201
|
McNerney MP, Doiron KE, Ng TL, Chang TZ, Silver PA. Theranostic cells: emerging clinical applications of synthetic biology. Nat Rev Genet 2021; 22:730-746. [PMID: 34234299 PMCID: PMC8261392 DOI: 10.1038/s41576-021-00383-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Synthetic biology seeks to redesign biological systems to perform novel functions in a predictable manner. Recent advances in bacterial and mammalian cell engineering include the development of cells that function in biological samples or within the body as minimally invasive diagnostics or theranostics for the real-time regulation of complex diseased states. Ex vivo and in vivo cell-based biosensors and therapeutics have been developed to target a wide range of diseases including cancer, microbiome dysbiosis and autoimmune and metabolic diseases. While probiotic therapies have advanced to clinical trials, chimeric antigen receptor (CAR) T cell therapies have received regulatory approval, exemplifying the clinical potential of cellular therapies. This Review discusses preclinical and clinical applications of bacterial and mammalian sensing and drug delivery platforms as well as the underlying biological designs that could enable new classes of cell diagnostics and therapeutics. Additionally, we describe challenges that must be overcome for more rapid and safer clinical use of engineered systems.
Collapse
Affiliation(s)
- Monica P McNerney
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kailyn E Doiron
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tai L Ng
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Timothy Z Chang
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
202
|
Controlled metabolic cascades for protein synthesis in an artificial cell. Biochem Soc Trans 2021; 49:2143-2151. [PMID: 34623386 DOI: 10.1042/bst20210175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022]
Abstract
In recent years, researchers have been pursuing a method to design and to construct life forms from scratch - in other words, to create artificial cells. In many studies, artificial cellular membranes have been successfully fabricated, allowing the research field to grow by leaps and bounds. Moreover, in addition to lipid bilayer membranes, proteins are essential factors required to construct any cellular metabolic reaction; for that reason, different cell-free expression systems under various conditions to achieve the goal of controlling the synthetic cascades of proteins in a confined area have been reported. Thus, in this review, we will discuss recent issues and strategies, enabling to control protein synthesis cascades that are being used, particularly in research on artificial cells.
Collapse
|
203
|
|
204
|
Wan X, Saltepe B, Yu L, Wang B. Programming living sensors for environment, health and biomanufacturing. Microb Biotechnol 2021; 14:2334-2342. [PMID: 33960658 PMCID: PMC8601174 DOI: 10.1111/1751-7915.13820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Synthetic biology offers new tools and capabilities of engineering cells with desired functions for example as new biosensing platforms leveraging engineered microbes. In the last two decades, bacterial cells have been programmed to sense and respond to various input cues for versatile purposes including environmental monitoring, disease diagnosis and adaptive biomanufacturing. Despite demonstrated proof-of-concept success in the laboratory, the real-world applications of microbial sensors have been restricted due to certain technical and societal limitations. Yet, most limitations can be addressed by new technological developments in synthetic biology such as circuit design, biocontainment and machine learning. Here, we summarize the latest advances in synthetic biology and discuss how they could accelerate the development, enhance the performance and address the present limitations of microbial sensors to facilitate their use in the field. We view that programmable living sensors are promising sensing platforms to achieve sustainable, affordable and easy-to-use on-site detection in diverse settings.
Collapse
Affiliation(s)
- Xinyi Wan
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
| | - Behide Saltepe
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Luyang Yu
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Baojun Wang
- Centre for Synthetic and Systems BiologySchool of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- Hangzhou Innovation CenterZhejiang UniversityHangzhou311200China
- The Provincial International Science and Technology Cooperation Base for Engineering BiologyInternational CampusZhejiang UniversityHaining314400China
- College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
205
|
Deyama T, Matsui Y, Chadani Y, Sekine Y, Doi N, Fujiwara K. Transcription-translation of the Escherichia coli genome within artificial cells. Chem Commun (Camb) 2021; 57:10367-10370. [PMID: 34541593 DOI: 10.1039/d1cc04401j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we created artificial cells in which information of the genome of living cells is expressed by the elements encoded in the genome. We confirmed that the system works normally within artificial cells, which paves the way for reconstructing living cells from biomolecules.
Collapse
Affiliation(s)
- Tatsuki Deyama
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Yukino Matsui
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Yuhei Chadani
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, S2-19, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Nobuhide Doi
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
206
|
Protocell arrays for simultaneous detection of diverse analytes. Nat Commun 2021; 12:5724. [PMID: 34588445 PMCID: PMC8481512 DOI: 10.1038/s41467-021-25989-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simultaneous detection of multiple analytes from a single sample (multiplexing), particularly when done at the point of need, can guide complex decision-making without increasing the required sample volume or cost per test. Despite recent advances, multiplexed analyte sensing still typically faces the critical limitation of measuring only one type of molecule (e.g., small molecules or nucleic acids) per assay platform. Here, we address this bottleneck with a customizable platform that integrates cell-free expression (CFE) with a polymer-based aqueous two-phase system (ATPS), producing membrane-less protocells containing transcription and translation machinery used for detection. We show that multiple protocells, each performing a distinct sensing reaction, can be arrayed in the same microwell to detect chemically diverse targets from the same sample. Furthermore, these protocell arrays are compatible with human biofluids, maintain function after lyophilization and rehydration, and can produce visually interpretable readouts, illustrating this platform's potential as a minimal-equipment, field-deployable, multi-analyte detection tool.
Collapse
|
207
|
Lehr FX, Kuzembayeva A, Bailey ME, Kleindienst W, Kabisch J, Koeppl H. Functionalizing Cell-Free Systems with CRISPR-Associated Proteins: Application to RNA-Based Circuit Engineering. ACS Synth Biol 2021; 10:2138-2150. [PMID: 34383464 DOI: 10.1021/acssynbio.0c00386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-free systems have become a compelling choice for the prototyping of synthetic circuits. Many robust protocols for preparing cell-free systems are now available along with toolboxes designed for a variety of applications. Thus far, the production of cell-free extracts has often been decoupled from the production of functionalized proteins. Here, we leveraged a recent protocol for producing an E. coli-based cell-free expression system with two CRISPR-associated proteins, Csy4 and dCas9, expressed prior to harvest. We found that pre-expression did not affect the resulting extract performance, and the final concentrations of the endonucleases matched the level required for synthetic circuit prototyping. We demonstrated the benefits and versatility of dCas9 and Csy4 through the use of RNA circuitry based on a combination of single guide RNAs, small transcriptional activator RNAs, and toehold switches. For instance, we show that Csy4 processing increased 4-fold the dynamic range of a previously published AND-logic gate. Additionally, blending the CRISPR-enhanced extracts enabled us to reduce leakage in a multiple inputs gate, and to extend the type of Boolean functions available for RNA-based circuits, such as NAND-logic. Finally, we reported the use of simultaneous transcriptional and translational reporters in our RNA-based circuits. In particular, the AND-gate mRNA and protein levels were able to be independently monitored in response to transcriptional and translational activators. We hope this work will facilitate the adoption of advanced processing tools for RNA-based circuit prototyping in a cell-free environment.
Collapse
Affiliation(s)
- François-Xavier Lehr
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt 64283, Germany
| | - Alina Kuzembayeva
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt 64283, Germany
| | - Megan E Bailey
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt 64283, Germany
| | - Werner Kleindienst
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Johannes Kabisch
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Heinz Koeppl
- Centre for Synthetic Biology, Technische Universität Darmstadt, Darmstadt 64287, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Darmstadt 64283, Germany
| |
Collapse
|
208
|
Makrydaki E, Marshall O, Heide C, Buldum G, Kontoravdi C, Polizzi KM. Cell-free protein synthesis using Chinese hamster ovary cells. Methods Enzymol 2021; 659:411-435. [PMID: 34752298 DOI: 10.1016/bs.mie.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free protein synthesis (CFPS) platforms can be used for rapid and flexible expression of proteins. The use of CFPS platforms from mammalian, specifically Chinese hamster ovary (CHO) cells, offers the possibility of a rapid prototyping platform for recombinant protein production with the capabilities of post-translational modifications. In this chapter, we discuss a refined CFPS system based on CHO cells, including: extract preparation, reaction mix composition, and accessory protein supplementation to enhance expression. Specifically, when the CHO cell extract is combined with a truncated version of GADD34 and K3L, stress-induced eIF2 phosphorylation is reduced and inhibition of translation initiation is relieved, increasing yields. A brief summary of the protocol for running the CFPS reactions is also described. Overall, the method is reliable and leads to a highly reproducible expression system. Finally, the advantages and disadvantages of the platform, in addition to expected outcomes, are also discussed.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Oscar Marshall
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Chiara Heide
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Gizem Buldum
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | - Cleo Kontoravdi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| | - Karen M Polizzi
- Department of Chemical Engineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, United Kingdom.
| |
Collapse
|
209
|
Falgenhauer E, von Schönberg S, Meng C, Mückl A, Vogele K, Emslander Q, Ludwig C, Simmel FC. Evaluation of an E. coli Cell Extract Prepared by Lysozyme-Assisted Sonication via Gene Expression, Phage Assembly and Proteomics. Chembiochem 2021; 22:2805-2813. [PMID: 34240805 PMCID: PMC8518995 DOI: 10.1002/cbic.202100257] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Indexed: 11/08/2022]
Abstract
Over the past decades, starting from crude cell extracts, a variety of successful preparation protocols and optimized reaction conditions have been established for the production of cell-free gene expression systems. One of the crucial steps during the preparation of cell extract-based expression systems is the cell lysis procedure itself, which largely determines the quality of the active components of the extract. Here we evaluate the utility of an E. coli cell extract, which was prepared using a combination of lysozyme incubation and a gentle sonication step. As quality measure, we demonstrate the cell-free expression of YFP at concentrations up to 0.6 mg/mL. In addition, we produced and assembled T7 bacteriophages up to a titer of 108 PFU/mL. State-of-the-art quantitative proteomics was used to compare the produced extracts with each other and with a commercial extract. The differences in protein composition were surprisingly small between lysozyme-assisted sonication (LAS) extracts, but we observed an increase in the release of DNA-binding proteins for increasing numbers of sonication cycles. Proteins taking part in carbohydrate metabolism, glycolysis, amino acid and nucleotide related pathways were found to be more abundant in the LAS extract, while proteins related to RNA modification and processing, DNA modification and replication, transcription regulation, initiation, termination and the TCA cycle were found enriched in the commercial extract.
Collapse
Affiliation(s)
- Elisabeth Falgenhauer
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Sophie von Schönberg
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS)Technical University of MunichGregor-Mendel-Strasse 485354FreisingGermany
| | - Andrea Mückl
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Kilian Vogele
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Quirin Emslander
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS)Technical University of MunichGregor-Mendel-Strasse 485354FreisingGermany
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems, Physics Department E14Technical University of MunichAm Coulombwall 4a85748GarchingGermany
| |
Collapse
|
210
|
Dudley QM, Cai YM, Kallam K, Debreyne H, Carrasco Lopez JA, Patron NJ. Biofoundry-assisted expression and characterization of plant proteins. Synth Biol (Oxf) 2021; 6:ysab029. [PMID: 34693026 PMCID: PMC8529701 DOI: 10.1093/synbio/ysab029] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
Many goals in synthetic biology, including the elucidation and refactoring of biosynthetic pathways and the engineering of regulatory circuits and networks, require knowledge of protein function. In plants, the prevalence of large gene families means it can be particularly challenging to link specific functions to individual proteins. However, protein characterization has remained a technical bottleneck, often requiring significant effort to optimize expression and purification protocols. To leverage the ability of biofoundries to accelerate design-built-test-learn cycles, we present a workflow for automated DNA assembly and cell-free expression of plant proteins that accelerates optimization and enables rapid screening of enzyme activity. First, we developed a phytobrick-compatible Golden Gate DNA assembly toolbox containing plasmid acceptors for cell-free expression using Escherichia coli or wheat germ lysates as well as a set of N- and C-terminal tag parts for detection, purification and improved expression/folding. We next optimized automated assembly of miniaturized cell-free reactions using an acoustic liquid handling platform and then compared tag configurations to identify those that increase expression. We additionally developed a luciferase-based system for rapid quantification that requires a minimal 11-amino acid tag and demonstrate facile removal of tags following synthesis. Finally, we show that several functional assays can be performed with cell-free protein synthesis reactions without the need for protein purification. Together, the combination of automated assembly of DNA parts and cell-free expression reactions should significantly increase the throughput of experiments to test and understand plant protein function and enable the direct reuse of DNA parts in downstream plant engineering workflows.
Collapse
Affiliation(s)
- Quentin M Dudley
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | - Hubert Debreyne
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| | | | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk UK
| |
Collapse
|
211
|
From Cell-Free Protein Synthesis to Whole-Cell Biotransformation: Screening and Identification of Novel α-Ketoglutarate-Dependent Dioxygenases for Preparative-Scale Synthesis of Hydroxy-l-Lysine. Catalysts 2021. [DOI: 10.3390/catal11091038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The selective hydroxylation of non-activated C-H bonds is still a challenging reaction in chemistry. Non-heme Fe2+/α-ketoglutarate-dependent dioxygenases are remarkable biocatalysts for the activation of C-H-bonds, catalyzing mainly hydroxylations. The discovery of new Fe2+/α-ketoglutarate-dependent dioxygenases with suitable reactivity for biotechnological applications is therefore highly relevant to expand the limited range of enzymes described so far. In this study, we performed a protein BLAST to identify homologous enzymes to already described lysine dioxygenases (KDOs). Six novel and yet uncharacterized proteins were selected and synthesized by cell-free protein synthesis (CFPS). The subsequent in vitro screening of the selected homologs revealed activity towards the hydroxylation of l-lysine (Lys) into hydroxy-l-lysine (Hyl), which is a versatile chiral building block. With respect to biotechnological application, Escherichia coli whole-cell biocatalysts were developed and characterized in small-scale biotransformations. As the whole-cell biocatalyst expressing the gene coding for the KDO from Photorhabdus luminescens showed the highest specific activity of 8.6 ± 0.6 U gCDW−1, it was selected for the preparative synthesis of Hyl. Multi-gram scale product concentrations were achieved providing a good starting point for further bioprocess development for Hyl production. A systematic approach was established to screen and identify novel Fe2+/α-ketoglutarate-dependent dioxygenases, covering the entire pathway from gene to product, which contributes to accelerating the development of bioprocesses for the production of value-added chemicals.
Collapse
|
212
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
213
|
Burrington LR, Watts KR, Oza JP. Characterizing and Improving Reaction Times for E. coli-Based Cell-Free Protein Synthesis. ACS Synth Biol 2021; 10:1821-1829. [PMID: 34269580 DOI: 10.1021/acssynbio.1c00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cell-free protein synthesis (CFPS) is a platform biotechnology that has enabled the on-demand synthesis of proteins for a variety of applications. Numerous advances have improved the productivity of the CFPS platform to result in high-yielding reactions; however, many applications remain limited due to long reaction times. To overcome this limitation, we first established the benchmarks reaction times for CFPS across in-house E. coli extracts and commercial kits. We then set out to fine-tune our in-house extract systems to improve reaction times. Through the optimization of reaction composition and titration of low-cost additives, we have identified formulations that reduce reaction times by 30-50% to obtain high protein titers for biomanufacturing applications, and reduce times by more than 50% to reach the sfGFP detection limit for applications in education and diagnostics. Under optimum conditions, we report the visible observation of sfGFP signal in less than 10 min. Altogether, these advances enhance the utility of CFPS as a rapid, user-defined platform.
Collapse
Affiliation(s)
- Logan R. Burrington
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Katharine R. Watts
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Javin P. Oza
- Chemistry and Biochemistry Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
- Center for Applications in Biotechnology, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| |
Collapse
|
214
|
Park J, Yim SS, Wang HH. High-Throughput Transcriptional Characterization of Regulatory Sequences from Bacterial Biosynthetic Gene Clusters. ACS Synth Biol 2021; 10:1859-1873. [PMID: 34288650 DOI: 10.1021/acssynbio.0c00639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent efforts to sequence, survey, and functionally characterize the diverse biosynthetic capabilities of bacteria have identified numerous Biosynthetic Gene Clusters (BGCs). Genes found within BGCs are typically transcriptionally silent, suggesting their expression is tightly regulated. To better elucidate the underlying mechanisms and principles that govern BGC regulation on a DNA sequence level, we employed high-throughput DNA synthesis and multiplexed reporter assays to build and to characterize a library of BGC-derived regulatory sequences. Regulatory sequence transcription levels were measured in the Actinobacteria Streptomyces albidoflavus J1074, a popular model strain from a genus rich in BGC diversity. Transcriptional activities varied over 1000-fold in range and were used to identify key features associated with expression, including GC content, transcription start sites, and sequence motifs. Furthermore, we demonstrated that transcription levels could be modulated through coexpression of global regulatory proteins. Lastly, we developed and optimized a S. albidoflavus cell-free expression system for rapid characterization of regulatory sequences. This work helps to elucidate the regulatory landscape of BGCs and provides a diverse library of characterized regulatory sequences for rational engineering and activation of cryptic BGCs.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sung Sun Yim
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Harris H. Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032, United States
| |
Collapse
|
215
|
Lüddecke T, Paas A, Talmann L, Kirchhoff KN, von Reumont BM, Billion A, Timm T, Lochnit G, Vilcinskas A. A Spider Toxin Exemplifies the Promises and Pitfalls of Cell-Free Protein Production for Venom Biodiscovery. Toxins (Basel) 2021; 13:toxins13080575. [PMID: 34437446 PMCID: PMC8402385 DOI: 10.3390/toxins13080575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Arthropod venoms offer a promising resource for the discovery of novel bioactive peptides and proteins, but the limited size of most species translates into minuscule venom yields. Bioactivity studies based on traditional fractionation are therefore challenging, so alternative strategies are needed. Cell-free synthesis based on synthetic gene fragments is one of the most promising emerging technologies, theoretically allowing the rapid, laboratory-scale production of specific venom components, but this approach has yet to be applied in venom biodiscovery. Here, we tested the ability of three commercially available cell-free protein expression systems to produce venom components from small arthropods, using U2-sicaritoxin-Sdo1a from the six-eyed sand spider Hexophtalma dolichocephala as a case study. We found that only one of the systems was able to produce an active product in low amounts, as demonstrated by SDS-PAGE, mass spectrometry, and bioactivity screening on murine neuroblasts. We discuss our findings in relation to the promises and limitations of cell-free synthesis for venom biodiscovery programs in smaller invertebrates.
Collapse
Affiliation(s)
- Tim Lüddecke
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (A.P.); (K.N.K.); (A.B.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 30325 Frankfurt am Main, Germany;
- Correspondence:
| | - Anne Paas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (A.P.); (K.N.K.); (A.B.); (A.V.)
| | - Lea Talmann
- Syngenta Crop Protection, Werk Stein, Schaffhauserstrasse, CH4332 Stein, Switzerland;
| | - Kim N. Kirchhoff
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (A.P.); (K.N.K.); (A.B.); (A.V.)
| | - Björn M. von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 30325 Frankfurt am Main, Germany;
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - André Billion
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (A.P.); (K.N.K.); (A.B.); (A.V.)
| | - Thomas Timm
- Institute of Biochemistry, Justus Liebig University of Giessen, Friedrichstr. 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Günter Lochnit
- Institute of Biochemistry, Justus Liebig University of Giessen, Friedrichstr. 24, 35392 Giessen, Germany; (T.T.); (G.L.)
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; (A.P.); (K.N.K.); (A.B.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 30325 Frankfurt am Main, Germany;
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
216
|
Liu D, Li S, Zhang T, Jiang H, Lu Y. 3D Magnetic Field-Controlled Synthesis, Collective Motion, and Bioreaction Enhancement of Multifunctional Peasecod-like Nanochains. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36157-36170. [PMID: 34296851 DOI: 10.1021/acsami.1c08130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic field-induced synthesis and biocatalysis of magnetic materials have inspired great interest due to the flexible controllability of morphologies and unique magnetoelectrical properties. However, the interaction of the magnetic field and the reaction kinetics during the synthesis of magnetic nanochains has not been revealed. The collective motions in fluids and the multifunctional enhancements for bioreaction of 3D magnetic-controlled nanochains have not been systematically researched. Here, an integrated 3D magnetic control method was reported for the synthesis, collective motion, and multifunctional bioreaction enhancement of peasecod-like nanochains. The interactions of magnetic field and reaction kinetics were rationally controlled to synthesize magnetic nanochains of different morphologies. Collective motions of nanochains under alternating magnetic fields were studied to provide insights into the disturbance on confined fluids. Three mechanisms of reaction enhancement of nanostir, magnetic agent, and nanocatalyst were achieved simultaneously via 3D magnetic-controlled nanochains using a glucose oxidase-horseradish peroxidase multi-enzyme system. The peasecod-like nanochain also exhibited excellent reaction enhancement in cell-free protein synthesis reaction, which is desired for effective high-throughput screening. The integrated 3D magnetic control method through the whole process from fabrication to applications of magnetic nanomaterials could be extended to multifunctional biocatalysis and multi-task biomedicine.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shangsong Li
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ting Zhang
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Hao Jiang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
217
|
Garenne D, Thompson S, Brisson A, Khakimzhan A, Noireaux V. The all-E. coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform. Synth Biol (Oxf) 2021; 6:ysab017. [PMID: 34712841 PMCID: PMC8546610 DOI: 10.1093/synbio/ysab017] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The new generation of cell-free gene expression systems enables the prototyping and engineering of biological systems in vitro over a remarkable scope of applications and physical scales. As the utilization of DNA-directed in vitro protein synthesis expands in scope, developing more powerful cell-free transcription-translation (TXTL) platforms remains a major goal to either execute larger DNA programs or improve cell-free biomanufacturing capabilities. In this work, we report the capabilities of the all-E. coli TXTL toolbox 3.0, a multipurpose cell-free expression system specifically developed for synthetic biology. In non-fed batch-mode reactions, the synthesis of the fluorescent reporter protein eGFP (enhanced green fluorescent protein) reaches 4 mg/ml. In synthetic cells, consisting of liposomes loaded with a TXTL reaction, eGFP is produced at concentrations of >8 mg/ml when the chemical building blocks feeding the reaction diffuse through membrane channels to facilitate exchanges with the outer solution. The bacteriophage T7, encoded by a genome of 40 kb and ∼60 genes, is produced at a concentration of 1013 PFU/ml (plaque forming unit/ml). This TXTL system extends the current cell-free expression capabilities by offering unique strength and properties, for testing regulatory elements and circuits, biomanufacturing biologics or building synthetic cells.
Collapse
Affiliation(s)
- David Garenne
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Amaury Brisson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
218
|
Fluorescent functional nucleic acid: Principles, properties and applications in bioanalyzing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116292] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
219
|
Yang C, Liu Y, Liu WQ, Wu C, Li J. Designing Modular Cell-free Systems for Tunable Biotransformation of l-phenylalanine to Aromatic Compounds. Front Bioeng Biotechnol 2021; 9:730663. [PMID: 34395411 PMCID: PMC8355704 DOI: 10.3389/fbioe.2021.730663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free systems have been used to synthesize chemicals by reconstitution of in vitro expressed enzymes. However, coexpression of multiple enzymes to reconstitute long enzymatic pathways is often problematic due to resource limitation/competition (e.g., energy) in the one-pot cell-free reactions. To address this limitation, here we aim to design a modular, cell-free platform to construct long biosynthetic pathways for tunable synthesis of value-added aromatic compounds, using (S)-1-phenyl-1,2-ethanediol ((S)-PED) and 2-phenylethanol (2-PE) as models. Initially, all enzymes involved in the biosynthetic pathways were individually expressed by an E. coli-based cell-free protein synthesis (CFPS) system and their catalytic activities were confirmed. Then, three sets of enzymes were coexpressed in three cell-free modules and each with the ability to complete a partial pathway. Finally, the full biosynthetic pathways were reconstituted by mixing two related modules to synthesize (S)-PED and 2-PE, respectively. After optimization, the final conversion rates for (S)-PED and 2-PE reached 100 and 82.5%, respectively, based on the starting substrate of l-phenylalanine. We anticipate that the modular cell-free approach will make a possible efficient and high-yielding biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
- Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Changzhu Wu
- Danish Institute for Advanced Study (DIAS) and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
220
|
McSweeney MA, Styczynski MP. Effective Use of Linear DNA in Cell-Free Expression Systems. Front Bioeng Biotechnol 2021; 9:715328. [PMID: 34354989 PMCID: PMC8329657 DOI: 10.3389/fbioe.2021.715328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Cell-free expression systems (CFEs) are cutting-edge research tools used in the investigation of biological phenomena and the engineering of novel biotechnologies. While CFEs have many benefits over in vivo protein synthesis, one particularly significant advantage is that CFEs allow for gene expression from both plasmid DNA and linear expression templates (LETs). This is an important and impactful advantage because functional LETs can be efficiently synthesized in vitro in a few hours without transformation and cloning, thus expediting genetic circuit prototyping and allowing expression of toxic genes that would be difficult to clone through standard approaches. However, native nucleases present in the crude bacterial lysate (the basis for the most affordable form of CFEs) quickly degrade LETs and limit expression yield. Motivated by the significant benefits of using LETs in lieu of plasmid templates, numerous methods to enhance their stability in lysate-based CFEs have been developed. This review describes approaches to LET stabilization used in CFEs, summarizes the advancements that have come from using LETs with these methods, and identifies future applications and development goals that are likely to be impactful to the field. Collectively, continued improvement of LET-based expression and other linear DNA tools in CFEs will help drive scientific discovery and enable a wide range of applications, from diagnostics to synthetic biology research tools.
Collapse
Affiliation(s)
- Megan A McSweeney
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| | - Mark P Styczynski
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
221
|
Norouzi M, Panfilov S, Pardee K. High-Efficiency Protection of Linear DNA in Cell-Free Extracts from Escherichia coli and Vibrio natriegens. ACS Synth Biol 2021; 10:1615-1624. [PMID: 34161082 DOI: 10.1021/acssynbio.1c00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of cell-free synthetic biology is an emerging branch of engineered biology that allows for rapid prototyping of biological designs and, in its own right, is becoming a venue for the in vitro operation of gene circuit-based sensors and biomanufacturing. To date, the related DNA encoded tools that operate in cell-free reactions have primarily relied on plasmid DNA inputs, as linear templates are highly susceptible to degradation by exonucleases present in cell-free extracts. This incompatibility has precluded significant throughput, time and cost benefits that could be gained with the use of linear DNA in the cell-free expression workflow. Here to tackle this limitation, we report that terminal incorporation of Ter binding sites for the DNA-binding protein Tus enables highly efficient protection of linear expression templates encoding mCherry and deGFP. In Escherichia coli extracts, our method compares favorably with the previously reported GamS-mediated protection scheme. Importantly, we extend the Tus-Ter system to Vibrio natriegens extracts, and demonstrate that this simple and easily implemented method can enable an unprecedented plasmid-level expression from linear templates in this emerging chassis organism.
Collapse
Affiliation(s)
- Masoud Norouzi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sabina Panfilov
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
222
|
Kato S, Garenne D, Noireaux V, Maeda YT. Phase Separation and Protein Partitioning in Compartmentalized Cell-Free Expression Reactions. Biomacromolecules 2021; 22:3451-3459. [PMID: 34258998 DOI: 10.1021/acs.biomac.1c00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Liquid-liquid phase separation (LLPS) is important to control a wide range of reactions from gene expression to protein degradation in a cell-sized space. To bring a better understanding of the compatibility of such phase-separated structures with protein synthesis, we study emergent LLPS in a cell-free transcription-translation (TXTL) reaction. When the TXTL reaction composed of many proteins is concentrated, the uniformly mixed state becomes unstable, and membrane-less phases form spontaneously. This LLPS droplet formation is induced when the TXTL reaction is enclosed in water-in-oil emulsion droplets, in which water evaporates from the surface. As the emulsion droplets shrink, smaller LLPS droplets appear inside the emulsion droplets and coalesce into large phase-separated domains that partition the localization of synthesized reporter proteins. The presence of PEG in the TXTL reaction is important not only for versatile cell-free protein synthesis but also for the formation of two large domains capable of protein partitioning. Our results may shed light on the dynamic interplay of LLPS formation and cell-free protein synthesis toward the construction of synthetic organelles.
Collapse
Affiliation(s)
- Shuzo Kato
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Se, Minneapolis, Minnesota 55455, United States
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
223
|
Hunt AC, Case JB, Park YJ, Cao L, Wu K, Walls AC, Liu Z, Bowen JE, Yeh HW, Saini S, Helms L, Zhao YT, Hsiang TY, Starr TN, Goreshnik I, Kozodoy L, Carter L, Ravichandran R, Green LB, Matochko WL, Thomson CA, Vögeli B, Krüger-Gericke A, VanBlargan LA, Chen RE, Ying B, Bailey AL, Kafai NM, Boyken S, Ljubetič A, Edman N, Ueda G, Chow C, Addetia A, Panpradist N, Gale M, Freedman BS, Lutz BR, Bloom JD, Ruohola-Baker H, Whelan SPJ, Stewart L, Diamond MS, Veesler D, Jewett MC, Baker D. Multivalent designed proteins protect against SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.07.451375. [PMID: 34268509 PMCID: PMC8282097 DOI: 10.1101/2021.07.07.451375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC 50 values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness. ONE-SENTENCE SUMMARY We designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Andrew C. Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Longxing Cao
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Kejia Wu
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Alexandra C. Walls
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John E. Bowen
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Hsien-Wei Yeh
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Shally Saini
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Louisa Helms
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Division of Nephrology and Kidney Research Institute, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Yan Ting Zhao
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Tien-Ying Hsiang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, 98195, USA
| | - Tyler N. Starr
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Lisa Kozodoy
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Lauren Carter
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Rashmi Ravichandran
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | | | | | | | - Bastain Vögeli
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Antje Krüger-Gericke
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Laura A. VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Adam L. Bailey
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Natasha M. Kafai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott Boyken
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Ajasja Ljubetič
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Natasha Edman
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - George Ueda
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Cameron Chow
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- The Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Nuttada Panpradist
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, 98195, USA
| | - Benjamin S. Freedman
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
- Division of Nephrology and Kidney Research Institute, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Barry R. Lutz
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jesse D. Bloom
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98109, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lance Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
224
|
Choi YN, Shin YR, Park JM, Lee JW. Cell-Free Transcription-Coupled CRISPR/Cas12a Assay for Prototyping Cyanobacterial Promoters. ACS Synth Biol 2021; 10:1300-1307. [PMID: 34015913 DOI: 10.1021/acssynbio.1c00148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyanobacteria are promising microbial hosts for the production of diverse biofuels and biochemicals. However, compared to other model microbial hosts such as Escherichia coli and yeast, it takes a long time to genetically modify cyanobacteria. One way to efficiently engineer cyanobacteria while minimizing genetic engineering would be to develop a fast, high-throughput prototyping tool for cyanobacteria. In this study, we developed a CRISPR/Cas12a-based assay coupled with cyanobacteria cell-free systems to rapidly prototype promoter characteristics. Using this newly developed assay, we demonstrated cyanobacteria cell-free transcription for the first time and confirmed a positive correlation between the in vitro and in vivo transcription performance. Furthermore, we generated a synthetic promoter library and evaluated the characteristics of promoter subregions by using the assay. Varied promoter strength derived from random mutations were rapidly and effectively measured in a high-throughput way. We believe that this study offers an easily applicable and rapid prototyping platform to characterize promoters for cyanobacterial engineering.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Ye Rim Shin
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Jong Moon Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Integrated Technology, Yonsei University (POSTECH-Yonsei Open Campus), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Integrated Technology, Yonsei University (POSTECH-Yonsei Open Campus), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk, 37673, Korea
| |
Collapse
|
225
|
Cao M, Sun Q, Zhang X, Ma Y, Wang J. Detection and differentiation of respiratory syncytial virus subgroups A and B with colorimetric toehold switch sensors in a paper-based cell-free system. Biosens Bioelectron 2021; 182:113173. [PMID: 33773383 DOI: 10.1016/j.bios.2021.113173] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) infection is the most common clinical infectious disease threatening the safety of human life. Herein, we provided a sensitive and specific method for detection and differentiation of RSV subgroups A (RSVA) and B (RSVB) with colorimetric toehold switch sensors in a paper-based cell-free system. In this method, we applied the toehold switch, an RNA-based riboswitch, to regulate the translation level of β-galactosidase (lacZ) gene. In the presence of target trigger RNA, the toehold switch sensor was activated and the expressed LacZ hydrolyzed chromogenic substrates to produce a colorimetric result that can be observed directly with the naked eye in a cell-free system. In addition, nucleic acid sequence-based amplification (NASBA) was used to improve the sensitivity by amplifying target trigger RNAs. Under optimal conditions, our method produced a visible result for the detection of RSVA and RSVB with the detection limit of 52 aM and 91 aM, respectively. The cross-reaction of this method was validated with other closely related respiratory viruses, including human coronavirus HKU1 (HCoV-HKU1), and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Furthermore, we used the paper-based carrier material that allows stable storage of our detection elements and rapid detection outside laboratory. In conclusion, this method can sensitively and specifically differentiate RSVA and RSVB and generate a visible colorimetric result without specialized operators and sophisticated equipment. Based on these advantages above, this method serves as a simple and portable detector in resource-poor areas and point-of-care testing (POCT) scenarios.
Collapse
Affiliation(s)
- Mengcen Cao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Qiuli Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
226
|
Meyer C, Nakamura Y, Rasor BJ, Karim AS, Jewett MC, Tan C. Analysis of the Innovation Trend in Cell-Free Synthetic Biology. Life (Basel) 2021; 11:551. [PMID: 34208358 PMCID: PMC8231175 DOI: 10.3390/life11060551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
Cell-free synthetic biology is a maturing field that aims to assemble biomolecular reactions outside cells for compelling applications in drug discovery, metabolic engineering, biomanufacturing, diagnostics, and education. Cell-free systems have several key features. They circumvent mechanisms that have evolved to facilitate species survival, bypass limitations on molecular transport across the cell wall, enable high-yielding and rapid synthesis of proteins without creating recombinant cells, and provide high tolerance towards toxic substrates or products. Here, we analyze ~750 published patents and ~2000 peer-reviewed manuscripts in the field of cell-free systems. Three hallmarks emerged. First, we found that both patent filings and manuscript publications per year are significantly increasing (five-fold and 1.5-fold over the last decade, respectively). Second, we observed that the innovation landscape has changed. Patent applications were dominated by Japan in the early 2000s before shifting to China and the USA in recent years. Finally, we discovered an increasing prevalence of biotechnology companies using cell-free systems. Our analysis has broad implications on the future development of cell-free synthetic biology for commercial and industrial applications.
Collapse
Affiliation(s)
- Conary Meyer
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| | - Yusuke Nakamura
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| | - Blake J. Rasor
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Ashty S. Karim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; (B.J.R.); (A.S.K.); (M.C.J.)
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, CA 95618, USA; (C.M.); (Y.N.)
| |
Collapse
|
227
|
Ivanov I, Castellanos SL, Balasbas S, Otrin L, Marušič N, Vidaković-Koch T, Sundmacher K. Bottom-Up Synthesis of Artificial Cells: Recent Highlights and Future Challenges. Annu Rev Chem Biomol Eng 2021; 12:287-308. [PMID: 34097845 DOI: 10.1146/annurev-chembioeng-092220-085918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bottom-up approach in synthetic biology aims to create molecular ensembles that reproduce the organization and functions of living organisms and strives to integrate them in a modular and hierarchical fashion toward the basic unit of life-the cell-and beyond. This young field stands on the shoulders of fundamental research in molecular biology and biochemistry, next to synthetic chemistry, and, augmented by an engineering framework, has seen tremendous progress in recent years thanks to multiple technological and scientific advancements. In this timely review of the research over the past decade, we focus on three essential features of living cells: the ability to self-reproduce via recursive cycles of growth and division, the harnessing of energy to drive cellular processes, and the assembly of metabolic pathways. In addition, we cover the increasing efforts to establish multicellular systems via different communication strategies and critically evaluate the potential applications.
Collapse
Affiliation(s)
- Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Sebastián López Castellanos
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Severo Balasbas
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Lado Otrin
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ,
| | - Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Tanja Vidaković-Koch
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ,
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , , .,Department of Process Systems Engineering, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
228
|
Nishio T, Yoshikawa Y, Yoshikawa K, Sato SI. Longer DNA exhibits greater potential for cell-free gene expression. Sci Rep 2021; 11:11739. [PMID: 34083658 PMCID: PMC8175755 DOI: 10.1038/s41598-021-91243-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cell-free gene expression systems have been valuable tools for understanding how transcription/translation can be regulated in living cells. Many studies have investigated the determining factors that affect gene expression. Here we report the effect of the length of linearized reporter DNAs encoding the firefly luciferase gene so as to exclude the influence of supercoiling. It is found that longer DNA molecules exhibit significantly greater potency in gene expression; for example, the expression level for DNA with 25.7 kbp is 1000-times higher than that for DNA of 1.7 kbp. AFM observation of the DNA conformation indicates that longer DNA takes shrunken conformation with a higher segment density in the reaction mixture for gene expression, in contrast to the stiff conformation of shorter DNA. We propose an underlying mechanism for the favorable effect of longer DNA on gene expression in terms of the enhancement of access of RNA polymerase to the shrunken conformation. It is expected that the enhancement of gene expression efficiency with a shrunken DNA conformation would also be a rather general mechanism in living cellular environments.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan.
| |
Collapse
|
229
|
Kofman C, Lee J, Jewett MC. Engineering molecular translation systems. Cell Syst 2021; 12:593-607. [PMID: 34139167 DOI: 10.1016/j.cels.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Molecular translation systems provide a genetically encoded framework for protein synthesis, which is essential for all life. Engineering these systems to incorporate non-canonical amino acids (ncAAs) into peptides and proteins has opened many exciting opportunities in chemical and synthetic biology. Here, we review recent advances that are transforming our ability to engineer molecular translation systems. In cell-based systems, new processes to synthesize recoded genomes, tether ribosomal subunits, and engineer orthogonality with high-throughput workflows have emerged. In cell-free systems, adoption of flexizyme technology and cell-free ribosome synthesis and evolution platforms are expanding the limits of chemistry at the ribosome's RNA-based active site. Looking forward, innovations will deepen understanding of molecular translation and provide a path to polymers with previously unimaginable structures and functions.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Interdisplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
230
|
Bhadra S, Nguyen V, Torres JA, Kar S, Fadanka S, Gandini C, Akligoh H, Paik I, Maranhao AC, Molloy J, Ellington AD. Producing molecular biology reagents without purification. PLoS One 2021; 16:e0252507. [PMID: 34061896 PMCID: PMC8168896 DOI: 10.1371/journal.pone.0252507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 11/18/2022] Open
Abstract
We recently developed 'cellular' reagents-lyophilized bacteria overexpressing proteins of interest-that can replace commercial pure enzymes in typical diagnostic and molecular biology reactions. To make cellular reagent technology widely accessible and amenable to local production with minimal instrumentation, we now report a significantly simplified method for preparing cellular reagents that requires only a common bacterial incubator to grow and subsequently dry enzyme-expressing bacteria at 37°C with the aid of inexpensive chemical desiccants. We demonstrate application of such dried cellular reagents in common molecular and synthetic biology processes, such as PCR, qPCR, reverse transcription, isothermal amplification, and Golden Gate DNA assembly, in building easy-to-use testing kits, and in rapid reagent production for meeting extraordinary diagnostic demands such as those being faced in the ongoing SARS-CoV-2 pandemic. Furthermore, we demonstrate feasibility of local production by successfully implementing this minimized procedure and preparing cellular reagents in several countries, including the United Kingdom, Cameroon, and Ghana. Our results demonstrate possibilities for readily scalable local and distributed reagent production, and further instantiate the opportunities available via synthetic biology in general.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vylan Nguyen
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jose-Angel Torres
- Freshman Research Initiative, DIY Diagnostics Stream, The University of Texas at Austin, Austin, Texas, United States of America
| | - Shaunak Kar
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | | | - Inyup Paik
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Andre C. Maranhao
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, Texas, United States of America
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
231
|
Roy R, Ray S, Chowdhury A, Anand R. Tunable Multiplexed Whole-Cell Biosensors as Environmental Diagnostics for ppb-Level Detection of Aromatic Pollutants. ACS Sens 2021; 6:1933-1939. [PMID: 33973468 DOI: 10.1021/acssensors.1c00329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatics such as phenols, benzene, and toluene are carcinogenic xenobiotics which are known to pollute water resources. By employing synthetic biology approaches combined with a structure-guided design, we created a tunable array of whole-cell biosensors (WCBs). The MopR genetic system that has the natural ability to sense and degrade phenol was adapted to detect phenol down to ∼1 ppb, making this sensor capable of directly detecting phenol in permissible limits in drinking water. Importantly, by using a single WCB design, we engineered mutations into the MopR gene that enabled generation of a battery of sensors for a wide array of pollutants. The engineered WCBs were able to sense inert compounds like benzene and xylene which lack active functional groups, without any loss in sensitivity. Overall, this universal programmable biosensor platform can be used to create WCBs that can be deployed on field for rapid testing and screening of suitable drinking water sources.
Collapse
Affiliation(s)
- Rohita Roy
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Shamayeeta Ray
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
- DBT-Welcome Trust India Alliance Senior Fellow, Mumbai 400076, India
| |
Collapse
|
232
|
Bouzetos E, Ganar KA, Mastrobattista E, Deshpande S, van der Oost J. (R)evolution-on-a-chip. Trends Biotechnol 2021; 40:60-76. [PMID: 34049723 DOI: 10.1016/j.tibtech.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/17/2023]
Abstract
Billions of years of Darwinian evolution has led to the emergence of highly sophisticated and diverse life forms on Earth. Inspired by natural evolution, similar principles have been adopted in laboratory evolution for the fast optimization of genes and proteins for specific applications. In this review, we highlight state-of-the-art laboratory evolution strategies for protein engineering, with a special emphasis on in vitro strategies. We further describe how recent progress in microfluidic technology has allowed the generation and manipulation of artificial compartments for high-throughput laboratory evolution experiments. Expectations for the future are high: we foresee a revolution on-a-chip.
Collapse
Affiliation(s)
- Evgenios Bouzetos
- Laboratory of Microbiology, Wageningen University and Research, 6708, WE, Wageningen, The Netherlands
| | - Ketan Ashok Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, 6708, WE, Wageningen, The Netherlands
| | - Enrico Mastrobattista
- Pharmaceutics Division, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, 6708, WE, Wageningen, The Netherlands.
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
233
|
Blum SM, Lee MS, Mgboji GE, Funk VL, Beabout K, Harbaugh SV, Roth PA, Liem AT, Miklos AE, Emanuel PA, Walper SA, Chávez JL, Lux MW. Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression. ACS Synth Biol 2021; 10:1116-1131. [PMID: 33843211 DOI: 10.1021/acssynbio.0c00634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell-free expression systems have drawn increasing attention as a tool to achieve complex biological functions outside of the cell. Several applications of the technology involve the delivery of functionality to challenging environments, such as field-forward diagnostics or point-of-need manufacturing of pharmaceuticals. To achieve these goals, cell-free reaction components are preserved using encapsulation or lyophilization methods, both of which often involve an embedding of components in porous matrices like paper or hydrogels. Previous work has shown a range of impacts of porous materials on cell-free expression reactions. Here, we explored a panel of 32 paperlike materials and 5 hydrogel materials for the impact on reaction performance. The screen included a tolerance to lyophilization for reaction systems based on both cell lysates and purified expression components. For paperlike materials, we found that (1) materials based on synthetic polymers were mostly incompatible with cell-free expression, (2) lysate-based reactions were largely insensitive to the matrix for cellulosic and microfiber materials, and (3) purified systems had an improved performance when lyophilized in cellulosic but not microfiber matrices. The impact of hydrogel materials ranged from completely inhibitory to a slight enhancement. The exploration of modulating the rehydration volume of lyophilized reactions yielded reaction speed increases using an enzymatic colorimetric reporter of up to twofold with an optimal ratio of 2:1 lyophilized reaction to rehydration volume for the lysate system and 1.5:1 for the purified system. The effect was independent of the matrices assessed. Testing with a fluorescent nonenzymatic reporter and no matrix showed similar improvements in both yields and reaction speeds for the lysate system and yields but not reaction speeds for the purified system. We finally used these observations to show an improved performance of two sensors that span reaction types, matrix, and reporters. In total, these results should enhance efforts to develop field-forward applications of cell-free expression systems.
Collapse
Affiliation(s)
- Steven M. Blum
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Marilyn S. Lee
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Glory E. Mgboji
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37830-6209, United States
| | - Vanessa L. Funk
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Kathryn Beabout
- UES, Inc., Dayton, Ohio 45432, United States
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Svetlana V. Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Pierce A. Roth
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Alvin T. Liem
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
- DCS Corporation, 4696 Millenium Drive, Suite 450, Belcamp, Maryland 21017, United States
| | - Aleksandr E. Miklos
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Peter A. Emanuel
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| | - Scott A. Walper
- Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Jorge Luis Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- United States Army Combat Capabilities Development Command Chemical Biological Center. 8198 Blackhawk Road, APG, Aberdeen, Maryland 21010, United States
| |
Collapse
|
234
|
Chen X, Lu Y. In silico Design of Linear DNA for Robust Cell-Free Gene Expression. Front Bioeng Biotechnol 2021; 9:670341. [PMID: 34095101 PMCID: PMC8169995 DOI: 10.3389/fbioe.2021.670341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Cell-free gene expression systems with linear DNA expression templates (LDETs) have been widely applied in artificial cells, biochips, and high-throughput screening. However, due to the degradation caused by native nucleases in cell extracts, the transcription with linear DNA templates is weak, thereby resulting in low protein expression level, which greatly limits the development of cell-free systems using linear DNA templates. In this study, the protective sequences for stabilizing linear DNA and the transcribed mRNAs were rationally designed according to nucleases' action mechanism, whose effectiveness was evaluated through computer simulation and cell-free gene expression. The cell-free experiment results indicated that, with the combined protection of designed sequence and GamS protein, the protein expression of LDET-based cell-free systems could reach the same level as plasmid-based cell-free systems. This study would potentially promote the development of the LDET-based cell-free gene expression system for broader applications.
Collapse
Affiliation(s)
- Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
235
|
Maciuba K, Zhang F, Kaiser CM. Facile tethering of stable and unstable proteins for optical tweezers experiments. Biophys J 2021; 120:2691-2700. [PMID: 33989618 DOI: 10.1016/j.bpj.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022] Open
Abstract
Single-molecule force spectroscopy with optical tweezers has emerged as a powerful tool for dissecting protein folding. The requirement to stably attach "molecular handles" to specific points in the protein of interest by preparative biochemical techniques is a limiting factor in applying this methodology, especially for large or unstable proteins that are difficult to produce and isolate. Here, we present a streamlined approach for creating stable and specific attachments using autocatalytic covalent tethering. The high specificity of coupling allowed us to tether ribosome-nascent chain complexes, demonstrating its suitability for investigating complex macromolecular assemblies. We combined this approach with cell-free protein synthesis, providing a facile means of preparing samples for single-molecule force spectroscopy. The workflow eliminates the need for biochemical protein purification during sample preparation for single-molecule measurements, making structurally unstable proteins amenable to investigation by this powerful single-molecule technique. We demonstrate the capabilities of this approach by carrying out pulling experiments with an unstructured domain of elongation factor G that had previously been refractory to analysis. Our approach expands the pool of proteins amenable to folding studies, which should help to reduce existing biases in the currently available set of protein folding models.
Collapse
Affiliation(s)
- Kevin Maciuba
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Fan Zhang
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland; Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
236
|
Hershewe JM, Warfel KF, Iyer SM, Peruzzi JA, Sullivan CJ, Roth EW, DeLisa MP, Kamat NP, Jewett MC. Improving cell-free glycoprotein synthesis by characterizing and enriching native membrane vesicles. Nat Commun 2021; 12:2363. [PMID: 33888690 PMCID: PMC8062659 DOI: 10.1038/s41467-021-22329-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/08/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.
Collapse
Affiliation(s)
- Jasmine M Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Shaelyn M Iyer
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
| | - Claretta J Sullivan
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization and Experimentation (NUANCE) Center, Tech Institute A/B Wing A173, Evanston, IL, 60208, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Biomedical and Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Neha P Kamat
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Technological Institute E310, Evanston, IL, 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University, Technological Institute E136, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
237
|
Fackler N, Heijstra BD, Rasor BJ, Brown H, Martin J, Ni Z, Shebek KM, Rosin RR, Simpson SD, Tyo KE, Giannone RJ, Hettich RL, Tschaplinski TJ, Leang C, Brown SD, Jewett MC, Köpke M. Stepping on the Gas to a Circular Economy: Accelerating Development of Carbon-Negative Chemical Production from Gas Fermentation. Annu Rev Chem Biomol Eng 2021; 12:439-470. [PMID: 33872517 DOI: 10.1146/annurev-chembioeng-120120-021122] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to rising levels of greenhouse gases in our atmosphere and oceans, climate change poses significant environmental, economic, and social challenges globally. Technologies that enable carbon capture and conversion of greenhouse gases into useful products will help mitigate climate change by enabling a new circular carbon economy. Gas fermentation usingcarbon-fixing microorganisms offers an economically viable and scalable solution with unique feedstock and product flexibility that has been commercialized recently. We review the state of the art of gas fermentation and discuss opportunities to accelerate future development and rollout. We discuss the current commercial process for conversion of waste gases to ethanol, including the underlying biology, challenges in process scale-up, and progress on genetic tool development and metabolic engineering to expand the product spectrum. We emphasize key enabling technologies to accelerate strain development for acetogens and other nonmodel organisms.
Collapse
Affiliation(s)
- Nick Fackler
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | | | - Blake J Rasor
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Hunter Brown
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Jacob Martin
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Zhuofu Ni
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Kevin M Shebek
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Rick R Rosin
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Séan D Simpson
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Keith E Tyo
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , ,
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA; ,
| | | | - Ching Leang
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Steven D Brown
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Chemistry of Life Processes Institute, and Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA; , , , , , , .,Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael Köpke
- LanzaTech Inc., Skokie, Illinois 60077, USA; , , , , , ,
| |
Collapse
|
238
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
239
|
Ouyang X, Zhou X, Lai SN, Liu Q, Zheng B. Immobilization of Proteins of Cell Extract to Hydrogel Networks Enhances the Longevity of Cell-Free Protein Synthesis and Supports Gene Networks. ACS Synth Biol 2021; 10:749-755. [PMID: 33784075 DOI: 10.1021/acssynbio.0c00541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we constructed a new type of hydrogel based artificial cells supporting long-lived protein synthesis, post-translational modification, and gene networks. We constructed the artificial cells by immobilizing the transcription and translation system from E. coli cytoplasmic extract onto the polyacrylamide hydrogel. With the continuous supply of energy and nutrition, the artificial cells were capable of stable protein expression for at least 30 days. Functional proteins which were difficult to produce in vivo, including colicin E1 and urokinase, were synthesized in the artificial cells with high bioactivity. Furthermore, we constructed a sigma factor based genetic oscillator in the artificial cells. The artificial cells not only provide a powerful platform for continuous protein synthesis and convenient design and testing of genetic networks, but also hold great promise for the development of metabolic engineering, drug delivery, and biosensors.
Collapse
Affiliation(s)
- Xiaofei Ouyang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoyu Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sze Nga Lai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qi Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
240
|
Kyrilis FL, Belapure J, Kastritis PL. Detecting Protein Communities in Native Cell Extracts by Machine Learning: A Structural Biologist's Perspective. Front Mol Biosci 2021; 8:660542. [PMID: 33937337 PMCID: PMC8082361 DOI: 10.3389/fmolb.2021.660542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Native cell extracts hold great promise for understanding the molecular structure of ordered biological systems at high resolution. This is because higher-order biomolecular interactions, dubbed as protein communities, may be retained in their (near-)native state, in contrast to extensively purifying or artificially overexpressing the proteins of interest. The distinct machine-learning approaches are applied to discover protein-protein interactions within cell extracts, reconstruct dedicated biological networks, and report on protein community members from various organisms. Their validation is also important, e.g., by the cross-linking mass spectrometry or cell biology methods. In addition, the cell extracts are amenable to structural analysis by cryo-electron microscopy (cryo-EM), but due to their inherent complexity, sorting structural signatures of protein communities derived by cryo-EM comprises a formidable task. The application of image-processing workflows inspired by machine-learning techniques would provide improvements in distinguishing structural signatures, correlating proteomic and network data to structural signatures and subsequently reconstructed cryo-EM maps, and, ultimately, characterizing unidentified protein communities at high resolution. In this review article, we summarize recent literature in detecting protein communities from native cell extracts and identify the remaining challenges and opportunities. We argue that the progress in, and the integration of, machine learning, cryo-EM, and complementary structural proteomics approaches would provide the basis for a multi-scale molecular description of protein communities within native cell extracts.
Collapse
Affiliation(s)
- Fotis L. Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jaydeep Belapure
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Panagiotis L. Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Biozentrum, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
241
|
The Nonribosomal Peptide Valinomycin: From Discovery to Bioactivity and Biosynthesis. Microorganisms 2021; 9:microorganisms9040780. [PMID: 33917912 PMCID: PMC8068249 DOI: 10.3390/microorganisms9040780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Valinomycin is a nonribosomal peptide that was discovered from Streptomyces in 1955. Over the past more than six decades, it has received continuous attention due to its special chemical structure and broad biological activities. Although many research papers have been published on valinomycin, there has not yet been a comprehensive review that summarizes the diverse studies ranging from structural characterization, biogenesis, and bioactivity to the identification of biosynthetic gene clusters and heterologous biosynthesis. In this review, we aim to provide an overview of valinomycin to address this gap, covering from 1955 to 2020. First, we introduce the chemical structure of valinomycin together with its chemical properties. Then, we summarize the broad spectrum of bioactivities of valinomycin. Finally, we describe the valinomycin biosynthetic gene cluster and reconstituted biosynthesis of valinomycin. With that, we discuss possible opportunities for the future research and development of valinomycin.
Collapse
|
242
|
Si Y, Kretsch AM, Daigh LM, Burk MJ, Mitchell DA. Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance. J Am Chem Soc 2021; 143:5917-5927. [PMID: 33823110 DOI: 10.1021/jacs.1c01452] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lasso peptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that display a unique lariat-like, threaded conformation. Owing to a locked three-dimensional structure, lasso peptides can be unusually stable toward heat and proteolytic degradation. Some lasso peptides have been shown to bind human cell-surface receptors and exhibit anticancer properties, while others display antibacterial or antiviral activities. All known lasso peptides are produced by bacteria and genome-mining studies indicate that lasso peptides are a relatively prevalent class of RiPPs; however, the discovery, isolation, and characterization of lasso peptides are constrained by the lack of an efficient production system. In this study, we employ a cell-free biosynthesis (CFB) strategy to address longstanding challenges associated with lasso peptide production. We report the successful use of CFB for the formation of an array of sequence-diverse lasso peptides that include known examples as well as a new predicted lasso peptide from Thermobifida halotolerans. We further demonstrate the utility of CFB to rapidly generate and characterize multisite precursor peptide variants to evaluate the substrate tolerance of the biosynthetic pathway. By evaluating more than 1000 randomly chosen variants, we show that the lasso-forming cyclase from the fusilassin pathway is capable of producing millions of sequence-diverse lasso peptides via CFB. These data lay a firm foundation for the creation of large lasso peptide libraries using CFB to identify new variants with unique properties.
Collapse
Affiliation(s)
- Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Ashley M Kretsch
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Laura M Daigh
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| | - Mark J Burk
- Lassogen, Inc., San Diego, California 92121, United States of America
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States of America
| |
Collapse
|
243
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
244
|
Feng J, Yang C, Zhao Z, Xu J, Li J, Li P. Application of Cell-Free Protein Synthesis System for the Biosynthesis of l-Theanine. ACS Synth Biol 2021; 10:620-631. [PMID: 33719397 DOI: 10.1021/acssynbio.0c00618] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
l-Theanine, as an active component of the leaves of the tea plant, possesses many health benefits and broad applications. Chemical synthesis of l-theanine is possible; however, this method generates chiral compounds and needs further isolation of the pure l-isoform. Heterologous biosynthesis is an alternative strategy, but one main limitation is the toxicity of the substrate ethylamine on microbial host cells. In this study, we introduced a cell-free protein synthesis (CFPS) system for l-theanine production. The CFPS expressed l-theanine synthetase 2 from Camellia sinensis (CsTS2) could produce l-theanine at a concentration of 11.31 μM after 32 h of the synthesis reaction. In addition, three isozymes from microorganisms were expressed in CFPS for l-theanine biosynthesis. The γ-glutamylcysteine synthetase from Escherichia coli could produce l-theanine at the highest concentration of 302.96 μM after 24 h of reaction. Furthermore, CFPS was used to validate a hypothetical two-step l-theanine biosynthetic pathway consisting of the l-alanine decarboxylase from C. sinensis (CsAD) and multiple l-theanine synthases. Among them, the combination of CsAD and the l-glutamine synthetase from Pseudomonas taetrolens (PtGS) could synthesize l-theanine at the highest concentration of 13.42 μM. Then, we constructed an engineered E. coli strain overexpressed CsAD and PtGS to further confirm the l-theanine biosynthesis ability in living cells. This engineered E. coli strain could convert l-alanine and l-glutamate in the medium to l-theanine at a concentration of 3.82 mM after 72 h of fermentation. Taken together, these results demonstrated that the CFPS system can be used to produce the l-theanine through the two-step l-theanine biosynthesis pathway, indicating the potential application of CFPS for the biosynthesis of other active compounds.
Collapse
Affiliation(s)
- Junchen Feng
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhehao Zhao
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Junjian Xu
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ping Li
- Research Center for Translational Medicine at Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
245
|
Swank Z, Maerkl SJ. CFPU: A Cell-Free Processing Unit for High-Throughput, Automated In Vitro Circuit Characterization in Steady-State Conditions. BIODESIGN RESEARCH 2021; 2021:2968181. [PMID: 37849954 PMCID: PMC10521719 DOI: 10.34133/2021/2968181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/24/2021] [Indexed: 10/19/2023] Open
Abstract
Forward engineering synthetic circuits are at the core of synthetic biology. Automated solutions will be required to facilitate circuit design and implementation. Circuit design is increasingly being automated with design software, but innovations in experimental automation are lagging behind. Microfluidic technologies made it possible to perform in vitro transcription-translation (tx-tl) reactions with increasing throughput and sophistication, enabling screening and characterization of individual circuit elements and complete circuit designs. Here, we developed an automated microfluidic cell-free processing unit (CFPU) that extends high-throughput screening capabilities to a steady-state reaction environment, which is essential for the implementation and analysis of more complex and dynamic circuits. The CFPU contains 280 chemostats that can be individually programmed with DNA circuits. Each chemostat is periodically supplied with tx-tl reagents, giving rise to sustained, long-term steady-state conditions. Using microfluidic pulse width modulation (PWM), the device is able to generate tx-tl reagent compositions in real time. The device has higher throughput, lower reagent consumption, and overall higher functionality than current chemostat devices. We applied this technology to map transcription factor-based repression under equilibrium conditions and implemented dynamic gene circuits switchable by small molecules. We expect the CFPU to help bridge the gap between circuit design and experimental automation for in vitro development of synthetic gene circuits.
Collapse
Affiliation(s)
- Zoe Swank
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
246
|
Bourgade B, Minton NP, Islam MA. Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms. FEMS Microbiol Rev 2021; 45:fuab008. [PMID: 33595667 PMCID: PMC8351756 DOI: 10.1093/femsre/fuab008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Unabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
Collapse
Affiliation(s)
- Barbara Bourgade
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, University of Nottingham, Nottingham, Nottinghamshire, NG7 2RD, UK
| | - M Ahsanul Islam
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
247
|
A Relationship between NTP and Cell Extract Concentration for Cell-Free Protein Expression. Life (Basel) 2021; 11:life11030237. [PMID: 33805612 PMCID: PMC7999496 DOI: 10.3390/life11030237] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/29/2023] Open
Abstract
The cell-free protein synthesis (CFPS) that synthesizes mRNA and protein from a template DNA has been featured as an important tool to emulate living systems in vitro. However, an obstacle to emulate living cells by CFPS is the loss of activity in the case of usage of high concentration cell extracts. In this study, we found that a high concentration of NTP which inhibits in the case of lower concentration cell extract restored the loss of CFPS activity using high concentration cell extracts. The NTP restoration was independent of the energy regeneration system used, and NTP derivatives also restored the levels of CFPS using a high concentration cell extract. Experiments using dialysis mode of CFPS showed that continuous exchange of small molecule reduced levels of NTP requirement and improved reaction speed of CFPS using the high concentration of cell extract. These findings contribute to the development of a method to understand the condition of living cells by in vitro emulation, and are expected to lead to the achievement of the reconstitution of living cells from biomolecule mixtures.
Collapse
|
248
|
Zhou S, Cai Y, Liu X, Jin L, Wang X, Ma W, Zhang T. Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 2021; 108:385-398. [PMID: 33685627 DOI: 10.1016/j.bulcan.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Numerous epigenetic alterations are observed in cancer cells, and dysregulation of mono-ubiquitination of histone H2B (H2Bub1) has often been linked to tumorigenesis. H2Bub1 is a dynamic post-translational histone modification associated with transcriptional elongation and DNA damage response. Histone H2B monoubiquitination occurs in the site of lysine 120, written predominantly by E3 ubiquitin ligases RNF20/RNF40 and deubiquitinated by ubiquitin specific peptidase 22 (USP22). RNF20/40 is often altered in the primary tumors including colorectal cancer, breast cancer, ovarian cancer, prostate cancer, and lung cancer, and the loss of H2Bub1 is usually associated with poor prognosis in tumor patients. The purpose of this review is to summarize the current knowledge of H2Bub1 in transcription, DNA damage response and primary tumors. This review also provides novel options for exploiting the potential therapeutic target H2Bub1 in personalized cancer therapy.
Collapse
Affiliation(s)
- Sa Zhou
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Yuqiao Cai
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xinyi Liu
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Lijun Jin
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xiaoqin Wang
- Beijing University of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing 102206, PR China
| | - Wenjian Ma
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Qilu Institute of Technology, Shandong 250200, PR China.
| | - Tongcun Zhang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Wuhan University of Science and Technology, Institute of Biology and Medicine, Wuhan 430081, PR China.
| |
Collapse
|
249
|
Brooks SM, Alper HS. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat Commun 2021; 12:1390. [PMID: 33654085 PMCID: PMC7925609 DOI: 10.1038/s41467-021-21740-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023] Open
Abstract
Synthetic biology holds great promise for addressing global needs. However, most current developments are not immediately translatable to 'outside-the-lab' scenarios that differ from controlled laboratory settings. Challenges include enabling long-term storage stability as well as operating in resource-limited and off-the-grid scenarios using autonomous function. Here we analyze recent advances in developing synthetic biological platforms for outside-the-lab scenarios with a focus on three major application spaces: bioproduction, biosensing, and closed-loop therapeutic and probiotic delivery. Across the Perspective, we highlight recent advances, areas for further development, possibilities for future applications, and the needs for innovation at the interface of other disciplines.
Collapse
Affiliation(s)
- Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
250
|
Mao N, Aggarwal N, Poh CL, Cho BK, Kondo A, Liu C, Yew WS, Chang MW. Future trends in synthetic biology in Asia. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10038. [PMID: 36618442 PMCID: PMC9744534 DOI: 10.1002/ggn2.10038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 05/06/2023]
Abstract
Synthetic biology research and technology translation has garnered increasing interest from the governments and private investors in Asia, where the technology has great potential in driving a sustainable bio-based economy. This Perspective reviews the latest developments in the key enabling technologies of synthetic biology and its application in bio-manufacturing, medicine, food and agriculture in Asia. Asia-centric strengths in synthetic biology to grow the bio-based economy, such as advances in genome editing and the presence of biofoundries combined with the availability of natural resources and vast markets, are also highlighted. The potential barriers to the sustainable development of the field, including inadequate infrastructure and policies, with suggestions to overcome these by building public-private partnerships, more effective multi-lateral collaborations and well-developed governance framework, are presented. Finally, the roles of technology, education and regulation in mitigating potential biosecurity risks are examined. Through these discussions, stakeholders from different groups, including academia, industry and government, are expectantly better positioned to contribute towards the establishment of innovation and bio-economy hubs in Asia.
Collapse
Affiliation(s)
- Ning Mao
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
| | - Chueh Loo Poh
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
| | - Byung Kwan Cho
- Department of Biological Sciences, and KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, and Engineering Biology Research CenterKobe UniversityKobeJapan
| | - Chenli Liu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Wen Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI)National University of SingaporeSingaporeSingapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Ling School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Biomedical EngineeringNational University of SingaporeSingaporeSingapore
| |
Collapse
|