201
|
Experimental arthritis and Porphyromonas gingivalis administration synergistically decrease bone regeneration in femoral cortical defects. Sci Rep 2019; 9:20031. [PMID: 31882624 PMCID: PMC6934576 DOI: 10.1038/s41598-019-56265-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Porphyromonas gingivalis infection can lead to periodontitis and dysbiosis, which are known risk factors for rheumatoid arthritis (RA). We investigated whether P. gingivalis administration affected bone regeneration in mice with or without arthritis. We administered P. gingivalis to male DBA/1 J mice that were or were not sensitised to type II collagen-induced arthritis (CIA). All mice underwent drilling of bilateral femurs. We histologically evaluated new bone regeneration (bone volume of the defect [BVd]/tissue volume of the defect [TVd]) using micro-computed tomography (micro-CT), osteoclast number/bone area, and active osteoblast surface/bone surface (Ob.S/BS). We measured serum cytokine levels and bone mineral density of the proximal tibia using micro-CT. CIA resulted in significantly reduced bone regeneration (BVd/TVd) at all time-points, whereas P. gingivalis administration showed similar effects at 2 weeks postoperatively. CIA resulted in higher osteoclast number/bone area and lower Ob.S/BS at 2 and 3 weeks postoperatively, respectively. However, P. gingivalis administration resulted in lower Ob.S/BS only at 2 weeks postoperatively. During later-stage bone regeneration, CIA and P. gingivalis administration synergistically decreased BVd/TVd, increased serum tumour necrosis factor-α, and resulted in the lowest bone mineral density. Therefore, RA and dysbiosis could be risk factors for prolonged fracture healing.
Collapse
|
202
|
Gruber R. Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol 2019; 46 Suppl 21:52-69. [PMID: 30623453 DOI: 10.1111/jcpe.13056] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
AIM Osteoimmunology covers the cellular and molecular mechanisms responsible for inflammatory osteolysis that culminates in the degradation of alveolar bone. Osteoimmunology also focuses on the interplay of immune cells with bone cells during bone remodelling and regeneration. The aim of this review was to provide insights into how osteoimmunology affects alveolar bone health and disease. METHOD This review is based on a narrative approach to assemble mouse models that provide insights into the cellular and molecular mechanisms causing inflammatory osteolysis and on the impact of immune cells on alveolar bone regeneration. RESULTS Mouse models have revealed the molecular pathways by which microbial and other factors activate immune cells that initiate an inflammatory response. The inflammation-induced alveolar bone loss occurs with the concomitant suppression of bone formation. Mouse models also showed that immune cells contribute to the resolution of inflammation and bone regeneration, even though studies with a focus on alveolar socket healing are rare. CONCLUSIONS Considering that osteoimmunology is evolutionarily conserved, osteolysis removes the cause of inflammation by provoking tooth loss. The impact of immune cells on bone regeneration is presumably a way to reinitiate the developmental mechanisms of intramembranous and endochondral bone formation.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
203
|
Queiroz-Junior CM, Santos ACPM, Galvão I, Souto GR, Mesquita RA, Sá MA, Ferreira AJ. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor axis as a key player in alveolar bone remodeling. Bone 2019; 128:115041. [PMID: 31442676 DOI: 10.1016/j.bone.2019.115041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system (RAS), aside its classical hormonal properties, has been implicated in the pathogenesis of inflammatory disorders. The angiotensin converting enzyme 2/angiotensin-(1-7)/Mas Receptor (ACE2/Ang-(1-7)/MasR) axis owns anti-inflammatory properties and was recently associated with bone remodeling in osteoporosis. Thus, the aim of this study was to characterize the presence and effects of the ACE2/Ang-(1-7)/MasR axis in osteoblasts and osteoclasts in vitro and in vivo. ACE2 and MasR were detected by qPCR and western blotting in primary osteoblast and osteoclast cell cultures. Cells were incubated with different concentrations of Ang-(1-7), diminazene aceturate (DIZE - an ACE2 activator), A-779 (MasR antagonist) and/or LPS in order to evaluate osteoblast alkaline phosphatase and mineralized matrix, osteoclast differentiation and cytokine expression, and mRNA levels of osteoblasts and osteoclasts markers. An experimental model of alveolar bone resorption triggered by dysbiosis in rats was used to evaluate bone remodeling in vivo. Rats were treated with Ang-(1-7), DIZE and/or A-779 and periodontal samples were collected for immunohistochemistry, morphometric analysis, osteoblast and osteoclast count and cytokine evaluation. Human gingival samples from healthy and periodontitis patients were also evaluated for detection of ACE2 and MasR expression. Osteoblasts and osteoclasts expressed ACE2 and MasR in vitro and in vivo. LPS stimulation or alveolar bone loss induction reduced ACE2 expression. Treatment of bone cells with Ang-(1-7) or DIZE stimulated osteoblast ALP, matrix synthesis, upregulated osterix, osteocalcin and collagen type 1 transcription, reduced IL-6 expression, and decreased osteoclast differentiation, RANK and IL-1β mRNA transcripts, and IL-6 and IL-1β levels, in a MasR-dependent manner. In vivo, Ang-(1-7) and DIZE decreased alveolar bone loss through improvement of osteoblast/osteoclast ratio. A-779 reversed such phenotype. ACE2/Ang-(1-7)/MasR axis activation reduced IL-6 expression, but not IL-1β. ACE2 and MasR were also detected in human gingival samples, with higher expression in the healthy than in the inflamed tissues. These findings show that the ACE2/Ang-(1-7)/MasR is an active player in alveolar bone remodeling.
Collapse
Affiliation(s)
- Celso Martins Queiroz-Junior
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| | - Anna Clara Paiva Menezes Santos
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Izabela Galvão
- Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Giovanna Ribeiro Souto
- Department of Dentistry, Pontifical Chatholic University of Minas Gerais, Brazil; Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Brazil
| | - Marcos Augusto Sá
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil
| | - Anderson José Ferreira
- Translational Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
204
|
Dutzan N, Kajikawa T, Abusleme L, Greenwell-Wild T, Zuazo CE, Ikeuchi T, Brenchley L, Abe T, Hurabielle C, Martin D, Morell RJ, Freeman AF, Lazarevic V, Trinchieri G, Diaz PI, Holland SM, Belkaid Y, Hajishengallis G, Moutsopoulos NM. A dysbiotic microbiome triggers T H17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med 2019; 10:10/463/eaat0797. [PMID: 30333238 DOI: 10.1126/scitranslmed.aat0797] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/03/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Periodontitis is one of the most common human inflammatory diseases, yet the mechanisms that drive immunopathology and could be therapeutically targeted are not well defined. Here, we demonstrate an expansion of resident memory T helper 17 (TH17) cells in human periodontitis. Phenocopying humans, TH17 cells expanded in murine experimental periodontitis through local proliferation. Unlike homeostatic oral TH17 cells, which accumulate in a commensal-independent and interleukin-6 (IL-6)-dependent manner, periodontitis-associated expansion of TH17 cells was dependent on the local dysbiotic microbiome and required both IL-6 and IL-23. TH17 cells and associated neutrophil accumulation were necessary for inflammatory tissue destruction in experimental periodontitis. Genetic or pharmacological inhibition of TH17 cell differentiation conferred protection from immunopathology. Studies in a unique patient population with a genetic defect in TH17 cell differentiation established human relevance for our murine experimental studies. In the oral cavity, human TH17 cell defects were associated with diminished periodontal inflammation and bone loss, despite increased prevalence of recurrent oral fungal infections. Our study highlights distinct functions of TH17 cells in oral immunity and inflammation and paves the way to a new targeted therapeutic approach for the treatment of periodontitis.
Collapse
Affiliation(s)
- Nicolas Dutzan
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA.,Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | - Tetsuhiro Kajikawa
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Loreto Abusleme
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA.,Faculty of Dentistry, University of Chile, 8380492 Santiago, Chile
| | | | - Carlos E Zuazo
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Laurie Brenchley
- Oral Immunity and Inflammation Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Toshiharu Abe
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte Hurabielle
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, MD 20892, USA.,Inserm U976, Hôpital Saint Louis, Université Paris Diderot, Paris 75010, France
| | - Daniel Martin
- Genomics and Computational Biology Core, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Robert J Morell
- Genomics and Computational Biology Core, NIDCD, NIH, Bethesda, MD 20892, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, MD 20892, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Patricia I Diaz
- School of Dental Medicine, UConn Health, Farmington, CT 06030, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, NIAID, NIH, MD 20892, USA
| | - George Hajishengallis
- Department of Microbiology, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
205
|
RNA sequencing for ligature induced periodontitis in mice revealed important role of S100A8 and S100A9 for periodontal destruction. Sci Rep 2019; 9:14663. [PMID: 31605018 PMCID: PMC6789140 DOI: 10.1038/s41598-019-50959-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/11/2019] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is an inflammatory disease caused by pathogenic oral microorganisms that induce the destruction of periodontal tissue. We sought to identify the relevant differentially expressed genes (DEGs) and clarify the mechanism underlying the rapid alveolar bone loss by using ligature-induced periodontitis in mice. A silk ligature was tied around the maxillary left second molar in 9-week-old C57BL/6 J male mice. In-vivo micro-CT analysis revealed that ligation induced severe bone loss. RNA-sequencing analysis, to examine host responses at 3 days post-ligation, detected 12,853 genes with fragments per kilobase of exon per million mapped reads ≥ 1, and 78 DEGs. Gene ontology term enrichment analysis revealed the expression profiles related to neutrophil chemotaxis and inflammatory responses were significantly enriched in the ligated gingiva. The expression levels of innate immune response-related genes, including S100a8 and S100a9, were significantly higher in the ligated side. S100A8 was strongly detected by immunohistochemistry at the attached epithelium in ligated sites. Inhibition of S100A8 and S100A9 expression revealed that they regulated IL1B and CTSK expression in Ca9-22 cells. Thus, innate immune response-related molecules might be associated with the burst-destruction of periodontal tissue in ligature-induced periodontitis. Especially, S100A8 and S100A9 may play an important role in alveolar bone resorption.
Collapse
|
206
|
The role of bone cells in immune regulation during the course of infection. Semin Immunopathol 2019; 41:619-626. [PMID: 31552472 DOI: 10.1007/s00281-019-00755-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Bone homeostasis depends on a balance between osteoclastic bone resorption and osteoblastic bone formation. Bone cells are regulated by a variety of biochemical factors, such as hormones and cytokines, as well as various types of physical stress. The immune system affects bone, since such factors are dysregulated under pathologic conditions, including infection. The bone marrow, one of the primary lymphoid organs, provides a special microenvironment that supports the function and differentiation of immune cells and hematopoietic stem cells (HSCs). Thus, bone cells contribute to immune regulation by modulating immune cell differentiation and/or function through the maintenance of the bone marrow microenvironment. Although osteoblasts were first reported as the population that supports HSCs, the role of osteoblast-lineage cells in hematopoiesis has been shown to be more limited than previously expected. Osteoblasts are specifically involved in the differentiation of lymphoid cells under physiological and pathological conditions. It is of critical importance how bone cells are modified during inflammation and/or infection and how such modification affects the immune system.
Collapse
|
207
|
S100A4 released from highly bone-metastatic breast cancer cells plays a critical role in osteolysis. Bone Res 2019; 7:30. [PMID: 31667000 PMCID: PMC6804941 DOI: 10.1038/s41413-019-0068-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Bone destruction induced by breast cancer metastasis causes severe complications, including death, in breast cancer patients. Communication between cancer cells and skeletal cells in metastatic bone microenvironments is a principal element that drives tumor progression and osteolysis. Tumor-derived factors play fundamental roles in this form of communication. To identify soluble factors released from cancer cells in bone metastasis, we established a highly bone-metastatic subline of MDA-MB-231 breast cancer cells. This subline (mtMDA) showed a markedly elevated ability to secrete S100A4 protein, which directly stimulated osteoclast formation via surface receptor RAGE. Recombinant S100A4 stimulated osteoclastogenesis in vitro and bone loss in vivo. Conditioned medium from mtMDA cells in which S100A4 was knocked down had a reduced ability to stimulate osteoclasts. Furthermore, the S100A4 knockdown cells elicited less bone destruction in mice than the control knockdown cells. In addition, administration of an anti-S100A4 monoclonal antibody (mAb) that we developed attenuated the stimulation of osteoclastogenesis and bone loss by mtMDA in mice. Taken together, our results suggest that S100A4 released from breast cancer cells is an important player in the osteolysis caused by breast cancer bone metastasis.
Collapse
|
208
|
Asano T, Okamoto K, Nakai Y, Tsutsumi M, Muro R, Suematsu A, Hashimoto K, Okamura T, Ehata S, Nitta T, Takayanagi H. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat Metab 2019; 1:868-875. [PMID: 32694743 DOI: 10.1038/s42255-019-0104-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
Receptor activator of NF-κB ligand (RANKL) is a multifunctional cytokine known to affect immune and skeletal systems, as well as oncogenesis and metastasis1-4. RANKL is synthesized as a membrane-bound molecule, and cleaved into its soluble form by proteases5-7. As the soluble form of RANKL does not contribute greatly to bone remodelling or ovariectomy-induced bone loss8, whether soluble RANKL has a role in pathological settings remains unclear. Here we show that soluble RANKL promotes the formation of tumour metastases in bone. Mice that selectively lack soluble RANKL (Tnfsf11ΔS/ΔS)5-7,9 have normal bone homoeostasis and develop a normal immune system but display markedly reduced numbers of bone metastases after intracardiac injection of RANK-expressing melanoma and breast cancer cells. Deletion of soluble RANKL does not affect osteoclast numbers in metastatic lesions or tumour metastasis to non-skeletal tissues. Therefore, soluble RANKL is dispensable for physiological regulation of bone and immune systems, but has a distinct and pivotal role in the promotion of bone metastases.
Collapse
Affiliation(s)
- Tatsuo Asano
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yuta Nakai
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Tsutsumi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayako Suematsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Hashimoto
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shogo Ehata
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
209
|
Oral Bacteria and Intestinal Dysbiosis in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20174146. [PMID: 31450675 PMCID: PMC6747549 DOI: 10.3390/ijms20174146] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
The human organism coexists with its microbiota in a symbiotic relationship. These polymicrobial communities are involved in many crucial functions, such as immunity, protection against pathogens, and metabolism of dietary compounds, thus maintaining homeostasis. The oral cavity and the colon, although distant anatomic regions, are both highly colonized by distinct microbiotas. However, studies indicate that oral bacteria are able to disseminate into the colon. This is mostly evident in conditions such as periodontitis, where specific bacteria, namely Fusobacterium nucrelatum and Porphyromonas gingivalis project a pathogenic profile. In the colon these bacteria can alter the composition of the residual microbiota, in the context of complex biofilms, resulting in intestinal dysbiosis. This orally-driven disruption promotes aberrant immune and inflammatory responses, eventually leading to colorectal cancer (CRC) tumorigenesis. Understanding the exact mechanisms of these interactions will yield future opportunities regarding prevention and treatment of CRC.
Collapse
|
210
|
Nishida K, Hasegawa A, Yamasaki S, Uchida R, Ohashi W, Kurashima Y, Kunisawa J, Kimura S, Iwanaga T, Watarai H, Hase K, Ogura H, Nakayama M, Kashiwakura JI, Okayama Y, Kubo M, Ohara O, Kiyono H, Koseki H, Murakami M, Hirano T. Mast cells play role in wound healing through the ZnT2/GPR39/IL-6 axis. Sci Rep 2019; 9:10842. [PMID: 31346193 PMCID: PMC6658492 DOI: 10.1038/s41598-019-47132-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/11/2019] [Indexed: 01/08/2023] Open
Abstract
Zinc (Zn) is an essential nutrient and its deficiency causes immunodeficiency and skin disorders. Various cells including mast cells release Zn-containing granules when activated; however, the biological role of the released Zn is currently unclear. Here we report our findings that Zn transporter ZnT2 is required for the release of Zn from mast cells. In addition, we found that Zn and mast cells induce IL-6 production from inflammatory cells such as skin fibroblasts and promote wound healing, a process that involves inflammation. Zn induces the production of a variety of pro-inflammatory cytokines including IL-6 through signaling pathways mediated by the Zn receptor GPR39. Consistent with these findings, wound healing was impaired in mice lacking IL-6 or GPR39. Thus, our results show that Zn and mast cells play a critical role in wound healing through activation of the GPR39/IL-6 signaling axis.
Collapse
Affiliation(s)
- Keigo Nishida
- Laboratory of Immune Regulation, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie, 513-8670, Japan. .,Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Aiko Hasegawa
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Department of Pediatrics, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Satoru Yamasaki
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryota Uchida
- Laboratory of Immune Regulation, Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minamitamagaki-cho, Suzuka, Mie, 513-8670, Japan
| | - Wakana Ohashi
- Laboratory for Homeostatic Network, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, 930-0194, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, the Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.,Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.,Institute for Global Prominent Research, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California San Diego, 9500 Gilman Dr. MC 0063, San Diego, CA, 92093-0063, United States.,Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085, Japan.,Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Shunsuke Kimura
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan.,Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Hiroshi Watarai
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan.,International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo (IMSUT), 108-8639, Tokyo, Japan
| | - Hideki Ogura
- Department of Microbiology, Hyogo College of Medicine 1-1, Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute,2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Jun-Ichi Kashiwakura
- Laboratory of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Project Team, Center for Allergy, Center for Medical Education, Nihon University School of Medicine, 30-1 Oyaguchi Kamicho Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba, 278-0022, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, the Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.,Division of Clinical Vaccinology, International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.,Institute for Global Prominent Research, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.,Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), University of California San Diego, 9500 Gilman Dr. MC 0063, San Diego, CA, 92093-0063, United States.,Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, 060-815, Japan
| | - Toshio Hirano
- Headquarters, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
211
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
212
|
Lucchino B, Spinelli FR, Iannuccelli C, Guzzo MP, Conti F, Di Franco M. Mucosa-Environment Interactions in the Pathogenesis of Rheumatoid Arthritis. Cells 2019; 8:E700. [PMID: 31295951 PMCID: PMC6678242 DOI: 10.3390/cells8070700] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces play a central role in the pathogenesis of rheumatoid arthritis (RA). Several risk factors, such as cigarette smoking, environmental pollution, and periodontitis interact with the host at the mucosal level, triggering immune system activation. Moreover, the alteration of microbiota homeostasis is gaining increased attention for its involvement in the disease pathogenesis, modulating the immune cell response at a local and subsequently at a systemic level. Currently, the onset of the clinical manifest arthritis is thought to be the last step of a series of pathogenic events lasting years. The positivity for anti-citrullinated protein antibodies (ACPAs) and rheumatoid factor (RF), in absence of symptoms, characterizes a preclinical phase of RA-namely systemic autoimmune phase- which is at high risk for disease progression. Several immune abnormalities, such as local ACPA production, increased T cell polarization towards a pro-inflammatory phenotype, and innate immune cell activation can be documented in at-risk subjects. Many of these abnormalities are direct consequences of the interaction between the environment and the host, which takes place at the mucosal level. The purpose of this review is to describe the humoral and cellular immune abnormalities detected in subjects at risk of RA, highlighting their origin from the mucosa-environment interaction.
Collapse
Affiliation(s)
- Bruno Lucchino
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesca Romani Spinelli
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Cristina Iannuccelli
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Paola Guzzo
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Fabrizio Conti
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| | - Manuela Di Franco
- Rheumatology Unit, Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
213
|
Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 2019; 19:626-642. [PMID: 31186549 DOI: 10.1038/s41577-019-0178-8] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
In terrestrial vertebrates, bone tissue constitutes the 'osteoimmune' system, which functions as a locomotor organ and a mineral reservoir as well as a primary lymphoid organ where haematopoietic stem cells are maintained. Bone and mineral metabolism is maintained by the balanced action of bone cells such as osteoclasts, osteoblasts and osteocytes, yet subverted by aberrant and/or prolonged immune responses under pathological conditions. However, osteoimmune interactions are not restricted to the unidirectional effect of the immune system on bone metabolism. In recent years, we have witnessed the discovery of effects of bone cells on immune regulation, including the function of osteoprogenitor cells in haematopoietic stem cell regulation and osteoblast-mediated suppression of haematopoietic malignancies. Moreover, the dynamic reciprocal interactions between bone and malignancies in remote organs have attracted attention, extending the horizon of osteoimmunology. Here, we discuss emerging concepts in the osteoimmune dialogue in health and disease.
Collapse
|
214
|
Bucher CH, Schlundt C, Wulsten D, Sass FA, Wendler S, Ellinghaus A, Thiele T, Seemann R, Willie BM, Volk HD, Duda GN, Schmidt-Bleek K. Experience in the Adaptive Immunity Impacts Bone Homeostasis, Remodeling, and Healing. Front Immunol 2019; 10:797. [PMID: 31031773 PMCID: PMC6474158 DOI: 10.3389/fimmu.2019.00797] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Bone formation as well as bone healing capacity is known to be impaired in the elderly. Although bone formation is outpaced by bone resorption in aged individuals, we hereby present a novel path that considerably impacts bone formation and architecture: Bone formation is substantially reduced in aged individual owing to the experience of the adaptive immunity. Thus, immune-aging in addition to chronological aging is a potential risk factor, with an experienced immune system being recognized as more pro-inflammatory. The role of the aging immune system on bone homeostasis and on the bone healing cascade has so far not been considered. Within this study mice at different age and immunological experience were analyzed toward bone properties. Healing was assessed by introducing an osteotomy, immune cells were adoptively transferred to disclose the difference in biological vs. chronological aging. In vitro studies were employed to test the interaction of immune cell products (cytokines) on cells of the musculoskeletal system. In metaphyseal bone, immune-aging affects bone homeostasis by impacting bone formation capacity and thereby influencing mass and microstructure of bone trabeculae leading to an overall reduced mechanical competence as found in bone torsional testing. Furthermore, bone formation is also impacted during bone regeneration in terms of a diminished healing capacity observed in young animals who have an experienced human immune system. We show the impact of an experienced immune system compared to a naïve immune system, demonstrating the substantial differences in the healing capacity and bone homeostasis due to the immune composition. We further showed that in vivo mechanical stimulation changed the immune system phenotype in young mice toward a more naïve composition. While this rescue was found to be significant in young individuals, aged mice only showed a trend toward the reconstitution of a more naïve immune phenotype. Considering the immune system's experience level in an individual, will likely allow one to differentiate (stratify) and treat (immune-modulate) patients more effectively. This work illustrates the relevance of including immune diagnostics when discussing immunomodulatory therapeutic strategies for the progressively aging population of the industrial countries.
Collapse
Affiliation(s)
- Christian H Bucher
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Schlundt
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dag Wulsten
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - F Andrea Sass
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Wendler
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Thiele
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ricarda Seemann
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Department of Pediatric Surgery, Faculty of Medicine, McGill University, Shriners Hospital for Children, Montreal, QC, Canada
| | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
215
|
Rajendran M, Looney S, Singh N, Elashiry M, Meghil MM, El-Awady AR, Tawfik O, Susin C, Arce RM, Cutler CW. Systemic Antibiotic Therapy Reduces Circulating Inflammatory Dendritic Cells and Treg-Th17 Plasticity in Periodontitis. THE JOURNAL OF IMMUNOLOGY 2019; 202:2690-2699. [PMID: 30944162 DOI: 10.4049/jimmunol.1900046] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Periodontitis (PD) is a common dysbiotic inflammatory disease that leads to local bone deterioration and tooth loss. PD patients experience low-grade bacteremias with oral microbes implicated in the risk of heart disease, cancer, and kidney failure. Although Th17 effectors are vital to fighting infection, functional imbalance of Th17 effectors and regulatory T cells (Tregs) promote inflammatory diseases. In this study, we investigated, in a small pilot randomized clinical trial, whether expansion of inflammatory blood myeloid dendritic cells (DCs) and conversion of Tregs to Th17 cells could be modulated with antibiotics (AB) as part of initial therapy in PD patients. PD patients were randomly assigned to either 7 d of peroral metronidazole/amoxicillin AB treatment or no AB, along with standard care debridement and chlorhexidine mouthwash. 16s ribosomal RNA analysis of keystone pathogen Porphyromonas gingivalis and its consortium members Fusobacterium nucleatum and Streptococcus gordonii confirmed the presence of all three species in the reservoirs (subgingival pockets and blood DCs) of PD patients before treatment. Of the three species, P. gingivalis was reduced in both reservoirs 4-6 wk after therapy. Further, the frequency of CD1C+CCR6+ myeloid DCs and IL-1R1 expression on IL-17A+FOXP3+CD4+ T cells in PD patients were reduced to healthy control levels. The latter led to decreased IL-1β-stimulated Treg plasticity in PD patients and improvement in clinical measures of PD. Overall, we identified an important, albeit short-term, beneficial role of AB therapy in reducing inflammatory DCs and Treg-Th17 plasticity in humans with PD.
Collapse
Affiliation(s)
- Mythilypriya Rajendran
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Stephen Looney
- Department of Biostatistics and Epidemiology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912.,Cancer Research Center, Augusta University, Augusta, GA 30912
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Mohamed M Meghil
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Ahmed R El-Awady
- Department of Research, Immunology Program, Children's Cancer Hospital, Cairo 57357, Egypt
| | - Omnia Tawfik
- Department of Oral Medicine and Periodontology, Cairo University, Cairo 12613, Egypt; and
| | - Cristiano Susin
- Department of Periodontology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Roger M Arce
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912
| | - Christopher W Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, Augusta, GA 30912;
| |
Collapse
|
216
|
Hajishengallis G, Chavakis T. DEL-1-Regulated Immune Plasticity and Inflammatory Disorders. Trends Mol Med 2019; 25:444-459. [PMID: 30885428 DOI: 10.1016/j.molmed.2019.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
In contrast to traditional immune cell-centered viewpoints, recent studies suggest that tissues are not passive recipients of immunity but have a 'regulatory say' over the host inflammatory response. Identification of tissue-derived homeostatic molecules regulating immune plasticity is seminal for understanding the inherent regulatory potential of different organs in the immune response. DEL-1 (developmental endothelial locus-1) is a secreted multidomain protein interacting with integrins and phospholipids and regulates, depending on its expression location, distinct stages of the host inflammatory response (from myelopoiesis over leukocyte recruitment to efferocytosis and resolution of inflammation). Here we synthesize recent evidence of DEL-1 as an exemplar local regulatory factor in the context of tissue immune plasticity and inflammatory disorders (such as periodontitis, multiple sclerosis, and pulmonary disorders), and discuss its potential as a therapeutic agent.
Collapse
Affiliation(s)
- George Hajishengallis
- Penn Dental Medicine, Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Triantafyllos Chavakis
- Faculty of Medicine, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
217
|
Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M, Wang L, Sun M, Zhang K, Liu Q, Shen Y, Lin C, Yang B, Sun H. An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 2019; 86:235-246. [PMID: 30611793 DOI: 10.1016/j.actbio.2019.01.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Periodontitis is an inflammatory disease induced by complex interactions between host immune system and plaque microorganism. Alveolar bone resorption caused by periodontitis is considered to be one of the main reasons for tooth loss in adults. To terminate the alveolar bone resorption, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. In this study, chitosan (CS), β-sodium glycerophosphate (β-GP), and gelatin were used to prepare an injectable and thermosensitive hydrogel, which could continuously release aspirin and erythropoietin (EPO) to exert pharmacological effects of anti-inflammation and tissue regeneration, respectively. The releasing profile showed that aspirin and EPO could be continuously released from the hydrogels, which exhibited no toxicity both in vitro and in vivo, for at least 21 days. Immunohistochemistry staining and micro-CT analyses indicated that administration of CS/β-GP/gelatin hydrogels loaded with aspirin/EPO could terminate the inflammation and recover the height of the alveolar bone, which is further confirmed by histological observations. Our results suggested that CS/β-GP/gelatin hydrogels are easily prepared as drug-loading vectors with excellent biocompatibility, and the CS/β-GP/gelatin hydrogels loaded with aspirin/EPO are quite effective in anti-inflammation and periodontium regeneration, which provides a great potential candidate for periodontitis treatment in the dental clinic. Statement of Significance To terminate the alveolar bone resorption caused by periodontitis, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. Here, (1) the chitosan (CS)/β-sodium glycerophosphate/gelatin hydrogels loaded with aspirin/erythropoietin (EPO) can form at body temperature in 5 min with excellent biocompatibility in vitro and in vivo; (2) The faster release of aspirin than EPO in the early stage is beneficial for anti-inflammation and provides a microenvironment for ensuring the regeneration function of EPO in the following step. In vivo experiments revealed that the hydrogels are effective in the control of inflammation and regeneration of the periodontium. These results indicate that our synthesized hydrogels have a great potential in the future clinical application.
Collapse
|
218
|
du Teil Espina M, Gabarrini G, Harmsen HJM, Westra J, van Winkelhoff AJ, van Dijl JM. Talk to your gut: the oral-gut microbiome axis and its immunomodulatory role in the etiology of rheumatoid arthritis. FEMS Microbiol Rev 2019; 43:1-18. [PMID: 30219863 DOI: 10.1093/femsre/fuy035] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial communities inhabiting the human body, collectively called the microbiome, are critical modulators of immunity. This notion is underpinned by associations between changes in the microbiome and particular autoimmune disorders. Specifically, in rheumatoid arthritis, one of the most frequently occurring autoimmune disorders worldwide, changes in the oral and gut microbiomes have been implicated in the loss of tolerance against self-antigens and in increased inflammatory events promoting the damage of joints. In the present review, we highlight recently gained insights in the roles of microbes in the etiology of rheumatoid arthritis. In addition, we address important immunomodulatory processes, including biofilm formation and neutrophil function, which have been implicated in host-microbe interactions relevant for rheumatoid arthritis. Lastly, we present recent advances in the development and evaluation of emerging microbiome-based therapeutic approaches. Altogether, we conclude that the key to uncovering the etiopathogenesis of rheumatoid arthritis will lie in the immunomodulatory functions of the oral and gut microbiomes.
Collapse
Affiliation(s)
- Marines du Teil Espina
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Giorgio Gabarrini
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - Arie Jan van Winkelhoff
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| |
Collapse
|
219
|
Dutzan N, Abusleme L. T Helper 17 Cells as Pathogenic Drivers of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:107-117. [PMID: 31732938 DOI: 10.1007/978-3-030-28524-1_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T helper 17 (Th17) cells were first described as a T helper subset involved in the pathogenesis of experimental autoimmune inflammation. Since then, these cells have been described as orchestrators of immunopathology in several human inflammatory conditions including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. More recently, the crucial role of Th17 cells in the regulation of immunity and protection of barrier sites has been unveiled. In the present work, we review the available evidence regarding Th17 cells in health and disease with a focus on the oral mucosa and their role in periodontitis pathogenesis. Recent mechanistic studies in animal models have demonstrated that interleukin-17A (IL-17A) and Th17 cells are critical mediators for alveolar bone destruction during periodontal inflammation. Observations in a cohort of patients with naturally occurring impaired Th17 cell differentiation supported these findings. However, interventional studies are needed to conclusively implicate Th17 cells in the immunopathogenesis of human alveolar bone and tissue destruction that characterize periodontitis.
Collapse
Affiliation(s)
- Nicolas Dutzan
- Oral Mucosal Immunology Section, Craniofacial and Translational Research Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile.
| | - Loreto Abusleme
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile.,Oral Microbial Ecology Section, Craniofacial and Translational Research Laboratory, Faculty of Dentistry, University of Chile, Santiago, Chile
| |
Collapse
|
220
|
Czesnikiewicz-Guzik M, Nosalski R, Mikolajczyk TP, Vidler F, Dohnal T, Dembowska E, Graham D, Harrison DG, Guzik TJ. Th1-type immune responses to Porphyromonas gingivalis antigens exacerbate angiotensin II-dependent hypertension and vascular dysfunction. Br J Pharmacol 2018; 176:1922-1931. [PMID: 30414380 PMCID: PMC6534780 DOI: 10.1111/bph.14536] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/15/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose Emerging evidence indicates that hypertension is mediated by immune mechanisms. We hypothesized that exposure to Porphyromonas gingivalis antigens, commonly encountered in periodontal disease, can enhance immune activation in hypertension and exacerbate the elevation in BP, vascular inflammation and vascular dysfunction. Experimental Approach Th1 immune responses were elicited through immunizations using P. gingivalis lysate antigens (10 μg) conjugated with aluminium oxide (50 μg) and IL‐12 (1 μg). The hypertension and vascular endothelial dysfunction evoked by subpressor doses of angiotensin II (0.25 mg·kg−1·day−1) were studied, and vascular inflammation was quantified by flow cytometry and real‐time PCR. Key Results Systemic T‐cell activation, a characteristic of hypertension, was exacerbated by P. gingivalis antigen stimulation. This translated into increased aortic vascular inflammation with enhanced leukocyte, in particular, T‐cell and macrophage infiltration. The expression of the Th1 cytokines, IFN‐γ and TNF‐α, and the transcription factor, TBX21, was increased in aortas of P. gingivalis/IL‐12/aluminium oxide‐immunized mice, while IL‐4 and TGF‐β were unchanged. These immune changes in mice with induced T‐helper‐type 1 immune responses were associated with an enhanced elevation of BP and endothelial dysfunction compared with control mice in response to 2 week infusion of a subpressor dose of angiotensin II. Conclusions and Implications These results support the concept that Th1 immune responses induced by bacterial antigens such as P. gingivalis can increase sensitivity to subpressor pro‐hypertensive insults such as low‐dose angiotensin II, thus providing a mechanistic link between chronic infection, such as periodontitis, and hypertension. Linked Articles This article is part of a themed section on Immune Targets in Hypertension. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.12/issuetoc
Collapse
Affiliation(s)
- Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow Dental School and Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.,Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University School of Medicine, Kraków, Poland
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz P Mikolajczyk
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Vidler
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz Dohnal
- Department of Dental Prophylaxis and Experimental Dentistry, Jagiellonian University School of Medicine, Kraków, Poland
| | - Elzbieta Dembowska
- Department of Periodontology, Pomeranian Medical University, Szczecin, Poland
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - David G Harrison
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
221
|
Bonner M, Fresno M, Gironès N, Guillén N, Santi-Rocca J. Reassessing the Role of Entamoeba gingivalis in Periodontitis. Front Cell Infect Microbiol 2018; 8:379. [PMID: 30420943 PMCID: PMC6215854 DOI: 10.3389/fcimb.2018.00379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The protozoan Entamoeba gingivalis resides in the oral cavity and is frequently observed in the periodontal pockets of humans and pets. This species of Entamoeba is closely related to the human pathogen Entamoeba histolytica, the agent of amoebiasis. Although E. gingivalis is highly enriched in people with periodontitis (a disease in which inflammation and bone loss correlate with changes in the microbial flora), the potential role of this protozoan in oral infectious diseases is not known. Periodontitis affects half the adult population in the world, eventually leads to edentulism, and has been linked to other pathologies, like diabetes and cardiovascular diseases. As aging is a risk factor for the disorder, it is considered an inevitable physiological process, even though it can be prevented and cured. However, the impact of periodontitis on the patient's health and quality of life, as well as its economic burden, are underestimated. Commonly accepted models explain the progression from health to gingivitis and then periodontitis by a gradual change in the identity and proportion of bacterial microorganisms in the gingival crevices. Though not pathognomonic, inflammation is always present in periodontitis. The recruitment of leukocytes to inflamed gums and their passage to the periodontal pocket lumen are speculated to fuel both tissue destruction and the development of the flora. The individual contribution to the disease of each bacterial species is difficult to establish and the eventual role of protozoa in the fate of this disease has been ignored. Following recent scientific findings, we discuss the relevance of these data and propose that the status of E. gingivalis be reconsidered as a potential pathogen contributing to periodontitis.
Collapse
Affiliation(s)
- Mark Bonner
- International Institute of Periodontology Victoriaville, QC, Canada
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Nancy Guillén
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| | | |
Collapse
|
222
|
Jia X, Jia L, Mo L, Yuan S, Zheng X, He J, Chen V, Guo Q, Zheng L, Yuan Q, Xu X, Zhou X. Berberine Ameliorates Periodontal Bone Loss by Regulating Gut Microbiota. J Dent Res 2018; 98:107-116. [PMID: 30199654 DOI: 10.1177/0022034518797275] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) is a risk factor for periodontitis, and current therapeutics against PMO prevent the aggravated alveolar bone loss of periodontitis in estrogen-deficient women. Gut microbiota is recognized as a promising therapeutic target for PMO. Berberine extracted from Chinese medicinal plants has shown its effectiveness in the treatment of metabolic diseases such as obesity and diabetes via regulating gut microbiota. Here, we hypothesize that berberine ameliorates periodontal bone loss by improving the intestinal barriers by regulating gut microbiota under an estrogen-deficient condition. Experimental periodontitis was established in ovariectomized (OVX) rats, and the OVX-periodontitis rats were treated with berberine for 7 wk before sacrifice for analyses. Micro–computed tomography and histologic analyses showed that berberine treatment significantly reduced alveolar bone loss and improved bone metabolism of OVX-periodontitis rats as compared with the vehicle-treated OVX-periodontitis rats. In parallel, berberine-treated OVX-periodontitis rats harbored a higher abundance of butyrate-producing gut microbiota with elevated butyrate generation, as demonstrated by 16S rRNA sequencing and high-performance liquid chromatography analysis. Berberine-treated OVX-periodontitis rats consistently showed improved intestinal barrier integrity and decreased intestinal paracellular permeability with a lower level of serum endotoxin. In parallel, IL-17A-related immune responses were attenuated in berberine-treated OVX-periodontitis rats with a lower serum level of proinflammatory cytokines and reduced IL-17A+ cells in alveolar bone as compared with vehicle-treated OVX-periodontitis rats. Our data indicate that gut microbiota is a potential target for the treatment of estrogen deficiency–aggravated periodontal bone loss, and berberine represents a promising adjuvant therapeutic by modulating gut microbiota.
Collapse
Affiliation(s)
- X. Jia
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L. Jia
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L. Mo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S. Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - J. He
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - V. Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Columbia University, New York, NY, USA
| | - Q. Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L. Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q. Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Dental Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X. Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
223
|
Komatsu N, Takayanagi H. Immune-bone interplay in the structural damage in rheumatoid arthritis. Clin Exp Immunol 2018; 194:1-8. [PMID: 30022480 DOI: 10.1111/cei.13188] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
The immune and bone systems maintain homeostasis by interacting closely with each other. Rheumatoid arthritis is a pathological consequence of their interplay, as activated T cell immune responses result in osteoclast-mediated bone erosion. An imbalance between forkhead box protein 3 (Foxp3)+ regulatory T (Treg ) cells and T helper type 17 (Th17) cells is often linked with autoimmune diseases, including arthritis. Th17 cells contribute to the bone destruction in arthritis by up-regulating receptor activator of nuclear factor kappa-Β ligand (RANKL) on synovial fibroblasts as well as inducing local inflammation. Studies on the origin of Th17 cells in inflammation have shed light on the pathogenic conversion of Foxp3+ T cells. Th17 cells converted from Foxp3+ T cells (exFoxp3 Th17 cells) comprise the most potent osteoclastogenic T cell subset in inflammatory bone loss. It has been suggested that osteoclastogenic T cells may have developed originally to stop local infection in periodontitis by inducing tooth loss. In addition, Th17 cells also contribute to the pathogenesis of arthritis by modulating antibody function. Antibodies and immune complexes have attracted considerable attention for their direct role in osteoclastogenesis, and a specific T cell subset in joints was shown to be involved in B cell antibody production. Here we summarize the recent advances in our understanding of the immune-bone interplay in the context of the bone destruction in arthritis.
Collapse
Affiliation(s)
- N Komatsu
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - H Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
224
|
Small HY, Migliarino S, Czesnikiewicz-Guzik M, Guzik TJ. Hypertension: Focus on autoimmunity and oxidative stress. Free Radic Biol Med 2018; 125:104-115. [PMID: 29857140 DOI: 10.1016/j.freeradbiomed.2018.05.085] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
Understanding the causal role of the immune and inflammatory responses in hypertension has led to questions regarding the links between hypertension and autoimmunity. Immune pathology in primary hypertension mimics several autoimmune mechanisms observed in the pathogenesis of systemic lupus erythematosus, psoriasis, systemic sclerosis, rheumatoid arthritis and periodontitis. More importantly, the prevalence of hypertension in patients with these autoimmune diseases is significantly increased, when compared to control populations. Clinical and epidemiological evidence is reviewed along with possible mechanisms linking hypertension and autoimmunity. Inflammation and oxidative stress are linked in a self-perpetuating cycle that significantly contributes to the vascular dysfunction and renal damage associated with hypertension. T cell, B cell, macrophage and NK cell infiltration into these organs is essential for this pathology. Effector cytokines such as IFN-γ, TNF-α and IL-17 affect Na+/H+ exchangers in the kidney. In blood vessels, they lead to endothelial dysfunction and loss of nitric oxide bioavailability and cause vasoconstriction. Both renal and vascular effects are, in part, mediated through induction of reactive oxygen species-producing enzymes such as superoxide anion generating NADPH oxidases and dysfunction of anti-oxidant systems. These mechanisms have recently become important therapeutic targets of novel therapies focused on scavenging oxidative (isolevuglandin) modification of neo-antigenic peptides. Effects of classical immune targeted therapies focused on immunosuppression and anti-cytokine treatments are also reviewed.
Collapse
Affiliation(s)
- Heather Y Small
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Serena Migliarino
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Marta Czesnikiewicz-Guzik
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK; Department of Dental Prophylaxis and Experimental Dentistry, Dental School of Jagiellonian University, Krakow, Poland
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK; Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, Krakow, Poland.
| |
Collapse
|