201
|
Prediction Potential of Serum miR-155 and miR-24 for Relapsing Early Breast Cancer. Int J Mol Sci 2017; 18:ijms18102116. [PMID: 28994735 PMCID: PMC5666798 DOI: 10.3390/ijms18102116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenic microRNAs (oncomiRs) accumulate in serum due to their increased stability and thus serve as biomarkers in breast cancer (BC) pathogenesis. Four oncogenic microRNAs (miR-155, miR-19a, miR-181b, and miR-24) and one tumor suppressor microRNA (let-7a) were shown to differentiate between high- and low-risk early breast cancer (EBC) and reflect the surgical tumor removal and adjuvant therapy. Here we applied the longitudinal multivariate data analyses to stochastically model the serum levels of each of the oncomiRs using the RT-PCR measurements in the EBC patients (N = 133) that were followed up 4 years after diagnosis. This study identifies that two of the studied oncomiRs, miR-155 and miR-24, are highly predictive of EBC relapse. Furthermore, combining the oncomiR level with Ki-67 expression further specifies the relapse probability. Our data move further the notion that oncomiRs in serum enable not only monitoring of EBC but also are a very useful tool for predicting relapse independently of any other currently analyzed characteristics in EBC patients. Our approach can be translated into medical practice to estimate individual relapse risk of EBC patients.
Collapse
|
202
|
Zhao L, Zhao W, Liu Y, Chen X, Wang Y. Nano-Hydroxyapatite-Derived Drug and Gene Co-Delivery System for Anti-Angiogenesis Therapy of Breast Cancer. Med Sci Monit 2017; 23:4723-4732. [PMID: 28968380 PMCID: PMC5635948 DOI: 10.12659/msm.902538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Breast cancer is among the deadliest cancers across the world and is responsible for countless deaths. There is an urgent need for co-delivery systems which can simultaneously transport both drug and gene into a single cancer cell with low toxicity and high anti-angiogenesis efficiency. MATERIAL AND METHODS In the present study, well-formed amine-functionalized hydroxyapatite nanoparticles based on combined angiogenesis therapy for breast cancer were successfully constructed for the simultaneous delivery of p53 and candesartan (CD) (p53/CD/NHAP). RESULTS In vitro and in vivo experiments revealed that p53/CD/NHAP can effectively transfer the p53 gene and deliver the loaded CD to achieve preferable anti-breast cancer effect both at the cellular level and in tumor-bearing mice. This may possibly be due to the combined anti-angiogenic mechanisms of p53 and CD via different pathways. CONCLUSIONS p53/CD/NHAP might be a candidate carrier for efficient anti-angiogenesis therapy of breast cancer.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Hematology, Tumor Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Wenhui Zhao
- Department of Internal Medicine, Tumor Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Ye Liu
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Xue Chen
- Department of Hematology, Tumor Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yan Wang
- Department of Hematology, Tumor Hospital Affiliated to Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
203
|
Clinically relevant HIF-1α-dependent metabolic reprogramming in oropharyngeal squamous cell carcinomas includes coordinated activation of CAIX and the miR-210/ISCU signaling axis, but not MCT1 and MCT4 upregulation. Oncotarget 2017; 8:13730-13746. [PMID: 28099149 PMCID: PMC5355133 DOI: 10.18632/oncotarget.14629] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/03/2017] [Indexed: 02/04/2023] Open
Abstract
Metabolic reprogramming is a very heterogeneous phenomenon in cancer. It mostly consists on increased glycolysis, lactic acid formation and extracellular acidification. These events have been associated to increased activity of the hypoxia inducible factor, HIF-1α. This study aimed at defining the metabolic program activated by HIF-1α in oropharyngeal squamous cell carcinomas (SCC) and assessing its clinical impact. Global gene/miRNA expression was analyzed in SCC-derived cells exposed to hypoxia. Expression of HIF-1α, the carbonic anhydrase CAIX, and the lactate/H+ transporters MCT1 and MCT4 were analyzed by immunohistochemistry in 246 SCCs. Cell-based analysis revealed that HIF-1α-driven metabolic program includes over-expression of glycolytic enzymes and the microRNA miR-210 coupled to down-regulation of its target, the iron-sulfur cluster assembly protein, ISCU. pH-regulator program entailed over-expression of CAIX, but not MCT1 or MCT4. Accordingly, significant overlapping exists between over-expression of HIF-1α and CAIX, but not HIF-1α and MCT1 or MCT4, in tumor cells. Increased miR-210 and concomitant decreased ISCU RNA levels were found in ~40% of tumors and this was significantly associated with HIF-1α and CAIX, but not MCT1 or MCT4, over-expression. HIF-1α and/or CAIX over-expression was associated with high recurrence rate and low overall survival of surgically treated patients. By contrast, clinically significant correlations were not found in tumors with MCT1 or MCT4 over-expression. This is the first study that provides in vivo evidences of coordinated activation of HIF-1α, CAIX, miR-210 and ISCU in carcinoma and association with poor prognosis, a finding with important implications for the development of metabolic-targeting therapies against hypoxia.
Collapse
|
204
|
Prognostic value of microRNA-9 and microRNA-155 expression in triple-negative breast cancer. Hum Pathol 2017; 68:69-78. [PMID: 28882698 DOI: 10.1016/j.humpath.2017.08.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are involved in regulation of epithelial-mesenchymal transition (EMT) during breast cancer progression. The purpose of this study was to analyze the clinicopathologic significance of expression of EMT-related miRNAs, miR-9 and miR-155, in triple-negative breast cancers (TNBCs). We analyzed relative expression levels of miR-9 and miR-155 in 190 surgically resected TNBC specimens using quantitative real-time polymerase chain reaction. Then we analyzed the relationship between these miRNA expression levels and EMT marker expression (vimentin, smooth muscle actin [SMA], osteonectin, N-cadherin, E-cadherin, CD146, and ZEB1) assessed by immunohistochemistry. We also evaluated the prognostic significance of these miRNA expression levels. While miR-9 expression level showed a positive correlation with pT category, miR-155 expression level did not correlate with any clinicopathologic features of TNBCs. In relation to EMT phenotype, miR-9 expression was not associated with EMT marker expression except for SMA. However, miR-155 expression level correlated inversely with the expression of several EMT markers including SMA, osteonectin, and CD146. We observed that both miR-9 and miR-155 could be prognostic markers in TNBC in opposite ways; high level of miR-9 expression showed significant association with poor disease-free survival and distant metastasis-free survival (DMFS) in TNBC, while high level of miR-155 expression was associated with better DMFS. Our study suggests that expression levels of both miR-9 and miR-155 can serve as candidates for prognostic biomarkers in TNBCs.
Collapse
|
205
|
Duell EJ, Lujan-Barroso L, Sala N, McElyea SD, Overvad K, Tjonneland A, Olsen A, Weiderpass E, Busund LT, Moi L, Muller D, Vineis P, Aune D, Matullo G, Naccarati A, Panico S, Tagliabue G, Tumino R, Palli D, Kaaks R, Katzke VA, Boeing H, Bueno-de-Mesquita H, Peeters PH, Trichopoulou A, Lagiou P, Kotanidou A, Travis RC, Wareham N, Khaw KT, Quiros JR, Rodríguez-Barranco M, Dorronsoro M, Chirlaque MD, Ardanaz E, Severi G, Boutron-Ruault MC, Rebours V, Brennan P, Gunter M, Scelo G, Cote G, Sherman S, Korc M. Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study. Int J Cancer 2017; 141:905-915. [PMID: 28542740 PMCID: PMC5536971 DOI: 10.1002/ijc.30790] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023]
Abstract
Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p).
Collapse
Affiliation(s)
- Eric J. Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Leila Lujan-Barroso
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Núria Sala
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - Samantha Deitz McElyea
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kim Overvad
- Aarhus University, Department of Public Health, Section for Epidemiology, Aarhus C, Denmark
| | | | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elisabete Weiderpass
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
| | - Lill-Tove Busund
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Line Moi
- Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - David Muller
- School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom
| | - Paolo Vineis
- School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom
| | - Dagfinn Aune
- School of Public Health, Epidemiology & Biostatistics, Imperial College London, London, United Kingdom
| | - Giuseppe Matullo
- Human Genetics Foundation (HuGeF), Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Giovanna Tagliabue
- Lombardy Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Cancer Research and Prevention Institute – ISPO, Florence- Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena A. Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Nuthetal, Germany
| | - H.B(as) Bueno-de-Mesquita
- Dt. for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Dt. of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Dt. of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Petra H. Peeters
- Dept of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
- MRC-PHE Centre for Environment and Health, Dept of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, UK
| | - Antonia Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Pagona Lagiou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Dept. of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece
- Department of Epidemiology, Harvard School of Public Health, Boston, USA
| | - Anastasia Kotanidou
- Hellenic Health Foundation, Athens, Greece
- Department of Critical Care Medicine & Pulmonary Services, University of Athens Medical School, Evangelismos Hospital, Athens, Greece
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nick Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Miguel Rodríguez-Barranco
- Andalusian School of Public Health, Research Insititute Biosanitary Granada, University Hospital Granada/University of Granada, Granada
- CIBER Epidemiology and Public Health (CIBERESP), Madrid
| | - Miren Dorronsoro
- CIBER Epidemiology and Public Health (CIBERESP), Madrid
- Basque Regional Health Department, San Sebatian, Spain
| | - María-Dolores Chirlaque
- CIBER Epidemiology and Public Health (CIBERESP), Madrid
- Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain
| | - Eva Ardanaz
- CIBER Epidemiology and Public Health (CIBERESP), Madrid
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gianluca Severi
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, Villejuif, France
| | | | - Vinciane Rebours
- Pancreatology Unit, Beaujon Hospital, Clichy, France
- INSERM, University Paris, France
| | - Paul Brennan
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Marc Gunter
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Greg Cote
- Medical University of South Carolina, Charleston, USA
| | - Stuart Sherman
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Murray Korc
- Departments of Medicine and Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
- Pancreatic Cancer Signature Center, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, USA
| |
Collapse
|
206
|
Liu F, Wu W, Wu K, Chen Y, Wu H, Wang H, Zhang W. MiR-203 Participates in Human Placental Angiogenesis by Inhibiting VEGFA and VEGFR2 Expression. Reprod Sci 2017; 25:358-365. [PMID: 28826364 DOI: 10.1177/1933719117725817] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis during placentation is of great significance in maintaining normal pregnancy. However, the molecular mechanisms of this process are not clear. It has been reported that miR-203 plays a critical role in the development and progression of many tumors but not focused on the relationship between miR-203 and placental angiogenesis. The present study aims to illustrate the correlation between miR-203 and vascular endothelial growth factor (VEGFA)/vascular endothelial growth factor receptors 2 (VEGFR2) in human placenta and human umbilical vein endothelial cells (HUVECs) obtained from 40 samples. Samples of human placenta were collected based on gestation age, which was divided into early preterm (n = 10), late preterm (n = 12), and term (n = 18). In this work, we demonstrated that the expression of miR-203 decreased significantly in the placenta according to the gestation age, in contrast, the expression of VEGFA and VEGFR2 increased accordingly. In vitro experiments revealed that overexpression of miR-203 not only suppressed the proliferation, migration, invasion, and tube formation of HUVECs but also affected the expression of VEGFA and VEGFR2. Furthermore, inhibition of miR-203 expression showed equally apparent positive effects on HUVECs. In conclusion, our study suggests that miR-203 plays an important role in regulating placental angiogenesis through inhibiting the expression of VEGFA and VEGFR2, thus miR-203 may represent a potential therapeutic target for patients with abnormal formation of blood vessels in the placenta.
Collapse
Affiliation(s)
- Fulin Liu
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Wanrong Wu
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Kejia Wu
- 2 Department of Gynaecology, Zhongnan Hospital of Wuhan University, Wuchang District, China
| | - Yurou Chen
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Hanshu Wu
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
| | - Hui Wang
- 3 Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
- 4 Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| | - Wei Zhang
- 1 The First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuchang District, Wuhan, Hubei, China
- 4 Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan, China
| |
Collapse
|
207
|
Valmiki S, Ahuja V, Paul J. MicroRNA exhibit altered expression in the inflamed colonic mucosa of ulcerative colitis patients. World J Gastroenterol 2017; 23:5324-5332. [PMID: 28839432 PMCID: PMC5550781 DOI: 10.3748/wjg.v23.i29.5324] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the miRNA expression in colonic mucosal biopsies from endoscopically inflamed and non inflamed regions of ulcerative colitis (UC) patients.
METHODS Colonic mucosal pinch biopsies were analyzed from the inflamed and non inflamed regions of same UC patient. Total RNA was isolated and differential miRNA profiling was done using microarray platform. Quantitative Real Time PCR was performed in colonic biopsies from inflamed (n = 8) and non-inflamed (n = 8) regions of UC and controls (n = 8) to validate the differential expression of miRNA. Potential targets of dysregulated miRNA were identified by using in silico prediction tools and probable role of these miRNA in inflammatory pathways were predicted.
RESULTS The miRNA profile of inflamed colonic mucosa differs significantly from the non-inflamed. Real time PCR analysis showed that some of the miRNA were differentially expressed in the inflamed mucosa as compared to non inflamed mucosa and controls (miR-125b, miR-223, miR-138, and miR-155), while (miR-200a) did not show any significant changes. In contrast to microarray, where miR-378d showed downregulation in the inflamed mucosa, qRT-PCR showed a significant upregulation in the inflamed mucosa as compared to the non inflamed. The in silico prediction analysis revealed that the genes targeted by these miRNAs play role in the major signaling pathways like MAPK pathway, NF-κB signaling pathway, cell adhesion molecules which are all assciated with UC.
CONCLUSION The present study reports disease specific alteration in the expression of miR-125b, miR-155, miR-223 and miR-138 in UC patients and also predict their biological significance.
Collapse
|
208
|
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2017; 233:2949-2965. [DOI: 10.1002/jcp.26049] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Mashreghi
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hassan Azarpara
- School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mahere R. Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Arash Jafari
- School of Medicine; Birjand University of Medical Sciences; Birjand Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahmoud R. Jaafari
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
209
|
Del Carmen Martínez-Jiménez V, Méndez-Mancilla A, Patricia Portales-Pérez D. miRNAs in nutrition, obesity, and cancer: The biology of miRNAs in metabolic disorders and its relationship with cancer development. Mol Nutr Food Res 2017; 62. [PMID: 28594107 DOI: 10.1002/mnfr.201600994] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/13/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022]
Abstract
SCOPE The scope of this review is to explain how metabolic disorders originated by a deficient nutrition can develop into a neoplastic process by the alteration of epigenetic mechanisms like miRNAs. Obesity is a proinflammatory state with a wide impact on health around the world that is associated with neoplastic diseases. Epigenetic mechanisms have a central role in the obesogenic environment, which participates on the development of comorbidities such as cancer. METHODS AND RESULTS We made an exhaustive review of the most recent reports about metabolic disorders with nutrition and their relationship with miRNAs, and their risk of developing into oncogenic processes. MicroRNAs (miRNAs) act as one of the major epigenetic mechanisms that can affect the metabolic reprogramming of cellular metabolism that plays an important role in the oncogenic process. There is evidence that some foods may contribute to diminishing the risk of cancer as well as epidemiological studies that support the notion that diets high in animal protein and fat promote cancer risk. Therefore, diets high in fruit and vegetables reduce the risk of cancer. One of the principal explanations is that these foods contain bioactive compounds that increase the efficacy of epigenetic mechanisms, which in turn decrease the risk of obesity and its comorbidities. CONCLUSION In this review, we show how miRNAs are implicated in several signaling pathways as well as illustrating some bioactive compounds that impact inflammation and cancer development.
Collapse
Affiliation(s)
| | - Alejandro Méndez-Mancilla
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP San Luis Potosí, SLP México
| | - Diana Patricia Portales-Pérez
- Laboratorio de Inmunología y Biología Celular y Molecular, Facultad de Ciencias Químicas, UASLP San Luis Potosí, SLP México
| |
Collapse
|
210
|
Ames H, Halushka MK, Rodriguez FJ. miRNA Regulation in Gliomas: Usual Suspects in Glial Tumorigenesis and Evolving Clinical Applications. J Neuropathol Exp Neurol 2017; 76:246-254. [PMID: 28431179 DOI: 10.1093/jnen/nlx005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years, an increasing role for noncoding small RNAs (miRNA) has been uncovered in carcinogenesis. These oligonucleotides can promote degradation and/or inhibit translation of key mRNAs. Recent studies have also highlighted a possible role for miRNAs in adult and pediatric brain tumors, including high- and low-grade gliomas, medulloblastoma, ependymoma, and neoplasms associated with neurofibromatosis type 1. Gliomas represent the most common category of primary intraparenchymal brain tumors, and, for example, manipulation of signaling pathways, through inhibition of PTEN transcription appears to be an important function of miRNA dysregulation through miR-21, miR-106b, and miR-26a. Moreover, altered miRNA expression in gliomas play roles in the regulation of common tumorigenic processes, including receptor tyrosine kinase signaling, angiogenesis, invasion, suppression of differentiation, cell cycle enhancement, and inhibition of apoptosis. Suppression of differentiation requires the downregulation of a number of miRNAs that are both enriched in the brain and required for terminal glial differentiation, including miR-219 and miR-338. Our evolving understanding about the biology of gliomas make them attractive for miRNA study, given that recent evidence suggests that epigenetic and subtle genetic changes may contribute to their pathogenesis. Identification of key miRNAs also provides a rationale for developing robust biomarkers and inhibitory RNA strategies for therapeutic purposes in glioma patients.
Collapse
Affiliation(s)
- Heather Ames
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marc K Halushka
- Division of Cardiovascular Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fausto J Rodriguez
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
211
|
Yin A, Etcheverry A, He Y, Aubry M, Barnholtz-Sloan J, Zhang L, Mao X, Chen W, Liu B, Zhang W, Mosser J, Zhang X. Integrative analysis of novel hypomethylation and gene expression signatures in glioblastomas. Oncotarget 2017; 8:89607-89619. [PMID: 29163774 PMCID: PMC5685695 DOI: 10.18632/oncotarget.19171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/29/2017] [Indexed: 01/17/2023] Open
Abstract
Molecular and clinical heterogeneity critically hinders better treatment outcome for glioblastomas (GBMs); integrative analysis of genomic and epigenomic data may provide useful information for improving personalized medicine. By applying training-validation approach, we identified a novel hypomethylation signature comprising of three CpGs at non-CpG island (CGI) open sea regions for GBMs. The hypomethylation signature consistently predicted poor prognosis of GBMs in a series of discovery and validation datasets. It was demonstrated as an independent prognostic indicator, and showed interrelationships with known molecular marks such as MGMT promoter methylation status, and glioma CpG island methylator phenotype (G-CIMP) or IDH1 mutations. Bioinformatic analysis found that the hypomethylation signature was closely associated with the transcriptional status of an EGFR/VEGFA/ANXA1-centered gene network. The integrative molecular analysis finally revealed that the gene network defined two distinct clinically relevant molecular subtypes reminiscent of different immature neuroglial lineages in GBMs. The novel hypomethylation signature and relevant gene network may provide new insights into prognostic classification, molecular characterization, and treatment development for GBMs.
Collapse
Affiliation(s)
- Anan Yin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Amandine Etcheverry
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Yalong He
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Marc Aubry
- Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes1, Rennes, France
| | - Jill Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Luhua Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, The People's Republic of China.,Department of Neurosurgery, No. 425 Hospital of the People's Liberation Army, San Ya, Hainan Province, The People's Republic of China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Weijun Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Bolin Liu
- Department of Neurosurgery, Arrowhead Regional Medical Center, Colton, California, United States of America
| | - Wei Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| | - Jean Mosser
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France.,Université Rennes1, UEB, UMS 3480 Biosit, Faculté de Médecine, Rennes, France.,CHU Rennes, Service de Génétique Moléculaire et Génomique, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes1, Rennes, France
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, The People's Republic of China
| |
Collapse
|
212
|
Li C, Xiang A, Chen X, Yin K, Lu J, Yin W. Optimizing the treatment of bevacizumab as first-line therapy for human epidermal growth factor receptor 2 (HER2)-negative advanced breast cancer: an updated meta-analysis of published randomized trials. Onco Targets Ther 2017; 10:3155-3168. [PMID: 28721065 PMCID: PMC5499926 DOI: 10.2147/ott.s138600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background Manifold data have demonstrated that the addition of bevacizumab to chemotherapy improved progression-free survival (PFS), while few trials have revealed its significant overall survival (OS) benefit. Furthermore, it still remains suspended how to maximize the benefits of bevacizumab as first-line therapy for human epidermal growth factor receptor 2 (HER2)-negative breast cancer. We sought to conduct a meta-analysis to assess the benefits of bevacizumab with chemotherapy and to identify the ideal chemotherapy partner of bevacizumab in the first-line setting for HER2-negative advanced breast cancer patients. Methods Computerized and manual searches were performed to identify randomized clinical trials evaluating the efficacy of bevacizumab plus chemotherapy versus chemotherapy alone or bevacizumab with different chemotherapy regimens as first-line therapy for HER2-negative locally recurrent or metastatic breast cancer patients. Risk ratios or odds ratios with their 95% CIs were used to estimate the association between multiple combinations of bevacizumab with chemotherapy and various clinical outcomes. Results With 7 trials identified, this analysis included 3,984 eligible patients. The addition of bevacizumab to chemotherapy resulted in a statistically significant improvement in PFS (P=0.019) and objective response rate (ORR; P<0.001) rather than in OS (P=0.783) when compared with chemotherapy alone. The greater benefits in PFS and ORR were achieved from bevacizumab plus taxane-based regimens compared with bevacizumab plus capecitabine-based regimens, while bevacizumab plus capecitabine had comparable OS with bevacizumab plus paclitaxel. Additionally, bevacizumab-based triplet therapy failed to improve the clinical outcomes when compared with doublet therapy. Conclusion This meta-analysis reveals that the addition of bevacizumab to chemotherapy yielded PFS and ORR benefits in HER2-negative advanced breast cancer. Additional studies are still prompted to further optimize the first-line treatment of bevacizumab.
Collapse
Affiliation(s)
- Cunfu Li
- Department of General Surgery, Weihai Central Hospital, Weihai
| | - Aizhai Xiang
- Department of Breast Surgery, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou
| | - Xianzhi Chen
- Department of General Surgery, Huainan First People's Hospital, Huainan
| | - Kai Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University
| | - Wenjin Yin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
213
|
Lü L, Mao X, Shi P, He B, Xu K, Zhang S, Wang J. MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e7085. [PMID: 28562579 PMCID: PMC5459744 DOI: 10.1097/md.0000000000007085] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by their aggressive nature and poor associated survival. MicroRNAs (miRs) have been found to play an important role in the occurrence and development of human cancers, but their role in the prognosis of TNBC patients remains unclear. We performed a meta-analysis to explore the prognostic value of miRs in TNBC. METHODS We systematically searched the PubMed, Embase, and Web of Science databases to identify eligible studies. A meta-analysis was performed to estimate the pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) for the associations between levels of miR expression (predictive factors) and overall survival (OS) and disease-free survival (DFS) (outcomes) in patients with TNBC. RESULTS After performing the literature search and review, 21 relevant studies including 2510 subjects were identified. Six miRs (miR-155, miR-21, miR-27a/b, miR-374a/b, miR-210, and miR-454) were assessed in the meta-analysis. Decreased expression of miR-155 was associated with reduced OS (adjusted HR = 0.58, 95% CI: 0.34-0.99; crude HR = 0.67, 95% CI: 0.58-0.79). High miR-21 expression was also predictive of reduced OS (crude HR = 2.50, 95% CI: 1.56-4.01). We found that elevated levels of miR-27a/b, miR-210, and miR-454 expression were associated with shorter OS, while the levels of miR-454 and miR-374a/b expression were associated with DFS. CONCLUSIONS Specific miRs could serve as potential prognostic biomarkers in TNBC. Due to the limited research available, the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Lingshuang Lü
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi
| | - Peiyi Shi
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
| | - Biyu He
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Kun Xu
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Simin Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
- The Innovation Center for Social Risk Governance in Health, Nanjing, China
| |
Collapse
|
214
|
Rahmani F, Avan A, Hashemy SI, Hassanian SM. Role of Wnt/β‐catenin signaling regulatory microRNAs in the pathogenesis of colorectal cancer. J Cell Physiol 2017; 233:811-817. [DOI: 10.1002/jcp.25897] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Farzad Rahmani
- Department of Medical BiochemistrySchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amir Avan
- Department of Modern Sciences and TechnologiesSchool of MedicineMashhad University of Medical SciencesMashhadIran
- Cancer Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Seyed Mahdi Hassanian
- Department of Medical BiochemistrySchool of MedicineMashhad University of Medical SciencesMashhadIran
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhadIran
- Microanatomy Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
215
|
van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P, Griffioen AW. miRNAs: micro-managers of anticancer combination therapies. Angiogenesis 2017; 20:269-285. [PMID: 28474282 PMCID: PMC5519663 DOI: 10.1007/s10456-017-9545-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022]
Abstract
Angiogenesis is one of the hallmarks of cancer progression and as such has been considered a target of therapeutic interest. However, single targeted agents have not fully lived up to the initial promise of anti-angiogenic therapy. Therefore, it has been suggested that combining therapies and agents will be the way forward in the oncology field. In recent years, microRNAs (miRNAs) have received considerable attention as drivers of tumor development and progression, either acting as tumor suppressors or as oncogenes (so-called oncomiRs), as well as in the process of tumor angiogenesis (angiomiRs). Not only from a functional, but also from a therapeutic view, miRNAs are attractive tools. Thus far, several mimics and antagonists of miRNAs have entered clinical development. Here, we review the provenance and promise of miRNAs as targets as well as therapeutics to contribute to anti-angiogenesis-based (combination) treatment of cancer.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Dennis Poel
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
216
|
Fu X, Wen H, Jing L, Yang Y, Wang W, Liang X, Nan K, Yao Y, Tian T. MicroRNA-155-5p promotes hepatocellular carcinoma progression by suppressing PTEN through the PI3K/Akt pathway. Cancer Sci 2017; 108:620-631. [PMID: 28132399 PMCID: PMC5406601 DOI: 10.1111/cas.13177] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNA‐155‐5p (miR‐155‐5p) has been reported to play an oncogenic role in different human malignancies; however, its role in hepatocellular carcinoma (HCC) progression is not clearly understood. In this study, we used real‐time PCR in 20 rats with chemically‐induced HCC, 28 human HCC tissues, and the matched paracarcinoma tissues, and HCC cell lines to determine the expression patterns of miR‐155‐5p and PTEN mRNA. Algorithm‐based and experimental strategies, such as dual luciferase gene reporter assays, real‐time PCR and western blots were used to identify PTEN as a candidate miR‐155‐5p target. Gain‐ and loss‐of‐function experiments and administration of a PI3K/Akt pathway inhibitor (wortmannin) were used to identify the effects of miR‐155‐5p and PTEN in MTT assays, flow cytometric analysis, wound healing assays and transwell assays. The results showed that miR‐155‐5p was highly overexpressed; however, PTEN was underexpressed in the HCC rat models, human HCC tissues and cell lines. In addition, miR‐155‐5p upregulation and PTEN downregulation were significantly associated with TNM stage (P < 0.05). Through in vitro experiments, we found that miR‐155‐5p promoted proliferation, invasion and migration, but inhibited apoptosis in HCC by directly targeting the 3′‐UTR of PTEN. Western blots showed that miR‐155‐5p inactivated Bax and caspase‐9, but activated Bcl‐2 to inhibit apoptosis, and it activated MMP to promote migration and invasion via the PI3K/Akt pathway. A xenograft tumor model was used to demonstrate that miR‐155‐5p targets PTEN and activates the PI3K/Akt pathway in vivo as well. Our study highlighted the importance of miR‐155‐5p and PTEN associated with aggressive HCC both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongqing Wen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Respiratory, Third Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Li Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujuan Yang
- The third Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Wenjuan Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
217
|
Li Y, Cai B, Shen L, Dong Y, Lu Q, Sun S, Liu S, Ma S, Ma PX, Chen J. MiRNA-29b suppresses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3. Cancer Lett 2017; 397:111-119. [PMID: 28365400 DOI: 10.1016/j.canlet.2017.03.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/31/2022]
Abstract
The traditional anti-angiogenic cancer therapy could trigger hypoxia induced factor (HIF) response, leading to "reactive resistance" to chemotherapy. Simultaneously inhibiting both angiogenesis and tumorigenesis would be ideal to overcome this limitation. MicroRNAs (miRNAs) are increasingly explored as new agents for cancer therapy. In the present study, we identified a microRNA (miR-29b) with the ability of simultaneously inhibiting angiogenesis and tumorigenesis. Ectopic expression of miR-29b inhibits HUVECs formed three-dimensional capillary-like tubular structures, tumor cell proliferation, migration and tumor formation. Systemic administration of miR-29b potently suppressed tumor vascularization and cancer cell activity in vivo, resulting in dramatic suppression of tumor growth without toxicity. Moreover, we demonstrated the role of miR-29b in anti-angiogenesis and anti-tumorigenesis is through targeting Akt3 and inducing VEGF and C-myc arrest in breast cancer cells. These findings indicate that this single miRNA could be used as an efficient anti-cancer therapeutic agent to address a critical challenge in cancer therapy.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Liangliang Shen
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Dong
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qun Lu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shukai Sun
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, The Forth Military Medical University, China
| | - Shufang Ma
- Jia-Yi Dentistry and Cosmetic Surgery Clinic, Xi'an, 710032, China
| | - Peter X Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Jihua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
218
|
Padró M, Louie RJ, Lananna BV, Krieg AJ, Timmerman LA, Chan DA. Genome-independent hypoxic repression of estrogen receptor alpha in breast cancer cells. BMC Cancer 2017; 17:203. [PMID: 28320353 PMCID: PMC5358051 DOI: 10.1186/s12885-017-3140-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/15/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND About 75-80% of breast tumors express the estrogen receptor alpha (ER-α) and are treated with endocrine-target therapeutics, making this the premier therapeutic modality in the breast cancer clinic. However, acquired resistance is common and about 20% of resistant tumors loose ER-α expression via unknown mechanisms. Inhibition of ER-α loss could improve endocrine therapeutic efficacy, benefiting a significant number of patients. Here we test whether tumor hypoxia might commonly produce ER-α loss. METHODS Using standard molecular and cellular biological assays and a work station/incubator with controllable oxygen levels, we analyze the effects of hypoxia on ER-α protein, mRNA, and transcriptional activity in a panel of independently-derived ER-α positive cell lines. These lines were chosen to represent the diverse genetic backgrounds and mutations commonly present in ER-α positive tumors. Using shRNA-mediated knockdown and overexpression studies we also elucidate the role of hypoxia-inducible factor 1-alpha (HIF-1α) in the hypoxia-induced decrease in ER-α abundance. RESULTS We present the first comprehensive overview of the effects of bona fide low environmental oxygen (hypoxia) and HIF-1α activity on ER-α abundance and transcriptional activity. We find that stabilized HIF-1α induces rapid loss of ER-α protein in all members of our diverse panel of breast cancer cell lines, which involves proteolysis rather than transcriptional repression. Reduced ER-α severely attenuates ER-α directed transcription, and inhibits cell proliferation without overt signs of cell death in the cell lines tested, despite their varying genomic backgrounds. CONCLUSIONS These studies reveal a common hypoxia response that produces reduced ER-α expression and cell cycle stalling, and demonstrate a common role for HIF-1α in ER-α loss. We hypothesize that inhibitors of HIF-1α or the proteasome might stabilize ER-α expression in breast tumors in vivo, and work in combination with endocrine therapies to reduce resistance. Our data also suggests that disease re-occurrence in patients with ER-α positive tumors may arise from tumor cells chronically resident in hypoxic environments. We hypothesize that these non-proliferating cells may survive undetected until conditions change to oxygenate the environment, or cells eventually switch to proliferation via other signaling pathways.
Collapse
Affiliation(s)
- Mercè Padró
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Raymond J. Louie
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Brian V. Lananna
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Adam J. Krieg
- Department of Obstetrics and Gynecology, Kansas University Medical Center, Kansas City, KS 66160 USA
| | - Luika A. Timmerman
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| | - Denise A. Chan
- Department of Radiation Oncology, University of California, San Francisco, CA 94115 USA
- Helen Diller Family Comprehensive Cancer Center, University of California, UCSF Mail stop 0875, 2340 Sutter Street, Room N361, San Francisco, CA 94115 USA
| |
Collapse
|
219
|
Yadav S, Singh N, Shah PP, Rowbotham DA, Malik D, Srivastav A, Shankar J, Lam WL, Lockwood WW, Beverly LJ. MIR155 Regulation of Ubiquilin1 and Ubiquilin2: Implications in Cellular Protection and Tumorigenesis. Neoplasia 2017; 19:321-332. [PMID: 28315615 PMCID: PMC5361868 DOI: 10.1016/j.neo.2017.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/15/2022] Open
Abstract
Ubiquilin (UBQLN) proteins are adaptors thought to link ubiquitinated proteins to the proteasome. However, our lab has recently reported a previously unappreciated role for loss of UBQLN in lung cancer progression. In fact, UBQLN genes are lost in over 50% of lung cancer samples examined. However, a reason for the loss of UBQLN has not been proposed, nor has a selective pressure that could lead to deletion of UBQLN been reported. Diesel Exhaust Particles (DEP) are a major concern in the large cities of developing nations and DEP exposed populations are at an increased risk of developing a number of illnesses, including lung cancer. A connection between DEP and UBQLN has never been examined. In the present study, we determined the effect of DEP on lung cell lines and were interested to determine if UBQLN proteins could potentially play a protective role following treatment with DEP. Interestingly, we found that DEP treated cells have increased expression of UBQLN proteins. In fact, over-expression of UBQLN was capable of protecting cells from DEP toxicity. To investigate the mechanism by which DEP leads to increased UBQLN protein levels, we identified and interrogated microRNAs that were predicted to regulate UBQLN mRNA. We found that DEP decreases the oncogenic microRNA, MIR155. Further, we showed that MIR155 regulates the mRNA of UBQLN1 and UBQLN2 in cells, such that increased MIR155 expression increased cell invasion, migration, wound formation and clonogenicity in UBQLN-loss dependent manner. This is the first report of an environmental carcinogen regulating expression of UBQLN proteins. We show that exposure of cells to DEP causes an increase in UBQLN levels and that MIR155 regulates mRNA of UBQLN. Thus, we propose that DEP-induced repression of MIR155 leads to increased UBQLN levels, which in turn may be a selective pressure on lung cells to lose UBQLN1.
Collapse
Affiliation(s)
- Sanjay Yadav
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001, India.
| | - Nishant Singh
- CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001, India.
| | - Parag P Shah
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202.
| | - David A Rowbotham
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, B.C., Canada V5Z 1L3.
| | - Danial Malik
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202.
| | - Ankita Srivastav
- CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001, India.
| | - Jai Shankar
- CSIR-Indian Institute of Toxicology Research, Lucknow, UP 226001, India.
| | - Wan L Lam
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, B.C., Canada V5Z 1L3; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C., Canada V6T 2B5.
| | - William W Lockwood
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, B.C., Canada V5Z 1L3; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, B.C., Canada V6T 2B5.
| | - Levi J Beverly
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; Department of Medicine, Division of Hematology and Oncology, University of Louisville School of Medicine, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202.
| |
Collapse
|
220
|
Zhao M, Ang L, Huang J, Wang J. MicroRNAs regulate the epithelial-mesenchymal transition and influence breast cancer invasion and metastasis. Tumour Biol 2017; 39:1010428317691682. [PMID: 28222665 DOI: 10.1177/1010428317691682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs are small RNA molecules that play a major role in the post-transcriptional regulation of genes and influence the development, differentiation, proliferation, and apoptosis of cells and the development and progression of tumors. The epithelial-mesenchymal transition is a process by which epithelial cells morphologically transform into cells with a mesenchymal phenotype. The epithelial-mesenchymal transition plays a highly important role in tumor invasion and metastasis. Increasing evidence indicates that microRNAs are tightly associated with epithelial-mesenchymal transition regulation in tumor cells. In breast cancer, various microRNA molecules have been identified as epithelial-mesenchymal transition inducers or inhibitors, which, through different mechanisms and signaling pathways, participate in the regulation of breast cancer invasion and metastasis among various biological behaviors. The epithelial-mesenchymal transition-related microRNAs in breast cancer provide valuable molecules for researching cell invasion and metastasis, and they also provide candidate targets that may be significant for the targeted therapy of breast cancer.
Collapse
Affiliation(s)
- Min Zhao
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Lin Ang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Jin Huang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| | - Jin Wang
- Department of Pathology, The Second People's Hospital of Hefei, Hefei, China
| |
Collapse
|
221
|
MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16:203-222. [PMID: 28209991 DOI: 10.1038/nrd.2016.246] [Citation(s) in RCA: 3264] [Impact Index Per Article: 466.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In just over two decades since the discovery of the first microRNA (miRNA), the field of miRNA biology has expanded considerably. Insights into the roles of miRNAs in development and disease, particularly in cancer, have made miRNAs attractive tools and targets for novel therapeutic approaches. Functional studies have confirmed that miRNA dysregulation is causal in many cases of cancer, with miRNAs acting as tumour suppressors or oncogenes (oncomiRs), and miRNA mimics and molecules targeted at miRNAs (antimiRs) have shown promise in preclinical development. Several miRNA-targeted therapeutics have reached clinical development, including a mimic of the tumour suppressor miRNA miR-34, which reached phase I clinical trials for treating cancer, and antimiRs targeted at miR-122, which reached phase II trials for treating hepatitis. In this article, we describe recent advances in our understanding of miRNAs in cancer and in other diseases and provide an overview of current miRNA therapeutics in the clinic. We also discuss the challenge of identifying the most efficacious therapeutic candidates and provide a perspective on achieving safe and targeted delivery of miRNA therapeutics.
Collapse
|
222
|
Wang J, Yan Y, Song D, Liu L, Liu B. The association of plasma miR-155 and VCAM-1 levels with coronary collateral circulation. Biomark Med 2017; 11:125-131. [PMID: 27885839 DOI: 10.2217/bmm-2016-0282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Inflammation plays an important role in development of coronary collateral circulation (CCC). The aim of this study is to determine whether the inflammation-related miRNA miR-155 and the inflammation marker VCAM-1 could be a biomarker for CCC. Patients & methods: We measured levels of plasma VCAM-1 and miR-155 in patients with CCC according to Rentrop grade by ELISA or real-time polymerase chain reaction, respectively (n = 112). Results: Plasma miR-155 was negatively correlated with VCAM-1 in the poor CCC group and with Rentrop grade in all patients with CCC. In addition, plasma VCAM-1 was significantly decreased in CAD patients with CCC. Conclusion: Plasma miR-155 might be a potent independent predictor of collateral formation.
Collapse
Affiliation(s)
- Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Lulu Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Bin Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| |
Collapse
|
223
|
Chen QY, Jiao DM, Wu YQ, Chen J, Wang J, Tang XL, Mou H, Hu HZ, Song J, Yan J, Wu LJ, Chen J, Wang Z. MiR-206 inhibits HGF-induced epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via c-Met /PI3k/Akt/mTOR pathway. Oncotarget 2017; 7:18247-61. [PMID: 26919096 PMCID: PMC4951285 DOI: 10.18632/oncotarget.7570] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
MiR-206 is low expression in lung cancers and associated with cancer metastasis. However, the roles of miR-206 in epithelial-mesenchymal transition (EMT) and angiogenesis in lung cancer remain unknown. In this study, we find that hepatocyte growth factor (HGF) induces EMT, invasion and migration in A549 and 95D lung cancer cells, and these processes could be markedly inhibited by miR-206 overexpression. Moreover, we demonstrate that miR-206 directly targets c-Met and inhibits its downstream PI3k/Akt/mTOR signaling pathway. In contrast, miR-206 inhibitors promote the expression of c-Met and activate the PI3k/Akt/mTOR signaling, and this effect could be attenuated by the PI3K inhibitor. Moreover, c-Met overexpression assay further confirms the significant inhibitory effect of miR-206 on HGF-induced EMT, cell migration and invasion. Notably, we also find that miR-206 effectively inhibits HGF-induced tube formation and migration of human umbilical vein endothelial cells (HUVECs), and the mechanism is also related to inhibition of PI3k/Akt/mTOR signaling. Finally, we reveal the inhibitory effect of miR-206 on EMT and angiogenesis in xenograft tumor mice model. Taken together, miR-206 inhibits HGF-induced EMT and angiogenesis in lung cancer by suppressing c-Met/PI3k/Akt/mTOR signaling. Therefore, miR-206 might be a potential target for the therapeutic strategy against EMT and angiogenesis of lung cancer.
Collapse
Affiliation(s)
- Qing-yong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - De-min Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Yu-quan Wu
- Department of Oncology, The 117th Hospital of PLA, Zhejiang, China
| | - Jun Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Jian Wang
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Xia-li Tang
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Hao Mou
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Hui-zhen Hu
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Jia Song
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Jie Yan
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Li-jun Wu
- Department of Respiratory Disease, The 117th Hospital of PLA, Zhejiang, China
| | - Jianyan Chen
- Department of Anesthesiology, Shenzhen Baoan Hospital Affiliated to Southern Medical University, Guangdong, China
| | - Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
224
|
Direct quantitative detection for cell-free miR-155 in urine: a potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget 2016; 7:3255-66. [PMID: 26657502 PMCID: PMC4823104 DOI: 10.18632/oncotarget.6487] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
High recurrence rates of non-muscle invasive bladder cancer (NMIBC) in patients require lifelong testing and monitoring. The aim of this study is to develop a simplified RT-qPCR method (RT-qPCR-D) which directly quantifies cell-free miR-155 in urine without RNA extraction, and assess it as a potential tool in NMIBC detection. A pilot study including 60 urine samples was used to investigate the feasibility of RT-qPCR-D in detecting cell-free miR-155. Then, miR-155 levels were quantified in a large independent cohort of urine from 162 NIMBC patients, 76 cystitis patients, and 86 healthy donors using the RT-qPCR-D method. Changes of cell-free miR-155 before and after operation were also analyzed in 32 NIMBC patients. In pilot study, we found a significant linear association between RT-qPCR and RT-qPCR-D in urinary miR-155 detection. Both methods showed cell-free miR-155 were significantly increased in NMIBC patients, and could reflect their expression in tissues. Then, the increased expression of cell-free miR-155 was successfully validated in 162 NIMBC patients when compared with cystitis patients and healthy donors. Moreover, it distinguished NMIBC patients from others with 80.2% sensitivity and 84.6% specificity, which was superior to urine cytology. Cell-free miR-155 correlated with NMIBC stage and grade, and was an independent factor for predicting recurrence and progression to muscle invasion. In addition, cell-free miR-155 was significantly decreased after NMIBC patients underwent transurethral bladder resection. In conclusion, detection of cell-free miR-155 in urine using RT-qPCR-D is a simple and noninvasive approach which may be used for NMIBC diagnosis and prognosis prediction.
Collapse
|
225
|
Joshi P, Kooshki M, Aldrich W, Varghai D, Zborowski M, Singh AD, Triozzi PL. Expression of natural killer cell regulatory microRNA by uveal melanoma cancer stem cells. Clin Exp Metastasis 2016; 33:829-838. [PMID: 27565163 PMCID: PMC9082981 DOI: 10.1007/s10585-016-9815-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are implicated in the control of metastasis in uveal melanoma, a process that has been ascribed to its cancer stem cell subpopulation. NK cell activation is regulated by specific microRNA (miR). The NK cell sensitivity and regulatory miR production of uveal melanoma cancer stem cells was examined. Cancer stem cells enriched from aggressively metastatic MUM2B uveal melanoma cells by selecting CD271+ cells or propagating as non-adherent spheres in stem-cell supportive were more resistant to NK cell cytolysis than cancer stem cells enriched from less aggressively metastatic OCM1 uveal melanoma cells. Both MUM2B and OCM1 cells expressed and secreted NK cell regulatory miRs, including miR 146a, 181a, 20a, and 223. MUM2B cells expressed and secreted miR-155; OCM1 cells did not. Transfecting MUM2B cells with anti-miR-155 increased NK cell sensitivity. CD271+ cells were identified in the blood of patients with metastatic uveal melanoma and were characterized by low expression of melanocyte differentiation determinants and by the ability to form non-adherent spheres in stem-cell supportive media. These cells also expressed NK cell regulatory miRs, including miR-155. These results indicate that uveal melanoma cancer stem cells can vary in their sensitivity to NK cell lysis and their expression of NK cell regulatory miRs. Circulating CD271+ cells from patients with metastatic uveal melanoma manifest cancer stem cell features and express miRs associated with NK cell suppression, including miR-155, that may contribute to metastatic progression.
Collapse
Affiliation(s)
- Powrnima Joshi
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Mitra Kooshki
- Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC, 27157, USA
| | - Wayne Aldrich
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Daniel Varghai
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Maciej Zborowski
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Arun D Singh
- Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Pierre L Triozzi
- Comprehensive Cancer Center, Wake Forest University, Winston-Salem, NC, 27157, USA.
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
226
|
Yang D, Wang J, Xiao M, Zhou T, Shi X. Role of Mir-155 in Controlling HIF-1α Level and Promoting Endothelial Cell Maturation. Sci Rep 2016; 6:35316. [PMID: 27731397 PMCID: PMC5059686 DOI: 10.1038/srep35316] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Stem-cell-based therapy for cardiovascular disease, especially ischemic heart disease (IHD), is a promising approach to facilitating neovascularization through the migration of stem cells to the ischemic site and their subsequent differentiation into endothelial cells (ECs). Hypoxia is a chief feature of IHD and the stem cell niche. However, whether hypoxia promotes stem cell differentiation into ECs or causes them to retain their stemness is controversial. Here, the differentiation of pluripotent stem cells (iPSCs) into endothelial cells (ECs) was induced under hypoxia. Though the angiogenic capability and angiogenesis-related autocrine/paracrine factors of the ECs were improved under hypoxia, the level of hypoxia inducible factor 1α (HIF-1α) was nonetheless found to be restricted along with the EC differentiation. The down-regulation of HIF-1α was found to have been caused by VEGF-induced microRNA-155 (miR-155). Moreover, miR-155 was also found to enhance the angiogenic capability of induced ECs by targeting E2F2 transcription factor. Hence, miR-155 not only contributes to controlling HIF-1α expression under hypoxia but also promotes angiogenesis, which is a key feature of mature ECs. Revealing the real role of hypoxia and clarifying the function of miR-155 in EC differentiation may facilitate improvement of angiogenic gene- and stem-cell-based therapies for ischemic heart disease.
Collapse
Affiliation(s)
- Deguang Yang
- Department of Cardiology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Jinhong Wang
- Department of Respiration, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Meng Xiao
- Department of Nursing, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Tao Zhou
- Department of Cardiology, the Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Xu Shi
- Central Laboratory, the First Hospital of Jilin University, Changchun, 130032, China
| |
Collapse
|
227
|
Sharma S, Patnaik PK, Aronov S, Kulshreshtha R. ApoptomiRs of Breast Cancer: Basics to Clinics. Front Genet 2016; 7:175. [PMID: 27746811 PMCID: PMC5041507 DOI: 10.3389/fgene.2016.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
Apoptosis, a form of programmed cell death, is a highly regulated process, the deregulation of which has been associated with the tumor initiation, progression, and metastasis in various cancers including breast cancer. Induction of apoptosis is a popular target of various therapies currently being tested or used for breast cancer treatment. Thus, identifying apoptotic mediators and regulators is imperative for molecular biologists and clinicians for benefit of patients. The regulation of apoptosis is complex and involves a tight equilibrium between the pro- and anti-apoptotic factors. Recent studies have highlighted the role of miRNAs in the control of apoptosis and their interplay with p53, the master guardian of apoptosis. Here, we summarize and integrate the data on the role of miRNAs in apoptosis in breast cancer and the clinical advantage it may offer for the prognosis or treatment of breast cancer patients.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi, India
| | | | - Stella Aronov
- Department of Molecular Biology, Ariel University Ariel, Israel
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi, India
| |
Collapse
|
228
|
Alimirah F, Peng X, Gupta A, Yuan L, Welsh J, Cleary M, Mehta RG. Crosstalk between the vitamin D receptor (VDR) and miR-214 in regulating SuFu, a hedgehog pathway inhibitor in breast cancer cells. Exp Cell Res 2016; 349:15-22. [PMID: 27693451 DOI: 10.1016/j.yexcr.2016.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022]
Abstract
The vitamin D receptor (VDR), and its ligand 1α,25-dihydroxyvitamin D3 (1,25D3) prevent breast cancer development and progression, yet the molecular mechanisms governing this are unclear. MicroRNAs (miRNAs) on the other hand, promote or inhibit breast cancer growth. To understand how VDR regulates miRNAs, we compared miRNA expression of wild-type (WT) and VDR knockout (VDRKO) breast cancer cells by a Mouse Breast Cancer miRNA PCR array. Compared to VDR WT cells, expressions of miR-214, miR-199a-3p and miR-199a-5p of the miR-199a/miR-214 cluster were 42, 15, and 10 fold higher in VDRKO cells respectively. Overexpression of VDR in breast cancer cells reduced the miR-199a/miR-214 cluster expression by 30%. VDR status also negatively correlated with Dnm3os expression, a non-coding RNA transcript of the dynamin-3 gene encoding the miR-199a/miR-214 cluster, suggesting that VDR represses this cluster through Dnm3os. Conversely, overexpression of miR-214 in MCF-7 and T47D cells antagonized VDR mediated signaling. Furthermore, there was a positive correlation between VDR status and the expression of Suppressor of fused gene (SuFu), a hedgehog pathway inhibitor. miR-214 on the other hand suppressed SuFu protein expression. These findings suggest a crosstalk between VDR and miR-214 in regulating hedgehog signaling in breast cancer cells, providing new therapies for breast cancer.
Collapse
Affiliation(s)
- Fatouma Alimirah
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA
| | - Xinjian Peng
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA
| | - Akash Gupta
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA
| | - Liang Yuan
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA
| | - JoEllen Welsh
- University at Albany Cancer Research Center, Rensselaer, NY 12144, USA
| | - Michele Cleary
- Merck Research Laboratories, Merck & Co., Inc., West Point, PA 19486, USA
| | - Rajendra G Mehta
- Cancer Biology Division, IIT Research Institute, Chicago, IL 60616, USA.
| |
Collapse
|
229
|
Amorim M, Salta S, Henrique R, Jerónimo C. Decoding the usefulness of non-coding RNAs as breast cancer markers. J Transl Med 2016; 14:265. [PMID: 27629831 PMCID: PMC5024523 DOI: 10.1186/s12967-016-1025-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Although important advances in the management of breast cancer (BC) have been recently accomplished, it still constitutes the leading cause of cancer death in women worldwide. BC is a heterogeneous and complex disease, making clinical prediction of outcome a very challenging task. In recent years, gene expression profiling emerged as a tool to assist in clinical decision, enabling the identification of genetic signatures that better predict prognosis and response to therapy. Nevertheless, translation to routine practice has been limited by economical and technical reasons and, thus, novel biomarkers, especially those requiring non-invasive or minimally invasive collection procedures, while retaining high sensitivity and specificity might represent a significant development in this field. An increasing amount of evidence demonstrates that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are aberrantly expressed in several cancers, including BC. miRNAs are of particular interest as new, easily accessible, cost-effective and non-invasive tools for precise management of BC patients because they circulate in bodily fluids (e.g., serum and plasma) in a very stable manner, enabling BC assessment and monitoring through liquid biopsies. This review focus on how ncRNAs have the potential to answer present clinical needs in the personalized management of patients with BC and comprehensively describes the state of the art on the role of ncRNAs in the diagnosis, prognosis and prediction of response to therapy in BC.
Collapse
Affiliation(s)
- Maria Amorim
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPOPorto), Research Center-LAB 3, F Bdg, 1st floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Porto, Portugal.
| |
Collapse
|
230
|
Li Y, Lauriola M, Kim D, Francesconi M, D'Uva G, Shibata D, Malafa MP, Yeatman TJ, Coppola D, Solmi R, Cheng JQ. Adenomatous polyposis coli (APC) regulates miR17-92 cluster through β-catenin pathway in colorectal cancer. Oncogene 2016; 35:4558-4568. [PMID: 26804172 PMCID: PMC4960006 DOI: 10.1038/onc.2015.522] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
Adenomatous polyposis coli (APC) mutation is the most common genetic change in sporadic colorectal cancer (CRC). Although deregulations of miRNAs have been frequently reported in this malignancy, APC-regulated miRNAs have not been extensively documented. Here, by using an APC-inducible cell line and array analysis, we identified a total of 26 deregulated miRNAs. Among them, members of miR-17-92 cluster were dramatically inhibited by APC and induced by enforced expression of β-catenin. Furthermore, we demonstrate that activated β-catenin resulted from APC loss binds to and activates the miR-17-92 promoter. Notably, enforced expression of miR-19a overrides APC tumor suppressor activity, and knockdown of miR-19a in cancer cells with compromised APC function reduced their aggressive features in vitro. Finally, we observed that expression of miR-19a significantly correlates with β-catenin levels in colorectal cancer specimens, and it is associated to the aggressive stage of tumor progression. Thus, our study reveals that miR-17-92 cluster is directly regulated by APC/β-catenin pathway and could be a potential therapeutic target in colon cancers with aberrant APC/β-catenin signaling.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mattia Lauriola
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, via Massarenti, 9, 40138 Bologna, Italy
| | - Donghwa Kim
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mirko Francesconi
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Gabriele D'Uva
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, via Massarenti, 9, 40138 Bologna, Italy
| | - Dave Shibata
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mokenge P Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Timothy J Yeatman
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Domenico Coppola
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Rossella Solmi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, via Massarenti, 9, 40138 Bologna, Italy
| | - Jin Q Cheng
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
231
|
High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget 2016; 6:23399-416. [PMID: 26156018 PMCID: PMC4695126 DOI: 10.18632/oncotarget.4351] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 11/27/2022] Open
Abstract
A growing body of evidence indicates that miRNAs may be a class of genetic elements that can either drive or suppress oncogenesis. In this study we analyzed the somatic copy number variation of 14 miRNA genes frequently found to be either over- or underexpressed in lung cancer, as well as two miRNA biogenesis genes, DICER1 and DROSHA, in non-small-cell lung cancer (NSCLC). Our analysis showed that most analyzed miRNA genes undergo substantial copy number alteration in lung cancer. The most frequently amplified miRNA genes include the following: miR-30d, miR-21, miR-17 and miR-155. We also showed that both DICER1 and DROSHA are frequently amplified in NSCLC. The copy number variation of DICER1 and DROSHA correlates well with their expression and survival of NSCLC and other cancer patients. The increased expression of DROSHA and DICER1 decreases and increases the survival, respectively. In conclusion, our results show that copy number variation may be an important mechanism of upregulation/downregulation of miRNAs in cancer and suggest an oncogenic role for DROSHA.
Collapse
|
232
|
Liu Y. MicroRNAs and PIWI-interacting RNAs in oncology. Oncol Lett 2016; 12:2289-2292. [PMID: 27698791 PMCID: PMC5038388 DOI: 10.3892/ol.2016.4996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
RNA molecules that are unable to translate into proteins are classified as non-coding RNA. Non-coding RNA (ncRNA) genes include highly abundant and functionally important RNAs such as transfer RNAs, microRNAs (miRNAs), siRNAs, snRNAs, exRNAs and piRNAs. The number of ncRNAs encoded within the human genome is unknown; however, recent transcriptomic and bioinformatic studies suggest the existence of thousands of ncRNAs. Furthermore, small ncRNAs, including miRNAs and PIWI-interacting RNAs (piRNAs), play an imperative role in the regulation of gene expression of numerous biological and pathological processes. Investigation into the expression and function of small RNA in cancer cells has contributed to gaining a greater understanding of the roles of small RNAs in carcinogenesis. The present review is aimed primarily to discuss the importance of the expression and functions of these small RNAs in carcinogenesis. These studies may provide useful information for future therapies in cancer.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
233
|
Girotra S, Yeghiazaryan K, Golubnitschaja O. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics. Per Med 2016; 13:469-484. [PMID: 29767597 DOI: 10.2217/pme-2016-0020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.
Collapse
|
234
|
Bi C, Chung TH, Huang G, Zhou J, Yan J, Ahmann GJ, Fonseca R, Chng WJ. Genome-wide pharmacologic unmasking identifies tumor suppressive microRNAs in multiple myeloma. Oncotarget 2016; 6:26508-18. [PMID: 26164366 PMCID: PMC4694918 DOI: 10.18632/oncotarget.4769] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/25/2015] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations have emerged as an important cause of microRNA (miRNA) deregulation. In Multiple Myeloma (MM), a few tumor suppressive miRNAs silenced by DNA hypermethylation have been reported, but so far there are few systemic investigations on epigenetically silenced miRNAs. We conducted genome-wide screening for tumor suppressive miRNAs epigenetically silenced in MM. Four Human MM Cell lines were treated with demethylating agent 5'azacytidine (5'aza). Consistently upregulated miRNAs include miR-155, miR-198, miR-135a*, miR-200c, miR-125a-3p, miR-188-5p, miR-483-5p, miR-663, and miR-630. Methylation array analysis revealed increased methylation at or near miRNA-associated CpG islands in MM patients. Ectopic restoration of miR-155, miR-198, miR-135a*, miR-200c, miR-663 and miR-483-5p significantly repressed MM cell proliferation, migration and colony formation. Furthermore, we derived a 33-gene signature from predicted miRNA target genes that were also upregulated in MM patients and associated with patient survival in three independent myeloma datasets. In summary, we have revealed important, epigenetically silenced tumor suppressive miRNAs by pharmacologic reversal of epigenetic silencing.
Collapse
Affiliation(s)
- Chonglei Bi
- Experimental Therapeutics, Cancer Science Institute of Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tae-Hoon Chung
- Experimental Therapeutics, Cancer Science Institute of Singapore, Singapore
| | - Gaofeng Huang
- Experimental Therapeutics, Cancer Science Institute of Singapore, Singapore
| | - Jianbiao Zhou
- Experimental Therapeutics, Cancer Science Institute of Singapore, Singapore
| | - Junli Yan
- Experimental Therapeutics, Cancer Science Institute of Singapore, Singapore
| | | | | | - Wee Joo Chng
- Experimental Therapeutics, Cancer Science Institute of Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Hematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| |
Collapse
|
235
|
Huang H, Zhang K, Zhou Y, Ding X, Yu L, Zhu G, Guo J. MicroRNA-155 targets cyb561d2 in zebrafish in response to fipronil exposure. ENVIRONMENTAL TOXICOLOGY 2016; 31:877-886. [PMID: 25532856 DOI: 10.1002/tox.22099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 12/04/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs), which are a class of small noncoding RNAs, can modulate the expression of many protein-coding genes when an organism is exposed to an environmental chemical. We previously demonstrated that miR-155 was significantly downregulated in adult zebrafish (Danio rerio) in response to fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl) phenyl]-4-[(trifluoromethyl) sulphinyl]-1H-pyrazole-3-carbonitrile) exposure. However, the regulation of this miRNA's predicted target gene cyb561d2, which is a member of the cytochrome b561 (cyt b561) family involved in electron transfer, cell defence, and chemical stress, has not been experimentally validated to date. In this study, we evaluated the effects of fipronil on miR-155 and cyb561d2 in zebrafish. The expression of miR-155 was downregulated, whereas cyb561d2 was upregulated in both mRNA and protein level in a dose-dependent manner upon stimulation of fipronil. The dual luciferase report assay demonstrated that miR-155 interacted with cyb561d2 3'-untranslated regions (3'-UTR). The expression of cyb561d2 was reduced in both mRNA and protein levels when ZF4 cells were transfected with an miR-155 mimic, whereas its expression levels of both mRNA and protein were increased when endogenous miR-155 was inhibited by transfection with an miR-155 inhibitor. The results improved our understanding of molecular mechanism of toxicity upon fipronil exposure, and presents miR-155 as a potential novel toxicological biomarker for chemical exposure. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 877-886, 2016.
Collapse
Affiliation(s)
- Hannian Huang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Department of Applied Engineering, Zhejiang Economic & Trade Polytechnic, Hangzhou, 310018, People's Republic of China
| | - Kai Zhang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Yongyong Zhou
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xianfeng Ding
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Liang Yu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310029, People's Republic of China
| | - Jiangfeng Guo
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
236
|
Svoronos AA, Engelman DM, Slack FJ. OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer. Cancer Res 2016; 76:3666-70. [PMID: 27325641 DOI: 10.1158/0008-5472.can-16-0359] [Citation(s) in RCA: 545] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/04/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNA) are short, noncoding RNAs whose dysregulation has been implicated in most, if not all, cancers. They regulate gene expression by suppressing mRNA translation and reducing mRNA stability. To this end, there is a great deal of interest in modifying miRNA expression levels for the treatment of cancer. However, the literature is fraught with inconsistent accounts as to whether various miRNAs are oncogenic or tumor suppressive. In this review, we directly examine these inconsistencies and propose several mechanisms to explain them. These mechanisms include the possibility that specific miRNAs can simultaneously produce competing oncogenic and tumor suppressive effects by suppressing both tumor suppressive mRNAs and oncogenic mRNAs, respectively. In addition, miRNAs can modulate tumor-modifying extrinsic factors, such as cancer-immune system interactions, stromal cell interactions, oncoviruses, and sensitivity to therapy. Ultimately, it is the balance between these processes that determines whether a specific miRNA produces a net oncogenic or net tumor suppressive effect. A solid understanding of this phenomenon will likely prove valuable in evaluating miRNA targets for cancer therapy. Cancer Res; 76(13); 3666-70. ©2016 AACR.
Collapse
Affiliation(s)
- Alexander A Svoronos
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut.
| | - Frank J Slack
- Institute for RNA Medicine, Departments of Pathology and Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
237
|
Peng Y, Dong W, Lin TX, Zhong GZ, Liao B, Wang B, Gu P, Huang L, Xie Y, Lu FD, Chen X, Xie WB, He W, Wu SX, Huang J. MicroRNA-155 promotes bladder cancer growth by repressing the tumor suppressor DMTF1. Oncotarget 2016; 6:16043-58. [PMID: 25965824 PMCID: PMC4599255 DOI: 10.18632/oncotarget.3755] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/06/2015] [Indexed: 12/20/2022] Open
Abstract
MicroRNA-155 (miR-155) is dysregulated in human cancers. In this study, we reported that miR-155 was over-expressed in bladder cancer tissues. We found that miR-155 promoted cell proliferation in vitro and tumorigenesis in vivo. MiR-155 directly reduced the expression of the tumor suppressor DMTF1. The expression of DMTF1 was decreased in bladder cancer tissues. Similar to the restoring miR-155 expression, knockdown of DMTF1 promoted cell growth and cell cycle progression, whereas DMTF1 over-expression rescued the effect of miR-155. Moreover, we investigated DMTF1-Arf-p53 pathway and found that DMTF1 worked in both p53-dependent and p53-independent manners. Taken together, our findings suggested that miR-155 functions as a tumor promoter in bladder cancer, which is partially through repressing DMTF1 expression. The identification of miR-155 and its novel target DMTF1 will be valuable in developing diagnostic markers and therapeutic applications for bladder cancer.
Collapse
Affiliation(s)
- Yang Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Tian-Xin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Guang-Zheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bei Liao
- Department of Medical Examination Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Peng Gu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yun Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fu-Ding Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wei-Bin Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shao-Xu Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
238
|
NF-κB-driven suppression of FOXO3a contributes to EGFR mutation-independent gefitinib resistance. Proc Natl Acad Sci U S A 2016; 113:E2526-35. [PMID: 27091996 DOI: 10.1073/pnas.1522612113] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs, such as gefitinib or erlotinib) significantly prolongs survival time for patients with tumors harboring an activated mutation on EGFR; however, up to 40% of lung cancer patients exhibit acquired resistance to EGFR-TKIs with an unknown mechanism. FOXO3a, a transcription factor of the forkhead family, triggers apoptosis, but the mechanistic details involved in EGFR-TKI resistance and cancer stemness remain largely unclear. Here, we observed that a high level of FOXO3a was correlated with EGFR mutation-independent EGFR-TKI sensitivity, the suppression of cancer stemness, and better progression-free survival in lung cancer patients. The suppression of FOXO3a obviously increased gefitinib resistance and enhanced the stem-like properties of lung cancer cells; consistent overexpression of FOXO3a in gefitinib-resistant lung cancer cells reduced these effects. Moreover, we identified that miR-155 targeted the 3'UTR of FOXO3a and was transcriptionally regulated by NF-κB, leading to repressed FOXO3a expression and increased gefitinib resistance, as well as enhanced cancer stemness of lung cancer in vitro and in vivo. Our findings indicate that FOXO3a is a significant factor in EGFR mutation-independent gefitinib resistance and the stemness of lung cancer, and suggest that targeting the NF-κB/miR-155/FOXO3a pathway has potential therapeutic value in lung cancer with the acquisition of resistance to EGFR-TKIs.
Collapse
|
239
|
Gao Y, Ma X, Yao Y, Li H, Fan Y, Zhang Y, Zhao C, Wang L, Ma M, Lei Z, Zhang X. miR-155 regulates the proliferation and invasion of clear cell renal cell carcinoma cells by targeting E2F2. Oncotarget 2016; 7:20324-37. [PMID: 26967247 PMCID: PMC4991458 DOI: 10.18632/oncotarget.7951] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/18/2016] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical modulators of carcinogenesis and tumor progression. In the present work, we sought to identify the biological function of miR-155 as well as its underlying mechanism in clear cell renal cell carcinoma (ccRCC). We examined the expression of miR-155 in clear cell RCC (ccRCC) and adjacent normal tissues and then explored the roles of miR-155 both in vitro and in vivo. The results of this analysis indicated that miR-155 activity was significantly upregulated in ccRCC tissues compared with the corresponding normal tissues. miR-155 was associated with ccRCC aggressiveness in both cell lines and clinical specimens, and a specific and inverse correlation between miR-155 and E2F2 expression was found in human ccRCC samples. Overexpression of miR-155 in 786-O cells decreased E2F2 expression while reduction of miR-155 by anti-miR-155 in ACHN cells elevated E2F2 expression. Re-expression of E2F2 in 786-O cells repressed the cell migration/invasion abilities elevated by miR-155, whereas knockdown of E2F2 in ACHN cells restored these cellular functions hampered by the miR-155 inhibitor. Using Western blot and luciferase reporter assays, we determined that E2F2 was a direct target of miR-155. Taken together, the in vitro and in vivo results demonstrate that miR-155 functions as a tumor-promoting miRNA by targeting E2F2 in ccRCC.
Collapse
Affiliation(s)
- Yu Gao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Yuanxin Yao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Hongzhao Li
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Chaofei Zhao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Lei Wang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Minghui Ma
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Zhengwei Lei
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, P. R. China
| |
Collapse
|
240
|
Petrović N, Kolaković A, Stanković A, Lukić S, Řami A, ivković M, Mandušić V. miR-155 expression level changes might be associated with initial phases of breast cancer pathogenesis and lymph-node metastasis. Cancer Biomark 2016; 16:385-94. [DOI: 10.3233/cbm-160577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Nina Petrović
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Ana Kolaković
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Aleksandra Stanković
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Silvana Lukić
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Ahmad Řami
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Maja ivković
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| | - Vesna Mandušić
- University of Belgrade-Vinča Institute of Nuclear Sciences, Mike Petrovića Alasa, Belgrade, Serbia
| |
Collapse
|
241
|
van Scheppingen J, Iyer AM, Prabowo AS, Mühlebner A, Anink JJ, Scholl T, Feucht M, Jansen FE, Spliet WG, Krsek P, Zamecnik J, Buccoliero AM, Giordano F, Genitori L, Kotulska K, Jozwiak S, Jaworski J, Liszewska E, van Vliet EA, Aronica E. Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGA-derived cell cultures. Glia 2016; 64:1066-82. [PMID: 27014996 DOI: 10.1002/glia.22983] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022]
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease presenting with multiple neurological symptoms including epilepsy, mental retardation, and autism. Abnormal activation of various inflammatory pathways has been observed in astrocytes in brain lesions associated with TSC. Increasing evidence supports the involvement of microRNAs in the regulation of astrocyte-mediated inflammatory response. To study the role of inflammation-related microRNAs in TSC, we employed real-time PCR and in situ hybridization to characterize the expression of miR21, miR146a, and miR155 in TSC lesions (cortical tubers and subependymal giant cell astrocytomas, SEGAs). We observed an increased expression of miR21, miR146a, and miR155 in TSC tubers compared with control and perituberal brain tissue. Expression was localized in dysmorphic neurons, giant cells, and reactive astrocytes and positively correlated with IL-1β expression. In addition, cultured human astrocytes and SEGA-derived cell cultures were used to study the regulation of the expression of these miRNAs in response to the proinflammatory cytokine IL-1β and to evaluate the effects of overexpression or knockdown of miR21, miR146a, and miR155 on inflammatory signaling. IL-1β stimulation of cultured glial cells strongly induced intracellular miR21, miR146a, and miR155 expression, as well as miR146a extracellular release. IL-1β signaling was differentially modulated by overexpression of miR155 or miR146a, which resulted in pro- or anti-inflammatory effects, respectively. This study provides supportive evidence that inflammation-related microRNAs play a role in TSC. In particular, miR146a and miR155 appear to be key players in the regulation of astrocyte-mediated inflammatory response, with miR146a as most interesting anti-inflammatory therapeutic candidate.
Collapse
Affiliation(s)
- J van Scheppingen
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A M Iyer
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A S Prabowo
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - A Mühlebner
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - J J Anink
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - T Scholl
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M Feucht
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - F E Jansen
- Department of Pediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - W G Spliet
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - P Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - J Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - A M Buccoliero
- Pathology Unit, Anna Meyer Children's Hospital, Florence, Italy
| | - F Giordano
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - L Genitori
- Department of Neurosurgery, Anna Meyer Children's Hospital, Florence, Italy
| | - K Kotulska
- Department of Neurology and Epileptology, Children's Memorial Health Institute, Warsaw, Poland
| | - S Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - J Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - E Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - E A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), the Netherlands
| |
Collapse
|
242
|
miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC. Sci Rep 2016; 6:23091. [PMID: 26980408 PMCID: PMC4793289 DOI: 10.1038/srep23091] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/26/2016] [Indexed: 12/30/2022] Open
Abstract
Twist-1 and miRNAs have been reported to be associated with tumor metastasis and angiogenesis. However, the relationship between Twist-1 and miRNAs and the function of miRNAs remain largely undefined. We aimed to reveal the Twist-1-related miRNA expression profile and to determine whether Twist-1 functions in tumor metastasis and vasculogenic mimicry (VM) by regulating miRNA expression in hepatocellular carcinoma (HCC). Results showed that the expression of miR-27a-3p was consistently down-regulated in HCC cell lines and tissue samples displaying high expression of Twist-1. Both loss- and gain-of-function assays revealed suppressive effects of miR-27a-3p. Low miR-27a-3p expression was significantly associated with early metastasis in HCC. Subsequent investigations revealed that miR-27a-3p mediated the inhibition of epithelial–mesenchymal transition (EMT). Additional experiments showed that VE-cadherin is a direct target of miR-27a-3p and further demonstrated the critical role of miR-27a-3p in suppressing tumor metastasis and VM. Conclusions: Twist-1 up-regulation in HepG2 cells resulted in the differential expression of 18 miRNAs. Among them, miR-27a-3p deregulation contributed to VM and metastasis. The miR-27a-3p-mediated down-regulation of VE-cadherin and inhibition of EMT may be essential for Twist-1 to induce tumor metastasis and VM. Our findings highlight the importance of miR-27a-3p and suggest a promising new strategy for anti-HCC therapy.
Collapse
|
243
|
Ma Z, Ma Y, Xia Q, Li Y, Li R, Chang W, Chen J, Leng Z, Tao K. MicroRNA-155 expression inversely correlates with pathologic stage of gastric cancer and it inhibits gastric cancer cell growth by targeting cyclin D1. J Cancer Res Clin Oncol 2016; 142:1201-12. [PMID: 26955820 DOI: 10.1007/s00432-016-2139-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/22/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE MicroRNAs (miRs) have been frequently reported dysregulating in tumors and playing a crucial role in tumor development and progression. However, the expression of miR-155 and its role in gastric cancer (GC) are still obscure. METHODS qRT-PCR was applied to detect miR-155 expression in 60 matched GC samples and four GC cell lines, and the relationship between miR-155 levels and clinicopathological features of GC was analyzed. Next, the effects of miR-155 on GC cell growth were evaluated by gain- and loss-of-function analysis. Finally, the target gene(s) of miR-155 in GC cells were explored. RESULTS Our results revealed that miR-155 levels were significantly lower in both GC tissues and GC cell lines than in their normal controls, and its expression inversely correlated with tumor size and the pathologic stage. Moreover, our study showed that enforced expression of miR-155 impaired GC cell proliferation, promoted G1 phase arrest and induced apoptosis in vitro. In addition, we identified cyclin D1 as the direct target of miR-155, and knockdown of cyclin D1 partially phenocopied the role of miR-155 in GC cells. CONCLUSIONS Our findings suggest that miR-155 may act as a potential diagnostic marker for early-stage GC and may represent a novel therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Zhijun Ma
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yulan Ma
- Department of Cardiology, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, 750004, China
| | - Qinghua Xia
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yong Li
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruidong Li
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Weilong Chang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jinhuang Chen
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zhengwei Leng
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
244
|
Osaka E, Kelly AD, Spentzos D, Choy E, Yang X, Shen JK, Yang P, Mankin HJ, Hornicek FJ, Duan Z. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget 2016; 6:9125-39. [PMID: 25823817 PMCID: PMC4496207 DOI: 10.18632/oncotarget.3273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Chordoma pathogenesis remains poorly understood. In this study, we aimed to evaluate the relationships between microRNA-155 (miR-155) expression and the clinicopathological features of chordoma patients, and to evaluate the functional role of miR-155 in chordoma. Methods The miRNA expression profiles were analyzed using miRNA microarray assays. Regulatory activity of miR-155 was assessed using bioinformatic tools. miR-155 expression levels were validated by reverse transcription-polymerase chain reaction. The relationships between miR-155 expression and the clinicopathological features of chordoma patients were analyzed. Proliferative, migratory and invasive activities were assessed by MTT, wound healing, and Matrigel invasion assays, respectively. Results The miRNA microarray assay revealed miR-155 to be highly expressed and biologically active in chordoma. miR-155 expression in chordoma tissues was significantly elevated, and this expression correlated significantly with disease stage (p = 0.036) and the presence of metastasis (p = 0.035). miR-155 expression also correlated significantly with poor outcomes for chordoma patients (hazard ratio, 5.32; p = 0.045). Inhibition of miR-155 expression suppressed proliferation, and the migratory and invasive activities of chordoma cells. Conclusions We have shown miR-155 expression to independently affect prognosis in chordoma. These results collectively indicate that miR-155 expression may serve not only as a prognostic marker, but also as a potential therapeutic target in chordoma.
Collapse
Affiliation(s)
- Eiji Osaka
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Andrew D Kelly
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dimitrios Spentzos
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiaoqian Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pei Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Henry J Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
245
|
Goldgraben MA, Russell R, Rueda OM, Caldas C, Git A. Double-stranded microRNA mimics can induce length- and passenger strand-dependent effects in a cell type-specific manner. RNA (NEW YORK, N.Y.) 2016; 22:193-203. [PMID: 26670622 PMCID: PMC4712670 DOI: 10.1261/rna.054072.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
MicroRNAs are short (17-26) noncoding RNAs driving or modulating physiological and pathological cellular events. Overexpression of miR-155 is pathogenic in B-cell malignancy but was also reported in a number of solid tumors-in particular, in breast cancer, where its role remains unclear and often contradictory. Using representative cell line models, we sought to determine whether the discrepant miR-155 effects in breast cancer could be explained by the heterogeneity of the disease. The growth of six breast cancer cell lines transfected with several miRNA mimics was analyzed. We found MCF-7 cell growth to be inhibited by miR-155 and miR-145 mimics, both 23-nt long, but not by a number of shorter mimics, including a universal commercial negative control. Microarray and Western blot analyses revealed induction of apoptosis, associated with interferon-β after activation of the double-stranded RNA sensor pathway. 3' Trimming of the miRNA mimics to 21 nt substantially reduced their growth-inhibitory potency. Mutating the canonical seed of the miR-155 mimic had no effect on the induced inhibition, which was abolished by mutating the miRNA seed of the artificial passenger strand. A panel of breast cancer cell lines showed a wide range of sensitivities to 23-mer mimics, broadly consistent with the sensitivity of the cell lines to Poly (I:C). We demonstrate two sources for nonspecific in vitro effects by miRNA mimics: duplex length and the artificial passenger strand. We highlight the danger of a universal 21-mer negative control and the importance of using matched seed mutants for reliable interpretation of phenotypes.
Collapse
Affiliation(s)
- Mae A Goldgraben
- Cancer Research UK-Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Roslin Russell
- Cancer Research UK-Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Oscar M Rueda
- Cancer Research UK-Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Carlos Caldas
- Cancer Research UK-Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Anna Git
- Cancer Research UK-Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
246
|
Abstract
Recent investigations have highlighted the importance of the non-coding genome in regions of hypoxia in tumours. Such regions are frequently found in solid tumours, and are associated with worse patient survival and therapy resistance. Hypoxia stabilises the transcription factors, hypoxia inducible factors (HIF1α and HIF2α) which coordinate transcriptomic changes that occur in hypoxia. The changes in gene expression induced by HIF1α and HIF2α contribute to many of the hallmarks of cancer phenotypes and enable tumour growth, survival and invasion in the hypoxic tumour microenvironment. Non-coding RNAs, in particular microRNAs (miRNAs), which regulate mRNA stability and translation, and long-non-coding RNAs (lncRNAs), which have diverse functions including chromatin modification and transcriptional regulation, are also important in enabling the key hypoxia regulated processes. They have roles in the regulation of metabolism, angiogenesis, autophagy, invasion and metastasis in the hypoxic microenvironment. Furthermore, HIF1α and HIF2α expression and stabilisation are also regulated by both miRNAs and lncRNAs. Here we review the recent developments in the expression, regulation and functions of miRNAs, lncRNAs and other non-coding RNA classes in tumour hypoxia.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Science, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Alan McIntyre
- Cancer Biology, Division of Cancer and Stem Cells, QMC, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
247
|
Bacci M, Giannoni E, Fearns A, Ribas R, Gao Q, Taddei ML, Pintus G, Dowsett M, Isacke CM, Martin LA, Chiarugi P, Morandi A. miR-155 Drives Metabolic Reprogramming of ER+ Breast Cancer Cells Following Long-Term Estrogen Deprivation and Predicts Clinical Response to Aromatase Inhibitors. Cancer Res 2016; 76:1615-26. [DOI: 10.1158/0008-5472.can-15-2038] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/28/2015] [Indexed: 11/16/2022]
|
248
|
Kuninty PR, Schnittert J, Storm G, Prakash J. MicroRNA Targeting to Modulate Tumor Microenvironment. Front Oncol 2016; 6:3. [PMID: 26835418 PMCID: PMC4717414 DOI: 10.3389/fonc.2016.00003] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/03/2016] [Indexed: 02/02/2023] Open
Abstract
Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor microenvironment have emerged as key players involved in the development of cancer and its progression. miRNAs are small endogenous non-protein-coding RNAs that negatively regulate the expression of multiple target genes at post-transcriptional level and thereby control many cellular processes. In this review, we provide a comprehensive overview of miRNAs dysregulated in different stromal cells and their impact on the regulation of intercellular crosstalk in the tumor microenvironment. We also discuss the therapeutic significance potential of miRNAs to modulate the tumor microenvironment. Since miRNA delivery is quite challenging and the biggest hurdle for clinical translation of miRNA therapeutics, we review various non-viral miRNA delivery systems that can potentially be used for targeting miRNA to stromal cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Praneeth R Kuninty
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| | - Jonas Schnittert
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| | - Gert Storm
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands; Department of Pharmaceutics, Utrecht University, Utrecht, Netherlands
| | - Jai Prakash
- Targeted Therapeutics Section, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede , Netherlands
| |
Collapse
|
249
|
Chen W, Huang L, Hao C, Zeng W, Luo X, Li X, Zhou L, Jiang S, Chen Z, He Y. MicroRNA-155 promotes apoptosis in SKOV3, A2780, and primary cultured ovarian cancer cells. Tumour Biol 2016; 37:9289-99. [PMID: 26779627 DOI: 10.1007/s13277-016-4804-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/06/2016] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are a large group of small non-coding RNAs that can negatively regulate gene expression at the post-transcriptional level. The deregulation of miRNAs has been associated with tumorigenesis, drug resistance, and prognosis in cancers. Deregulated miR-155 has been reported in numerous cancers; however, its function remains unclear. 4',6-Diamidino-2-phenylindole (DAPI) staining and terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) techniques were used to determine the effects of a miR-155 mimic or inhibitor on the apoptotic ratio of ovarian cancer cells induced by cisplatin. Bioinformatic predictions, the dual-luciferase reporter assay, and western blot analysis were used to detect how miR-155 regulates X-linked inhibitor of apoptosis protein (XIAP). We demonstrated that a miR-155 mimic could decrease the IC50 value of cisplatin in SKOV3 ovarian cancer cells. Subsequently, gain- and loss-of-function analyses with a miR-155 mimic and inhibitor showed that miR-155 sensitizes ovarian cancer cells to cisplatin. Furthermore, the results from the luciferase assays and western blot analysis identified XIAP as the direct target of miR-155. In addition, introducing XIAP cDNA without a three prime untranslated region (3'-UTR) rescued the miR-155 promotion of apoptosis. These results indicate that miR-155 mediates cisplatin-induced apoptosis by targeting XIAP in ovarian cancer cells and that miR-155 could be a potential therapeutic target to increase the efficiency of ovarian cancer interventions.
Collapse
Affiliation(s)
- Wei Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China. .,Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, 510260, China.
| | - Liuxuan Huang
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, 510260, China
| | - Chenjun Hao
- Department of Obstetrics and Gynecology, Panyu Maternal and Child Care Service Centre of Guangzhou, Guangzhou, China
| | - Wenshu Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 132 East Waihuan Rd, Rm 312, Higher Education Mega, Guangzhou, 510006, China
| | - Xu Luo
- Gene Science & Health Company, 3003 Shennan Road, Rm 2108, Shenzhen, 518000, China
| | - Xiaodi Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 132 East Waihuan Rd, Rm 312, Higher Education Mega, Guangzhou, 510006, China
| | - Longshu Zhou
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, 510260, China
| | - Songshan Jiang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 132 East Waihuan Rd, Rm 312, Higher Education Mega, Guangzhou, 510006, China
| | - Zheng Chen
- Department of Medical Genetics, Zhongshan Medical College, Sun Yat-sen University, Zhongshan Road 2, Guangzhou, 510080, China.
| | - Yuanli He
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China.
| |
Collapse
|
250
|
de la Parra C, Castillo-Pichardo L, Cruz-Collazo A, Cubano L, Redis R, Calin GA, Dharmawardhane S. Soy Isoflavone Genistein-Mediated Downregulation of miR-155 Contributes to the Anticancer Effects of Genistein. Nutr Cancer 2016; 68:154-64. [PMID: 26771440 DOI: 10.1080/01635581.2016.1115104] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We previously reported that dietary genistein inhibits mammary tumor growth and metastasis of the highly metastatic MDA-MB-435 cancer cells in immunocompromised mice. The purpose herein was to characterize the role of the novel oncogenic microRNA (miRNA) miR-155 in the anticancer effects of genistein in metastatic breast cancer. The effect of genistein was determined on breast cancer cell viability, apoptosis, and expression of miR-155 and its targets. At low physiologically relevant concentrations, genistein inhibits cell viability and induces apoptosis in metastatic MDA-MB-435 and Hs578t breast cancer cells, without affecting the viability of nonmetastatic MCF-7 breast cancer cells. In parallel with reduced cell viability, miR-155 is downregulated, whereas proapoptotic and anticell proliferative miR-155 targets FOXO3, PTEN, casein kinase, and p27 are upregulated in MDA-MB-435 and Hs578t cells in response to genistein treatment. However, miR-155 levels remain unchanged in response to genistein in the MCF-7 cells. Ectopic expression of miR-155 in MDA-MB-435 and Hs578t cells decreases the effects of genistein on cell viability and abrogates the effects of genistein on apoptosis and expression of proapoptotic genes. Therefore, genistein-mediated downregulation of miR-155 contributes to the anticancer effects of genistein in metastatic breast cancer.
Collapse
Affiliation(s)
- Columba de la Parra
- a Department of Biochemistry , School of Medicine, University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico
| | - Linette Castillo-Pichardo
- b Department of Biochemistry , School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico and Department of Pathology and Laboratory Medicine, Universidad Central del Caribe , Bayamon , Puerto Rico
| | - Ailed Cruz-Collazo
- c Department of Biochemistry , School of Medicine, University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico
| | - Luis Cubano
- d Department of Anatomy and Cell Biology , Universidad Central del Caribe , Bayamon , Puerto Rico
| | - Roxana Redis
- e Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - George A Calin
- e Department of Experimental Therapeutics , The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Suranganie Dharmawardhane
- f Department of Biochemistry , School of Medicine, University of Puerto Rico Medical Sciences Campus , San Juan , Puerto Rico
| |
Collapse
|