201
|
Zhu F, Ji Y, Deng J, Li L, Bai X, Liu X, Lin B, Lu Y. Microfluidics-based technologies for the analysis of extracellular vesicles at the single-cell level and single-vesicle level. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
202
|
Chen H, Bian F, Guo J, Zhao Y. Aptamer-Functionalized Barcodes in Herringbone Microfluidics for Multiple Detection of Exosomes. SMALL METHODS 2022; 6:e2200236. [PMID: 35466594 DOI: 10.1002/smtd.202200236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Indexed: 05/04/2023]
Abstract
Tumor-derived exosomes are vital for clinical dynamic and accurate tumor diagnosis, thus developing sensitive and multiple exosomes detection technology has attracted remarkable attention of scientists. Here, a novel herringbone microfluidic device with aptamer-functionalized barcodes integration for specific capture and multiple detection of tumor-derived exosomes is presented. The barcodes with core-shell constructions are obtained by partially replicating the periodically ordered hexagonal close-packaged colloidal crystal beads. As their inverse opal hydrogel shell possesses rich interconnected pores, the barcodes could provide abundant surface area for functionalization of DNA aptamers to realize specific recognition of target exosomes. Besides, the encoded structure colors of the barcodes can be maintained stably during the detection events as their hardish cores are with sufficient mechanical strength. It is demonstrated that by embedding these barcodes in herringbone groove microfluidic device with designed patterns, the specific capture efficiency and synergetic detection of multiple tumor-derived exosomes in peripheral blood can be significantly improved due to enhanced resistance of turbulent flow. These features make the aptamer-functionalized barcodes and herringbone microfluidics integrated platform promising for exosomes extraction and dynamic tumor diagnosis.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Feika Bian
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Jiahui Guo
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Yuanjin Zhao
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| |
Collapse
|
203
|
Burtenshaw D, Regan B, Owen K, Collins D, McEneaney D, Megson IL, Redmond EM, Cahill PA. Exosomal Composition, Biogenesis and Profiling Using Point-of-Care Diagnostics—Implications for Cardiovascular Disease. Front Cell Dev Biol 2022; 10:853451. [PMID: 35721503 PMCID: PMC9198276 DOI: 10.3389/fcell.2022.853451] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Arteriosclerosis is an important age-dependent disease that encompasses atherosclerosis, in-stent restenosis (ISR), pulmonary hypertension, autologous bypass grafting and transplant arteriosclerosis. Endothelial dysfunction and the proliferation of vascular smooth muscle cell (vSMC)-like cells is a critical event in the pathology of arteriosclerotic disease leading to intimal-medial thickening (IMT), lipid retention and vessel remodelling. An important aspect in guiding clinical decision-making is the detection of biomarkers of subclinical arteriosclerosis and early cardiovascular risk. Crucially, relevant biomarkers need to be good indicators of injury which change in their circulating concentrations or structure, signalling functional disturbances. Extracellular vesicles (EVs) are nanosized membraneous vesicles secreted by cells that contain numerous bioactive molecules and act as a means of intercellular communication between different cell populations to maintain tissue homeostasis, gene regulation in recipient cells and the adaptive response to stress. This review will focus on the emerging field of EV research in cardiovascular disease (CVD) and discuss how key EV signatures in liquid biopsies may act as early pathological indicators of adaptive lesion formation and arteriosclerotic disease progression. EV profiling has the potential to provide important clinical information to complement current cardiovascular diagnostic platforms that indicate or predict myocardial injury. Finally, the development of fitting devices to enable rapid and/or high-throughput exosomal analysis that require adapted processing procedures will be evaluated.
Collapse
Affiliation(s)
- Denise Burtenshaw
- Vascular Biology and Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Brian Regan
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Kathryn Owen
- Southern Health and Social Care Trust, Craigavon Area Hospital, Craigavon, United Kingdom
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, United Kingdom
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - David McEneaney
- Southern Health and Social Care Trust, Craigavon Area Hospital, Craigavon, United Kingdom
| | - Ian L. Megson
- Division of Biomedical Sciences, Centre for Health Science, UHI Institute of Health Research and Innovation, Inverness, United Kingdom
| | - Eileen M. Redmond
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Paul Aidan Cahill
- Vascular Biology and Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
- *Correspondence: Paul Aidan Cahill,
| |
Collapse
|
204
|
Zhu C, Gong L, Yang Y. Label-Free Analysis of Exosomes with Hairpin Structure-Mediated Multiple Signal Amplification Strategy. Appl Biochem Biotechnol 2022; 194:4147-4155. [PMID: 35639245 DOI: 10.1007/s12010-022-03978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Considering the crucial role of exosomes in various biological processes and disease diagnosis, development of label-free and sensitive exosome detection methods is in urgent demand. Herein, we develop an exponential amplification-based method pining the hope on sensitive exosomes detection in a label-free manner. In this method, a designed SMB (Streptavidin magnetic bead)-capture probe is utilized to specially recognize CD63 protein on the surface of exosome. The recognition of CD63 protein by SMB-capture probe induces the subsequent hairpin structure probe-mediated multiple signal amplifications. Eventually, the proposed approach can detect exosomes at a concentration as low as 1.2 × 102 particles/μl and can be potentially applied for clinical practices.
Collapse
Affiliation(s)
- Chengcong Zhu
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Lisha Gong
- Department of Geriatrics, Southwest Hospital, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yang Yang
- Health Management (physical examination) Center of North-Kuanren General Hospital, North-Kuanren General Hospital, No. 69 Renhe Xingguang Avenue, Chongqing, 401120, People's Republic of China.
| |
Collapse
|
205
|
Wu HM, Lo TC, Tsai CL, Chen LH, Huang HY, Wang HS, Yu J. Extracellular Vesicle-Associated MicroRNA-138-5p Regulates Embryo Implantation and Early Pregnancy by Adjusting GPR124. Pharmaceutics 2022; 14:pharmaceutics14061172. [PMID: 35745744 PMCID: PMC9230557 DOI: 10.3390/pharmaceutics14061172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Functional embryo–maternal interactions occur during the embryo implantation and placentation. Extracellular vesicles with microRNA (miR) between cells have been considered of critical importance for embryo implantation and the programming of human pregnancy. MiR-138-5p functions as the transcriptional regulator of G protein-coupled receptor 124 (GPR124). However, the signaling pathway of miR138-5p- and GPR124-adjusted NLRP3 inflammasome activation remains unclear. In this study, we examine the roles of the miR138-5p and GPR124-regulated inflammasome in embryo implantation and early pregnancy. Human decidual stromal cells were isolated from the abortus tissue and collected by curettage from missed abortion patients and normal pregnant women at 6- to 12-week gestation, after informed consent. Isolated extracellular vesicles from decidua and decidual stromal cells were confirmed by transmission electron microscopy (TEM). Next-Generation Sequencing (NGS) and microarray were performed for miR analysis. The predicated target genes of the differentially expressed miR were analyzed to identify the target genes and their pathway. We demonstrated the down-regulation of miR-138-5p and the overexpression of GPR124 in spontaneous miscarriage compared to normal pregnancy. We also showed the excessive activation of the NLRP3 inflammasome in spontaneous miscarriage compared to normal pregnancy. Here, we newly demonstrate that the miR-138-5p and GPR124-adjusted NLRP3 inflammasome were expressed in extracellular vesicles derived from decidua and decidual stromal cells, indicating that the miR-138-5p, GPR124 and NLRP3 (NACHT, LRR, and PYD domains-containing protein 3) inflammasome have a potential modulatory role on the decidual programming and placentation of human pregnancy. Our findings represent a new concept regarding the role of extracellular vesicles, miR-138-5p, GPR124, and the NLRP3 inflammasome in normal early pregnancy and spontaneous miscarriage.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
- Correspondence:
| | - Tzu-Chi Lo
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (T.-C.L.); (J.Y.)
| | - Chia-Lung Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
| | - Hsin-Shih Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (C.-L.T.); (L.-H.C.); (H.-Y.H.); (H.-S.W.)
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan 333, Taiwan; (T.-C.L.); (J.Y.)
| |
Collapse
|
206
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|
207
|
Zheng L, Wang H, Zuo P, Liu Y, Xu H, Ye BC. Rapid On-Chip Isolation of Cancer-Associated Exosomes and Combined Analysis of Exosomes and Exosomal Proteins. Anal Chem 2022; 94:7703-7712. [PMID: 35575685 DOI: 10.1021/acs.analchem.2c01187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exosomes are lipid bilayer extracellular vesicles secreted by various types of cells and inherit abundant molecular information from parental cells. Tumor-derived exosomes have been widely recognized as noninvasive biomarkers for early cancer diagnosis and surveillance, but the separation of intact exosomes and detection of exosomal proteins remain challenging. Herein, we proposed a microfluidic chip for specific exosome isolation, integrated with sensitive quantification by a novel PTCDI-aptamer signal switch strategy. To enhance the capture efficiency, an alternating drop-shaped micropillar array was designed to assist the capture of tumor-derived exosomes by Tim4-modified magnetic beads (Tim4 beads) on the chip. Following capture, a chelating agent can easily elute intact exosomes which were further used for profiling exosomal surface proteins by the multiplexed fluorescence turn-on approach. Profiting from the efficient on-chip enrichment of the Tim4 beads and superior fluorescence signal transduction strategy, the detection limit of the analysis platform for HepG2 exosomes is as low as 8.69 × 103 particles/mL with a wide linear range spanning 6 orders of magnitude. Meanwhile, the proposed platform could recognize subtle changes in protein levels on the exosomal surface from various cell lines. More importantly, this strategy is successfully applied to analyze exosomes in human serum to distinguish liver cancer patients from healthy individuals. Combined analysis of different types of biomarkers on the exosomal membrane surface can greatly improve the accuracy of cancer type identification and disease monitoring. We hope that this convenient, rapid, and sensitive platform may become a powerful tool in the field of exosome analysis and early cancer screening.
Collapse
Affiliation(s)
- Lu Zheng
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Peng Zuo
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yueling Liu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huiying Xu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
208
|
Cheng J, Wang X, Yuan X, Liu G, Chu Q. Emerging roles of exosome-derived biomarkers in cancer theranostics: messages from novel protein targets. Am J Cancer Res 2022; 12:2226-2248. [PMID: 35693088 PMCID: PMC9185602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Effective biomarkers that guide therapeutics with limited adverse effects, have emerged as attractive research topics in cancer diagnosis and treatment. Cancer-derived exosomes, a type of extracellular vesicles representing molecular signatures of cells of origin, could serve as stable reservoirs for potential biomarkers (i.e., proteins, nucleic acids) in non-invasive cancer diagnosis and prognosis. In this review, the physiological and pathological roles of exosomes and their protein components in facilitating tumorigenesis are highlighted. Exosomes carrying proteins can participate in tumor development and progression through multiple signaling pathways, including EMT, invasion and metastasis. Meanwhile, the practical applications of exosomal proteins in detecting and monitoring several solid-tumor cancers (including lung, breast, pancreatic, colorectal and prostate cancers) were also summarized. More clinically relevant, exosomal proteins play pivotal roles in transmitting oncogenic potential or resistance to therapies in recipient cells, which might further support therapeutic strategy determinations.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Xuechun Yuan
- Department of Medicinal Chemistry, China Pharmaceutical UniversityNanjing 211198, Jiangsu, China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Qian Chu
- Department of Medicinal Chemistry, China Pharmaceutical UniversityNanjing 211198, Jiangsu, China
| |
Collapse
|
209
|
Li C, He W, Wang N, Xi Z, Deng R, Liu X, Kang R, Xie L, Liu X. Application of Microfluidics in Detection of Circulating Tumor Cells. Front Bioeng Biotechnol 2022; 10:907232. [PMID: 35646880 PMCID: PMC9133555 DOI: 10.3389/fbioe.2022.907232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Tumor metastasis is one of the main causes of cancer incidence and death worldwide. In the process of tumor metastasis, the isolation and analysis of circulating tumor cells (CTCs) plays a crucial role in the early diagnosis and prognosis of cancer patients. Due to the rarity and inherent heterogeneity of CTCs, there is an urgent need for reliable CTCs separation and detection methods in order to obtain valuable information on tumor metastasis and progression from CTCs. Microfluidic technology is increasingly used in various studies of CTCs separation, identification and characterization because of its unique advantages, such as low cost, simple operation, less reagent consumption, miniaturization of the system, rapid detection and accurate control. This paper reviews the research progress of microfluidic technology in CTCs separation and detection in recent years, as well as the potential clinical application of CTCs, looks forward to the application prospect of microfluidic technology in the treatment of tumor metastasis, and briefly discusses the development prospect of microfluidic biosensor.
Collapse
Affiliation(s)
- Can Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei He
- Department of Clinical Medical Engineering, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
210
|
Aptamers as Recognition Elements for Electrochemical Detection of Exosomes. Chem Res Chin Univ 2022; 38:879-885. [PMID: 35578711 PMCID: PMC9094132 DOI: 10.1007/s40242-022-2088-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Exosome analysis is emerging as an attractive noninvasive approach for disease diagnosis and treatment monitoring in the field of liquid biopsy. Aptamer is considered as a promising molecular probe for exosomes detection because of the high binding affinity, remarkable specificity, and low cost. Recently, many approaches have been developed to further improve the performance of electrochemical aptamer based(E-AB) sensors with a lower limit of detection. In this review, we focus on the development of using aptamer as a specific recognition element for exosomes detection in electrochemical sensors. We first introduce recent advances in evolving aptamers against exosomes. Then, we review methods of immobilization aptamers on electrode surfaces, followed by a summary of the main strategies of signal amplification. Finally, we present the insights of the challenges and future directions of E-AB sensors for exosomes analysis.
Collapse
|
211
|
Younas N, Fernandez Flores LC, Hopfner F, Höglinger GU, Zerr I. A new paradigm for diagnosis of neurodegenerative diseases: peripheral exosomes of brain origin. Transl Neurodegener 2022; 11:28. [PMID: 35527262 PMCID: PMC9082915 DOI: 10.1186/s40035-022-00301-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of maladies, characterized by progressive loss of neurons. These diseases involve an intricate pattern of cross-talk between different types of cells to maintain specific signaling pathways. A component of such intercellular cross-talk is the exchange of various types of extracellular vesicles (EVs). Exosomes are a subset of EVs, which are increasingly being known for the role they play in the pathogenesis and progression of neurodegenerative diseases, e.g., synucleinopathies and tauopathies. The ability of the central nervous system exosomes to cross the blood–brain barrier into blood has generated enthusiasm in their study as potential biomarkers. However, the lack of standardized, efficient, and ultra-sensitive methods for the isolation and detection of brain-derived exosomes has hampered the development of effective biomarkers. Exosomes mirror heterogeneous biological changes that occur during the progression of these incurable illnesses, potentially offering a more comprehensive outlook of neurodegenerative disease diagnosis, progression and treatment. In this review, we aim to discuss the challenges and opportunities of peripheral biofluid-based brain-exosomes in the diagnosis and biomarker discovery of Alzheimer’s and Parkinson’s diseases. In the later part, we discuss the traditional and emerging methods used for the isolation of exosomes and compare their advantages and disadvantages in clinical settings.
Collapse
|
212
|
Sample-in-answer-out colorimetric detection of Salmonella typhimurium using non-enzymatic cascade amplification. Anal Chim Acta 2022; 1218:339850. [DOI: 10.1016/j.aca.2022.339850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 01/03/2023]
|
213
|
Zhang Y, Fan J, Zhao J, Xu Z. A biochip based on shell-isolated Au@MnO2 nanoparticle array-enhanced fluorescence effect for simple and sensitive exosome assay. Biosens Bioelectron 2022; 216:114373. [DOI: 10.1016/j.bios.2022.114373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
|
214
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
215
|
Yang Z, She D, Sun C, Gong M, Rong Y. Dumbbell structure probe-triggered rolling circle amplification (RCA)-based detection scaffold for sensitive and specific neonatal infection-related small extracellular vesicle (sEV) detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1534-1539. [PMID: 35363230 DOI: 10.1039/d2ay00019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Small extracellular vesicles (sEVs) have been reported to play important roles in cell-to-cell communication and are promising biomarkers for the early diagnosis of infections. Therefore, it is in high demand to develop a method that can integrate easy-to-operate sEV isolation and sensitive quantification. We herein propose a novel detection scaffold for sEV isolation via low-speed centrifugation and the quantification of sEVs through DNAzyme-based signal amplification. The detection scaffold is established through dumbbell probe-based RCA (rolling circle amplification), containing repeated CD63 aptamer sections and DNAzyme sections. The original state of the DNAzyme section is locked in a hairpin structure in the detection scaffold. In the presence of sEVs, the CD63 aptamer recognizes and binds with sEVs, leading to the aggregation of sEVs, which can be isolated by low-speed centrifugation and the exposure of the DNAzyme section. After the catalytic fluorescence signal generation from the DNAzyme-based molecular beacon (MB) cleavage, the method exhibited a detection range of 102 to 106 particles per μL. Considering the high sensitivity and wash-free and easy-to-operate features, the strategy reported herein paves a new avenue for the effective determination of sEVs and other membrane biomolecules in fundamental and applied research.
Collapse
Affiliation(s)
- Zeping Yang
- Department of Critical Care Medicine (ICU), The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Dong She
- Department of Critical Care Medicine (ICU), The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Chunhong Sun
- Department of Critical Care Medicine (ICU), The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Mingwei Gong
- Department of Critical Care Medicine (ICU), The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Yuan Rong
- Department of Critical Care Medicine (ICU), The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| |
Collapse
|
216
|
Seo S, Bae J, Jeon H, Lee S, Kim T. Pervaporation-assisted in situ formation of nanoporous microchannels with various material and structural properties. LAB ON A CHIP 2022; 22:1474-1485. [PMID: 35262125 DOI: 10.1039/d1lc01184g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoporous structures are crucial for developing mixed-scale micro-/nanofluidic devices because they facilitate the manipulation of molecule transport along the microfluidic channel networks. Particularly, self-assembled particles have been used for fabricating various nanoporous membranes. However, previous self-assembly mechanisms relied on the material and structural homogeneities of the nanopores. Here, we present a pervaporation-assisted in situ fabrication method that integrates nanoporous membrane structures into microfluidic devices. The microfluidic devices contain a control-channel layer at the top, which induces local and addressable pervaporation, and the main-channel layer, which is present at the bottom with pre-designated locations for nanoporous microchannels; the layers are separated using a gas-permeable film. The target particle suspensions are loaded into the main channels, and their pervaporation is controlled through the gas-permeable film, which successfully assembles the particles at the pre-designated locations. This method yields nanoporous microchannels with various material and structural properties by fabricating heterogeneous nanopore arrays/junctions in series and other diverse structures along the microchannels. We validate the basic working principle of microfluidic devices containing nanoporous microchannels. Furthermore, we theoretically analyze the fundamental experimental results, which suggest the remarkable potential of our strategy to fabricate nanopore networks without using conventional nanofabrication methods.
Collapse
Affiliation(s)
- Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Juyeol Bae
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Hwisu Jeon
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Sungyoon Lee
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
217
|
Li Q, Wang Y, Xue Y, Qiao L, Yu G, Liu Y, Yu S. Ultrasensitive Analysis of Exosomes Using a 3D Self-Assembled Nanostructured SiO 2 Microfluidic Chip. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14693-14702. [PMID: 35199982 DOI: 10.1021/acsami.1c22569] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conventional microfluidics with a solid mixer for exosome detection is constrained by the low binding efficiency of the solid-liquid boundary effects and reduced sensitivity of individual markers. Here, we report a 3D-SiO2 porous chip that combines nanoscale porous characteristics and multiple exosome specific markers to greatly improve the sensitivity for biosensing. The lower limit of detection was 220 particles/μL exosomes in PBS. We applied the 3D-SiO2 porous chip for prostate cancer (PCa) staging in mice and early detection of clinical PCa patients. The developed method could significantly differentiate the different stages of PCa in mice and improve the early detection rate in clinical patients. Expression of multiple specific markers in clinical serum samples identified disease fingerprints, alongside histological results, which supports the potential application of exosomes as a noninvasive surrogate biopsy for PCa.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yanlin Wang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yuyan Xue
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Yushan Liu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Shaoning Yu
- Department of Chemistry, Fudan University, Shanghai 200438, China
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
218
|
Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P, Rebbeck TR, Balasubramanian S. Early detection of cancer. Science 2022; 375:eaay9040. [PMID: 35298272 DOI: 10.1126/science.aay9040] [Citation(s) in RCA: 376] [Impact Index Per Article: 125.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Survival improves when cancer is detected early. However, ~50% of cancers are at an advanced stage when diagnosed. Early detection of cancer or precancerous change allows early intervention to try to slow or prevent cancer development and lethality. To achieve early detection of all cancers, numerous challenges must be overcome. It is vital to better understand who is at greatest risk of developing cancer. We also need to elucidate the biology and trajectory of precancer and early cancer to identify consequential disease that requires intervention. Insights must be translated into sensitive and specific early detection technologies and be appropriately evaluated to support practical clinical implementation. Interdisciplinary collaboration is key; advances in technology and biological understanding highlight that it is time to accelerate early detection research and transform cancer survival.
Collapse
Affiliation(s)
| | - Sangeeta Bhatia
- Marble Center for Cancer Nanomedicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin M Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Lisa M Coussens
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence at the University of Manchester and University College London, University of Manchester, Manchester, UK
- CRUK Manchester Institute Cancer Biomarker Centre, University of Manchester, Manchester, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Sadik Esener
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Rebecca C Fitzgerald
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Peter Kuhn
- USC Michelson Center Convergent Science Institute in Cancer, University of Southern California, Los Angeles, CA, USA
| | - Timothy R Rebbeck
- Division of Population Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
219
|
Liang TT, Qin X, Xiang Y, Tang Y, Yang F. Advances in nucleic acids-scaffolded electrical sensing of extracellular vesicle biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
220
|
Ye M, Wang J, Pan S, Zheng L, Wang ZW, Zhu X. Nucleic acids and proteins carried by exosomes of different origins as potential biomarkers for gynecologic cancers. Mol Ther Oncolytics 2022; 24:101-113. [PMID: 35024437 PMCID: PMC8718571 DOI: 10.1016/j.omto.2021.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Lihong Zheng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Corresponding author Zhi-Wei Wang, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
- Corresponding author Xueqiong Zhu, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
221
|
Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer 2022; 21:56. [PMID: 35180868 PMCID: PMC8855550 DOI: 10.1186/s12943-022-01509-9] [Citation(s) in RCA: 388] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/15/2022] [Indexed: 02/08/2023] Open
Abstract
Liquid biopsy, characterized by minimally invasive detection through biofluids such as blood, saliva, and urine, has emerged as a revolutionary strategy for cancer diagnosis and prognosis prediction. Exosomes are a subset of extracellular vesicles (EVs) that shuttle molecular cargoes from donor cells to recipient cells and play a crucial role in mediating intercellular communication. Increasing studies suggest that exosomes have a great promise to serve as novel biomarkers in liquid biopsy, since large quantities of exosomes are enriched in body fluids and are involved in numerous physiological and pathological processes. However, the further clinical application of exosomes has been greatly restrained by the lack of high-quality separation and component analysis methods. This review aims to provide a comprehensive overview on the conventional and novel technologies for exosome isolation, characterization and content detection. Additionally, the roles of exosomes serving as potential biomarkers in liquid biopsy for the diagnosis, treatment monitoring, and prognosis prediction of cancer are summarized. Finally, the prospects and challenges of applying exosome-based liquid biopsy to precision medicine are evaluated.
Collapse
Affiliation(s)
- Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixin Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Cai
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China
| | - Xinjian Fang
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Hospital of Jiangsu University, Lanzhou, 730000, Gansu, China.
- Department of Oncology, Lianyungang Hospital Affiliated to Jiangsu University, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
222
|
Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Mater Today Bio 2022; 13:100218. [PMID: 35243293 PMCID: PMC8861407 DOI: 10.1016/j.mtbio.2022.100218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022] Open
Abstract
The grand challenges of ovarian cancer early diagnosis have led to an alarmingly high mortality rate from ovarian cancer (OC) in the past half century. In vitro diagnosis (IVD) has great potential in the early diagnosis of OC through non-invasive and dynamic analysis of biomarkers. However, common IVDs often fail to provide reliable test results due to lack of sensitivity, specificity, and convenience. In recent years, the discovery of new biomarkers and the progress of nanomaterials can solve the shortcomings of traditional IVD for early OC. These emerging biosensors based on nanomaterials offer great improvements in convenience, speed, selectivity, and sensitivity of IVD. In this review, we firstly systematically summarized the limits of commercial IVD biosensors of OC and the latest discovery of new biomarkers for OC. The representative optimization strategies for six potential ovarian cancer biomarkers are systematically discussed with emphasis on nanomaterial selection and the design of detection principles. Then, various strategies adopted by emerging biosensors based on nanomaterials are also introduced in detail, including optical, electrochemical, microfluidic, and surface plasmon sensors. Finally, current challenges of early OC IVD are proposed, and future research directions on this promising field are also discussed. Failure to diagnose OC early will lead to high mortality. The detection of OC-related biomarkers by IVD method will achieve early diagnosis of OC. The development of nanomaterials-based biosensors is expected to enhance efficiency of detection. Strategies and progress for nanomaterials-based biosensors are systematically reviewed.
Collapse
|
223
|
Liu X, Zong Z, Liu X, Li Q, Li A, Xu C, Liu D. Stimuli-Mediated Specific Isolation of Exosomes from Blood Plasma for High-Throughput Profiling of Cancer Biomarkers. SMALL METHODS 2022; 6:e2101234. [PMID: 35174989 DOI: 10.1002/smtd.202101234] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Exosomes, ranging from 30-150 nm in diameter, have emerged as promising non-invasive biomarkers for the diagnosis and prognosis of numerous diseases. However, current research on exosomes is largely restricted by the lack of an efficient method to isolate exosomes from real samples. Herein, the first stimuli-mediated enrichment and purification system to selectively and efficiently extract exosomes from clinical plasma for high-throughput profiling of exosomal mRNAs as cancer biomarkers is presented. This novel isolation system relies on specific installation of the stimuli-responsive copolymers onto exosomal phospholipid bilayers, by which the enrichment and purification are exclusively achieved for exosomes rather than the non-vesicle counterparts co-existing in real samples. The stimuli-mediated isolation system outperforms conventional methods such as ultracentrifugation and polyethylene glycol-based precipitation in terms of isolation yield, purity, and retained bioactivity. The high performance of the isolation system is demonstrated by enriching exosomes from 77 blood plasma samples and validated the clinical potentials in profiling exosomal mRNAs for cancer diagnosis and discrimination with high accuracy. This simple isolation system can boost the development of extracellular vesicle research, not limited to exosomes, in both basic and clinical settings.
Collapse
Affiliation(s)
- Xuehui Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiyou Zong
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xinzhuo Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, Tianjin, 300000, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
224
|
Leong SY, Ong HB, Tay HM, Kong F, Upadya M, Gong L, Dao M, Dalan R, Hou HW. Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104470. [PMID: 34984816 DOI: 10.1002/smll.202104470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/02/2021] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) are recognized as next generation diagnostic biomarkers due to their disease-specific biomolecular cargoes and importance in cell-cell communications. A major bottleneck in EV sample preparation is the inefficient and laborious isolation of nanoscale EVs (≈50-200 nm) from endogenous proteins in biological samples. Herein, a unique microfluidic platform is reported for EV-protein fractionation based on the principle of size exclusion chromatography (SEC). Using a novel rapid (≈20 min) replica molding technique, a fritless microfluidic SEC device (μSEC) is fabricated using thiol-ene polymer (UV glue NOA81, Young's modulus ≈1 GPa) for high pressure (up to 6 bar) sample processing. Controlled on-chip nanoliter sample plug injection (600 nL) using a modified T-junction injector is first demonstrated with rapid flow switching response time (<1.5 s). Device performance is validated using fluorescent nanoparticles (50 nm), albumin, and breast cancer cells (MCF-7)-derived EVs. As a proof-of-concept for clinical applications, EVs are directly isolated from undiluted human platelet-poor plasma using μSEC and show distinct elution profiles between EVs and proteins based on nanoparticle particle analysis (NTA), Western blot and flow cytometry analysis. Overall, the optically transparent μSEC can be readily automated and integrated with EV detection assays for EVs manufacturing and clinical diagnostics.
Collapse
Affiliation(s)
- Sheng Yuan Leong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hong Boon Ong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Hui Min Tay
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Fang Kong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Megha Upadya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Lingyan Gong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ming Dao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Material Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Rinkoo Dalan
- Endocrine and Diabetes, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, Singapore, 308232, Singapore
| | - Han Wei Hou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Clinical Sciences Building, Singapore, 308232, Singapore
| |
Collapse
|
225
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
226
|
Multi-Modal Microfluidics (M3) for Sample Preparation of Liquid Biopsy: Bridging the Gap between Proof-of-Concept Demonstrations and Practical Applications. MICROMACHINES 2022; 13:mi13020209. [PMID: 35208333 PMCID: PMC8874502 DOI: 10.3390/mi13020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023]
Abstract
Liquid biopsy, the technique used to shed light on diseases via liquid samples, has displayed various advantages, including minimal invasiveness, low risk, and ease of multiple sampling for dynamic monitoring, and has drawn extensive attention from multidisciplinary fields in the past decade. With the rapid development of microfluidics, it has been possible to manipulate targets of interest including cells, microorganisms, and exosomes at a single number level, which dramatically promotes the characterization and analysis of disease-related markers, and thus improves the capability of liquid biopsy. However, when lab-ready techniques transfer into hospital-applicable tools, they still face a big challenge in processing raw clinical specimens, which are usually of a large volume and consist of rare targets drowned in complex backgrounds. Efforts toward the sample preparation of clinical specimens (i.e., recovering/concentrating the rare targets among complex backgrounds from large-volume liquids) are required to bridge the gap between the proof-of-concept demonstrations and practical applications. The throughput, sensitivity, and purity (TSP performance criteria) in sample preparation, i.e., the volume speed in processing liquid samples and the efficiencies of recovering rare targets and depleting the backgrounds, are three key factors requiring careful consideration when implementing microfluidic-based liquid biopsy for clinical practices. Platforms based on a single microfluidic module (single-modal microfluidics) can hardly fulfill all the aforementioned TSP performance criteria in clinical practices, which puts forward an urgent need to combine/couple multiple microfluidic modules into one working system (i.e., multi-modal microfluidics, M3) to realize practically applicable techniques for the sample preparation of liquid biopsy. This perspective briefly summarizes the typical microfluidic-based liquid biopsy techniques and discusses potential strategies to develop M3 systems for clinical practices of liquid biopsy from the aspect of sample preparation.
Collapse
|
227
|
Luo D, Zhao C, Xue G, Cao Z, Oztekin A, Cheng X. Label-free focusing of viral particles under a temperature gradient coupled with continuous swirling flow. RSC Adv 2022; 12:4263-4275. [PMID: 35425424 PMCID: PMC8981173 DOI: 10.1039/d1ra09462a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
The advances of biomedicine and biotechnology demand new approaches to enrich biological nanoparticles, such as viruses, viral vectors and nanovesicles, in an easy-to-operate fashion. Conventional methods, such as ultracentrifugation and ultrafiltration, require bulky instruments and extensive manual operation. Inspired by recent research of thermophoresis of biomolecules and bio-nanoparticles in aqueous solutions, we present a microfluidic design that directly focuses nanoparticles in a label-free and flow-through process by coupling an engineered swirling flow and a moderate, one-dimensional temperature gradient. Enrichment of polystyrene particles, HIV and bacteriophage samples was quantitatively determined, indicating the compatibility of the microfluidic approach with synthetic and biological samples. The focusing results are well predicted using a numerical model. As thermophoresis is ubiquitous, the microfluidic approach can be applied broadly to bio-nanoparticle enrichment without the necessity of labeling, buffer exchange, or sheath fluids, permitting continuous retrieval of concentrated species in a simple, controlled flow with little infrastructure needs.
Collapse
Affiliation(s)
- Danli Luo
- Department of Materials Science and Engineering, Lehigh University Bethlehem PA 18015 USA
| | - Chao Zhao
- Department of Materials Science and Engineering, Lehigh University Bethlehem PA 18015 USA
| | - Guanyang Xue
- Department of Mechanical Engineering and Mechanics, Lehigh University Bethlehem PA 18015 USA
| | - Zhibo Cao
- Department of Materials Science and Engineering, Lehigh University Bethlehem PA 18015 USA
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University Bethlehem PA 18015 USA
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University Bethlehem PA 18015 USA
- Department of Bioengineering, Lehigh University Bethlehem PA 18015 USA
| |
Collapse
|
228
|
Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, Du L. Review on Strategies and Technologies for Exosome Isolation and Purification. Front Bioeng Biotechnol 2022; 9:811971. [PMID: 35071216 PMCID: PMC8766409 DOI: 10.3389/fbioe.2021.811971] [Citation(s) in RCA: 252] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes, a nano-sized subtype of extracellular vesicles secreted from almost all living cells, are capable of transferring cell-specific constituents of the source cell to the recipient cell. Cumulative evidence has revealed exosomes play an irreplaceable role in prognostic, diagnostic, and even therapeutic aspects. A method that can efficiently provide intact and pure exosomes samples is the first step to both exosome-based liquid biopsies and therapeutics. Unfortunately, common exosomal separation techniques suffer from operation complexity, time consumption, large sample volumes and low purity, posing significant challenges for exosomal downstream analysis. Efficient, simple, and affordable methods to isolate exosomes are crucial to carrying out relevant researches. In the last decade, emerging technologies, especially microfluidic chips, have proposed superior strategies for exosome isolation and exhibited fascinating performances. While many excellent reviews have overviewed various methods, a compressive review including updated/improved methods for exosomal isolation is indispensable. Herein, we first overview exosomal properties, biogenesis, contents, and functions. Then, we briefly outline the conventional technologies and discuss the challenges of clinical applications of these technologies. Finally, we review emerging exosomal isolation strategies and large-scale GMP production of engineered exosomes to open up future perspectives of next-generation Exo-devices for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jiaci Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Taiyi Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhipeng Xu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Department of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
229
|
Cheng H, Yang Q, Wang R, Luo R, Zhu S, Li M, Li W, Chen C, Zou Y, Huang Z, Xie T, Wang S, Zhang H, Tian Q. Emerging Advances of Detection Strategies for Tumor-Derived Exosomes. Int J Mol Sci 2022; 23:ijms23020868. [PMID: 35055057 PMCID: PMC8775838 DOI: 10.3390/ijms23020868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes derived from tumor cells contain various molecular components, such as proteins, RNA, DNA, lipids, and carbohydrates. These components play a crucial role in all stages of tumorigenesis and development. Moreover, they reflect the physiological and pathological status of parental tumor cells. Recently, tumor-derived exosomes have become popular biomarkers for non-invasive liquid biopsy and the diagnosis of numerous cancers. The interdisciplinary significance of exosomes research has also attracted growing enthusiasm. However, the intrinsic nature of tumor-derived exosomes requires advanced methods to detect and evaluate the complex biofluid. This review analyzes the relationship between exosomes and tumors. It also summarizes the exosomal biological origin, composition, and application of molecular markers in clinical cancer diagnosis. Remarkably, this paper constitutes a comprehensive summary of the innovative research on numerous detection strategies for tumor-derived exosomes with the intent of providing a theoretical basis and reference for early diagnosis and clinical treatment of cancer.
Collapse
Affiliation(s)
- Huijuan Cheng
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qian Yang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Rongrong Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruhua Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shanshan Zhu
- Public Health Institutes, Hangzhou Normal University, Hangzhou 311121, China;
| | - Minhui Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqi Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yuqing Zou
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhihua Huang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Tian Xie
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Shuling Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| | - Honghua Zhang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| | - Qingchang Tian
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (H.C.); (Q.Y.); (R.W.); (R.L.); (M.L.); (W.L.); (C.C.); (Y.Z.); (Z.H.); (T.X.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou 311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (S.W.); (H.Z.); (Q.T.)
| |
Collapse
|
230
|
Zheng H, Zhao J, Wang X, Yan S, Chu H, Gao M, Zhang X. Integrated Pipeline of Rapid Isolation and Analysis of Human Plasma Exosomes for Cancer Discrimination Based on Deep Learning of MALDI-TOF MS Fingerprints. Anal Chem 2022; 94:1831-1839. [PMID: 35025210 DOI: 10.1021/acs.analchem.1c04762] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plasma exosomes have shown great potential for liquid biopsy in clinical cancer diagnosis. Herein, we present an integrated strategy for isolating and analyzing exosomes from human plasma rapidly and then discriminating different cancers excellently based on deep learning fingerprints of plasma exosomes. Sequential size-exclusion chromatography (SSEC) was developed efficiently for separating exosomes from human plasma. SSEC isolated plasma exosomes, taking as less as 2 h for a single sample with high purity such that the discard rates of high-density lipoproteins and low/very low-density lipoproteins were 93 and 85%, respectively. Benefitting from the rapid and high-purity isolation, the contents encapsulated in exosomes, covered by plasma proteins, were well profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). We further analyzed 220 clinical samples, including 79 breast cancer patients, 57 pancreatic cancer patients, and 84 healthy controls. After MS data pre-processing and feature selection, the extracted MS feature peaks were utilized as inputs for constructing a multi-classifier artificial neural network (denoted as Exo-ANN) model. The optimized model avoided overfitting and performed well in both training cohorts and test cohorts. For the samples in the independent test cohort, it realized a diagnosed accuracy of 80.0% with an area under the curve of 0.91 for the whole group. These results suggest that our integrated pipeline may become a generic tool for liquid biopsy based on the analysis of plasma exosomes in clinics.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xuantang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Shaohan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Huimin Chu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
231
|
Abouali H, Hosseini SA, Purcell E, Nagrath S, Poudineh M. Recent Advances in Device Engineering and Computational Analysis for Characterization of Cell-Released Cancer Biomarkers. Cancers (Basel) 2022; 14:288. [PMID: 35053452 PMCID: PMC8774172 DOI: 10.3390/cancers14020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
During cancer progression, tumors shed different biomarkers into the bloodstream, including circulating tumor cells (CTCs), extracellular vesicles (EVs), circulating cell-free DNA (cfDNA), and circulating tumor DNA (ctDNA). The analysis of these biomarkers in the blood, known as 'liquid biopsy' (LB), is a promising approach for early cancer detection and treatment monitoring, and more recently, as a means for cancer therapy. Previous reviews have discussed the role of CTCs and ctDNA in cancer progression; however, ctDNA and EVs are rapidly evolving with technological advancements and computational analysis and are the subject of enormous recent studies in cancer biomarkers. In this review, first, we introduce these cell-released cancer biomarkers and briefly discuss their clinical significance in cancer diagnosis and treatment monitoring. Second, we present conventional and novel approaches for the isolation, profiling, and characterization of these markers. We then investigate the mathematical and in silico models that are developed to investigate the function of ctDNA and EVs in cancer progression. We convey our views on what is needed to pave the way to translate the emerging technologies and models into the clinic and make the case that optimized next-generation techniques and models are needed to precisely evaluate the clinical relevance of these LB markers.
Collapse
Affiliation(s)
- Hesam Abouali
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.A.); (S.A.H.)
| | - Seied Ali Hosseini
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.A.); (S.A.H.)
| | - Emma Purcell
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2800, USA; (E.P.); (S.N.)
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2800, USA; (E.P.); (S.N.)
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (H.A.); (S.A.H.)
| |
Collapse
|
232
|
Wang F, Gui Y, Liu W, Li C, Yang Y. Precise Molecular Profiling of Circulating Exosomes Using a Metal–Organic Framework-Based Sensing Interface and an Enzyme-Based Electrochemical Logic Platform. Anal Chem 2022; 94:875-883. [DOI: 10.1021/acs.analchem.1c03644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yueyue Gui
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Wentao Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yucai Yang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China
| |
Collapse
|
233
|
Zhang J, Huang Y, Sun M, Wan S, Yang C, Song Y. Recent Advances in Aptamer-Based Liquid Biopsy. ACS APPLIED BIO MATERIALS 2022; 5:1954-1979. [PMID: 35014838 DOI: 10.1021/acsabm.1c01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy capable of noninvasive and real-time molecular profiling is considered as a breakthrough technology, endowing an opportunity for precise diagnosis of individual patients. Extracellular vesicles (EVs) and circulating tumor cells (CTCs) consisting of substantial disease-related molecular information play an important role in liquid biopsy. Therefore, it is critically significant to exploit high-performance recognition ligands for efficient isolation and analysis of EVs and CTCs from complex body fluids. Aptamers exhibit extraordinary merits of high specificity and affinity, which are considered as superior recognition ligands for liquid biopsy. In this review, we first summarize recent advanced strategies for the evolution of high-performance aptamers and the construction of various aptamer-based recognition elements. Subsequently, we mainly discuss the isolation and analysis of EVs and CTCs based on the aptamer functioned biomaterials/biointerface. Ultimately, we envision major challenges and future direction of aptamer-based liquid biopsy for clinical utilities.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
234
|
Gwak H, Park S, Yu H, Hyun KA, Jung HI. A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles. Analyst 2022; 147:1117-1127. [DOI: 10.1039/d1an02220b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A modular microfluidic platform is developed to enrich EVs on micron-sized carrier beads immobilized with EV-specific antibodies, based on affinity capture, and elute pure EVs from the carrier beads in a high throughput.
Collapse
Affiliation(s)
- Hogyeong Gwak
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sunyoung Park
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Haeun Yu
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyung-A. Hyun
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo-Il Jung
- School of Mechanical Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- The DABOM Inc., Republic of Korea
| |
Collapse
|
235
|
Recent Advances in Exosome Analysis Assisted by Functional Nucleic Acid-based Signal Amplification Technologies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
236
|
Tang H, Niu J, Jin H, Lin S, Cui D. Geometric structure design of passive label-free microfluidic systems for biological micro-object separation. MICROSYSTEMS & NANOENGINEERING 2022; 8:62. [PMID: 35685963 PMCID: PMC9170746 DOI: 10.1038/s41378-022-00386-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/27/2022] [Accepted: 03/18/2022] [Indexed: 05/05/2023]
Abstract
Passive and label-free microfluidic devices have no complex external accessories or detection-interfering label particles. These devices are now widely used in medical and bioresearch applications, including cell focusing and cell separation. Geometric structure plays the most essential role when designing a passive and label-free microfluidic chip. An exquisitely designed geometric structure can change particle trajectories and improve chip performance. However, the geometric design principles of passive and label-free microfluidics have not been comprehensively acknowledged. Here, we review the geometric innovations of several microfluidic schemes, including deterministic lateral displacement (DLD), inertial microfluidics (IMF), and viscoelastic microfluidics (VEM), and summarize the most creative innovations and design principles of passive and label-free microfluidics. We aim to provide a guideline for researchers who have an interest in geometric innovations of passive label-free microfluidics.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
| | - Han Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Shujing Lin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240 China
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, 28 Jiangchuan Easternroad, Shanghai, 200241 China
| |
Collapse
|
237
|
Mustafa YL, Keirouz A, Leese HS. Molecularly Imprinted Polymers in Diagnostics: Accessing Analytes in Biofluids. J Mater Chem B 2022; 10:7418-7449. [DOI: 10.1039/d2tb00703g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bio-applied molecularly imprinted polymers (MIPs) are biomimetic materials with tailor-made synthetic recognition sites, mimicking biological counterparts known for their sensitive and selective analyte detection. MIPs, specifically designed for biomarker analysis...
Collapse
|
238
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
239
|
Wang Y, Wang S, Chen A, Wang R, Li L, Fang X. Efficient exosome subpopulation isolation and proteomic profiling using a Sub-ExoProfile chip towards cancer diagnosis and treatment. Analyst 2022; 147:4237-4248. [DOI: 10.1039/d2an01268e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deconstruction of the heterogeneity of surface marker-dependent exosome subpopulations by the Sub-ExoProfile chip.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Shurong Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Aipeng Chen
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Ruoke Wang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Lanting Li
- Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Xiaoni Fang
- School of Pharmacy, Fudan University, Shanghai, 200438, China
| |
Collapse
|
240
|
Piffoux M, Silva AKA, Gazeau F, Salmon H. Potential of on‐chip analysis and engineering techniques for extracellular vesicle bioproduction for therapeutics. VIEW 2022. [DOI: 10.1002/viw.20200175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Max Piffoux
- Department of Medical Oncology Centre Léon Bérard Lyon France
- INSERM UMR 1197‐Interaction cellules souches‐niches: physiologie tumeurs et réparation tissulaire Villejuif France
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Amanda K. A. Silva
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
| | - Hugo Salmon
- Laboratoire Matière et Systèmes Complexes, CNRS Université de Paris Paris France
- Université de Paris, T3S, INSERM Paris France
| |
Collapse
|
241
|
Saad MG, Beyenal H, Dong WJ. Exosomes as Powerful Engines in Cancer: Isolation, Characterization and Detection Techniques. BIOSENSORS 2021; 11:518. [PMID: 34940275 PMCID: PMC8699402 DOI: 10.3390/bios11120518] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 06/01/2023]
Abstract
Exosomes, powerful extracellular nanovesicles released from almost all types of living cells, are considered the communication engines (messengers) that control and reprogram physiological pathways inside target cells within a community or between different communities. The cell-like structure of these extracellular vesicles provides a protective environment for their proteins and DNA/RNA cargos, which serve as biomarkers for many malicious diseases, including infectious diseases and cancers. Cancer-derived exosomes control cancer metastasis, prognosis, and development. In addition to the unique structure of exosomes, their nanometer size and tendency of interacting with cells makes them a viable novel drug delivery solution. In recent years, numerous research efforts have been made to quantify and characterize disease-derived exosomes for diagnosis, monitoring, and therapeutic purposes. This review aims to (1) relate exosome biomarkers to their origins, (2) focus on current isolation and detection methods, (3) discuss and evaluate the proposed technologies deriving from exosome research for cancer treatment, and (4) form a conclusion about the prospects of the current exosome research.
Collapse
Affiliation(s)
| | | | - Wen-Ji Dong
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA; (M.G.S.); (H.B.)
| |
Collapse
|
242
|
Yu Z, Lin S, Xia F, Liu Y, Zhang D, Wang F, Wang Y, Li Q, Niu J, Cao C, Cui D, Sheng N, Ren J, Wang Z, Chen D. ExoSD chips for high-purity immunomagnetic separation and high-sensitivity detection of gastric cancer cell-derived exosomes. Biosens Bioelectron 2021; 194:113594. [PMID: 34474280 DOI: 10.1016/j.bios.2021.113594] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/29/2021] [Accepted: 08/25/2021] [Indexed: 12/23/2022]
Abstract
Gastric cancer cell-derived exosomes as biomarkers have a very high application potential to the non-invasive detection of early-stage gastric cancer. However, the small size of exosomes (30-150 nm) results in huge challenges in separating and detecting them from complex media (e.g., plasma, urine, saliva, and cell culture supernatant). Here we proposed a highly integrated exosome separation and detection (ExoSD) chip to immunomagnetic separate exosomes from cell culture supernatant in a manner of continuous flow, and to immunofluorescence detect gastric cancer cell-derived exosomes with high sensitivity. The ExoSD chip has achieved a high exosome recovery (>80%) and purity (>83%) at the injection rate of 4.8 mL/h. Furthermore, experimental results based on clinical serum samples of patients with gastric cancer (stages I and II) show that the detection rate of the ExoSD chip is as high as 70%. The proposed ExoSD chip has been successfully demonstrated as a cutting-edge platform for exosomes separation and detection. It can be served as a versatile platform to extend to the applications of separation and detection of the other cell-derived exosomes or cells.
Collapse
Affiliation(s)
- Zixian Yu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China.
| | - Fangfang Xia
- The Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicin, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China
| | - Di Zhang
- Center for Advanced Electronic Materials and Devices (AEMD), Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Fei Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China
| | - Yanpu Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China
| | - Qichao Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China
| | - Chengxi Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Jiazi Ren
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, PR China.
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, 200240, PR China; Key Lab. for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai, 200240, PR China.
| |
Collapse
|
243
|
Xiong Q, Wang M, Liu J, Lin CY. Breast Cancer Cells Metastasize to the Tissue-Engineered Premetastatic Niche by Using an Osteoid-Formed Polycaprolactone/Nanohydroxyapatite Scaffold. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9354202. [PMID: 34938359 PMCID: PMC8687766 DOI: 10.1155/2021/9354202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
It has been deemed that the premetastatic niche (PMN) plays a critical role in facilitating bone metastasis of breast cancer cells. Tissue engineering scaffolds provide an advantageous environment to promote osteogenesis that may mimic the bony premetastatic niches (BPMNs). In this study, human mesenchymal stem cells (hMSCs) were seeded onto designed polycaprolactone/nanohydroxyapatite (PCL-nHA) scaffolds for osteogenic differentiation. Subsequently, a coculture system was used to establish the tissue-engineered BPMNs by culturing breast cancer cells, hMSCs, and osteoid-formed PCL-nHA scaffolds. Afterwards, a migration assay was used to investigate the recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 cells to the BPMNs' supernatants. The cancer stem cell (CSC) properties of these migrated cells were investigated by flow cytometry. Our results showed that the mRNA expression levels of alkaline phosphatase (ALP), Osterix, runt-related transcription factor 2 (Runx2), and collagen type I alpha 1 (COL1A1) on the PCL-nHA scaffolds were dramatically increased compared to the PCL scaffolds on days 11, 18, and 32. The expression of CXCL12 in these BPMNs was increased gradually over coculturing time, and it may be a feasible marker for BPMNs. Furthermore, migration analysis results showed that the higher maturation of BPMNs collectively contributed to the creation of a more favorable niched site for the cancerous invasion. The subpopulation of breast cancer stem cells (BCSCs) was more likely to migrate to fertile BPMNs. The proportion of BCSCs in metastatic MDA-MB-231, MCF-7, and MDA-MB-453 cells were increased by approximately 63.47%, 149.48%, and 127.60%. The current study demonstrated that a designed tissue engineering scaffold can provide a novel method to create a bone-mimicking environment that serves as a useable platform to recapitulate the BPMNs and help interrogate the scheme of bone metastasis by breast cancer.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jinglong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Chia-Ying Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
244
|
Immuno-Acoustic Sorting of Disease-Specific Extracellular Vesicles by Acoustophoretic Force. MICROMACHINES 2021; 12:mi12121534. [PMID: 34945384 PMCID: PMC8709371 DOI: 10.3390/mi12121534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022]
Abstract
Methods for the isolation and analysis of extracellular vesicles (EVs) have been extensively explored in the field of life science and in clinical diagnosis in recent years. The separation and efficient recovery of high-purity target EVs from biological samples are important prerequisites in the study of EVs. So far, commonly used methods of EV separation include ultracentrifugation, filtration, solvent precipitation and immunoaffinity capturing. However, these methods suffer from long processing time, EV damage and low enrichment efficiency. The use of acoustophoretic force facilitates the non-contact label-free manipulation of cells based on their size and compressibility but lacks specificity. Additionally, the acoustophoretic force exerted on sub-micron substances is normally weak and insufficient for separation. Here we present a novel immuno-acoustic sorting technology, where biological substances such as EVs, viruses, and biomolecules, can be specifically captured by antibody/receptor coated microparticles through immunoaffinity, and manipulated by an acoustophoretic force exerted on the microparticles. Using immuno-acoustic sorting technology, we successfully separated and purified HER2-positive EVs for further downstream analysis. This method holds great potential in isolating and purifying specific targets such as disease-related EVs from biological fluids and opens new possibilities for the EV-based early diagnosis and prognosis of diseases.
Collapse
|
245
|
Potential Applications and Functional Roles of Exosomes in Cardiometabolic Disease. Pharmaceutics 2021; 13:pharmaceutics13122056. [PMID: 34959338 PMCID: PMC8703910 DOI: 10.3390/pharmaceutics13122056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite diagnostic and therapeutic advances, cardiometabolic disease remains the leading cause of death worldwide. Extracellular vesicles (EVs), which include exosomes and microvesicles, have gained particular interest because of their role in metabolic homeostasis and cardiovascular physiology. Indeed, EVs are recognized as critical mediators of intercellular communication in the cardiovascular system. Exosomes are naturally occurring nanocarriers that transfer biological information in the setting of metabolic abnormalities and cardiac dysfunction. The study of these EVs can increase our knowledge on the pathophysiological mechanisms of metabolic disorders and their cardiovascular complications. Because of their inherent properties and composition, exosomes have been proposed as diagnostic and prognostic biomarkers and therapeutics for specific targeting and drug delivery. Emerging fields of study explore the use exosomes as tools for gene therapy and as a cell-free alternative for regenerative medicine. Furthermore, innovative biomaterials can incorporate exosomes to enhance tissue regeneration and engineering. In this work, we summarize the most recent knowledge on the role of exosomes in cardiometabolic pathophysiology while highlighting their potential therapeutic applications.
Collapse
|
246
|
Jiang C, Fu Y, Liu G, Shu B, Davis J, Tofaris GK. Multiplexed Profiling of Extracellular Vesicles for Biomarker Development. NANO-MICRO LETTERS 2021; 14:3. [PMID: 34855021 PMCID: PMC8638654 DOI: 10.1007/s40820-021-00753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/22/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency.
Collapse
Affiliation(s)
- Cheng Jiang
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| | - Ying Fu
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Jason Davis
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, New Biochemistry Building, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, New Biochemistry Building, University of Oxford, Oxford, UK.
| |
Collapse
|
247
|
Chen C, Chen Q, Cheng K, Zou T, Pang Y, Ling Y, Xu Y, Zhu W. Exosomes and Exosomal Non-coding RNAs Are Novel Promises for the Mechanism-Based Diagnosis and Treatments of Atrial Fibrillation. Front Cardiovasc Med 2021; 8:782451. [PMID: 34926627 PMCID: PMC8671698 DOI: 10.3389/fcvm.2021.782451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide and has a significant impact on human health and substantial costs. Currently, there is a lack of accurate biomarkers for the diagnosis and prognosis of AF. Moreover, the long-term efficacy of the catheter ablation in the AF is unsatisfactory. Therefore, it is necessary to explore new biomarkers and treatment strategies for the mechanism-based AF. Exosomes are nano-sized biovesicles released by nearly all types of cells. Since the AF would be linked to the changes of the atrial cells and their microenvironment, and the AF would strictly influence the exosomal non-coding RNAs (exo-ncRNAs) expression, which makes them as attractive diagnostic and prognostic biomarkers for the AF. Simultaneously, the exo-ncRNAs have been found to play an important role in the mechanisms of the AF and have potential therapeutic prospects. Although the role of the exo-ncRNAs in the AF is being actively investigated, the evidence is still limited. Furthermore, there is a lack of consensus regarding the most appropriate approach for exosome isolation and characterization. In this article, we reviewed the new methodologies available for exosomes biogenesis, isolation, and characterization, and then discussed the mechanism of the AF and various levels and types of exosomes relevant to the AF, with the special emphasis on the exo-ncRNAs in the diagnosis, prognosis, and treatment of the mechanism-based AF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenqing Zhu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
248
|
Ma X, Hao Y, Liu L. Progress in Nanomaterials-Based Optical and Electrochemical Methods for the Assays of Exosomes. Int J Nanomedicine 2021; 16:7575-7608. [PMID: 34803380 PMCID: PMC8599324 DOI: 10.2147/ijn.s333969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes with diameters of 30-150 nm are small membrane-bound vesicles secreted by a variety of cells. They play an important role in many biological processes, such as tumor-related immune response and intercellular signal transduction. Exosomes have been considered as emerging and noninvasive biomarkers for cancer diagnosis. Recently, a large number of optical and electrochemical biosensors have been proposed for sensitive detection of exosomes. To meet the increasing demands for ultrasensitive detection, nanomaterials have been integrated with various techniques as powerful components. Because of their intrinsic merits of biological compatibility, excellent physicochemical features and unique catalytic ability, nanomaterials have significantly improved the analytical performances of exosome biosensors. In this review, we summarized the recent progress in nanomaterials-based biosensors for the detection of cancer-derived exosomes, including fluorescence, colorimetry, surface plasmon resonance spectroscopy, surface enhanced Raman scattering spectroscopy, electrochemistry, electrochemiluminescence and so on.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People’s Republic of China
| |
Collapse
|
249
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
250
|
Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|