized by aberrant cellular, molecular, and epigenetic translation. By understanding the underlying molecular disruptions leading to the origin of cancer, we might be able to design novel strategies for more efficacious treatments or, ambitiously, divert the cancerous process. It is an established reality that full-term pregnancy in a young woman provides a lifetime reduction in breast cancer risk, whereas delay in full-term pregnancy increases short-term breast cancer risk and the probability of latent breast cancer development. Hormonal activation of the p53 protein (encode by the TP53 gene) in the mammary gland at a critical time in pregnancy has been identified as one of the most important determinants of whether the mammary gland develops latent breast cancer. This review discusses what is known about the protective influence of female hormones in young parous women, with a specific focus on the opportune role of wild-type p53 reprogramming in mammary cell differentiation. The importance of p53 as a protector or perpetrator in hormone-dependent breast cancer, resistance to treatment, and recurrence is also explored.
Collapse
Affiliation(s)
- Eileen M McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
234
|
Charni-Natan M, Solomon H, Molchadsky A, Jacob-Berger A, Goldfinger N, Rotter V. Various stress stimuli rewire the profile of liver secretome in a p53-dependent manner. Cell Death Dis 2018; 9:647. [PMID: 29844359 PMCID: PMC5974134 DOI: 10.1038/s41419-018-0697-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/25/2022]
Abstract
Liver is an important secretory organ that consistently manages various insults in order to retain whole-body homeostasis. Importantly, it was suggested that the tumor-suppressor p53 plays a role in a variety of liver physiological processes and thus it is being regarded as a systemic homeostasis regulator. Using high-throughput mass spectrometric analysis, we identified various p53-dependent liver secretome profiles. This allowed a global view on the role of p53 in maintaining the harmony of liver and whole-body homeostasis. We found that p53 altered the liver secretome differently under various conditions. Under physiological conditions, p53 controls factors that are related mainly to lipid metabolism and injury response. Upon exposure to various types of cancer therapy agents, the hepatic p53 is activated and induces the secretion of proteins related to additional pathways, such as hemostasis, immune response, and cell adhesion. Interestingly, we identified a possible relationship between p53-dependent liver functions and lung tumors. The latter modify differently liver secretome profile toward the secretion of proteins mainly related to cell migration and immune response. The notion that p53 may rewire the liver secretome profile suggests a new non-cell autonomous role of p53 that affect different liver functions and whole organism homeostasis.
Collapse
Affiliation(s)
- Meital Charni-Natan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Jacob-Berger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
235
|
Bi J, Wu S, Zhang W, Mischel PS. Targeting cancer's metabolic co-dependencies: A landscape shaped by genotype and tissue context. Biochim Biophys Acta Rev Cancer 2018; 1870:76-87. [PMID: 29775654 DOI: 10.1016/j.bbcan.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/13/2018] [Indexed: 12/25/2022]
Abstract
Tumors cells reprogram their metabolism to fuel rapid growth. The ability to trace nutrient fluxes in the context of specific alterations has provided new mechanistic insight into the process of oncogenic transformation. A broad array of complementary genetic, epigenetic, transcriptional and translational mechanisms has been identified, revealing a metabolic landscape of cancer. However, cancer metabolism is not a static or uniform process, including within a single tumor. Tumor cells adapt to changing environmental conditions, profoundly shaping the enzymatic dependencies of individual cells. The underlying molecular mechanisms of adaptation, and the specific interactions between tumor genotype, oncogenic signaling, and tissue/biochemical context, remain incompletely understood. In this review, we examine dynamic aspects of how metabolic dependencies develop in cancer, shaped both by genotype and biochemical environment, and review how these interlaced processes generate targetable metabolic vulnerabilities. This article is part of a Special Issue entitled: Cancer Metabolism edited by Dr. Chi Van Dang.
Collapse
Affiliation(s)
- Junfeng Bi
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sihan Wu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenjing Zhang
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
236
|
The Guardian of the Genome Revisited: p53 Downregulates Genes Required for Telomere Maintenance, DNA Repair, and Centromere Structure. Cancers (Basel) 2018; 10:cancers10050135. [PMID: 29734785 PMCID: PMC5977108 DOI: 10.3390/cancers10050135] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
The p53 protein has been extensively studied for its capacity to prevent proliferation of cells with a damaged genome. Surprisingly, however, our recent analysis of mice expressing a hyperactive mutant p53 that lacks the C-terminal domain revealed that increased p53 activity may alter genome maintenance. We showed that p53 downregulates genes essential for telomere metabolism, DNA repair, and centromere structure and that a sustained p53 activity leads to phenotypic traits associated with dyskeratosis congenita and Fanconi anemia. This downregulation is largely conserved in human cells, which suggests that our findings could be relevant to better understand processes involved in bone marrow failure as well as aging and tumor suppression.
Collapse
|
237
|
Liu P, Hsieh P, Lin H, Liu T, Wu H, Chen C, Chen Y. Grail is involved in adipocyte differentiation and diet-induced obesity. Cell Death Dis 2018; 9:525. [PMID: 29743578 PMCID: PMC5943410 DOI: 10.1038/s41419-018-0596-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 01/24/2023]
Abstract
Grail is a crucial regulator of various biological processes, including the development of T-cell anergy, antiviral innate immune response, and cancer. However, the role of Grail in adipogenesis and obesity remains unclear. Here, we demonstrated that Grail knockdown in vitro leads to a decrease in PPARγ expression, resulting in adipogenesis inhibition. However, Grail overexpression induced the same effects. Grail was shown to interact with PPARγ, targeting it for degradation and modulating its adipogenic activity. PPARγ expression was shown to be considerably reduced in Grail knockout (KO) mice fed normal diet or high-fat diet (HFD). The administration of both normal diet or HFD to Grail KO mice led to lower adipose mass and body weight than those in the wild-type mice. HFD-fed Grail KO mice had improved glucose and insulin tolerance. Taken together, our results indicate that Grail plays a pivotal role in adipogenesis and diet-induced obesity by regulating PPARγ activity.
Collapse
Affiliation(s)
- Peiyao Liu
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China
| | - Poshiuan Hsieh
- Department of Physiology & Biophysics, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China.,Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Huitsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Tejung Liu
- Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei, Taiwan, 114, Republic of China.,Department of Physical Medicine and Rehabilitation, School of Medicine, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China.,Department of Physical Medicine and Rehabilitation, Taoyuan Armed Force General Hospital, Taoyuan, Taiwan, 114, Republic of China
| | - Hsuehling Wu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Chengcheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China
| | - Yingchuan Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City, Taiwan, 114, Republic of China.
| |
Collapse
|
238
|
Han CY, Patten DA, Richardson RB, Harper ME, Tsang BK. Tumor metabolism regulating chemosensitivity in ovarian cancer. Genes Cancer 2018; 9:155-175. [PMID: 30603053 PMCID: PMC6305103 DOI: 10.18632/genesandcancer.176] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Elevated metabolism is a key hallmark of multiple cancers, serving to fulfill high anabolic demands. Ovarian cancer (OVCA) is the fifth leading cause of cancer deaths in women with a high mortality rate (45%). Chemoresistance is a major hurdle for OVCA treatment. Although substantial evidence suggests that metabolic reprogramming contributes to anti-apoptosis and the metastasis of multiple cancers, the link between tumor metabolism and chemoresistance in OVCA remains unknown. While clinical trials targeting metabolic reprogramming alone have been met with limited success, the synergistic effect of inhibiting tumor-specific metabolism with traditional chemotherapy warrants further examination, particularly in OVCA. This review summarizes the role of key glycolytic enzymes and other metabolic synthesis pathways in the progression of cancer and chemoresistance in OVCA. Within this context, mitochondrial dynamics (fission, fusion and cristae structure) are addressed regarding their roles in controlling metabolism and apoptosis, closely associated with chemosensitivity. The roles of multiple key oncogenes (Akt, HIF-1α) and tumor suppressors (p53, PTEN) in metabolic regulation are also described. Next, this review summarizes recent research of metabolism and future direction. Finally, we examine clinical drugs and inhibitors to target glycolytic metabolism, as well as the rationale for such strategies as potential therapeutics to overcome chemoresistant OVCA.
Collapse
Affiliation(s)
- Chae Young Han
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David A. Patten
- Canadian Nuclear Laboratories (CNL), Radiobiology and Health Branch, Chalk River Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Richard B. Richardson
- Canadian Nuclear Laboratories (CNL), Radiobiology and Health Branch, Chalk River Laboratories, Chalk River, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Benjamin K. Tsang
- Department of Obstetrics and Gynecology and Cellular and Molecular Medicine, University of Ottawa, and Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao, China
| |
Collapse
|
239
|
p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res 2018; 131:75-86. [DOI: 10.1016/j.phrs.2018.03.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022]
|
240
|
Biancur DE, Kimmelman AC. The plasticity of pancreatic cancer metabolism in tumor progression and therapeutic resistance. Biochim Biophys Acta Rev Cancer 2018; 1870:67-75. [PMID: 29702208 DOI: 10.1016/j.bbcan.2018.04.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive cancer that is highly refractory to the current standards of care. The difficulty in treating this disease is due to a number of different factors, including altered metabolism. In PDA, the metabolic rewiring favors anabolic reactions which supply the cancer cell with necessary cellular building blocks for unconstrained growth. Furthermore, PDA cells display high levels of basal autophagy and macropinocytosis. KRAS is the driving oncogene in PDA and many of the metabolic changes are downstream of its activation. Together, these unique pathways for nutrient utilization and acquisition result in metabolic plasticity enabling cells to rapidly adapt to nutrient and oxygen fluctuations. This remarkable adaptability has been implicated as a cause of the intense therapeutic resistance. In this review, we discuss metabolic pathways in PDA tumors and highlight how they contribute to the pathogenesis and treatment of the disease.
Collapse
Affiliation(s)
- Douglas E Biancur
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York 10016, NY, United States
| | - Alec C Kimmelman
- Perlmutter Cancer Center, Department of Radiation Oncology, NYU Medical School, New York 10016, NY, United States.
| |
Collapse
|
241
|
The Tumor Suppressor p53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Rep 2018; 20:1692-1704. [PMID: 28813679 DOI: 10.1016/j.celrep.2017.07.055] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/29/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis is a form of regulated cell death that may facilitate the selective elimination of tumor cells. The tumor suppressor p53 (TP53) has been demonstrated to promote ferroptosis via a transcription-dependent mechanism. Here, we show that TP53 limits erastin-induced ferroptosis by blocking dipeptidyl-peptidase-4 (DPP4) activity in a transcription-independent manner. Loss of TP53 prevents nuclear accumulation of DPP4 and thus facilitates plasma-membrane-associated DPP4-dependent lipid peroxidation, which finally results in ferroptosis. These findings reveal a direct molecular link between TP53 and DPP4 in the control of lipid metabolism and may provide a precision medicine strategy for the treatment of colorectal cancer by induction of ferroptosis.
Collapse
|
242
|
Cunha-Oliveira T, Ferreira LL, Coelho AR, Deus CM, Oliveira PJ. Doxorubicin triggers bioenergetic failure and p53 activation in mouse stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 2018; 348:1-13. [PMID: 29653124 DOI: 10.1016/j.taap.2018.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 01/28/2023]
Abstract
Doxorubicin (DOX) is a widely used anticancer drug that could be even more effective if its clinical dosage was not limited because of delayed cardiotoxicity. Beating stem cell-derived cardiomyocytes are a preferred in vitro model to further uncover the mechanisms of DOX-induced cardiotoxicity. Our objective was to use cultured induced-pluripotent stem cell(iPSC)-derived mouse cardiomyocytes (Cor.At) to investigate the effects of DOX on cell and mitochondrial metabolism, as well as on stress responses. Non-proliferating and beating Cor.At cells were treated with 0.5 or 1 μM DOX for 24 h, and morphological, functional and biochemical changes associated with mitochondrial bioenergetics, DNA-damage response and apoptosis were measured. Both DOX concentrations decreased ATP levels and SOD2 protein levels and induced p53-dependent caspase activation. However, differential effects were observed for the two DOX concentrations. The highest concentration induced a high degree of apoptosis, with increased nuclear apoptotic morphology, PARP-1 cleavage and decrease of some OXPHOS protein subunits. At the lowest concentration, DOX increased the expression of p53 target transcripts associated with mitochondria-dependent apoptosis and decreased transcripts related with DNA-damage response and glycolysis. Interestingly, cells treated with 0.5 μM DOX presented an increase in PDK4 transcript levels, accompanied by an increase in phospho-PDH and decreased PDH activity. This was accompanied by an apparent decrease in basal and maximal oxygen consumption rates (OCR) and in basal extracellular acidification rate (ECAR). Cells pre-treated with the PDK inhibitor dichloroacetate (DCA), with the aim of restoring PDH activity, partially recovered OCR and ECAR. The results suggest that the higher DOX concentration mainly induces p53-dependent apoptosis, whereas for the lower DOX concentration the cardiotoxic effects involve bioenergetic failure, unveiling PDH as a possible therapeutic target to decrease DOX cardiotoxicity.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal.
| | - Luciana L Ferreira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Ana Raquel Coelho
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Cláudia M Deus
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Institute for Interdisciplinary Research (I.I.I.), University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
243
|
Contreras EG, Sierralta J, Glavic A. p53 is required for brain growth but is dispensable for resistance to nutrient restriction during Drosophila larval development. PLoS One 2018; 13:e0194344. [PMID: 29621246 PMCID: PMC5886404 DOI: 10.1371/journal.pone.0194344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Animal growth is influenced by the genetic background and the environmental circumstances. How genes promote growth and coordinate adaptation to nutrient availability is still an open question. p53 is a transcription factor that commands the cellular response to different types of stresses. In adult Drosophila melanogaster, p53 regulates the metabolic adaptation to nutrient restriction that supports fly viability. Furthermore, the larval brain is protected from nutrient restriction in a phenomenon called 'brain sparing'. Therefore, we hypothesised that p53 may regulate brain growth and show a protective role over brain development under nutrient restriction. RESULTS Here, we studied the function of p53 during brain growth in normal conditions and in animals subjected to developmental nutrient restriction. We showed that p53 loss of function reduced animal growth and larval brain size. Endogenous p53 was expressed in larval neural stem cells, but its levels and activity were not affected by nutritional stress. Interestingly, p53 knockdown only in neural stem cells was sufficient to decrease larval brain growth. Finally, we showed that in p53 mutant larvae under nutrient restriction, the energy storage levels were not altered, and these larvae generated adults with brains of similar size than wild-type animals. CONCLUSIONS Using genetic approaches, we demonstrate that p53 is required for proper growth of the larval brain. This developmental role of p53 does not have an impact on animal resistance to nutritional stress since brain growth in p53 mutants under nutrient restriction is similar to control animals.
Collapse
Affiliation(s)
- Esteban G. Contreras
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia Santiago-Chile
- Center for Genome Regulation, Department of Biology, Faculty of Science, Universidad of Chile, Las Palmeras Nuñoa, Santiago-Chile
| | - Jimena Sierralta
- Biomedical Neuroscience Institute and Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Independencia Santiago-Chile
- * E-mail: (AG); (JS)
| | - Alvaro Glavic
- Center for Genome Regulation, Department of Biology, Faculty of Science, Universidad of Chile, Las Palmeras Nuñoa, Santiago-Chile
- * E-mail: (AG); (JS)
| |
Collapse
|
244
|
Padmanabhan A, Candelaria N, Wong KK, Nikolai BC, Lonard DM, O'Malley BW, Richards JS. USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells. Nat Commun 2018; 9:1270. [PMID: 29593334 PMCID: PMC5871815 DOI: 10.1038/s41467-018-03599-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/27/2018] [Indexed: 01/10/2023] Open
Abstract
Gain-of-function p53 mutants such as p53-R175H form stable aggregates that accumulate in cells and play important roles in cancer progression. Selective degradation of gain-of-function p53 mutants has emerged as a highly attractive therapeutic strategy to target cancer cells harboring specific p53 mutations. We identified a small molecule called MCB-613 to cause rapid ubiquitination, nuclear export, and degradation of p53-R175H through a lysosome-mediated pathway, leading to catastrophic cancer cell death. In contrast to its effect on the p53-R175H mutant, MCB-613 causes slight stabilization of p53-WT and has weaker effects on other p53 gain-of-function mutants. Using state-of-the-art genetic and chemical approaches, we identified the deubiquitinase USP15 as the mediator of MCB-613's effect on p53-R175H, and established USP15 as a selective upstream regulator of p53-R175H in ovarian cancer cells. These results confirm that distinct pathways regulate the turnover of p53-WT and the different p53 mutants and open new opportunities to selectively target them.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Nicholes Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kwong-Kwok Wong
- Department of Gynecologic Oncology and Reproductive Medicine - Research, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bryan C Nikolai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
245
|
Mrakovcic M, Fröhlich LF. p53-Mediated Molecular Control of Autophagy in Tumor Cells. Biomolecules 2018; 8:E14. [PMID: 29561758 PMCID: PMC6022997 DOI: 10.3390/biom8020014] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022] Open
Abstract
Autophagy is an indispensable mechanism of the eukaryotic cell, facilitating the removal and renewal of cellular components and thereby balancing the cell's energy consumption and homeostasis. Deregulation of autophagy is now regarded as one of the characteristic key features contributing to the development of tumors. In recent years, the suppression of autophagy in combination with chemotherapeutic treatment has been approached as a novel therapy in cancer treatment. However, depending on the type of cancer and context, interference with the autophagic machinery can either promote or disrupt tumorigenesis. Therefore, disclosure of the major signaling pathways that regulate autophagy and control tumorigenesis is crucial. To date, several tumor suppressor proteins and oncogenes have emerged as eminent regulators of autophagy whose depletion or mutation favor tumor formation. The mammalian cell "janitor" p53 belongs to one of these tumor suppressors that are most commonly mutated in human tumors. Experimental evidence over the last decade convincingly reports that p53 can act as either an activator or an inhibitor of autophagy depending on its subcellular localization and its mode of action. This finding gains particular significance as p53 deficiency or mutant variants of p53 that accumulate in the cytoplasm of tumor cells enable activation of autophagy. Accordingly, we recently identified p53 as a molecular hub that regulates autophagy and apoptosis in histone deacetylase inhibitor-treated uterine sarcoma cells. In light of this novel experimental evidence, in this review, we focus on p53 signaling as a mediator of the autophagic pathway in tumor cells.
Collapse
Affiliation(s)
- Maria Mrakovcic
- AG VABOS, Department of Cranio-Maxillofacial Surgery, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| | - Leopold F Fröhlich
- AG VABOS, Department of Cranio-Maxillofacial Surgery, University of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.
| |
Collapse
|
246
|
Harami-Papp H, Pongor LS, Munkácsy G, Horváth G, Nagy ÁM, Ambrus A, Hauser P, Szabó A, Tretter L, Győrffy B. TP53 mutation hits energy metabolism and increases glycolysis in breast cancer. Oncotarget 2018; 7:67183-67195. [PMID: 27582538 PMCID: PMC5341867 DOI: 10.18632/oncotarget.11594] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/13/2016] [Indexed: 12/22/2022] Open
Abstract
Promising new hallmarks of cancer is alteration of energy metabolism that involves molecular mechanisms shifting cancer cells to aerobe glycolysis. Our goal was to evaluate the correlation between mutation in the commonly mutated tumor suppressor gene TP53 and metabolism. We established a database comprising mutation and RNA-seq expression data of the TCGA repository and performed receiver operating characteristics (ROC) analysis to compare expression of each gene between TP53 mutated and wild type samples. All together 762 breast cancer samples were evaluated of which 215 had TP53 mutation. Top up-regulated metabolic genes include glycolytic enzymes (e.g. HK3, GPI, GAPDH, PGK1, ENO1), glycolysis regulator (PDK1) and pentose phosphate pathway enzymes (PGD, TKT, RPIA). Gluconeogenesis enzymes (G6PC3, FBP1) were down-regulated. Oxygen consumption and extracellular acidification rates were measured in TP53 wild type and mutant breast cell lines with a microfluorimetric analyzer. Applying metabolic inhibitors in the presence and absence of D-glucose and L-glutamine in cell culture experiments resulted in higher glycolytic and mitochondrial activity in TP53 mutant breast cancer cell lines. In summary, TP53 mutation influences energy metabolism at multiple levels. Our results provide evidence for the synergistic activation of multiple hallmarks linking to these the mutation status of a key driver gene.
Collapse
Affiliation(s)
| | - Lőrinc S Pongor
- MTA TTK Lendület Cancer Biomarker Research Group, H-1117, Budapest, Hungary.,Semmelweis University, 2nd Department of Pediatrics, H-1094, Budapest, Hungary
| | - Gyöngyi Munkácsy
- MTA TTK Lendület Cancer Biomarker Research Group, H-1117, Budapest, Hungary
| | - Gergő Horváth
- Semmelweis University, Department of Medical Biochemistry, H-1094, Budapest, Hungary
| | - Ádám M Nagy
- Semmelweis University, Department of Medical Biochemistry, H-1094, Budapest, Hungary
| | - Attila Ambrus
- Semmelweis University, Department of Medical Biochemistry, H-1094, Budapest, Hungary
| | - Péter Hauser
- Semmelweis University, 2nd Department of Pediatrics, H-1094, Budapest, Hungary
| | - András Szabó
- Semmelweis University, 2nd Department of Pediatrics, H-1094, Budapest, Hungary
| | - László Tretter
- Semmelweis University, Department of Medical Biochemistry, H-1094, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, H-1117, Budapest, Hungary
| |
Collapse
|
247
|
Suppression of gain-of-function mutant p53 with metabolic inhibitors reduces tumor growth in vivo. Oncotarget 2018; 7:77664-77682. [PMID: 27765910 PMCID: PMC5363612 DOI: 10.18632/oncotarget.12758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
Mutation of p53 occasionally results in a gain of function, which promotes tumor growth. We asked whether destabilizing the gain-of-function protein would kill tumor cells. Downregulation of the gene reduced cell proliferation in p53-mutant cells, but not in p53-null cells, indicating that the former depended on the mutant protein for survival. Moreover, phenformin and 2-deoxyglucose suppressed cell growth and simultaneously destabilized mutant p53. The AMPK pathway, MAPK pathway, chaperone proteins and ubiquitination all contributed to this process. Interestingly, phenformin and 2-deoxyglucose also reduced tumor growth in syngeneic mice harboring the p53 mutation. Thus, destabilizing mutant p53 protein in order to kill cells exhibiting "oncogene addiction" could be a promising strategy for combatting p53 mutant tumors.
Collapse
|
248
|
Pudova EA, Kudryavtseva AV, Fedorova MS, Zaretsky AR, Shcherbo DS, Lukyanova EN, Popov AY, Sadritdinova AF, Abramov IS, Kharitonov SL, Krasnov GS, Klimina KM, Koroban NV, Volchenko NN, Nyushko KM, Melnikova NV, Chernichenko MA, Sidorov DV, Alekseev BY, Kiseleva MV, Kaprin AD, Dmitriev AA, Snezhkina AV. HK3 overexpression associated with epithelial-mesenchymal transition in colorectal cancer. BMC Genomics 2018; 19:113. [PMID: 29504907 PMCID: PMC5836836 DOI: 10.1186/s12864-018-4477-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common cancer worldwide. The main cause of death in CRC includes tumor progression and metastasis. At molecular level, these processes may be triggered by epithelial-mesenchymal transition (EMT) and necessitates specific alterations in cell metabolism. Although several EMT-related metabolic changes have been described in CRC, the mechanism is still poorly understood. RESULTS Using CrossHub software, we analyzed RNA-Seq expression profile data of CRC derived from The Cancer Genome Atlas (TCGA) project. Correlation analysis between the change in the expression of genes involved in glycolysis and EMT was performed. We obtained the set of genes with significant correlation coefficients, which included 21 EMT-related genes and a single glycolytic gene, HK3. The mRNA level of these genes was measured in 78 paired colorectal cancer samples by quantitative polymerase chain reaction (qPCR). Upregulation of HK3 and deregulation of 11 genes (COL1A1, TWIST1, NFATC1, GLIPR2, SFPR1, FLNA, GREM1, SFRP2, ZEB2, SPP1, and RARRES1) involved in EMT were found. The results of correlation study showed that the expression of HK3 demonstrated a strong correlation with 7 of the 21 examined genes (ZEB2, GREM1, TGFB3, TGFB1, SNAI2, TWIST1, and COL1A1) in CRC. CONCLUSIONS Upregulation of HK3 is associated with EMT in CRC and may be a crucial metabolic adaptation for rapid proliferation, survival, and metastases of CRC cells.
Collapse
Affiliation(s)
- Elena A. Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S. Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Elena N. Lukyanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Moscow, Russia
| | | | - Asiya F. Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan S. Abramov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey L. Kharitonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kseniya M. Klimina
- Vavilov Institute of General Genetics, Russian Academy of Sciences Moscow, Moscow, Russia
| | - Nadezhda V. Koroban
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nadezhda N. Volchenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kirill M. Nyushko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria A. Chernichenko
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry V. Sidorov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Boris Y. Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina V. Kiseleva
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
249
|
Madan E, Parker TM, Bauer MR, Dhiman A, Pelham CJ, Nagane M, Kuppusamy ML, Holmes M, Holmes TR, Shaik K, Shee K, Kiparoidze S, Smith SD, Park YSA, Gomm JJ, Jones LJ, Tomás AR, Cunha AC, Selvendiran K, Hansen LA, Fersht AR, Hideg K, Gogna R, Kuppusamy P. The curcumin analog HO-3867 selectively kills cancer cells by converting mutant p53 protein to transcriptionally active wildtype p53. J Biol Chem 2018; 293:4262-4276. [PMID: 29382728 DOI: 10.1074/jbc.ra117.000950] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/10/2018] [Indexed: 01/13/2023] Open
Abstract
p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential.
Collapse
Affiliation(s)
- Esha Madan
- From the Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.,the Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Gautam Buddha Nagar Section 125, Noida 201301, India
| | - Taylor M Parker
- the Department of Surgery, Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Matthias R Bauer
- the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Alisha Dhiman
- the Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Christopher J Pelham
- the Department of Pharmacology and Physiology, Saint Louis University, St. Louis, Missouri 63104
| | - Masaki Nagane
- the Department of Biochemistry, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - M Lakshmi Kuppusamy
- the Department of Radiology and Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | - Matti Holmes
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Thomas R Holmes
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Kranti Shaik
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Kevin Shee
- the Department of Radiology and Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756
| | | | - Sean D Smith
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Yu-Soon A Park
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Jennifer J Gomm
- the Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Louise J Jones
- the Centre for Tumour Biology, Barts Cancer Institute, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Ana R Tomás
- From the Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Ana C Cunha
- From the Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Karuppaiyah Selvendiran
- the Department of Obstetrics and Gynecology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, and
| | - Laura A Hansen
- the Department of Biomedical Sciences, Creighton University, Omaha, Nebraska 68178
| | - Alan R Fersht
- the Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kálmán Hideg
- the Institute of Organic and Medicinal Chemistry, Faculty of Sciences, University of Pécs, Pécs-H-7624, Hungary
| | - Rajan Gogna
- From the Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal, .,the Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Gautam Buddha Nagar Section 125, Noida 201301, India
| | - Periannan Kuppusamy
- the Department of Radiology and Medicine, Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756,
| |
Collapse
|
250
|
Wu H, Ying M, Hu X. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation. Oncotarget 2018; 7:40621-40629. [PMID: 27259254 PMCID: PMC5130031 DOI: 10.18632/oncotarget.9746] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
While transformation of normal cells to cancer cells is accompanied with a switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, it is interesting to ask if cancer cells can revert from Warburg effect to OXPHOS. Our previous works suggested that cancer cells reverted to OXPHOS, when they were exposed to lactic acidosis, a common factor in tumor environment. However, the conclusion cannot be drawn unless ATP output from glycolysis and OXPHOS is quantitatively determined. Here we quantitatively measured ATP generation from glycolysis and OXPHOS in 9 randomly selected cancer cell lines. Without lactic acidosis, glycolysis and OXPHOS generated 23.7% − 52.2 % and 47.8% − 76.3% of total ATP, respectively; with lactic acidosis (20 mM lactate with pH 6.7), glycolysis and OXPHOS provided 5.7% − 13.4% and 86.6% − 94.3% of total ATP. We concluded that cancer cells under lactic acidosis reverted from Warburg effect to OXPHOS phenotype.
Collapse
Affiliation(s)
- Hao Wu
- Cancer Institute (Key Laboratory For Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minfeng Ying
- Cancer Institute (Key Laboratory For Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Hu
- Cancer Institute (Key Laboratory For Cancer Prevention & Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|