201
|
Doignon I, Fayol O, Dellis O. Improvement of the rituximab-induced cell death by potentiation of the store-operated calcium entry in mantle cell lymphoma cell lines. Oncotarget 2019; 10:4466-4478. [PMID: 31320998 PMCID: PMC6633894 DOI: 10.18632/oncotarget.27063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 06/19/2019] [Indexed: 11/25/2022] Open
Abstract
Mantle Cell Lymphoma (MCL) is one of the worst lymphomas with a median overall survival of 3 to 4 years. Even if the use of rituximab was a great step in therapy, patients commonly develop resistance and relapse. New therapies or complement of existing therapies should be developed. Using spectrofluorimetry, we found that the resting cytosolic Ca2+ ion concentration [Ca2+]cyt of MCL patients cells and MCL cell lines was increased. This increase is correlated with a larger store-operated calcium entry (SOCE) amplitude which is responsible for the Ca2+ ions influx. Furthermore, using a SOCE potentiating agent, we demonstrated that in the MCL Rec-1 cell line, the SOCE is already activated in resting conditions. Interestingly, this potentiating agent alone, by disturbing the SOCE, induced the apoptosis of Rec-1 cells with the same efficacy than rituximab. The use of the potentiating agent in addition to rituximab strengthens the rituximab-induced apoptosis of rituximab-sensitive Granta-519 and Rec-1 cells. However, this potentiating agent cannot convert the Jeko-1 rituximab-resistant to a rituximab-sensitive cell line. Our results confirm that the use of compound acting on the Ca2+ homeostasis could be a new target of interest in complement to existing therapies.
Collapse
Affiliation(s)
- Isabelle Doignon
- Interactions Cellulaires et Physiopathologie Hépatique, INSERM UMR-S 1174, Paris, France.,Université Paris-Sud, Université Paris Saclay, Paris, France
| | - Olivier Fayol
- Interactions Cellulaires et Physiopathologie Hépatique, INSERM UMR-S 1174, Paris, France.,Université Paris-Sud, Université Paris Saclay, Paris, France
| | - Olivier Dellis
- Interactions Cellulaires et Physiopathologie Hépatique, INSERM UMR-S 1174, Paris, France.,Université Paris-Sud, Université Paris Saclay, Paris, France
| |
Collapse
|
202
|
Kim W, Kim E, Min H, Kim MG, Eisenbeis VB, Dutta AK, Pavlovic I, Jessen HJ, Kim S, Seong RH. Inositol polyphosphates promote T cell-independent humoral immunity via the regulation of Bruton's tyrosine kinase. Proc Natl Acad Sci U S A 2019; 116:12952-12957. [PMID: 31189594 PMCID: PMC6600927 DOI: 10.1073/pnas.1821552116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T cell-independent (TI) B cell response is critical for the early protection against pathogen invasion. The regulation and activation of Bruton's tyrosine kinase (Btk) is known as a pivotal step of B cell antigen receptor (BCR) signaling in TI humoral immunity, as observed in patients with X-linked agammaglobulinemia (XLA) experiencing a high incidence of encapsulated bacterial infections. However, key questions remain as to whether a well-established canonical BCR signaling pathway is sufficient to regulate the activity of Btk. Here, we find that inositol hexakisphosphate (InsP6) acts as a physiological regulator of Btk in BCR signaling. Absence of higher order inositol phosphates (InsPs), inositol polyphosphates, leads to an inability to mount immune response against TI antigens. Interestingly, the significance of InsP6-mediated Btk regulation is more prominent in IgM+ plasma cells. Hence, the present study identifies higher order InsPs as principal components of B cell activation upon TI antigen stimulation and presents a mechanism for InsP-mediated regulation of the BCR signaling.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/immunology
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Agammaglobulinemia/genetics
- Agammaglobulinemia/immunology
- Agammaglobulinemia/pathology
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Disease Models, Animal
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/immunology
- Genetic Diseases, X-Linked/pathology
- Humans
- Immunity, Humoral
- Mice
- Mice, Transgenic
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phytic Acid/immunology
- Phytic Acid/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Wooseob Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, 08826 Seoul, Korea
| | - Eunha Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Korea
| | - Hyungyu Min
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, 08826 Seoul, Korea
| | - Min Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Korea
| | - Verena B Eisenbeis
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Amit K Dutta
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Igor Pavlovic
- Department of Chemistry, Technical University Munich, D-85748 Garching, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Korea;
| | - Rho Hyun Seong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, 08826 Seoul, Korea;
| |
Collapse
|
203
|
Backus KM, Cao J, Maddox SM. Opportunities and challenges for the development of covalent chemical immunomodulators. Bioorg Med Chem 2019; 27:3421-3439. [PMID: 31204229 DOI: 10.1016/j.bmc.2019.05.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
Compounds that react irreversibly with cysteines have reemerged as potent and selective tools for altering protein function, serving as chemical probes and even clinically approved drugs. The exquisite sensitivity of human immune cell signaling pathways to oxidative stress indicates the likely, yet still underexploited, general utility of covalent probes for selective chemical immunomodulation. Here, we provide an overview of immunomodulatory cysteines, including identification of electrophilic compounds available to label these residues. We focus our discussion on three protein classes essential for cell signaling, which span the 'druggability' spectrum from amenable to chemical probes (kinases), somewhat druggable (proteases), to inaccessible (phosphatases). Using existing inhibitors as a guide, we identify general strategies to guide the development of covalent probes for selected undruggable classes of proteins and propose the application of such compounds to alter immune cell functions.
Collapse
Affiliation(s)
- Keriann M Backus
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA.
| | - Jian Cao
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| | - Sean M Maddox
- Departments of Biological Chemistry and Chemistry and Biochemistry, University of California Los Angeles, USA
| |
Collapse
|
204
|
Xu XP, Yao YM, Zhao GJ, Wu ZS, Li JC, Jiang YL, Lu ZQ, Hong GL. Role of the Ca 2+-Calcineurin-Nuclear Factor of Activated T cell Pathway in Mitofusin-2-Mediated Immune Function of Jurkat Cells. Chin Med J (Engl) 2019; 131:330-338. [PMID: 29363649 PMCID: PMC5798055 DOI: 10.4103/0366-6999.223855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Mitofusin-2 (MFN2), a well-known mitochondrial fusion protein, has been shown to participate in innate immunity, but its role in mediating adaptive immunity remains poorly characterized. In this study, we explored the potential role of MFN2 in mediating the immune function of T lymphocytes. Methods: We manipulated MFN2 gene expression in Jurkat cells via lentiviral transduction of MFN2 small interfering RNA (siRNA) or full-length MFN2. After transduction, the immune response and its underlying mechanism were determined in Jurkat cells. One-way analysis of variance and Student's t-test were performed to determine the statistical significance between the groups. Results: Overexpression of MFN2 enhanced the immune response of T lymphocytes by upregulating Ca2+ (359.280 ± 10.130 vs. 266.940 ± 10.170, P = 0.000), calcineurin (0.513 ± 0.014 vs. 0.403 ± 0.020 nmol/L, P = 0.024), and nuclear factor of activated T cells (NFATs) activation (1.040 ± 0.086 vs. 0.700 ± 0.115, P = 0.005), whereas depletion of MFN2 impaired the immune function of T lymphocytes by downregulating Ca2+ (141.140 ± 14.670 vs. 267.060 ± 9.230, P = 0.000), calcineurin (0.054 ± 0.030 nmol/L vs. 0.404 ± 0.063 nmol/L, P = 0.000), and NFAT activation (0.500 ± 0.025 vs. 0.720 ± 0.061, P = 0.012). Furthermore, upregulated calcineurin partially reversed the negative effects of MFN2 siRNA on T cell-mediated immunity evidenced by elevations in T cell proliferation (1.120 ± 0.048 vs. 0.580 ± 0.078, P = 0.040), interleukin-2 (IL-2) production (473.300 ± 24.100 vs. 175.330 ± 12.900 pg/ml, P = 0.000), and the interferon-γ/IL-4 ratio (3.080 ± 0.156 vs. 0.953 ± 0.093, P = 0.000). Meanwhile, calcineurin activity inhibitor depleted the positive effects of overexpressed MFN2 on T cells function. Conclusions: Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway. MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.
Collapse
Affiliation(s)
- Xiu-Ping Xu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Ming Yao
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| | - Guang-Ju Zhao
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zong-Sheng Wu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jun-Cong Li
- Department of Microbiology and Immunology, Burns Institute, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing 100048, China
| | - Yun-Long Jiang
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhong-Qiu Lu
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guang-Liang Hong
- Emergency Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
205
|
Szél E, Danis J, Sőrés E, Tóth D, Korponyai C, Degovics D, Prorok J, Acsai K, Dikstein S, Kemény L, Erős G. Protective effects of glycerol and xylitol in keratinocytes exposed to hyperosmotic stress. Clin Cosmet Investig Dermatol 2019; 12:323-331. [PMID: 31190939 PMCID: PMC6514140 DOI: 10.2147/ccid.s197946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Purpose: Our goal was to study whether glycerol and xylitol provide protection against osmotic stress in keratinocytes. Methods: The experiments were performed on HaCaT keratinocytes. Hyperosmotic stress was induced by the addition of sorbitol (450, 500 and 600 mOsm). Both polyols were applied at two different concentrations (glycerol: 0.027% and 0.27%, xylitol: 0.045% and 0.45%). Cellular viability and cytotoxicity were assessed, intracellular Ca2+ concentration was measured, and the RNA expression of inflammatory cytokines was determined by means of PCR. Differences among groups were analyzed with one-way ANOVA and Holm-Sidak post-hoc test. When the normality test failed, Kruskal-Wallis one-way analysis of variance on ranks, followed by Dunn's method for pairwise multiple comparison was performed. Results: The higher concentrations of the polyols were effective. Glycerol ameliorated the cellular viability while xylitol prevented the rapid Ca2+ signal. Both polyols suppressed the expression of IL-1α but only glycerol decreased the expression of IL-1β and NFAT5. Conclusions: Glycerol and xylitol protect keratinocytes against osmotic stress. Despite their similar chemical structure, the effect of these polyols displayed differences. Hence, joint application of glycerol and xylitol may be a useful therapeutic approach for different skin disorders.
Collapse
Affiliation(s)
- Edit Szél
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Judit Danis
- MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Evelin Sőrés
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Dániel Tóth
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Csilla Korponyai
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Döníz Degovics
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Károly Acsai
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE Dermatological Research Group, Szeged, Hungary
| | - Gábor Erős
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| |
Collapse
|
206
|
Debant M, Burgos M, Hemon P, Buscaglia P, Fali T, Melayah S, Le Goux N, Vandier C, Potier-Cartereau M, Pers JO, Tempescul A, Berthou C, Bagacean C, Mignen O, Renaudineau Y. STIM1 at the plasma membrane as a new target in progressive chronic lymphocytic leukemia. J Immunother Cancer 2019; 7:111. [PMID: 31014395 PMCID: PMC6480884 DOI: 10.1186/s40425-019-0591-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background Dysregulation in calcium (Ca2+) signaling is a hallmark of chronic lymphocytic leukemia (CLL). While the role of the B cell receptor (BCR) Ca2+ pathway has been associated with disease progression, the importance of the newly described constitutive Ca2+ entry (CE) pathway is less clear. In addition, we hypothesized that these differences reflect modifications of the CE pathway and Ca2+ actors such as Orai1, transient receptor potential canonical (TRPC) 1, and stromal interaction molecule 1 (STIM1), the latter being the focus of this study. Methods An extensive analysis of the Ca2+ entry (CE) pathway in CLL B cells was performed including constitutive Ca2+ entry, basal Ca2+ levels, and store operated Ca2+ entry (SOCE) activated following B cell receptor engagement or using Thapsigargin. The molecular characterization of the calcium channels Orai1 and TRPC1 and to their partner STIM1 was performed by flow cytometry and/or Western blotting. Specific siRNAs for Orai1, TRPC1 and STIM1 plus the Orai1 channel blocker Synta66 were used. CLL B cell viability was tested in the presence of an anti-STIM1 monoclonal antibody (mAb, clone GOK) coupled or not with an anti-CD20 mAb, rituximab. The Cox regression model was used to determine the optimal threshold and to stratify patients. Results Seeking to explore the CE pathway, we found in untreated CLL patients that an abnormal CE pathway was (i) highly associated with the disease outcome; (ii) positively correlated with basal Ca2+ concentrations; (iii) independent from the BCR-PLCγ2-InsP3R (SOCE) Ca2+ signaling pathway; (iv) supported by Orai1 and TRPC1 channels; (v) regulated by the pool of STIM1 located in the plasma membrane (STIM1PM); and (vi) blocked when using a mAb targeting STIM1PM. Next, we further established an association between an elevated expression of STIM1PM and clinical outcome. In addition, combining an anti-STIM1 mAb with rituximab significantly reduced in vitro CLL B cell viability within the high STIM1PM CLL subgroup. Conclusions These data establish the critical role of a newly discovered BCR independent Ca2+ entry in CLL evolution, provide new insights into CLL pathophysiology, and support innovative therapeutic perspectives such as targeting STIM1 located at the plasma membrane. Electronic supplementary material The online version of this article (10.1186/s40425-019-0591-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marjolaine Debant
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Miguel Burgos
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Patrice Hemon
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Paul Buscaglia
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Tinhinane Fali
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Sarra Melayah
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France
| | - Nelig Le Goux
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Christophe Vandier
- INSERM U1069, N2C, 37032, University of Tours, Tours, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | - Marie Potier-Cartereau
- INSERM U1069, N2C, 37032, University of Tours, Tours, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | | | - Adrian Tempescul
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Christian Berthou
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Cristina Bagacean
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Olivier Mignen
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | - Yves Renaudineau
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France. .,IC-CGO network from "Canceropole Grand Ouest", Brest, France. .,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France.
| |
Collapse
|
207
|
Yang Z, Yan H, Dai W, Jing J, Yang Y, Mahajan S, Zhou Y, Li W, Macaubas C, Mellins ED, Shih CC, Fitzpatrick JAJ, Faccio R. Tmem178 negatively regulates store-operated calcium entry in myeloid cells via association with STIM1. J Autoimmun 2019; 101:94-108. [PMID: 31018906 DOI: 10.1016/j.jaut.2019.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/27/2022]
Abstract
Store-operated calcium entry (SOCE) modulates cytosolic calcium in multiple cells. Endoplasmic reticulum (ER)-localized STIM1 and plasma membrane (PM)-localized ORAI1 are two main components of SOCE. STIM1:ORAI1 association requires STIM1 oligomerization, its re-distribution to ER-PM junctions, and puncta formation. However, little is known about the negative regulation of these steps to prevent calcium overload. Here, we identified Tmem178 as a negative modulator of STIM1 puncta formation in myeloid cells. Using site-directed mutagenesis, co-immunoprecipitation assays and FRET imaging, we determined that Tmem178:STIM1 association occurs via their transmembrane motifs. Mutants that increase Tmem178:STIM1 association reduce STIM1 puncta formation, SOCE activation, impair inflammatory cytokine production in macrophages and osteoclastogenesis. Mutants that reduce Tmem178:STIM1 association reverse these effects. Furthermore, exposure to plasma from arthritic patients decreases Tmem178 expression, enhances SOCE activation and cytoplasmic calcium. In conclusion, Tmem178 modulates the rate-limiting step of STIM1 puncta formation and therefore controls SOCE in inflammatory conditions.
Collapse
Affiliation(s)
- Zhengfeng Yang
- Department of Orthopaedics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hui Yan
- Department of Orthopaedics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wentao Dai
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, China
| | - Ji Jing
- Institute of Biosciences and Technology, Texas A&M University College of Medicine, Houston, TX 77030, USA
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sahil Mahajan
- Department of Orthopaedics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University College of Medicine, Houston, TX 77030, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Claudia Macaubas
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Chien-Cheng Shih
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, 63110, USA; Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Roberta Faccio
- Department of Orthopaedics, Washington University School of Medicine, St. Louis, MO, 63110, USA; Shriners Hospitals for Children, St. Louis MO, USA.
| |
Collapse
|
208
|
Eser Ocak P, Ocak U, Tang J, Zhang JH. The role of caveolin-1 in tumors of the brain - functional and clinical implications. Cell Oncol (Dordr) 2019; 42:423-447. [PMID: 30993541 DOI: 10.1007/s13402-019-00447-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Caveolin-1 (cav-1) is the major structural protein of caveolae, the flask-shaped invaginations of the plasma membrane mainly involved in cell signaling. Today, cav-1 is believed to play a role in a variety of disease processes including cancer, owing to the variations of its expression in association with tumor progression, invasive behavior, metastasis and therapy resistance. Since first detected in the brain, a number of studies has particularly focused on the role of cav-1 in the various steps of brain tumorigenesis. In this review, we discuss the different roles of cav-1 and its contributions to the molecular mechanisms underlying the pathobiology and natural behavior of brain tumors including glial, non-glial and metastatic subtypes. These contributions could be attributed to its co-localization with important players in tumorigenesis within the lipid-enriched domains of the plasma membrane. In that regard, the ability of cav-1 to interact with various cell signaling molecules as well as the impact of caveolae depletion on important pathways acting in brain tumor pathogenesis are noteworthy. We also discuss conversant causes hampering the treatment of malignant glial tumors such as limited transport of chemotherapeutics across the blood tumor barrier and resistance to chemoradiotherapy, by focusing on the molecular fundamentals involving cav-1 participation. CONCLUSIONS Cav-1 has the potential to pivot the molecular basis underlying the pathobiology of brain tumors, particularly the malignant glial subtype. In addition, the regulatory effect of cav-1-dependent and caveola-mediated transcellular transport on the permeability of the blood tumor barrier could be of benefit to overcome the restricted transport across brain barriers when applying chemotherapeutics. The association of cav-1 with tumors of the brain other than malignant gliomas deserves to be underlined, as well given the evidence suggesting its potential in predicting tumor grade and recurrence rates together with determining patient prognosis in oligodendrogliomas, ependymomas, meningiomas, vestibular schwannomas and brain metastases.
Collapse
Affiliation(s)
- Pinar Eser Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
209
|
Oliveira IS, Ferreira IG, Alexandre-Silva GM, Cerni FA, Cremonez CM, Arantes EC, Zottich U, Pucca MB. Scorpion toxins targeting Kv1.3 channels: insights into immunosuppression. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148118. [PMID: 31131004 PMCID: PMC6483409 DOI: 10.1590/1678-9199-jvatitd-1481-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023] Open
Abstract
Scorpion venoms are natural sources of molecules that have, in addition to their
toxic function, potential therapeutic applications. In this source the
neurotoxins can be found especially those that act on potassium channels.
Potassium channels are responsible for maintaining the membrane potential in the
excitable cells, especially the voltage-dependent potassium channels (Kv),
including Kv1.3 channels. These channels (Kv1.3) are expressed by various types
of tissues and cells, being part of several physiological processes. However,
the major studies of Kv1.3 are performed on T cells due its importance on
autoimmune diseases. Scorpion toxins capable of acting on potassium channels
(KTx), mainly on Kv1.3 channels, have gained a prominent role for their possible
ability to control inflammatory autoimmune diseases. Some of these toxins have
already left bench trials and are being evaluated in clinical trials, presenting
great therapeutic potential. Thus, scorpion toxins are important natural
molecules that should not be overlooked in the treatment of autoimmune and other
diseases.
Collapse
Affiliation(s)
- Isadora S Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Isabela G Ferreira
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Felipe A Cerni
- Ribeirão Preto Medical School, Department of Biochemistry and Immunology, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Caroline M Cremonez
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Eliane C Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Umberto Zottich
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
| | - Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, RR, Brazil
| |
Collapse
|
210
|
Kim WM, Huang YH, Gandhi A, Blumberg RS. CEACAM1 structure and function in immunity and its therapeutic implications. Semin Immunol 2019; 42:101296. [PMID: 31604530 PMCID: PMC6814268 DOI: 10.1016/j.smim.2019.101296] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
The type I membrane protein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) distinctively exhibits significant alternative splicing that allows for tunable functions upon homophilic binding. CEACAM1 is highly expressed in the tumor environment and is strictly regulated on lymphocytes such that its expression is restricted to activated cells where it is now recognized to function in tolerance pathways. CEACAM1 is also an important target for microbes which have co-opted these attributes of CEACAM1 for the purposes of invading the host and evading the immune system. These properties, among others, have focused attention on CEACAM1 as a unique target for immunotherapy in autoimmunity and cancer. This review examines recent structural information derived from the characterization of CEACAM1:CEACAM1 interactions and heterophilic modes of binding especially to microbes and how this relates to CEACAM1 function. Through this, we aim to provide insights into targeting CEACAM1 for therapeutic intervention.
Collapse
Affiliation(s)
- Walter M Kim
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Amit Gandhi
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
211
|
Vaeth M, Wang YH, Eckstein M, Yang J, Silverman GJ, Lacruz RS, Kannan K, Feske S. Tissue resident and follicular Treg cell differentiation is regulated by CRAC channels. Nat Commun 2019; 10:1183. [PMID: 30862784 PMCID: PMC6414608 DOI: 10.1038/s41467-019-08959-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
T regulatory (Treg) cells maintain immunological tolerance and organ homeostasis. Activated Treg cells differentiate into effector Treg subsets that acquire tissue-specific functions. Ca2+ influx via Ca2+ release-activated Ca2+ (CRAC) channels formed by STIM and ORAI proteins is required for the thymic development of Treg cells, but its function in mature Treg cells remains unclear. Here we show that deletion of Stim1 and Stim2 genes in mature Treg cells abolishes Ca2+ signaling and prevents their differentiation into follicular Treg and tissue-resident Treg cells. Transcriptional profiling of STIM1/STIM2-deficient Treg cells reveals that Ca2+ signaling regulates transcription factors and signaling pathways that control the identity and effector differentiation of Treg cells. In the absence of STIM1/STIM2 in Treg cells, mice develop a broad spectrum of autoantibodies and fatal multiorgan inflammation. Our findings establish a critical role of CRAC channels in controlling lineage identity and effector functions of Treg cells. Regulatory T (Treg) cells are important for maintaining immune homeostasis. Here the authors show that STIM1 and STIM2, which activate the Ca2+ channel ORAI1, are essential for the differentiation of peripheral Treg cells into tissue-resident and follicular Treg cells and their ability to limit autoimmunity in mice.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Institute for Systems Immunology, Julius-Maximilians University of Würzburg, 97078, Würzburg, Germany
| | - Yin-Hu Wang
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Miriam Eckstein
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA.,Institute for Systems Immunology, Julius-Maximilians University of Würzburg, 97078, Würzburg, Germany
| | - Jun Yang
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Gregg J Silverman
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Kasthuri Kannan
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.,Genome Technology Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
212
|
Yang W, Liu L, Keum N, Qian ZR, Nowak JA, Hamada T, Song M, Cao Y, Nosho K, Smith-Warner SA, Zhang S, Masugi Y, Ng K, Kosumi K, Ma Y, Garrett WS, Wang M, Nan H, Giannakis M, Meyerhardt JA, Chan AT, Fuchs CS, Nishihara R, Wu K, Giovannucci EL, Ogino S, Zhang X. Calcium Intake and Risk of Colorectal Cancer According to Tumor-infiltrating T Cells. Cancer Prev Res (Phila) 2019; 12:283-294. [PMID: 30760501 DOI: 10.1158/1940-6207.capr-18-0279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/27/2018] [Accepted: 02/04/2019] [Indexed: 11/16/2022]
Abstract
Calcium intake has been associated with a lower risk of colorectal cancer. Calcium signaling may enhance T-cell proliferation and differentiation, and contribute to T-cell-mediated antitumor immunity. In this prospective cohort study, we investigated the association between calcium intake and colorectal cancer risk according to tumor immunity status to provide additional insights into the role of calcium in colorectal carcinogenesis. The densities of tumor-infiltrating T-cell subsets [CD3+, CD8+ , CD45RO (PTPRC) + , or FOXP3+ cell] were assessed using IHC and computer-assisted image analysis in 736 cancer cases that developed among 136,249 individuals in two cohorts. HRs and 95% confidence intervals (CI) were calculated using Cox proportional hazards regression. Total calcium intake was associated with a multivariable HR of 0.55 (comparing ≥1,200 vs. <600 mg/day; 95% CI, 0.36-0.84; P trend = 0.002) for CD8+ T-cell-low but not for CD8+ T-cell-high tumors (HR = 1.02; 95% CI, 0.67-1.55; P trend = 0.47). Similarly, the corresponding HRs (95% CIs) for calcium for low versus high T-cell-infiltrated tumors were 0.63 (0.42-0.94; P trend = 0.01) and 0.89 (0.58-1.35; P trend = 0.20) for CD3+ ; 0.58 (0.39-0.87; P trend = 0.006) and 1.04 (0.69-1.58; P trend = 0.54) for CD45RO+ ; and 0.56 (0.36-0.85; P trend = 0.006) and 1.10 (0.72-1.67; P trend = 0.47) for FOXP3+ , although the differences by subtypes defined by T-cell density were not statistically significant. These potential differential associations generally appeared consistent regardless of sex, source of calcium intake, tumor location, and tumor microsatellite instability status. Our findings suggest a possible role of calcium in cancer immunoprevention via modulation of T-cell function.
Collapse
Affiliation(s)
- Wanshui Yang
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, Anhui, P.R. China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Li Liu
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - NaNa Keum
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Food Science and Biotechnology, Dongguk University, Goyang, South Korea
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jonathan A Nowak
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mingyang Song
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yin Cao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Katsuhiko Nosho
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Stephanie A Smith-Warner
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sui Zhang
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yohei Masugi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kimmie Ng
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Keisuke Kosumi
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Yanan Ma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, Liaoning, P.R. China
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Molin Wang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hongmei Nan
- Department of Epidemiology, Richard M. School of Public Health, Indianapolis, Indiana
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Andrew T Chan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Charles S Fuchs
- Department of Medical Oncology, Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Department of Medical Oncology, Smilow Cancer Hospital, New Haven, Connecticut
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shuji Ogino
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, P.R. China
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Xuehong Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
213
|
Rodríguez-Perea AL, Rojas M, Velilla-Hernández PA. High concentrations of atorvastatin reduce in-vitro function of conventional T and regulatory T cells. Clin Exp Immunol 2019; 196:237-248. [PMID: 30638266 DOI: 10.1111/cei.13260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2019] [Indexed: 12/15/2022] Open
Abstract
Regulatory T cells (Tregs ) modulate the magnitude of immune responses and possess therapeutic potential in an array of immune diseases. Statins reduce the activation and proliferation of conventional T cells (Tcons ), and they seem to up-regulate the frequency and function of Tregs . However, there is a lack of simultaneous evaluation of the in-vitro effect of statins on the functional profile of Tregs versus Tcons . Herein, magnetically purified Tcons and Tregs were stimulated with CD3/CD28/interleukin (IL)-2 in the presence of atorvastatin (ATV) at 1 or 10 µM. The suppressive function of Tregs , the expression of markers associated with Treg function, activation levels, cytokine production and calcium flux in both subpopulations were assessed by flow cytometry. ATV had no cytotoxic effect on T cells at the concentrations used. Interestingly, 10 µM ATV hampered the suppressive capacity of Tregs . Moreover, this higher concentration reduced the expression of forkhead box protein 3 (FoxP3), cytotoxic T lymphocyte antigen (CTLA-4) and programmed death 1 (PD-1). In Tcons , ATV at 10 µM decreased PD-1 and CD45RO expression. The expression of CD25, CD69, CD95, CD38, CD62L, CCR7 and perforin was not affected in both subpopulations or at any ATV concentrations. Remarkably, 10 µM ATV increased the percentage of tumour necrosis factor (TNF)-α-producing Tregs . Although there was a reduction of calcium flux in Tcons and Tregs , it was only significant in 10 µM ATV-treated Tcons . These results suggested that 10 µM ATV affects the cellular functions of both populations; however, this concentration particularly affected several aspects of Treg biology: its suppressive function, cytokine production and expression of Treg -specific markers.
Collapse
Affiliation(s)
- A L Rodríguez-Perea
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Grupo Bacterias & Cáncer, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - M Rojas
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Facultad de Medicina, Instituto de Investigaciones Médicas, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría, Facultad de Medicina, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - P A Velilla-Hernández
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
214
|
Tellez Freitas CM, Burrell HR, Valdoz JC, Hamblin GJ, Raymond CM, Cox TD, Johnson DK, Andersen JL, Weber KS, Bridgewater LC. The nuclear variant of bone morphogenetic protein 2 (nBMP2) is expressed in macrophages and alters calcium response. Sci Rep 2019; 9:934. [PMID: 30700748 PMCID: PMC6353957 DOI: 10.1038/s41598-018-37329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022] Open
Abstract
We previously identified a nuclear variant of bone morphogenetic protein 2 (BMP2), named nBMP2, that is translated from an alternative start codon. Decreased nuclear localization of nBMP2 in the nBmp2NLStm mouse model leads to muscular, neurological, and immune phenotypes-all of which are consistent with aberrant intracellular calcium (Ca2+) response. Ca2+ response in these mice, however, has yet to be measured directly. Because a prior study suggested impairment of macrophage function in nBmp2NLStm mutant mice, bone marrow derived (BMD) macrophages and splenic macrophages were isolated from wild type and nBmp2NLStm mutant mice. Immunocytochemistry revealed that nuclei of both BMD and splenic macrophages from wild type mice contain nBMP2, while the protein is decreased in nuclei of nBmp2NLStm mutant macrophages. Live-cell Ca2+ imaging and engulfment assays revealed that Ca2+ response and phagocytosis in response to bacterial supernatant are similar in BMD macrophages isolated from naïve (uninfected) nBmp2NLStm mutant mice and wild type mice, but are deficient in splenic macrophages isolated from mutant mice after secondary systemic infection with Staphylococcus aureus, suggesting progressive impairment as macrophages respond to infection. This direct evidence of impaired Ca2+ handling in nBMP2 mutant macrophages supports the hypothesis that nBMP2 plays a role in Ca2+ response.
Collapse
Affiliation(s)
- Claudia M Tellez Freitas
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Haley R Burrell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jonard C Valdoz
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Garrett J Hamblin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Carlee M Raymond
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Tyler D Cox
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Laura C Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America.
| |
Collapse
|
215
|
Friedmann KS, Bozem M, Hoth M. Calcium signal dynamics in T lymphocytes: Comparing in vivo and in vitro measurements. Semin Cell Dev Biol 2019; 94:84-93. [PMID: 30630031 DOI: 10.1016/j.semcdb.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 01/05/2019] [Indexed: 02/06/2023]
Abstract
Amplitude and kinetics of intracellular Ca2+ signals ([Ca2+]int) determine many immune cell functions. To mimic in vivo changes of [Ca2+]int in human immune cells, two approaches may be best suited: 1) Analyze primary human immune cells taken from blood under conditions resembling best physiological or pathophysiological conditions. 2.) Analyze the immune system in vivo or ex vivo in explanted tissue from small vertebrate animals, such as mice. With the help of genetically encoded Ca2+ indicators and intravital microscopy, [Ca2+]int have been investigated in murine T lymphocytes (T cells) in vivo during the last five years and in explanted lymph node (LN) during the last 10 years. There are several important reasons to compare [Ca2+]int measured in primary murine T lymphocytes in vivo and in vitro with [Ca2+]int measured in primary human T lymphocytes in vitro. First, how do human and murine data compare? Second, how do in vivo and in vitro data compare? Third, can in vitro data predict in vivo data? The last point is particularly important considering the many technical challenges that limit in vivo measurements and to reduce the number of animals sacrificed. This review summarizes and compares the results of the available publications on in vivo and in vitro [Ca2+]int measurements in T lymphocytes stimulated focally by antigen-presenting cells (APC) after forming an immunological synapse.
Collapse
Affiliation(s)
- Kim S Friedmann
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany
| | - Monika Bozem
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Homburg, Germany.
| |
Collapse
|
216
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
217
|
Lee JU, Kim LK, Choi JM. Revisiting the Concept of Targeting NFAT to Control T Cell Immunity and Autoimmune Diseases. Front Immunol 2018; 9:2747. [PMID: 30538703 PMCID: PMC6277705 DOI: 10.3389/fimmu.2018.02747] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
The nuclear factor of activated T cells (NFAT) family of transcription factors, which includes NFAT1, NFAT2, and NFAT4, are well-known to play important roles in T cell activation. Most of NFAT proteins are controlled by calcium influx upon T cell receptor and costimulatory signaling results increase of IL-2 and IL-2 receptor. NFAT3 however is not shown to be expressed in T cells and NFAT5 has not much highlighted in T cell functions yet. Recent studies demonstrate that the NFAT family proteins involve in function of lineage-specific transcription factors during differentiation of T helper 1 (Th1), Th2, Th17, regulatory T (Treg), and follicular helper T cells (Tfh). They have been studied to make physical interaction with the other transcription factors like GATA3 or Foxp3 and they also regulate Th cell signature gene expressions by direct binding on promotor region of target genes. From last decades, NFAT functions in T cells have been targeted to develop immune modulatory drugs for controlling T cell immunity in autoimmune diseases like cyclosporine A, FK506, etc. Due to their undesirable side defects, only limited application is available in human diseases. This review focuses on the recent advances in development of NFAT targeting drug as well as our understanding of each NFAT family protein in T cell biology. We also discuss updated detail molecular mechanism of NFAT functions in T cells, which would lead us to suggest an idea for developing specific NFAT inhibitors as a therapeutic drug for autoimmune diseases.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Li-Kyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| |
Collapse
|
218
|
Jayakumar S, Richhariya S, Deb BK, Hasan G. A Multicomponent Neuronal Response Encodes the Larval Decision to Pupariate upon Amino Acid Starvation. J Neurosci 2018; 38:10202-10219. [PMID: 30301757 PMCID: PMC6246885 DOI: 10.1523/jneurosci.1163-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Organisms need to coordinate growth with development, particularly in the context of nutrient availability. Thus, multiple ways have evolved to survive extrinsic nutrient deprivation during development. In Drosophila, growth occurs during larval development. Larvae are thus critically dependent on nutritional inputs; but after critical weight, they pupariate even when starved. How nutrient availability is coupled to the internal metabolic state for the decision to pupariate needs better understanding. We had earlier identified glutamatergic interneurons in the ventral ganglion that regulate pupariation on a protein-deficient diet. Here we report that Drosophila third instar larvae (either sex) sense arginine to evaluate their nutrient environment using an amino acid transporter Slimfast. The glutamatergic interneurons integrate external protein availability with internal metabolic state through neuropeptide signals. IP3-mediated calcium release and store-operated calcium entry are essential in these glutamatergic neurons for such integration and alter neuronal function by reducing the expression of multiple ion channels.SIGNIFICANCE STATEMENT Coordinating growth with development, in the context of nutrient availability is a challenge for all organisms in nature. After attainment of "critical weight," insect larvae can pupariate, even in the absence of nutrition. Mechanism(s) that stimulate appropriate cellular responses and allow normal development on a nutritionally deficient diet remain to be understood. Here, we demonstrate that nutritional deprivation, in postcritical weight larvae, is sensed by special sensory neurons through an amino acid transporter that detects loss of environmental arginine. This information is integrated by glutamatergic interneurons with the internal metabolic state through neuropeptide signals. These glutamatergic interneurons require calcium-signaling-regulated expression of a host of neuronal channels to generate complex calcium signals essential for pupariation on a protein-deficient diet.
Collapse
Affiliation(s)
| | | | - Bipan Kumar Deb
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bangalore 560065
| |
Collapse
|
219
|
Live-Cell FRET Imaging Reveals a Role of Extracellular Signal-Regulated Kinase Activity Dynamics in Thymocyte Motility. iScience 2018; 10:98-113. [PMID: 30508722 PMCID: PMC6277225 DOI: 10.1016/j.isci.2018.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) plays critical roles in T cell development in the thymus. Nevertheless, the dynamics of ERK activity and the role of ERK in regulating thymocyte motility remain largely unknown due to technical limitations. To visualize ERK activity in thymocytes, we here developed knockin reporter mice expressing a Förster/fluorescence resonance energy transfer (FRET)-based biosensor for ERK from the ROSA26 locus. Live imaging of thymocytes isolated from the reporter mice revealed that ERK regulates thymocyte motility in a subtype-specific manner. Negative correlation between ERK activity and motility was observed in CD4/CD8 double-positive thymocytes and CD8 single-positive thymocytes, but not in CD4 single-positive thymocytes. Interestingly, however, the temporal deviations of ERK activity from the average correlate with the motility of CD4 single-positive thymocytes. Thus, live-cell FRET imaging will open a window to understanding the dynamic nature and the diverse functions of ERK signaling in T cell biology. Mice expressing EKAREV from ROSA26 locus enable ERK activity monitoring in T cells ERK activity negatively regulates the motility of thymocytes in the thymus Temporal dynamics of ERK activity regulates cell motility of CD4-SP in the medulla TCR signal from intercellular association induces ERK activity dynamics in CD4-SP
Collapse
|
220
|
Intramembrane ionic protein-lipid interaction regulates integrin structure and function. PLoS Biol 2018; 16:e2006525. [PMID: 30427828 PMCID: PMC6261646 DOI: 10.1371/journal.pbio.2006525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/28/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022] Open
Abstract
Protein transmembrane domains (TMDs) are generally hydrophobic, but our bioinformatics analysis shows that many TMDs contain basic residues at terminal regions. Physiological functions of these membrane-snorkeling basic residues are largely unclear. Here, we show that a membrane-snorkeling Lys residue in integrin αLβ2 (also known as lymphocyte function-associated antigen 1 [LFA-1]) regulates transmembrane heterodimer formation and integrin adhesion through ionic interplay with acidic phospholipids and calcium ions (Ca2+) in T cells. The amino group of the conserved Lys ionically interacts with the phosphate group of acidic phospholipids to stabilize αLβ2 transmembrane association, thus keeping the integrin at low-affinity conformation. Intracellular Ca2+ uses its charge to directly disrupt this ionic interaction, leading to the transmembrane separation and the subsequent extracellular domain extension to increase adhesion activity. This Ca2+-mediated regulation is independent on the canonical Ca2+ signaling or integrin inside-out signaling. Our work therefore showcases the importance of intramembrane ionic protein–lipid interaction and provides a new mechanism of integrin activation. Integrin αLβ2 is the major integrin in T cells and plays a vital role in regulating T-cell activation, adhesion, and migration. The transmembrane association of αL and β2 is crucial for maintaining the integrin at low-affinity conformation. Here, we find that the conserved basic residue (K702) in the transmembrane domain of β2 contributes to transmembrane association through ternary ionic interaction with acidic phospholipid and αL cytoplasmic residue. Upon T-cell activation, influxed calcium ions (Ca2+) can directly disrupt the ionic K702–lipid interaction through its positive charges, which leads to transmembrane separation and subsequent extracellular domain extension to switch αLβ2 to high-affinity conformation. This Ca2+-mediated regulation is through the modulation of the ionic Lys–lipid interaction but not through the canonical Ca2+ signaling or integrin inside-out signaling. Our study thus reports a new regulatory mechanism of integrin activation and showcases the importance of intramembrane ionic protein–lipid interaction. This finding might have general relevance, as bioinformatics analysis shows the presence of membrane-snorkeling basic residue is a common feature of transmembrane proteins.
Collapse
|
221
|
Ataollahi F, Friend M, McGrath S, Dutton G, Peters A, Bhanugopan M. Effect of calcium and magnesium supplementation on minerals profile, immune responses, and energy profile of ewes and their lambs. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
222
|
Martín-Cófreces NB, Vicente-Manzanares M, Sánchez-Madrid F. Adhesive Interactions Delineate the Topography of the Immune Synapse. Front Cell Dev Biol 2018; 6:149. [PMID: 30425987 PMCID: PMC6218456 DOI: 10.3389/fcell.2018.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
T cells form adhesive contacts with antigen-presenting cells (APCs) as part of the normal surveillance process that occurs in lymph nodes and other tissues. Most of these adhesive interactions are formed by integrins that interact with ligands expressed on the surface of the APC. The interactive strength of integrins depends on their degree of membrane proximity as well as intracellular signals that dictate the conformation of the integrin. Integrins appear in different conformations that endow them with different affinities for their ligand(s). Integrin conformation and thus adhesive strength between the T cell and the APC is tuned by intracellular signals that are turned on by ligation of the T cell receptor (TCR) and chemokine receptors. During the different stages of the process, integrins, the TCR and chemokine receptors may be interconnected by the actin cytoskeleton underneath the plasma membrane, forming a chemical and physical network that facilitates the spatiotemporal dynamics, positioning, and function of these receptors and supports cell-cell adhesion during T cell activation, allowing it to perform its effector function.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, CIC-IBMCC (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
223
|
Zhang B, Paffett ML, Naik JS, Jernigan NL, Walker BR, Resta TC. Cholesterol Regulation of Pulmonary Endothelial Calcium Homeostasis. CURRENT TOPICS IN MEMBRANES 2018; 82:53-91. [PMID: 30360783 DOI: 10.1016/bs.ctm.2018.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cholesterol is a key structural component and regulator of lipid raft signaling platforms critical for cell function. Such regulation may involve changes in the biophysical properties of lipid microdomains or direct protein-sterol interactions that alter the function of ion channels, receptors, enzymes, and membrane structural proteins. Recent studies have implicated abnormal membrane cholesterol levels in mediating endothelial dysfunction that is characteristic of pulmonary hypertensive disorders, including that resulting from long-term exposure to hypoxia. Endothelial dysfunction in this setting is characterized by impaired pulmonary endothelial calcium entry and an associated imbalance that favors production vasoconstrictor and mitogenic factors that contribute to pulmonary hypertension. Here we review current knowledge of cholesterol regulation of pulmonary endothelial Ca2+ homeostasis, focusing on the role of membrane cholesterol in mediating agonist-induced Ca2+ entry and its components in the normal and hypertensive pulmonary circulation.
Collapse
Affiliation(s)
- Bojun Zhang
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Michael L Paffett
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Jay S Naik
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
224
|
Diener C, Hart M, Alansary D, Poth V, Walch-Rückheim B, Menegatti J, Grässer F, Fehlmann T, Rheinheimer S, Niemeyer BA, Lenhof HP, Keller A, Meese E. Modulation of intracellular calcium signaling by microRNA-34a-5p. Cell Death Dis 2018; 9:1008. [PMID: 30262862 PMCID: PMC6160487 DOI: 10.1038/s41419-018-1050-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/21/2022]
Abstract
Adjusting intracellular calcium signaling is an important feature in the regulation of immune cell function and survival. Here we show that miR-34a-5p, a small non-coding RNA that is deregulated in many common diseases, is a regulator of store-operated Ca2+ entry (SOCE) and calcineurin signaling. Upon miR-34a-5p overexpression, we observed both a decreased depletion of ER calcium content and a decreased Ca2+ influx through Ca2+ release-activated Ca2+ channels. Based on an in silico target prediction we identified multiple miR-34a-5p target genes within both pathways that are implicated in the balance between T-cell activation and apoptosis including ITPR2, CAMLG, STIM1, ORAI3, RCAN1, PPP3R1, and NFATC4. Functional analysis revealed a decrease in Ca2+ activated calcineurin pathway activity measured by a reduced IL-2 secretion due to miR-34a-5p overexpression. Impacting SOCE and/or downstream calcineurin/NFAT signaling by miR-34a-5p offers a possible future approach to manipulate immune cells for clinical interventions.
Collapse
Affiliation(s)
- Caroline Diener
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
| | - Martin Hart
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Dalia Alansary
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Vanessa Poth
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, 66421, Homburg, Germany
| | - Jennifer Menegatti
- Institute of Virology and Center of Human and Molecular Biology, Medical School, Saarland University, 66421, Homburg, Germany
| | - Friedrich Grässer
- Institute of Virology and Center of Human and Molecular Biology, Medical School, Saarland University, 66421, Homburg, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | | | - Barbara A Niemeyer
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
225
|
Chauhan A, Sun Y, Sukumaran P, Quenum Zangbede FO, Jondle CN, Sharma A, Evans DL, Chauhan P, Szlabick RE, Aaland MO, Birnbaumer L, Sharma J, Singh BB, Mishra BB. M1 Macrophage Polarization Is Dependent on TRPC1-Mediated Calcium Entry. iScience 2018; 8:85-102. [PMID: 30293012 PMCID: PMC6174824 DOI: 10.1016/j.isci.2018.09.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/26/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022] Open
Abstract
Macrophage plasticity is essential for innate immunity, but in-depth signaling mechanism(s) regulating their functional phenotypes are ill-defined. Here we report that interferon (IFN) γ priming of naive macrophages induces store-mediated Ca2+ entry and inhibition of Ca2+ entry impairs polarization to M1 inflammatory phenotype. In vitro and in vivo functional analyses revealed ORAI1 to be a primary contributor to basal Ca2+ influx in macrophages, whereas IFNγ-induced Ca2+ influx was mediated by TRPC1. Deficiency of TRPC1 displayed abrogated IFNγ-induced M1 inflammatory mediators in macrophages. In a preclinical model of peritonitis by Klebsiella pneumoniae infection, macrophages showed increased Ca2+ influx, which was TRPC1 dependent. Macrophages from infected TRPC1−/− mice showed inhibited expression of M1-associated signature molecules. Furthermore, in human patients with systemic inflammatory response syndrome, the level of TRPC1 expression in circulating macrophages directly correlated with M1 inflammatory mediators. Overall, TRPC1-mediated Ca2+ influx is essential for the induction/shaping of macrophage polarization to M1 inflammatory phenotype. TRPC1 mediates sterile or infection-induced Ca2+ influx and M1 phenotype in macrophages ORAI1 mediates the basal Ca2+ influx in macrophages In patients with SIRS, the TRPC1 level correlates with M1 inflammatory mediators in macrophages
Collapse
Affiliation(s)
- Arun Chauhan
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Yuyang Sun
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Pramod Sukumaran
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Fredice O Quenum Zangbede
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Christopher N Jondle
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Atul Sharma
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Dustin L Evans
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Pooja Chauhan
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Randolph E Szlabick
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Mary O Aaland
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, NIHES, NIH, 111 TW Alexander Dr., Research Triangle Park, Durham, NC 27709, USA; School of Medical Sciences, Catholic University of Argentina, Institute of Biomedical Research (BIOMED UCA-CONICET), Av. Alicia Moreau de Justo 1300, Edificio San Jose Piso 3, Buenos Aires C1107AAZ, Argentina
| | - Jyotika Sharma
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Brij B Singh
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA
| | - Bibhuti B Mishra
- Department of Biomedical Sciences and Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, 1301 N Columbia Road, Grand Forks, ND 58202, USA.
| |
Collapse
|
226
|
Saint Fleur-Lominy S, Maus M, Vaeth M, Lange I, Zee I, Suh D, Liu C, Wu X, Tikhonova A, Aifantis I, Feske S. STIM1 and STIM2 Mediate Cancer-Induced Inflammation in T Cell Acute Lymphoblastic Leukemia. Cell Rep 2018; 24:3045-3060.e5. [PMID: 30208327 PMCID: PMC6170166 DOI: 10.1016/j.celrep.2018.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is commonly associated with activating mutations in the NOTCH1 pathway. Recent reports have shown a link between NOTCH1 signaling and intracellular Ca2+ homeostasis in T-ALL. Here, we investigate the role of store-operated Ca2+ entry (SOCE) mediated by the Ca2+ channel ORAI1 and its activators STIM1 and STIM2 in T-ALL. Deletion of STIM1 and STIM2 in leukemic cells abolishes SOCE and significantly prolongs the survival of mice in a NOTCH1-dependent model of T-ALL. The survival advantage is unrelated to the leukemic cell burden but is associated with the SOCE-dependent ability of malignant T lymphoblasts to cause inflammation in leukemia-infiltrated organs. Mice with STIM1/STIM2-deficient T-ALL show a markedly reduced necroinflammatory response in leukemia-infiltrated organs and downregulation of signaling pathways previously linked to cancer-induced inflammation. Our study shows that leukemic T lymphoblasts cause inflammation of leukemia-infiltrated organs that is dependent on SOCE.
Collapse
Affiliation(s)
- Shella Saint Fleur-Lominy
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Mate Maus
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Ingo Lange
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Isabelle Zee
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - David Suh
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Cynthia Liu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Xiaojun Wu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Anastasia Tikhonova
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Stefan Feske
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA; Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
227
|
Nguyen NT, Ma G, Lin E, D'Souza B, Jing J, He L, Huang Y, Zhou Y. CRAC channel-based optogenetics. Cell Calcium 2018; 75:79-88. [PMID: 30199756 DOI: 10.1016/j.ceca.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023]
Abstract
Store-operated Ca²+ entry (SOCE) constitutes a major Ca2+ influx pathway in mammals to regulate a myriad of physiological processes, including muscle contraction, synaptic transmission, gene expression, and metabolism. In non-excitable cells, the Ca²+ release-activated Ca²+ (CRAC) channel, composed of ORAI and stromal interaction molecules (STIM), constitutes a prototypical example of SOCE to mediate Ca2+ entry at specialized membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and the plasma membrane (PM). The key steps of SOCE activation include the oligomerization of the luminal domain of the ER-resident Ca2+ sensor STIM1 upon Ca²+ store depletion, subsequent signal propagation toward the cytoplasmic domain to trigger a conformational switch and overcome the intramolecular autoinhibition, and ultimate exposure of the minimal ORAI-activating domain to directly engage and gate ORAI channels in the plasma membrane. This exquisitely coordinated cellular event is also facilitated by the C-terminal polybasic domain of STIM1, which physically associates with negatively charged phosphoinositides embedded in the inner leaflet of the PM to enable efficient translocation of STIM1 into ER-PM MCSs. Here, we present recent progress in recapitulating STIM1-mediated SOCE activation by engineering CRAC channels with optogenetic approaches. These STIM1-based optogenetic tools make it possible to not only mechanistically recapture the key molecular steps of SOCE activation, but also remotely and reversibly control Ca²+-dependent cellular processes, inter-organellar tethering at MCSs, and transcriptional reprogramming when combined with CRISPR/Cas9-based genome-editing tools.
Collapse
Affiliation(s)
- Nhung Thi Nguyen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Guolin Ma
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Eena Lin
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Brendan D'Souza
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX 76504, USA.
| |
Collapse
|
228
|
Differential DNA methylation of potassium channel KCa3.1 and immune signalling pathways is associated with infant immune responses following BCG vaccination. Sci Rep 2018; 8:13086. [PMID: 30166570 PMCID: PMC6117309 DOI: 10.1038/s41598-018-31537-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG) is the only licensed vaccine for tuberculosis (TB) and induces highly variable protection against pulmonary disease in different countries. We hypothesised that DNA methylation is one of the molecular mechanisms driving variability in BCG-induced immune responses. DNA methylation in peripheral blood mononuclear cells (PBMC) from BCG vaccinated infants was measured and comparisons made between low and high BCG-specific cytokine responders. We found 318 genes and 67 pathways with distinct patterns of DNA methylation, including immune pathways, e.g. for T cell activation, that are known to directly affect immune responses. We also highlight signalling pathways that could indirectly affect the BCG-induced immune response: potassium and calcium channel, muscarinic acetylcholine receptor, G Protein coupled receptor (GPCR), glutamate signalling and WNT pathways. This study suggests that in addition to immune pathways, cellular processes drive vaccine-induced immune responses. Our results highlight mechanisms that require consideration when designing new TB vaccines.
Collapse
|
229
|
Kim HJ, Nam YR, Kim EJ, Nam JH, Kim WK. Spirodela polyrhiza and its Chemical Constituent Vitexin Exert Anti-Allergic Effect via ORAI1 Channel Inhibition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1243-1261. [PMID: 30149756 DOI: 10.1142/s0192415x18500659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intracellular calcium signaling cascades are integral to early and late allergic responses involving mast cell degranulation and type 2 helper T cell activation, respectively. Both the responses are accompanied by the movement of calcium through the calcium release-activated calcium (CRAC) channel, encoded by the ORAI1 gene. Spirodela polyrhiza (L.) Schleid (SP) has anti-inflammatory and anti-allergic effects, but its effect on calcium signaling has not been reported. This study investigated whether a 30% ethanolic SP extract (SPEtOH) and its constituents can reduce CRAC currents ([Formula: see text]), and thus inhibit mast cell degranulation and T cell activation. In Jurkat T lymphocytes, we found that 3[Formula: see text]mg/mL SPEtOH inhibited the [Formula: see text] by [Formula: see text]%, whereas one of its constituents vitexin (100[Formula: see text][Formula: see text]M) inhibited the [Formula: see text] by [Formula: see text]%. Furthermore, in the RBL-2H3 mast cell, the [Formula: see text] was inhibited by 3[Formula: see text]mg/mL SPEtOH ([Formula: see text]%) and 100[Formula: see text][Formula: see text]M vitexin ([Formula: see text]%). Investigation of human primary T cell proliferation induced by co-stimulation with antibodies to cluster of differentiation 3 and 28, and of RBL-2H3 mast cell degranulation following IgE-antigen complex stimulation revealed that 100[Formula: see text][Formula: see text]M vitexin inhibited both T-cell proliferation (by [Formula: see text]%) and mast cell degranulation (by [Formula: see text]%). These effects were concentration-dependent, and no cytotoxicity was observed. Our findings suggest that vitexin is a promising candidate compound for the development of therapeutic agents to prevent and treat allergic diseases.
Collapse
Affiliation(s)
- Hyun Jong Kim
- * Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,† Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Yu Ran Nam
- * Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,† Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Eun-Jung Kim
- ‡ Department of Acupuncture & Moxibustion, College of Korean Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Joo Hyun Nam
- * Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea.,† Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Woo Kyung Kim
- † Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, Gyeonggi-do 10326, Republic of Korea.,§ Department of Internal Medicine, Graduate School of Medicine, Dongguk University, Goyang, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|
230
|
Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, Sandoval-Hernández MA, Possani LD, Rosenstein Y. K v1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4 + effector memory T cell response to TCR stimulation. Cell Commun Signal 2018; 16:45. [PMID: 30107837 PMCID: PMC6092819 DOI: 10.1186/s12964-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. METHODS We combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin. RESULTS The peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery. CONCLUSIONS The Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Erika Isabel Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Monserrat Alba Sandoval-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
231
|
Jaracz-Ros A, Hémon P, Krzysiek R, Bachelerie F, Schlecht-Louf G, Gary-Gouy H. OMIP-048 MC: Quantification of calcium sensors and channels expression in lymphocyte subsets by mass cytometry. Cytometry A 2018; 93:681-684. [DOI: 10.1002/cyto.a.23504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 04/11/2018] [Accepted: 05/11/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Agnieszka Jaracz-Ros
- Inflammation Chimiokines et Immunopathologie, INSERM; Faculté de Médecine, Universite Paris-Sud, Université Paris-Saclay; Clamart France
| | - Patrice Hémon
- Inflammation Chimiokines et Immunopathologie, INSERM; Faculté de Médecine, Universite Paris-Sud, Université Paris-Saclay; Clamart France
| | - Roman Krzysiek
- Inflammation Chimiokines et Immunopathologie, INSERM; Faculté de Médecine, Universite Paris-Sud, Université Paris-Saclay; Clamart France
| | - Françoise Bachelerie
- Inflammation Chimiokines et Immunopathologie, INSERM; Faculté de Médecine, Universite Paris-Sud, Université Paris-Saclay; Clamart France
| | - Géraldine Schlecht-Louf
- Inflammation Chimiokines et Immunopathologie, INSERM; Faculté de Médecine, Universite Paris-Sud, Université Paris-Saclay; Clamart France
| | - Hélène Gary-Gouy
- US31-UMS3679 -Plateforme PLAIMMO; Institut Paris-Saclay d'Innovation Thérapeutique (IPSIT), INSERM, CNRS, Univ.Paris-Sud, Université Paris-Saclay; Clamart France
| |
Collapse
|
232
|
Rasti A, Mehrazma M, Madjd Z, Abolhasani M, Saeednejad Zanjani L, Asgari M. Co-expression of Cancer Stem Cell Markers OCT4 and NANOG Predicts Poor Prognosis in Renal Cell Carcinomas. Sci Rep 2018; 8:11739. [PMID: 30082842 PMCID: PMC6079110 DOI: 10.1038/s41598-018-30168-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 07/20/2018] [Indexed: 12/26/2022] Open
Abstract
Many renal cancer patients experience disease recurrence after combined treatments or immunotherapy due to permanence of cancer stem cells (CSCs). This study was conducted to evaluate the expression patterns and clinical significance of octamer-binding transcription factor 4 (OCT4) and NANOG as the key stem cell factors in renal cell carcinoma (RCC). A total of 186 RCC tissues were immunostained on a tissue microarray (TMA) for the putative CSC markers OCT4 and NANOG. Subsequently, the correlation among the expression of these markers, the clinicopathological variables and survival outcomes were determined. OCT4 and NANOG were expressed in both the nucleus and the cytoplasm of RCC cells. Coexpression of OCT4 and NANOG in renal cancer was significantly associated with RCC subtypes. A significant association was found among nuclear coexpression of OCT4 and NANOG, worse PFS in RCC, and the clear cell renal cell carcinomas (ccRCC) subtype. The OCT4-nuclear high/NANOG-nuclear high phenotype in RCC and ccRCC subtype indicated aggressive tumor behavior and predicted a worse clinical outcome, which may be a useful biomarker to identify patients at high risk of postoperative recurrence and metastasis. Cytoplasmic expression of NANOG could be considered as a novel independent prognostic predictor in patients with renal cancer.
Collapse
Affiliation(s)
- Arezoo Rasti
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran
| | - Mitra Mehrazma
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran. .,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| | | | - Mojgan Asgari
- Oncopathology Research Centre, Iran University of medical Sciences (IUMS), Tehran, Iran.,Hasheminejad Kidney Center, Iran University of Medical Sciences, (IUMS), Tehran, Iran
| |
Collapse
|
233
|
Ali MS, Gill KS, Saglio G, Cilloni D, Soden DM, Forde PF. Expressional changes in stemness markers post electrochemotherapy in pancreatic cancer cells. Bioelectrochemistry 2018; 122:84-92. [DOI: 10.1016/j.bioelechem.2018.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
|
234
|
Abstract
Cancer is a major cause of death. The diversity of cancer types and the propensity of cancers to acquire resistance to therapies, including new molecularly targeted and immune-based therapies, drives the search for new ways to understand cancer progression. The remodelling of calcium (Ca2+) signalling and the role of the Ca2+ signal in controlling key events in cancer cells such as proliferation, invasion and the acquisition of resistance to cell death pathways is well established. Most of the work defining such changes has focused on Ca2+ permeable Transient Receptor Potential (TRP) Channels and some voltage gated Ca2+ channels. However, the identification of ORAI channels, a little more than a decade ago, has added a new dimension to how a Ca2+ influx pathway can be remodelled in some cancers and also how calcium signalling could contribute to tumour progression. ORAI Ca2+ channels are now an exemplar for how changes in the expression of specific isoforms of a Ca2+ channel component can occur in cancer, and how such changes can vary between cancer types (e.g. breast cancer versus prostate cancer), and even subtypes (e.g. oestrogen receptor positive versus oestrogen receptor negative breast cancers). ORAI channels and store operated Ca2+ entry are also highlighting the diverse roles of Ca2+ influx pathways in events such as the growth and metastasis of cancers, the development of therapeutic resistance and the contribution of tumour microenvironmental factors in cancer progression. In this review we will highlight some of the studies that have provided evidence for the need to deepen our understanding of ORAI Ca2+ channels in cancer. Many of these studies have also suggested new ways on how we can exploit the role of ORAI channels in cancer relevant processes to develop or inform new therapeutic strategies.
Collapse
|
235
|
Whole-exome sequencing identifies rare genetic variations in German families with pulmonary sarcoidosis. Hum Genet 2018; 137:705-716. [DOI: 10.1007/s00439-018-1915-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/20/2018] [Indexed: 12/12/2022]
|
236
|
Eichinger P, Herrmann AM, Ruck T, Herty M, Gola L, Kovac S, Budde T, Meuth SG, Hundehege P. Human T cells in silico: Modelling dynamic intracellular calcium and its influence on cellular electrophysiology. J Immunol Methods 2018; 461:78-84. [PMID: 30158076 DOI: 10.1016/j.jim.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
Abstract
A network of ion currents influences basic cellular T cell functions. After T cell receptor activation, changes in highly regulated calcium levels play a central role in triggering effector functions and cell differentiation. A dysregulation of these processes might be involved in the pathogenesis of several diseases. We present a mathematical model based on the NEURON simulation environment that computes dynamic calcium levels in combination with the current output of diverse ion channels (KV1.3, KCa3.1, K2P channels (TASK1-3, TRESK), VRAC, TRPM7, CRAC). In line with experimental data, the simulation shows a strong increase in intracellular calcium after T cell receptor stimulation before reaching a new, elevated calcium plateau in the T cell's activated state. Deactivation of single ion channel modules, mimicking the application of channel blockers, reveals that two types of potassium channels are the main regulators of intracellular calcium level: calcium-dependent potassium (KCa3.1) and two-pore-domain potassium (K2P) channels.
Collapse
Affiliation(s)
- Paul Eichinger
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Alexander M Herrmann
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Herty
- RWTH Aachen University, Mathematics (Continuous optimization), Templergraben 55, 52056 Aachen, Germany
| | - Lukas Gola
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Stjepana Kovac
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München TUM, Ismaninger Straße 22, 81675 Munich, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Petra Hundehege
- Department of Neurology with Institute of Translational Neurology, Albert-Schweitzer-Campus 1, Building A1, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
| |
Collapse
|
237
|
Nguyen NT, Han W, Cao W, Wang Y, Wen S, Huang Y, Li M, Du L, Zhou Y. Store‐Operated Calcium Entry Mediated by ORAI and STIM. Compr Physiol 2018; 8:981-1002. [DOI: 10.1002/cphy.c170031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
238
|
dSTIM- and Ral/Exocyst-Mediated Synaptic Release from Pupal Dopaminergic Neurons Sustains Drosophila Flight. eNeuro 2018; 5:eN-NWR-0455-17. [PMID: 29938216 PMCID: PMC6011419 DOI: 10.1523/eneuro.0455-17.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022] Open
Abstract
Manifestation of appropriate behavior in adult animals requires developmental mechanisms that help in the formation of correctly wired neural circuits. Flight circuit development in Drosophila requires store-operated calcium entry (SOCE) through the STIM/Orai pathway. SOCE-associated flight deficits in adult Drosophila derive extensively from regulation of gene expression in pupal neurons, and one such SOCE-regulated gene encodes the small GTPase Ral. The cellular mechanism by which Ral helps in maturation of the flight circuit was not understood. Here, we show that knockdown of components of a Ral effector, the exocyst complex, in pupal neurons also leads to reduced flight bout durations, and this phenotype derives primarily from dopaminergic neurons. Importantly, synaptic release from pupal dopaminergic neurons is abrogated upon knockdown of dSTIM, Ral, or exocyst components. Ral overexpression restores the diminished synaptic release of dStim knockdown neurons as well as flight deficits associated with dSTIM knockdown in dopaminergic neurons. These results identify Ral-mediated vesicular release as an effector mechanism of neuronal SOCE in pupal dopaminergic neurons with functional consequences on flight behavior.
Collapse
|
239
|
Zhu J, Lu X, Feng Q, Stathopulos PB. A charge-sensing region in the stromal interaction molecule 1 luminal domain confers stabilization-mediated inhibition of SOCE in response to S-nitrosylation. J Biol Chem 2018; 293:8900-8911. [PMID: 29661937 PMCID: PMC5995509 DOI: 10.1074/jbc.ra117.000503] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/29/2018] [Indexed: 01/30/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a major Ca2+ signaling pathway facilitating extracellular Ca2+ influx in response to the initial release of intracellular endo/sarcoplasmic reticulum (ER/SR) Ca2+ stores. Stromal interaction molecule 1 (STIM1) is the Ca2+ sensor that activates SOCE following ER/SR Ca2+ depletion. The EF-hand and the adjacent sterile α-motif (EFSAM) domains of STIM1 are essential for detecting changes in luminal Ca2+ concentrations. Low ER Ca2+ levels trigger STIM1 destabilization and oligomerization, culminating in the opening of Orai1-composed Ca2+ channels on the plasma membrane. NO-mediated S-nitrosylation of cysteine thiols regulates myriad protein functions, but its effects on the structural mechanisms that regulate SOCE are unclear. Here, we demonstrate that S-nitrosylation of Cys49 and Cys56 in STIM1 enhances the thermodynamic stability of its luminal domain, resulting in suppressed hydrophobic exposure and diminished Ca2+ depletion-dependent oligomerization. Using solution NMR spectroscopy, we pinpointed a structural mechanism for STIM1 stabilization driven by complementary charge interactions between an electropositive patch on the core EFSAM domain and the S-nitrosylated nonconserved region of STIM1. Finally, using live cells, we found that the enhanced luminal domain stability conferred by either Cys49 and Cys56S-nitrosylation or incorporation of negatively charged residues into the EFSAM electropositive patch in the full-length STIM1 context significantly suppresses SOCE. Collectively, our results suggest that S-nitrosylation of STIM1 inhibits SOCE by interacting with an electropositive patch on the EFSAM core, which modulates the thermodynamic stability of the STIM1 luminal domain.
Collapse
Affiliation(s)
- Jinhui Zhu
- From the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Xiangru Lu
- From the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Qingping Feng
- From the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Peter B Stathopulos
- From the Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
240
|
de la Zerda A, Kratochvil MJ, Suhar NA, Heilshorn SC. Review: Bioengineering strategies to probe T cell mechanobiology. APL Bioeng 2018; 2:021501. [PMID: 31069295 PMCID: PMC6324202 DOI: 10.1063/1.5006599] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
T cells play a major role in adaptive immune response, and T cell dysfunction can lead to the progression of several diseases that are often associated with changes in the mechanical properties of tissues. However, the concept that mechanical forces play a vital role in T cell activation and signaling is relatively new. The endogenous T cell microenvironment is highly complex and dynamic, involving multiple, simultaneous cell-cell and cell-matrix interactions. This native complexity has made it a challenge to isolate the effects of mechanical stimuli on T cell activation. In response, researchers have begun developing engineered platforms that recapitulate key aspects of the native microenvironment to dissect these complex interactions in order to gain a better understanding of T cell mechanotransduction. In this review, we first describe some of the unique characteristics of T cells and the mounting research that has shown they are mechanosensitive. We then detail the specific bioengineering strategies that have been used to date to measure and perturb the mechanical forces at play during T cell activation. In addition, we look at engineering strategies that have been used successfully in mechanotransduction studies for other cell types and describe adaptations that may make them suitable for use with T cells. These engineering strategies can be classified as 2D, so-called 2.5D, or 3D culture systems. In the future, findings from this emerging field will lead to an optimization of culture environments for T cell expansion and the development of new T cell immunotherapies for cancer and other immune diseases.
Collapse
Affiliation(s)
- Adi de la Zerda
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | | | - Nicholas A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
241
|
Cheng CH, Guo ZX, Wang AL. The protective effects of taurine on oxidative stress, cytoplasmic free-Ca 2+ and apoptosis of pufferfish (Takifugu obscurus) under low temperature stress. FISH & SHELLFISH IMMUNOLOGY 2018; 77:457-464. [PMID: 29656127 DOI: 10.1016/j.fsi.2018.04.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
The present study was aimed to investigate the low temperature toxicity and its protection by taurine in pufferfish. The experimental basal diets supplemented with taurine at the rates of 250 (control), 550, 850, 1140, 1430, 1740 mg kg-1 were fed to fish for 8 weeks. The results showed that fish fed diet with taurine had significantly improved weight gain and specific growth rate. After the feeding trial, the fish were then exposed to low temperature stress. The results showed that low temperature stress could induce reactive oxygen species (ROS) generation, disturb the cytoplasm Ca2+ homeostasis, and lead to oxidative stress and apoptosis. Compared with the control group, dietary taurine supplementation groups increased antioxidant enzyme genes such as manganese superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and catalase (CAT), heat shock proteins (HSP70) and complement C3 (C3) mRNA levels under low temperature stress. Meanwhile, dietary taurine supplementation groups reduced ROS generation, and stabilized the cytoplasm Ca2+ under low temperature stress. Furthermore, dietary taurine supplementation groups reduced apoptosis via decreasing caspase-3 activity. This is the first report to demonstrate the mechanisms of taurine against low temperature stress in fish.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China.
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510300, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center (SCS-REPIC), PR China.
| | - An-Li Wang
- Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
242
|
Vaeth M, Feske S. Ion channelopathies of the immune system. Curr Opin Immunol 2018; 52:39-50. [PMID: 29635109 PMCID: PMC6004246 DOI: 10.1016/j.coi.2018.03.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/25/2023]
Abstract
Ion channels and transporters move ions across membrane barriers and are essential for a host of cell functions in many organs. They conduct K+, Na+ and Cl-, which are essential for regulating the membrane potential, H+ to control intracellular and extracellular pH and divalent cations such as Ca2+, Mg2+ and Zn2+, which function as second messengers and cofactors for many proteins. Inherited channelopathies due to mutations in ion channels or their accessory proteins cause a variety of diseases in the nervous, cardiovascular and other tissues, but channelopathies that affect immune function are not as well studied. Mutations in ORAI1 and STIM1 genes that encode the Ca2+ release-activated Ca2+ (CRAC) channel in immune cells, the Mg2+ transporter MAGT1 and the Cl- channel LRRC8A all cause immunodeficiency with increased susceptibility to infection. Mutations in the Zn2+ transporters SLC39A4 (ZIP4) and SLC30A2 (ZnT2) result in nutritional Zn2+ deficiency and immune dysfunction. These channels, however, only represent a fraction of ion channels that regulate immunity as demonstrated by immune dysregulation in channel knockout mice. The immune system itself can cause acquired channelopathies that are associated with a variety of diseases of nervous, cardiovascular and endocrine systems resulting from autoantibodies binding to ion channels. These autoantibodies highlight the therapeutic potential of functional anti-ion channel antibodies that are being developed for the treatment of autoimmune, inflammatory and other diseases.
Collapse
Affiliation(s)
- Martin Vaeth
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
243
|
Role of nutritional vitamin D in osteoporosis treatment. Clin Chim Acta 2018; 484:179-191. [PMID: 29782843 DOI: 10.1016/j.cca.2018.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 01/02/2023]
Abstract
Osteoporosis is a systemic skeletal disorder characterized by a decrease in bone mass and microarchitectural deterioration of bone tissue. The World Health Organization has defined osteoporosis as a decrease in bone mass (50%) and bony quality (50%). Vitamin D, a steroid hormone, is crucial for skeletal health and in mineral metabolism. Its direct action on osteoblasts and osteoclasts and interaction with nonskeletal tissues help in maintaining a balance between bone turnover and bone growth. Vitamin D affects the activity of osteoblasts, osteoclasts, and osteocytes, suggesting that it affects bone formation, bone resorption, and bone quality. At physiological concentrations, active vitamin D maintains a normal rate of bone resorption and formation through the RANKL/OPG signal. However, active vitamin D at pharmacological concentration inhibits bone resorption at a higher rate than that of bone formation, which influences the bone quality and quantity. Nutritional vitamin D rather than active vitamin D activates osteoblasts and maintains serum 25(OH)D3 concentration. Despite many unanswered questions, much data support nutritional vitamin D use in osteoporosis patients. This article emphasizes the role of nutritional vitamin D replacement in different turnover status (high or low bone turnover disorders) of osteoporosis together with either anti-resorptive (Bisphosphonate, Denosumab et.) or anabolic (Teriparatide) agents when osteoporosis persists.
Collapse
|
244
|
Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schöls L. To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 2018; 74:29-34. [PMID: 29807219 DOI: 10.1016/j.ceca.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
The pore forming Ca2+ release activated Ca2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany.
| | - Lisann Pelzl
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Andreas Hermann
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Germany & DZNE, German Center for Neurodegenerative Diseases, Research Site Dresden, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
245
|
Voos P, Fuck S, Weipert F, Babel L, Tandl D, Meckel T, Hehlgans S, Fournier C, Moroni A, Rödel F, Thiel G. Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells. Front Immunol 2018; 9:922. [PMID: 29760710 PMCID: PMC5936756 DOI: 10.3389/fimmu.2018.00922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
Impairment or stimulation of the immune system by ionizing radiation (IR) impacts on immune surveillance of tumor cells and non-malignant cells and can either foster therapy response or side effects/toxicities of radiation therapy. For a better understanding of the mechanisms by which IR modulates T-cell activation and alters functional properties of these immune cells, we exposed human immortalized Jurkat cells and peripheral blood lymphocytes (PBL) to X-ray doses between 0.1 and 5 Gy. This resulted in cellular responses, which are typically observed also in naïve T-lymphocytes in response of T-cell receptor immune stimulation or mitogens. These responses include oscillations of cytosolic Ca2+, an upregulation of CD25 surface expression, interleukin-2 and interferon-γ synthesis, elevated expression of Ca2+ sensitive K+ channels and an increase in cell diameter. The latter was sensitive to inhibition by the immunosuppressant cyclosporine A, Ca2+ buffer BAPTA-AM, and the CDK1-inhibitor RO3306, indicating the involvement of Ca2+-dependent immune activation and radiation-induced cell cycle arrest. Furthermore, on a functional level, Jurkat and PBL cell adhesion to endothelial cells was increased upon radiation exposure and was highly dependent on an upregulation of integrin beta-1 expression and clustering. In conclusion, we here report that IR impacts on immune activation and functional properties of T-lymphocytes that may have implications in both toxic effects and treatment response to combined radiation and immune therapy in cancer patients.
Collapse
Affiliation(s)
- Patrick Voos
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sebastian Fuck
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Fabian Weipert
- Department of Radiotherapy and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Laura Babel
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Dominique Tandl
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Tobias Meckel
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Frankfurt am Main, Germany
| | - Gerhard Thiel
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
246
|
Freitas CMT, Johnson DK, Weber KS. T Cell Calcium Signaling Regulation by the Co-Receptor CD5. Int J Mol Sci 2018; 19:E1295. [PMID: 29701673 PMCID: PMC5983667 DOI: 10.3390/ijms19051295] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Calcium influx is critical for T cell effector function and fate. T cells are activated when T cell receptors (TCRs) engage peptides presented by antigen-presenting cells (APC), causing an increase of intracellular calcium (Ca2+) concentration. Co-receptors stabilize interactions between the TCR and its ligand, the peptide-major histocompatibility complex (pMHC), and enhance Ca2+ signaling and T cell activation. Conversely, some co-receptors can dampen Ca2+ signaling and inhibit T cell activation. Immune checkpoint therapies block inhibitory co-receptors, such as cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) and programmed death 1 (PD-1), to increase T cell Ca2+ signaling and promote T cell survival. Similar to CTLA-4 and PD-1, the co-receptor CD5 has been known to act as a negative regulator of T cell activation and to alter Ca2+ signaling and T cell function. Though much is known about the role of CD5 in B cells, recent research has expanded our understanding of CD5 function in T cells. Here we review these recent findings and discuss how our improved understanding of CD5 Ca2+ signaling regulation could be useful for basic and clinical research.
Collapse
Affiliation(s)
- Claudia M Tellez Freitas
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| | - Deborah K Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| | - K Scott Weber
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84604, USA.
| |
Collapse
|
247
|
Abstract
![]()
T cells
expressing tumor-specific T cell receptors are promising cancer therapeutic
agents, but safety control switches are needed to manage potential
side effects arising from overactivity. Here, we present the first
dual small molecule-gated ZAP70 signaling switch for the regulation
of T cell activity. We show that when an analogue-sensitive ZAP70
allele is fused to the engineered ligand binding domain of the estrogen
receptor, ERT2, its activity can be upregulated to an extent
by a metabolite of an FDA-approved tamoxifen, 4-hydroxy-tamoxifen,
and downregulated by an ATP analogue, 3-MB-PP1. The strength of early
T cell signaling can also be modulated by varying the concentrations
of activator and inhibitor, and the switch exhibits temporal control
on the time scale of minutes. Interestingly, the switch has the ability
to control CD69 and calcium levels in T cells but has limited capabilities
in the regulation of downstream cytokine release, suggesting further
investigation is needed before it can be implemented in adoptive T
cell therapy.
Collapse
Affiliation(s)
- Nicole M. L. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Wilson W. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
248
|
Al-Aghbar MA, Chu YS, Chen BM, Roffler SR. High-Affinity Ligands Can Trigger T Cell Receptor Signaling Without CD45 Segregation. Front Immunol 2018; 9:713. [PMID: 29686683 PMCID: PMC5900011 DOI: 10.3389/fimmu.2018.00713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
How T cell receptors (TCRs) are triggered to start signaling is still not fully understood. It has been proposed that segregation of the large membrane tyrosine phosphatase CD45 from engaged TCRs initiates signaling by favoring phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) in the cytoplasmic domains of CD3 molecules. However, whether CD45 segregation is important to initiate triggering is still uncertain. We examined CD45 segregation from TCRs engaged to anti-CD3 scFv with high or low affinity and with defined molecular lengths on glass-supported lipid bilayers using total internal reflection microscopy. Both short and elongated high-affinity anti-CD3 scFv effectively induced similar calcium mobilization, Zap70 phosphorylation, and cytokine secretion in Jurkat T cells but CD45 segregated from activated TCR microclusters significantly less for elongated versus short anti-CD3 ligands. In addition, at early times, triggering cells with both high and low affinity elongated anti-CD3 scFv resulted in similar degrees of CD3 co-localization with CD45, but only the high-affinity scFv induced T cell activation. The lack of correlation between CD45 segregation and early markers of T cell activation suggests that segregation of CD45 from engaged TCRs is not mandatory for initial triggering of TCR signaling by elongated high-affinity ligands.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University, Academia Sinica, Taipei, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yeh-Shiu Chu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Mae Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
249
|
Weatherly LM, Nelson AJ, Shim J, Riitano AM, Gerson ED, Hart AJ, de Juan-Sanz J, Ryan TA, Sher R, Hess ST, Gosse JA. Antimicrobial agent triclosan disrupts mitochondrial structure, revealed by super-resolution microscopy, and inhibits mast cell signaling via calcium modulation. Toxicol Appl Pharmacol 2018; 349:39-54. [PMID: 29630968 DOI: 10.1016/j.taap.2018.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 01/15/2023]
Abstract
The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology.
Collapse
Affiliation(s)
- Lisa M Weatherly
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Andrew J Nelson
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Juyoung Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Abigail M Riitano
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Erik D Gerson
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Andrew J Hart
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | | | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Roger Sher
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Samuel T Hess
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Physics and Astronomy, University of Maine, Orono, ME, USA.
| | - Julie A Gosse
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.
| |
Collapse
|
250
|
Yuan XL, Zhao YP, Huang J, Liu JC, Mao WQ, Yin J, Peng BW, Liu WH, Han S, He XH. A Kv1.3 channel-specific blocker alleviates neurological impairment through inhibiting T-cell activation in experimental autoimmune encephalomyelitis. CNS Neurosci Ther 2018; 24:967-977. [PMID: 29577640 DOI: 10.1111/cns.12848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/18/2022] Open
Abstract
AIM Multiple sclerosis (MS) is a neurological autoimmune disorder characterized by mistaken attacks of inflammatory cells against the central nervous system (CNS), resulting in demyelination and axonal damage. Kv1.3 channel blockers can inhibit T-cell activation and have been designed for MS therapy. However, little is known about the effects of Kv1.3 blockers on protecting myelin sheaths/axons in MS. This study aimed at investigating the neuroprotection efficacy of a selective Kv1.3 channel blocker ImKTx88 (ImK) in MS animal model. METHODS Experimental autoimmune encephalomyelitis (EAE) rat model was established. The neuroprotective effect of ImK was assessed by immunohistochemistry and transmission electron microscopy (TEM). In addition, the antiinflammatory effect of ImK by suppressing T-cell activation was assessed by flow cytometry and ELISA in vitro. RESULTS Our results demonstrated that ImK administration ameliorated EAE clinical severity. Moreover, ImK increased oligodendrocytes survival, preserved axons, and myelin integrity and reduced the infiltration of activated T cells into the CNS. This protective effect of the peptide may be related to its suppression of autoantigen-specific T-cell activation via calcium influx inhibition. CONCLUSION ImK prevents neurological damage by suppressing T-cell activation, suggesting the applicability of this peptide in MS therapy.
Collapse
Affiliation(s)
- Xiao-Lu Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yi-Peng Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun-Chen Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Qian Mao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bi-Wen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|