201
|
Waza AA, Tarfeen N, Majid S, Hassan Y, Mir R, Rather MY, Shah NUD. Metastatic Breast Cancer, Organotropism and Therapeutics: A Review. Curr Cancer Drug Targets 2021; 21:813-828. [PMID: 34365922 DOI: 10.2174/1568009621666210806094410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The final stage of breast cancer involves spreading breast cancer cells to the vital organs like the brain, liver lungs and bones in the process called metastasis. Once the target organ is overtaken by the metastatic breast cancer cells, its usual function is compromised causing organ dysfunction and death. Despite the significant research on breast cancer metastasis, it's still the main culprit of breast cancer-related deaths. Exploring the complex molecular pathways associated with the initiation and progression of breast cancer metastasis could lead to the discovery of more effective ways of treating the devastating phenomenon. The present review article highlights the recent advances to understand the complexity associated with breast cancer metastases, organotropism and therapeutic advances.
Collapse
Affiliation(s)
- Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Najeebul Tarfeen
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Yasmeena Hassan
- Division of Nursing, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, J & K. India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Kingdom of Saudi Arabia, Tabuk. Saudi Arabia
| | - Mohd Younis Rather
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Naseer Ue Din Shah
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| |
Collapse
|
202
|
Wu Q, Zhang W, Wang Y, Min Q, Zhang H, Dong D, Zhan Q. MAGE-C3 promotes cancer metastasis by inducing epithelial-mesenchymal transition and immunosuppression in esophageal squamous cell carcinoma. Cancer Commun (Lond) 2021; 41:1354-1372. [PMID: 34347390 PMCID: PMC8696229 DOI: 10.1002/cac2.12203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/01/2021] [Accepted: 07/22/2021] [Indexed: 01/10/2023] Open
Abstract
Background Evading immune surveillance is necessary for tumor metastasis. Thus, there is an urgent need to better understand the interaction between metastasis and mechanisms of tumor immune evasion. In this study, we aimed to clarify a novel mechanism that link tumor metastasis and immunosuppression in the development of esophageal squamous cell carcinoma (ESCC). Methods The expression of melanoma‐associated antigen C3 (MAGE‐C3) was detected using immunohistochemistry. Transwell assays were used to evaluate the migration and invasion ability of esophageal squamous cell carcinoma (ESCC) cells. Metastasis assays in mice were used to evaluate metastatic ability in vivo. Lymphocyte‐mediated cytotoxicity assays were performed to visualize the immune suppression function on tumor cells. RNA sequencing was performed to identify differentially expressed genes between MAGE‐C3 overexpressing ESCC cells and control cells. Gene ontology (GO) enrichment analyses was performed to identify the most altered pathways influenced by MAGE‐C3. The activation of the interferon‐γ (IFN‐γ) pathway was analyzed using Western blotting, GAS luciferase reporter assays, immunofluorescence, and flow cytometry. The role of MAGE‐C3 in the IFN‐γ pathway was determined by Western blotting and immunoprecipitation. Furthermore, immunohistochemistry and flow cytometry analysis monitored the changes of infiltrated T cell populations in murine lung metastases. Results MAGE‐C3 was overexpressed in ESCC tissues. High expression of MAGE‐C3 had a significant association with the risk of lymphatic metastasis and poor survival in patients with ESCC. Functional experiments revealed that MAGE‐C3 promoted tumor metastasis by activating the epithelial‐mesenchymal transition (EMT). MAGE‐C3 repressed antitumor immunity and regulated cytokine secretion of T cells, implying an immunosuppressive function. Mechanistically, MAGE‐C3 facilitated IFN‐γ signaling and upregulated programmed cell death ligand 1 (PDL1) by binding with IFN‐γ receptor 1 (IFNGR1) and strengthening the interaction between IFNGR1 and signal transducer and activator of transcription 1 (STAT1). Interestingly, MAGE‐C3 displayed higher tumorigenesis in immune‐competent mice than in immune‐deficient nude mice, confirming the immunosuppressive role of MAGE‐C3. Furthermore, mice bearing MAGE‐C3‐overexpressing tumors showed worse survival and more lung metastases with decreased CD8+ infiltrated T cells and increased programmed cell death 1 (PD‐1)+CD8+ infiltrated T cells. Conclusion MAGE‐C3 enhances tumor metastasis through promoting EMT and protecting tumors from immune surveillance, and could be a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China.,Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China.,Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Hongyue Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Dezuo Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China.,Shenzhen Bay Laboratory, Institute of Cancer Research, Shenzhen, Guangdong, 518107, P. R. China.,Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China
| |
Collapse
|
203
|
Schaafsma E, Fugle CM, Wang X, Cheng C. Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy. Br J Cancer 2021; 125:422-432. [PMID: 33981015 PMCID: PMC8329209 DOI: 10.1038/s41416-021-01400-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/27/2021] [Accepted: 04/09/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The function of major histocompatibility complex (MHC) molecules is to bind peptide fragments derived from genomic mutations or pathogens and display them on the cell surface for recognition by cognate T cells to initiate an immune response. METHODS In this study, we provide a comprehensive investigation of HLA gene expression in a pan-cancer manner involving 33 cancer types. We utilised gene expression data from several databases and immune checkpoint blockade-treated patient cohorts. RESULTS We show that MHC expression varies strongly among cancer types and is associated with several genomic and immunological features. While immune cell infiltration was generally higher in tumours with higher HLA gene expression, CD4+ T cells showed significantly different correlations among cancer types, separating them into two clusters. Furthermore, we show that increased HLA gene expression is associated with prolonged survival in the majority of cancer types. Lastly, HLA gene expression is associated with patient response to immune checkpoint blockade, which is especially prominent for HLA class II expression in tumour biopsies taken during treatment. CONCLUSION We show that HLA gene expression is an important feature of tumour biology that has significant impact on patient prognosis.
Collapse
Affiliation(s)
- Evelien Schaafsma
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chloe M Fugle
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Xiaofeng Wang
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, NH, USA
| | - Chao Cheng
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
204
|
Carter EP, Roozitalab R, Gibson SV, Grose RP. Tumour microenvironment 3D-modelling: simplicity to complexity and back again. Trends Cancer 2021; 7:1033-1046. [PMID: 34312120 DOI: 10.1016/j.trecan.2021.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Tumours are surrounded by a host of noncancerous cells that fulfil both supportive and suppressive roles within the tumour microenvironment (TME). The drive to understand the biology behind each of these components has led to a rapid expansion in the number and use of 3D in vitro models, as researchers find ways to incorporate multiple cell types into physiomimetic configurations. The use and increasing complexity of these models does however demand many considerations. In this review we discuss approaches adopted to recapitulate complex tumour biology in tractable 3D models. We consider how these cell types can be sourced and combined and examine methods for the deconvolution of complex multicellular models into manageable and informative outputs.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
205
|
Zhao J, Yang Z, Tu M, Meng W, Gao H, Li MD, Li L. Correlation Between Prognostic Biomarker SLC1A5 and Immune Infiltrates in Various Types of Cancers Including Hepatocellular Carcinoma. Front Oncol 2021; 11:608641. [PMID: 34367941 PMCID: PMC8339971 DOI: 10.3389/fonc.2021.608641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background Solute carrier family 1 member 5 (SLC1A5) is a major glutamine transporter and plays a key role in tumor growth. The main objectives of this study were to visualize the prognostic landscape of SLC1A5 in multiple cancers and determine the relations between SLC1A5 expression and tumor immunity. Methods SLC1A5 expression and its effect on tumor prognosis were analyzed using multiple online tools Oncomine, Gene Expression Profiling Interactive Analysis, PrognoScan, and Kaplan-Meier plotter with their own datasets as well as the data from The Cancer Genome Atlas. The correlations between SLC1A5 and tumor immune infiltrates were determined via TIMER. Results SLC1A5 expression was significantly higher in several types of cancers, including hepatocellular carcinoma (HCC), compared with corresponding normal tissues. High SLC1A5 expression correlated with poor overall survival and with disease-free survival related to alcohol consumption. Moreover, SLC1A5 expression correlated positively with the numbers of tumor-infiltrating B cells, CD4+ T and CD8+ T cells, macrophages, neutrophils, and dendritic cells in HCC and in lower-grade glioma (LGG). Also, SLC1A5 expression showed strong correlations with diverse immune marker sets in HCC and LGG, indicating its role in regulating tumor immunity. Conclusions SLC1A5 represents a useful prognostic biomarker in multiple cancers, and its expression correlates highly with tumor immune-cell infiltration, especially in HCC and LGG.
Collapse
Affiliation(s)
- Junsheng Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongli Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingmin Tu
- Department of Clinical Laboratory, Hangzhou Tongchuang Medical Laboratory, Hangzhou, China
| | - Wei Meng
- Department of Clinical Laboratory, Zoucheng People's Hospital, Zoucheng, China
| | - Hainv Gao
- Department of Infectious Diseases, ShuLan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
206
|
|
207
|
Shueng PW, Yu LY, Chiu HC, Chang HC, Chiu YL, Kuo TY, Yen YW, Lo CL. Early phago-/endosomal escape of platinum drugs via ROS-responsive micelles for dual cancer chemo/immunotherapy. Biomaterials 2021; 276:121012. [PMID: 34252800 DOI: 10.1016/j.biomaterials.2021.121012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/01/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023]
Abstract
Recent studies have indicated that cancer treatment based on immunotherapy alone is not viable. Combined treatment with other strategies is required to achieve the expected therapeutic effect. Reactive oxygen species (ROS) play an important role in regulating cancer cells and the tumor microenvironment, even in immune cells. However, rigorous regulation of the ROS level within the entire tumor tissue is difficult, limiting the application of ROS in cancer therapy. Therefore, we design an early phago-/endosome-escaping micelle that can release platinum-based drugs into the cytoplasm of macrophages and cancer cells, thereby enhancing the ROS levels of the entire tumor tissue; inducing apoptosis of cancer cells, down-regulation of CD47 expression of cancer cells, polarization of M1 macrophages, and phagocytosis of cancer cells by M1 macrophages; and achieving the dual effect of chemotherapy and macrophage-mediated immunotherapy.
Collapse
Affiliation(s)
- Pei-Wei Shueng
- Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan, ROC; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan, ROC; Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 112, Taiwan, ROC
| | - Lu-Yi Yu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 300, Taiwan, ROC
| | - Hui-Ching Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Yen-Ling Chiu
- Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan City, 320, Taiwan, ROC; Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, 100, Taiwan, ROC; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan, ROC
| | - Tzu-Yu Kuo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Yu-Wei Yen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC; Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan, ROC; Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
208
|
Cotzomi-Ortega I, Nieto-Yañez O, Juárez-Avelar I, Rojas-Sanchez G, Montes-Alvarado JB, Reyes-Leyva J, Aguilar-Alonso P, Rodriguez-Sosa M, Maycotte P. Autophagy inhibition in breast cancer cells induces ROS-mediated MIF expression and M1 macrophage polarization. Cell Signal 2021; 86:110075. [PMID: 34229086 DOI: 10.1016/j.cellsig.2021.110075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023]
Abstract
Autophagy can function as a survival mechanism for cancer cells and therefore, its inhibition is currently being explored as a therapy for different cancer types. For breast cancer, triple negative breast cancer (TNBC) is the subtype most sensitive to the inhibition of autophagy; but its inhibition has also been shown to promote ROS-dependent secretion of macrophage migration inhibitory factor (MIF), a pro-tumorigenic cytokine. In this work, we explore the role of MIF in breast cancer, the mechanism by which autophagy inhibition promotes MIF secretion and its effects on neighboring cancer cell signaling and macrophage polarization. We analyzed MIF mRNA expression levels in tumors from breast cancer patients from different subtypes and found that Luminal B, HER2 and Basal subtypes, which are associated to high proliferation, displayed high MIF levels. However, MIF expression had no prognostic relevance in any breast cancer subtype. In addition, we found that autophagy inhibition in 66cl4 TNBC cells increased intracellular Reactive Oxygen Species (ROS) levels, which increased MIF expression and secretion. MIF secreted from 66cl4 TNBC cells induced the activation of MIF-regulated pathways in syngeneic cell lines, increasing Akt phosphorylation in 4T1 cells and ERK phosphorylation in 67NR cells. Regarding MIF/ chemokine receptors, higher levels of CD74 and CXCR2 were found in TNBC tumor cell lines when compared to non-tumorigenic cells and CXCR7 was elevated in the highly metastatic 4T1 cell line. Finally, secreted MIF from autophagy deficient 66cl4 cells induced macrophage polarization towards the M1 subtype. Together, our results indicate an important role for the inhibition of autophagy in the regulation of ROS-mediated MIF gene expression and secretion, with paracrine effects on cancer cell signaling and pro-inflammatory repercussions in macrophage M1 polarization. This data should be considered when considering the inhibition of autophagy as a therapy for different types of cancer.
Collapse
Affiliation(s)
- Israel Cotzomi-Ortega
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Oscar Nieto-Yañez
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Imelda Juárez-Avelar
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico
| | - Guadalupe Rojas-Sanchez
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico; Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - José Benito Montes-Alvarado
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Julio Reyes-Leyva
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico
| | - Patricia Aguilar-Alonso
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), Ciudad Universitaria, Puebla 72570, Mexico
| | - Miriam Rodriguez-Sosa
- Unidad de Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala (FES-I), Universidad Nacional Autónoma de México (UNAM), Tlanepantla 54090, Mexico.
| | - Paola Maycotte
- Centro de Investigación Biomédica de Oriente (CIBIOR), Instituto Mexicano del Seguro Social (IMSS), Km 4.5 Carretera Atlixco-Metepec HGZ5, Puebla 74360, Mexico.
| |
Collapse
|
209
|
Pariyar M, Johns A, Thorne RF, Scott RJ, Avery-Kiejda KA. Copy number variation in triple negative breast cancer samples associated with lymph node metastasis. Neoplasia 2021; 23:743-753. [PMID: 34225099 PMCID: PMC8259224 DOI: 10.1016/j.neo.2021.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/31/2021] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a highly metastatic and aggressive subtype of breast cancer and cases presenting with lymph node involvement have worse outcomes. This study aimed to determine the regions of copy number variation (CNV) associated with lymph node metastasis in TNBC patients. CNV analyses were performed in a study cohort of 23 invasive ductal carcinomas (IDCs), 12 lymph node metastases (LNmets), and 7 normal adjacent tissues (NATs); as well as in an independent cohort containing 70 TNBC IDCs and the same 7 NATs. CNV-associated genes were analyzed using GO-enrichment and Pathway analysis. The prognostic role for genes showing CNV-based changes in messenger RNA expression was determined using the Kaplan-Meier plotter database. For the IDCs, there were a number of variations that were common in both the study and independent cohorts in the amplified regions of 1q, 8q, 19 (p and q), 2p, 5p and the deleted regions in 8p followed by 5q, and 19p. The most frequently amplified regions in the LNmets of the study cohort were 4q28.3, 2p, 3q24, 1q21.2, 10p, 12p11.1, 8q, 20p11.22-20p11.21, 21q22.13, 6p22.1 and the most frequently deleted regions were in 1p36.23, 4q21.1 and 5q. A total of 686 (441 amplified and 245 deleted) genes were associated with LNmets. The LNmet-associated genes were highly enriched for “regulation of complement activation,” “regulation of protein activation cascade,” “regulation of humoral immune response,” “oxytocin signalling pathway,” and “TRAIL binding” pathways. Moreover, 6/686 LNmet-associated genes showed CNV-based changes in their mRNA expression of which, high expression of ASPM and KIF14 was significantly associated with worse relapse-free survival. This study has identified several CNV regions in TNBC that could play a major role in metastasis to the lymph node.
Collapse
Affiliation(s)
- Mamta Pariyar
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrea Johns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Kelly A Avery-Kiejda
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
210
|
Nardone V, Giannicola R, Bianco G, Giannarelli D, Tini P, Pastina P, Falzea AC, Macheda S, Caraglia M, Luce A, Zappavigna S, Mutti L, Pirtoli L, Giordano A, Correale P. Inflammatory Markers and Procalcitonin Predict the Outcome of Metastatic Non-Small-Cell-Lung-Cancer Patients Receiving PD-1/PD-L1 Immune-Checkpoint Blockade. Front Oncol 2021; 11:684110. [PMID: 34195086 PMCID: PMC8236817 DOI: 10.3389/fonc.2021.684110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Peripheral-immune-checkpoint blockade (P-ICB) with mAbs to PD-1 (nivolumab and pembrolizumab) or PD-L1 (atezolizumab, durvalumab, avelumab) alone or combination with chemotherapy represents a novel active treatment for mNSCLC patients. However, this therapy can be associated to immune-related adverse events (irAEs) and high cost. Therefore, finding reliable biomarkers of response and irAEs is strongly encouraged to accurately select patients who may potentially benefit from the immuno-oncological treatment. This is a retrospective multi-institutional analysis performed on ninety-five mNSCLC patients who received real-world salvage therapy with nivolumab or atezolizumab between December 2015 and April 2020. The outcome of these patients in term of PFS and OS was evaluated in comparison with different serum levels of C-reactive protein (CRP), Erythrocyte Sedimention Rate (ESR) and Procalcitonin (PCT) by performing Kaplan-Meier and Log-rank test and multivariate analysis. We found that high baseline levels of CRP, ESR, and PCT were strongly predictive of poor outcome (P <0.05) with the worse prognosis detected in those patients with a baseline levels of both ESR and PCT over the pre-established cut off (median OS recorded in patients with no marker over the cut off vs. those with just one marker over the cut off vs. those with both markers over the cut off: 40 ± 59 vs. 15.5 ± 5.5 vs. 5.5 ± 1.6 months, respectively; P <0.0001). Our results suggest the predictive value of systemic inflammation and suggest a potential role of PCT in predicting a poor outcome in mNSCLC receiving PD-1/PD-L1 blocking mAbs. This finding also suggests a potential role of subclinical bacterial infections in defining the response to PD-1/PD-L1 blocking mAbs that deserves further and more specific investigations.
Collapse
Affiliation(s)
- Valerio Nardone
- Unit of Radiation Oncology, Ospedale del Mare, Naples, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Giovanna Bianco
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Diana Giannarelli
- Biostatistical Unit, National Cancer Institute "Regina Elena", IRCCS, Rome, Italy
| | - Paolo Tini
- Section of Radiation Oncology, Medical School, University of Siena, Siena, Italy
| | - Pierpaolo Pastina
- Section of Radiation Oncology, Medical School, University of Siena, Siena, Italy
| | - Antonia Consuelo Falzea
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, Reggio Calabria, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Laboratory of Precision and Molecular Oncology, Institute of Genetic Research, Biogem Scarl, Ariano Irpino, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
211
|
Wang N, Li X, Wang R, Ding Z. Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment. Biotechnol J 2021; 16:e2100041. [PMID: 34125481 DOI: 10.1002/biot.202100041] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
The tumor microenvironment (TME) harbors heterogeneous contents and plays critical roles in tumorigenesis, metastasis, and drug resistance. Therefore, the deconvolution of the TME becomes increasingly essential to every aspect of cancer research and treatment. Novel spatially-resolved high-plex molecular profiling technologies have been emerging rapidly as powerful tools to obtain in-depth understanding from TME perspectives due to their capacity to allow high-plex protein and RNA profiling while keeping valuable spatial information. Based on our practical experience, we review a variety of available spatial proteogenomic technologies, including 10X Visium, GeoMx Digital Spatial Profiler (DSP), cyclic immunofluorescence-based CODEX and Multi-Omyx, mass spectrometry (MS)-based imaging mass spectrometry (IMS) and multiplex ion-beam imaging (MIBI). We also discuss FISSEQ, MERFISH, Slide-seq, and HDST, some of which may become commercially available in the near future. In particular, with our experience, we elaborate on DSP for spatial proteogenomic profiling and discuss its unique features designed for immuno-oncology and propose anticipation towards its future direction. The emerging spatially technologies are rapidly reshaping the magnitude of our understanding of the TME.
Collapse
Affiliation(s)
- Nan Wang
- Fynn Biotechnologies Ltd., Mills Institute for Personalized Cancer Care, Jinan City, Shandong Province, P. R. China
| | - Xia Li
- Fynn Biotechnologies Ltd., Mills Institute for Personalized Cancer Care, Jinan City, Shandong Province, P. R. China
| | - Rongshui Wang
- Fynn Biotechnologies Ltd., Mills Institute for Personalized Cancer Care, Jinan City, Shandong Province, P. R. China
| | - Zhiyong Ding
- Fynn Biotechnologies Ltd., Mills Institute for Personalized Cancer Care, Jinan City, Shandong Province, P. R. China
| |
Collapse
|
212
|
Kepp O, Bezu L, Yamazaki T, Di Virgilio F, Smyth MJ, Kroemer G, Galluzzi L. ATP and cancer immunosurveillance. EMBO J 2021; 40:e108130. [PMID: 34121201 DOI: 10.15252/embj.2021108130] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
While intracellular adenosine triphosphate (ATP) occupies a key position in the bioenergetic metabolism of all the cellular compartments that form the tumor microenvironment (TME), extracellular ATP operates as a potent signal transducer. The net effects of purinergic signaling on the biology of the TME depend not only on the specific receptors and cell types involved, but also on the activation status of cis- and trans-regulatory circuitries. As an additional layer of complexity, extracellular ATP is rapidly catabolized by ectonucleotidases, culminating in the accumulation of metabolites that mediate distinct biological effects. Here, we discuss the molecular and cellular mechanisms through which ATP and its degradation products influence cancer immunosurveillance, with a focus on therapeutically targetable circuitries.
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucillia Bezu
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Qld, Australia
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, Université de Paris, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| |
Collapse
|
213
|
Chen L, Musa AE. Boosting immune system against cancer by resveratrol. Phytother Res 2021; 35:5514-5526. [PMID: 34101276 DOI: 10.1002/ptr.7189] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 01/16/2023]
Abstract
Modulation of the immune system is a critical part of anticancer therapies including immunotherapy, chemotherapy, and radiotherapy. The aim of immunomodulation in cancer therapy is boosting immune system cells including CD8+ T lymphocytes and natural killer (NK) cells, as well as suppression of immunosuppressive responses by macrophages and regulatory T cells (Tregs). Usually, using single or dual modality can induce immune system responses against cancer. However, immunosuppressive responses attenuate antitumor immunity following cancer therapy. Using some agents to boost immune system's function against cancer can increase therapeutic efficiency of anticancer therapy. Resveratrol, as a natural agent, has shown ability to modulate the immune system to potentiate antitumor immunity. Resveratrol has been shown to induce the release of anticancer cytokines such as IFN-γ and TNF-α and also inhibits the release of TGF-β. It also can stimulate the polarization of CD4+ T cells and macrophages toward anticancer cells and reduce infiltration and polarization of immunosuppressive cells. Furthermore, resveratrol can sensitize cancer cells to the released dead signals by anticancer immune cells. This review explains how resveratrol can boost the immune system against cancer via modulation of immune cell responses within tumor.
Collapse
Affiliation(s)
- Libo Chen
- School of Pharmaceutical and Environmental Technology, Jilin Vocational College of Industry and Technology, Jilin, China
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
214
|
Kinker GS, Vitiello GAF, Ferreira WAS, Chaves AS, Cordeiro de Lima VC, Medina TDS. B Cell Orchestration of Anti-tumor Immune Responses: A Matter of Cell Localization and Communication. Front Cell Dev Biol 2021; 9:678127. [PMID: 34164398 PMCID: PMC8215448 DOI: 10.3389/fcell.2021.678127] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/27/2021] [Indexed: 01/06/2023] Open
Abstract
The immune system plays a crucial role in cancer development either by fostering tumor growth or destroying tumor cells, which has open new avenues for cancer immunotherapy. It was only over the last decade that the role of B cells in controlling anti-tumor immune responses in the tumor milieu has begun to be appreciated. B and plasma cells can exert anti-tumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade, even though their effector functions extend beyond the classical humoral immunity. In tumor tissues, B cells can be found in lymphoid aggregates, known as tertiary lymphoid structures (TLSs), well-organized non-encapsulated structures composed of immune and stromal cells. These structures reflect a process of lymphoid neogenesis occurring in peripheral tissues upon long-lasting exposure to inflammatory signals. The TLS provides an area of intense B cell antigen presentation that can lead to optimal T cell activation and effector functions, as well as the generation of effector B cells, which can be further differentiated in either antibody-secreting plasma cells or memory B cells. Of clinical interest, the crosstalk between B cells and antigen-experienced and exhausted CD8+ T cells within mature TLS was recently associated with improved response to immune checkpoint blockade (ICB) in melanoma, sarcoma and lung cancer. Otherwise, B cells sparsely distributed in the tumor microenvironment or organized in immature TLSs were found to exert immune-regulatory functions, inhibiting anti-tumor immunity through the secretion of anti-inflammatory cytokines. Such phenotype might arise when B cells interact with malignant cells rather than T and dendritic cells. Differences in the spatial distribution likely underlie discrepancies between the role of B cells inferred from human samples or mouse models. Many fast-growing orthotopic tumors develop a malignant cell-rich bulk with reduced stroma and are devoid of TLSs, which highlights the importance of carefully selecting pre-clinical models. In summary, strategies that promote TLS formation in close proximity to tumor cells are likely to favor immunotherapy responses. Here, the cellular and molecular programs coordinating B cell development, activation and organization within TLSs will be reviewed, focusing on their translational relevance to cancer immunotherapy.
Collapse
Affiliation(s)
- Gabriela Sarti Kinker
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Glauco Akelinghton Freire Vitiello
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Department of Pathological Sciences, Londrina State University, Londrina, Brazil
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Tissue Culture and Cytogenetics, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | - Alexandre Silva Chaves
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
215
|
Bornes L, Belthier G, van Rheenen J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J Clin Med 2021; 10:jcm10112403. [PMID: 34072345 PMCID: PMC8197992 DOI: 10.3390/jcm10112403] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a cellular program which leads to cells losing epithelial features, including cell polarity, cell-cell adhesion and attachment to the basement membrane, while gaining mesenchymal characteristics, such as invasive properties and stemness. This program is involved in embryogenesis, wound healing and cancer progression. Over the years, the role of EMT in cancer progression has been heavily debated, and the requirement of this process in metastasis even has been disputed. In this review, we discuss previous discrepancies in the light of recent findings on EMT, plasticity and hybrid E/M states. Moreover, we highlight various tumor microenvironmental cues and cell intrinsic signaling pathways that induce and sustain EMT programs, plasticity and hybrid E/M states. Lastly, we discuss how recent findings on plasticity, especially on those that enable cells to switch between hybrid E/M states, have changed our understanding on the role of EMT in cancer metastasis, stemness and therapy resistance.
Collapse
|
216
|
Wang G, Zhou H, Tian L, Yan T, Han X, Chen P, Li H, Wang W, Xiao Z, Hou L, Xue X. A Prognostic DNA Damage Repair Genes Signature and Its Impact on Immune Cell Infiltration in Glioma. Front Oncol 2021; 11:682932. [PMID: 34123852 PMCID: PMC8193723 DOI: 10.3389/fonc.2021.682932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Objective Glioma is the most frequent type of malignant cerebral tumors. DNA damage repair genes (DDRGs) play a crucial role in the development of cancer. In this study, we constructed a DDRGs signature and investigated the potential mechanisms involved in this disease. Methods RNA sequence data, microarray data, and corresponding clinical information of gliomas were downloaded from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO). Subsequently, we identified candidate genes by differential analysis and Cox regression analysis. The least absolute shrinkage and selection operator Cox regression model was utilized to construct a DDRGs signature using TCGA training dataset. According to this signature, patients with glioma were divided into low- and high-risk groups. The predictive ability of the signature was validated by prognostic analysis, receiver operating characteristic curves, principal component analysis, and stratification analysis in TCGA testing and CGGA verification datasets. CIBERSORT and single-sample gene set enrichment analysis (ssGSEA) were used to evaluate the immune microenvironment of glioma. Moreover, we conducted GSEA to determine the functions and pathways in the low- and high-risk groups. Finally, a nomogram was constructed by combining the signature and other clinical features. Results A total of 1,431 samples of glioma (592 from TCGA, 686 from the CGGA, and 153 from the GEO) and 23 samples of normal brain tissue from the GEO were analyzed in this study. There were 51 prognostic differentially expressed DDRGs. Additionally, five DDRGs (CDK4、HMGB2、WEE1、SMC3 and GADD45G) were selected to construct a DDRGs signature for glioma, stratifying patients into low- and high-risk groups. The survival analysis showed that the DDRGs signature could differentiate the outcome of the low- and high-risk groups, showing that high-risk gliomas were associated with shorter overall survival. The immune microenvironment analysis revealed that more immunosuppressive cells, such as tumor associated macrophages and regulatory T cells, were recruited in the high-risk group. GSEA also showed that high-risk glioma was correlated with the immune and extracellular matrix pathways. Conclusion The five DDRGs signature and its impact on the infiltration of immunosuppressive cells could precisely predict the prognosis and provide guidance on the treatment of glioma.
Collapse
Affiliation(s)
- Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Radiation Oncology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianfang Yan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Pengyu Chen
- Department of Neurosurgery, Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiqing Xiao
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
217
|
Wang Y, Wang Z, Chen B, Yin Q, Pan M, Xia H, Zhang B, Yan Y, Jiang Z, Zhang Q, Wang Y. Cooperative Self-Assembled Nanoparticle Induces Sequential Immunogenic Cell Death and Toll-Like Receptor Activation for Synergistic Chemo-immunotherapy. NANO LETTERS 2021; 21:4371-4380. [PMID: 33984236 DOI: 10.1021/acs.nanolett.1c00977] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anticancer immunotherapy is hampered by poor immunogenicity and a profoundly immunosuppressive microenvironment in solid tumors and lymph nodes. Herein, sequential pH/redox-responsive nanoparticles (SRNs) are engineered to activate the immune microenvironment of tumor sites and lymph nodes. The two-modular SRNs could sequentially respond to the acidic tumor microenvironment and endosome compartments of dendritic cells (DCs) to precisely deliver doxorubicin (DOX) and imidazoquinolines (IMDQs). In the tumor microenvironment, released DOX triggers immunogenic cell death. In sentinel lymph nodes, the IMDQ nanoparticle module is dissociated in the acidic endosome compartment to specifically stimulate toll-like receptor 7/8 for DC maturation. Thus, the orchestrated nanoparticle system could enhance the infiltration of CD8α+ T cells in tumors and provoke a strong antitumor immune response toward primary and abscopal tumors in B16-OVA and CT26 tumor-bearing mice models. The cooperative self-assembled nanoparticle strategy provides a potential candidate of nanomedicine to advance the synergistic cancer chemo-immunotherapy.
Collapse
Affiliation(s)
- Yaoqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Zenghui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Qingqing Yin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Meijie Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Heming Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Bo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Yue Yan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Zhujun Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| |
Collapse
|
218
|
The Interplay between the Immune and the Endocannabinoid Systems in Cancer. Cells 2021; 10:cells10061282. [PMID: 34064197 PMCID: PMC8224348 DOI: 10.3390/cells10061282] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic potential of Cannabis sativa has been recognized since ancient times. Phytocannabinoids, endocannabinoids and synthetic cannabinoids activate two major G protein-coupled receptors, subtype 1 and 2 (CB1 and CB2). Cannabinoids (CBs) modulate several aspects of cancer cells, such as apoptosis, autophagy, proliferation, migration, epithelial-to-mesenchymal transition and stemness. Moreover, agonists of CB1 and CB2 receptors inhibit angiogenesis and lymphangiogenesis in vitro and in vivo. Low-grade inflammation is a hallmark of cancer in the tumor microenvironment (TME), which contains a plethora of innate and adaptive immune cells. These cells play a central role in tumor initiation and growth and the formation of metastasis. CB2 and, to a lesser extent, CB1 receptors are expressed on a variety of immune cells present in TME (e.g., T cells, macrophages, mast cells, neutrophils, NK cells, dendritic cells, monocytes, eosinophils). The activation of CB receptors modulates a variety of biological effects on cells of the adaptive and innate immune system. The expression of CB2 and CB1 on different subsets of immune cells in TME and hence in tumor development is incompletely characterized. The recent characterization of the human cannabinoid receptor CB2-Gi signaling complex will likely aid to design potent and specific CB2/CB1 ligands with therapeutic potential in cancer.
Collapse
|
219
|
Campanello L, Traver MK, Shroff H, Schaefer BC, Losert W. Signaling through polymerization and degradation: Analysis and simulations of T cell activation mediated by Bcl10. PLoS Comput Biol 2021; 17:e1007986. [PMID: 34014917 PMCID: PMC8184007 DOI: 10.1371/journal.pcbi.1007986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/07/2021] [Accepted: 04/28/2021] [Indexed: 12/05/2022] Open
Abstract
The adaptive immune system serves as a potent and highly specific defense mechanism against pathogen infection. One component of this system, the effector T cell, facilitates pathogen clearance upon detection of specific antigens by the T cell receptor (TCR). A critical process in effector T cell activation is transmission of signals from the TCR to a key transcriptional regulator, NF-κB. The transmission of this signal involves a highly dynamic process in which helical filaments of Bcl10, a key protein constituent of the TCR signaling cascade, undergo competing processes of polymeric assembly and macroautophagy-dependent degradation. Through computational analysis of three-dimensional, super-resolution optical micrographs, we quantitatively characterize TCR-stimulated Bcl10 filament assembly and length dynamics, and demonstrate that filaments become shorter over time. Additionally, we develop an image-based, bootstrap-like resampling method that demonstrates the preferred association between autophagosomes and both Bcl10-filament ends and punctate-Bcl10 structures, implying that autophagosome-driven macroautophagy is directly responsible for Bcl10 filament shortening. We probe Bcl10 polymerization-depolymerization dynamics with a stochastic Monte-Carlo simulation of nucleation-limited filament assembly and degradation, and we show that high probabilities of filament nucleation in response to TCR engagement could provide the observed robust, homogeneous, and tunable response dynamic. Furthermore, we demonstrate that the speed of filament disassembly preferentially at filament ends provides effective regulatory control. Taken together, these data suggest that Bcl10 filament growth and degradation act as an excitable system that provides a digital response mechanism and the reliable timing critical for T cell activation and regulatory processes. The immune system serves to protect organisms against pathogen-mediated disease. While a strong immune response is needed to eliminate pathogens in host organisms, immune responses that are too robust or too persistent can trigger autoimmune disorders, cancer, and a variety of additional serious human pathologies. Thus, a careful balance of activating and inhibitory mechanisms is necessary to prevent detrimental health outcomes of immune responses. For example, activated effector T cells marshal the immune response and direct killing of pathogen-infected cells; however, effector T cells that are chronically activated can damage and destroy healthy tissue. Here, we study an important internal activation pathway in effector T cells that involves the growth and counterbalancing disassembly (involving a process called macroautophagy) of filamentous cytoplasmic signaling structures. We utilize image analysis of 3-D super-resolution images and Monte Carlo simulations to study a key signal-transduction protein, Bcl10. We found that the speed of filament disassembly has the greatest effect on the magnitude and duration of the response, implying that pharmaceutical interventions aimed at macroautophagy may have substantial impact on effector T cell function. Given that filamentous structures are utilized in numerous immune signaling pathways, our analysis methods could have broad applicability in the signal transduction field.
Collapse
Affiliation(s)
- Leonard Campanello
- Department of Physics, University of Maryland College Park, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland College Park, College Park, Maryland, United States of America
| | - Maria K. Traver
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Hari Shroff
- Department of Physics, University of Maryland College Park, College Park, Maryland, United States of America
- Laboratory of High-Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian C. Schaefer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail: (BCS); (WL)
| | - Wolfgang Losert
- Department of Physics, University of Maryland College Park, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland College Park, College Park, Maryland, United States of America
- * E-mail: (BCS); (WL)
| |
Collapse
|
220
|
Kumar A, Swain CA, Shevde LA. Informing the new developments and future of cancer immunotherapy : Future of cancer immunotherapy. Cancer Metastasis Rev 2021; 40:549-562. [PMID: 34003425 DOI: 10.1007/s10555-021-09967-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
The application of cancer immunotherapy (CIT) in reinforcing anti-tumor immunity in response to carcinogenesis and metastasis has shown promising advances, along with new therapeutic challenges, in the landscape of cancer care. To promote tumor growth and metastasis, cancer cells aim to manipulate their microenvironment by mediating a crosstalk with various immune cells through the secretion of chemokines, cytokines, and other associated factors. Understanding this crosstalk is the key to discovering the best targets for improved immunotherapies and clinical strategies in cancer treatment. Here, we review the tumor immune crosstalk in cancer growth and metastasis. This review also highlights the development and expansion of CIT over the years. Moreover, we highlight clinical challenges and limitations involving immune-related adverse events, treating cancer patients with pre-existing autoimmune diseases, and the management of immunotherapy-induced treatment resistance. Possible clinical solutions to these current challenges in CIT are also proposed. Altogether, this review can contribute to the formation of pre-clinical and treatment-related strategies that further develop the availability and effectiveness of CIT.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Courtney A Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA. .,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
221
|
Liu L, Cui J, Zhao Y, Liu X, Chen L, Xia Y, Wang Y, Chen S, Sun S, Shi B, Zou Y. KDM6A-ARHGDIB axis blocks metastasis of bladder cancer by inhibiting Rac1. Mol Cancer 2021; 20:77. [PMID: 34006303 PMCID: PMC8130406 DOI: 10.1186/s12943-021-01369-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background KDM6A, a histone demethylase, is frequently mutated in bladder cancer (BCa). However, the role and detailed molecular mechanism of KDM6A involved in bladder cancer progression remains unknown. Methods Tissue specimens were used to determine the expression levels and prognostic values of KDM6A and ARHGDIB. The MTT, colony formation, wound healing and Transwell migration and invasion assays were employed to detect the BCa cell proliferation, migration and invasion, respectively. Chemotaxis of macrophages was used to evaluate the ability of KDM6A to recruit macrophages. A subcutaneous tumour model and tail vein tumour injection in nude mice were used to assess the role of KDM6A in vivo. RNA sequencing, qPCR, Western blot, ChIP and phalloidin staining assay were performed to investigate the molecular functions of KDM6A. Dual-luciferase reporter assay was used to determine the effects of KDM6A and FOXA1 on the promoters of the ARHGDIB and KDM6A. Results We showed that the KDM6A inhibited the motility and invasiveness of the BCa cells. Mechanistically, KDM6A promotes the transcription of ARHGDIB by demethylating histone H3 lysine di/trimethylation (H3K27me2/3) and consequently leads to inhibition of Rac1. EZH2, which catalyses the methylation of H3K27, functions to silence ARHGDIB expression, and an EZH2 inhibitor can neutralize the metastatic effect caused by KDM6A deficiency. Furthermore, we demonstrated that FOXA1 directly binds to the KDM6A promoter and thus transactivates KDM6A, leading to diminished metastatic potential. Conclusion Our findings establish the critical role of the FOXA1-KDM6A-ARHGDIB axis in restraining the malignancy of BCa and identify KDM6A and EZH2 as potential therapeutic targets in the management of BCa. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01369-9.
Collapse
Affiliation(s)
- Lei Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaochen Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China.
| | - Yongxin Zou
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
222
|
Kang W, Ji Y, Cheng Y. Van der Waals force-driven indomethacin-ss-paclitaxel nanodrugs for reversing multidrug resistance and enhancing NSCLC therapy. Int J Pharm 2021; 603:120691. [PMID: 33965541 DOI: 10.1016/j.ijpharm.2021.120691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
The high expression of multidrug resistance-associated protein 1 (MRP1) in cancer cells caused serious multidrug resistance (MDR), which limited the effectiveness of paclitaxel (PTX) in non-small cell lung cancer (NSCLC) chemotherapy. Indomethacin (IND), a kind of non-steroidal anti-inflammatory drugs (NSAIDs), which has been confirmed to be a potential MRP1 inhibitor. Taking into account the advantages of old drugs without extra controversial biosafety issue, in this manuscript, the disulfide bond (-S-S-) was employed for connecting IND and PTX to construct conjugate IND-S-S-PTX, which was further self-assembled and formed nanodrug (IND-S-S-PTX NPs). The particle size of IND-S-S-PTX NPs was ~160 nm with a narrow PDI value of 0.099, which distributed well in water and also exhibited a stable characteristic. Moreover, due to the existence of disulfide bond, the NPs were sensitive to the high level of glutathione (GSH) in tumor microenvironment. Molecular dynamics (MD) simulation presented the process of self-assembly in detail. Density functional theory (DFT) calculations revealed that the main driving force in self-assembly process was originated from the van der waals force. In addition, this carrier-free nano drug delivery systems (nDDs) could reverse the MDR by downregulating the expression of MRP1 protein in A549/taxol.
Collapse
Affiliation(s)
- Wenbo Kang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Yu Cheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
223
|
Abstract
Tumors are equipped with a highly complex machinery of interrelated events so as to adapt to hazardous conditions, preserve a growing cell mass and thrive at the site of metastasis. Tumor cells display metastatic propensity toward specific organs where the stromal milieu is appropriate for their further colonization. Effective colonization relies on the plasticity of tumor cells in adapting to the conditions of the new area by reshaping their epigenetic landscape. Breast cancer cells, for instance, are able to adopt brain-like or epithelial/osteoid features in order to pursue effective metastasis into brain and bone, respectively. The aim of this review is to discuss recent insights into organ tropism in tumor metastasis, outlining potential strategies to address this driver of tumor aggressiveness.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Cancer & Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, 66177‐13446, Iran
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, 66177‐13446, Iran
| |
Collapse
|
224
|
Hu ZW, Chen L, Ma RQ, Wei FQ, Wen YH, Zeng XL, Sun W, Wen WP. Comprehensive analysis of ferritin subunits expression and positive correlations with tumor-associated macrophages and T regulatory cells infiltration in most solid tumors. Aging (Albany NY) 2021; 13:11491-11506. [PMID: 33864445 PMCID: PMC8109065 DOI: 10.18632/aging.202841] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Ferritin is the most important iron storage form and is known to influence tumor immunity. We previously showed that expression of ferritin light chain (FTL) and ferritin heavy chain (FTH1) subunits is increased in head and neck squamous cell carcinoma (HNSC). Here, we analyzed solid tumor datasets from The Cancer Genome Atlas and Genotype-Tissue Expression databases to investigate correlations between FTL and FTH1 expressions and (i) patient survival, using univariate, multivariate, Kaplan-Meier and Receiver Operator Characteristic analysis; and (ii) tumor-infiltrating immune cell subsets, using the bioinformatics tools Estimation of Stomal and Immune cells in Malignant Tumor tissues, Microenvironment Cell Population-counter, Tumor Immune Estimation Resource, and Tumor Immunology Miner. We found that FTL and FTH1 are upregulated and downregulated, respectively, in most of the human cancers analyzed. Tumor FTL levels were associated with prognosis in patients with lower grade glioma (LGG), whereas FTH1 levels were associated with prognosis in patients with liver hepatocellular carcinoma, HNSC, LGG, and kidney renal papillary cell carcinoma. In many cancers, FTL and FTH1 levels was significantly positively correlated with tumor infiltration by tumor-associated macrophages and T regulatory cells. These results suggest an important role for FTL and FTH1 in regulating tumor immunity to solid cancers.
Collapse
Affiliation(s)
- Zhang-Wei Hu
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Otorhinolaryngology Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Lin Chen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Otorhinolaryngology Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Ren-Qiang Ma
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Otorhinolaryngology Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Fan-Qin Wei
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Otorhinolaryngology Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yi-Hui Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Otorhinolaryngology Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Xue-Lan Zeng
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Otorhinolaryngology Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Wei Sun
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Otorhinolaryngology Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Wei-Ping Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Otorhinolaryngology Institute, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P.R. China.,Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510655, Guangdong, P.R. China
| |
Collapse
|
225
|
Yu CI, Martinek J, Wu TC, Kim KI, George J, Ahmadzadeh E, Maser R, Marches F, Metang P, Authie P, Oliveira VKP, Wang VG, Chuang JH, Robson P, Banchereau J, Palucka K. Human KIT+ myeloid cells facilitate visceral metastasis by melanoma. J Exp Med 2021; 218:211995. [PMID: 33857287 PMCID: PMC8056753 DOI: 10.1084/jem.20182163] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/30/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Metastasis of melanoma significantly worsens prognosis; thus, therapeutic interventions that prevent metastasis could improve patient outcomes. Here, we show using humanized mice that colonization of distant visceral organs with melanoma is dependent upon a human CD33+CD11b+CD117+ progenitor cell subset comprising <4% of the human CD45+ leukocytes. Metastatic tumor-infiltrating CD33+ cells from patients and humanized (h)NSG-SGM3 mice showed converging transcriptional profiles. Single-cell RNA-seq analysis identified a gene signature of a KIT/CD117-expressing CD33+ subset that correlated with decreased overall survival in a TCGA melanoma cohort. Thus, human CD33+CD11b+CD117+ myeloid cells represent a novel candidate biomarker as well as a therapeutic target for metastatic melanoma.
Collapse
Affiliation(s)
- Chun I Yu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT.,The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Te-Chia Wu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Kyung In Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT
| | | | - Rick Maser
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| | | | - Patrick Metang
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| | - Pierre Authie
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| | | | - Victor G Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT.,The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT.,The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
226
|
Liu C, Zheng S, Wang S, Wang X, Feng X, Sun N, He J. Development and external validation of a composite immune-clinical prognostic model associated with EGFR mutation in East-Asian patients with lung adenocarcinoma. Ther Adv Med Oncol 2021; 13:17588359211006949. [PMID: 33889215 PMCID: PMC8040386 DOI: 10.1177/17588359211006949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/11/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND EGFR mutation is a common oncogene driver in East Asians with lung adenocarcinoma (LUAD), conferring a favorable prognosis with effective targeted therapy. However, the EGFR mutation is a weak predictor of long-term survival. Therefore, a powerful predictive tool is urgently needed to estimate disease prognosis and patient survival for East-Asian patients with LUAD. METHODS In this first systematic analysis of the relationships among EGFR mutation, immunophenotype, and prognosis in LUAD samples from East-Asian patients, we constructed a prognostic signature consisting of EGFR-associated immune-related gene pairs (EIGPs). The predictive performance for overall survival (OS) and the clinical significance of this signature were then comprehensively investigated. RESULTS Based on transcriptome data analysis of a training set, we proposed the EIGP index (EIGPI), represented by five EIGPs, which was significantly associated with the OS of East-Asian patients with LUAD. It was also well validated in a test set. Furthermore, the prognostic performance of the EIGPI was further verified using protein levels in an additional independent set. Stratification analysis and multivariate Cox regression analysis revealed that the EIGPI was an independent prognostic factor. When combined with stage, the composite immune-clinical prognostic model index (ICPMI) showed improved prognostic accuracy in all datasets. CONCLUSION This study was the first to systematically investigate the relationships among EGFR mutation, immunophenotype, and prognosis in East Asians with LUAD and develop a composite clinical and immune model associated with EGFR mutation. This model may be a reliable and promising prognostic tool and help further personalize patient management.
Collapse
Affiliation(s)
- Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sihui Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
227
|
Massagué J, Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov 2021; 11:971-994. [PMID: 33811127 PMCID: PMC8030695 DOI: 10.1158/2159-8290.cd-21-0010] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Metastasis is initiated and sustained through therapy by cancer cells with stem-like and immune-evasive properties, termed metastasis-initiating cells (MIC). Recent progress suggests that MICs result from the adoption of a normal regenerative progenitor phenotype by malignant cells, a phenotype with intrinsic programs to survive the stresses of the metastatic process, undergo epithelial-mesenchymal transitions, enter slow-cycling states for dormancy, evade immune surveillance, establish supportive interactions with organ-specific niches, and co-opt systemic factors for growth and recurrence after therapy. Mechanistic understanding of the molecular mediators of MIC phenotypes and host tissue ecosystems could yield cancer therapeutics to improve patient outcomes. SIGNIFICANCE: Understanding the origins, traits, and vulnerabilities of progenitor cancer cells with the capacity to initiate metastasis in distant organs, and the host microenvironments that support the ability of these cells to evade immune surveillance and regenerate the tumor, is critical for developing strategies to improve the prevention and treatment of advanced cancer. Leveraging recent progress in our understanding of the metastatic process, here we review the nature of MICs and their ecosystems and offer a perspective on how this knowledge is informing innovative treatments of metastatic cancers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York.
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
228
|
Ho YC, Lai YC, Lin HY, Ko MH, Wang SH, Yang SJ, Lin PJ, Chou TW, Hung LC, Huang CC, Chang TH, Lin JB, Lin JC. Low cardiac dose and neutrophil-to-lymphocyte ratio predict overall survival in inoperable esophageal squamous cell cancer patients after chemoradiotherapy. Sci Rep 2021; 11:6644. [PMID: 33758232 PMCID: PMC7988072 DOI: 10.1038/s41598-021-86019-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
We aimed to determine the prognostic significance of cardiac dose and hematological immunity parameters in esophageal cancer patients after concurrent chemoradiotherapy (CCRT). During 2010-2015, we identified 101 newly diagnosed esophageal squamous cell cancer patients who had completed definitive CCRT. Patients' clinical, dosimetric, and hematological data, including absolute neutrophil count, absolute lymphocyte count, and neutrophil-to-lymphocyte ratio (NLR), at baseline, during, and post-CCRT were analyzed. Cox proportional hazards were calculated to identify potential risk factors for overall survival (OS). Median OS was 13 months (95% confidence interval [CI]: 10.38-15.63). Univariate analysis revealed that male sex, poor performance status, advanced nodal stage, higher percentage of heart receiving 10 Gy (heart V10), and higher NLR (baseline and follow-up) were significantly associated with worse OS. In multivariate analysis, performance status (ECOG 0 & 1 vs. 2; hazard ratio [HR] 3.12, 95% CI 1.30-7.48), heart V10 (> 84% vs. ≤ 84%; HR 2.24, 95% CI 1.26-3.95), baseline NLR (> 3.56 vs. ≤ 3.56; HR 2.36, 95% CI 1.39-4.00), and follow-up NLR (> 7.4 vs. ≤ 7.4; HR 1.95, 95% CI 1.12-3.41) correlated with worse OS. Volume of low cardiac dose and NLR (baseline and follow-up) were associated with worse patient survival.
Collapse
Affiliation(s)
- Yu-Chieh Ho
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Yuan-Chun Lai
- Division of Medical Physics, Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan.,Department of Medical Imaging Radiological Science, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Hsuan-Yu Lin
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Ming-Hui Ko
- Division of Medical Physics, Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Sheng-Hung Wang
- Department of Radiation Oncology, Lukang Christian Hospital, Changhua Christian Medical Foundation, Lukang, 505, Taiwan
| | - Shan-Jun Yang
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Po-Ju Lin
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Tsai-Wei Chou
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Li-Chung Hung
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Chia-Chun Huang
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Tung-Hao Chang
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan.,Department of Medical Imaging Radiological Science, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan.,Department of Medical Imaging and Radiological Technology, Yuanpei University of Science and Technology, Hsinchu, 300, Taiwan
| | - Jhen-Bin Lin
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan.
| | - Jin-Ching Lin
- Department of Radiation Oncology, Changhua Christian Hospital, Changhua, 500, Taiwan.,Division of Translation Research, Research Department, Changhua Christian Hospital, Changhua, 500, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan
| |
Collapse
|
229
|
Yu T, Nie W, Hong Z, He Y, Chen J, Mi X, Yang S, Li X, Wang B, Lin Y, Gao X. Synergy of Immunostimulatory Genetherapy with Immune Checkpoint Blockade Motivates Immune Response to Eliminate Cancer. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202100715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ting Yu
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
- Department of Medical Oncology The First Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310003 P. R. China
| | - Zehua Hong
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Yihong He
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Xue Mi
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Shuping Yang
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Xiaoling Li
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Bilan Wang
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu 610041 P. R. China
| | - Yunzhu Lin
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu 610041 P. R. China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery State Key Laboratory of Biotherapy and cancer center West China Hospital West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| |
Collapse
|
230
|
Graney PL, Tavakol DN, Chramiec A, Ronaldson-Bouchard K, Vunjak-Novakovic G. Engineered models of tumor metastasis with immune cell contributions. iScience 2021; 24:102179. [PMID: 33718831 PMCID: PMC7921600 DOI: 10.1016/j.isci.2021.102179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most cancer deaths are due to tumor metastasis rather than the primary tumor. Metastasis is a highly complex and dynamic process that requires orchestration of signaling between the tumor, its local environment, distant tissue sites, and immune system. Animal models of cancer metastasis provide the necessary systemic environment but lack control over factors that regulate cancer progression and often do not recapitulate the properties of human cancers. Bioengineered "organs-on-a-chip" that incorporate the primary tumor, metastatic tissue targets, and microfluidic perfusion are now emerging as quantitative human models of tumor metastasis. The ability of these systems to model tumor metastasis in individualized, patient-specific settings makes them uniquely suitable for studies of cancer biology and developmental testing of new treatments. In this review, we focus on human multi-organ platforms that incorporate circulating and tissue-resident immune cells in studies of tumor metastasis.
Collapse
|
231
|
Yip HYK, Papa A. Signaling Pathways in Cancer: Therapeutic Targets, Combinatorial Treatments, and New Developments. Cells 2021; 10:659. [PMID: 33809714 PMCID: PMC8002322 DOI: 10.3390/cells10030659] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
Molecular alterations in cancer genes and associated signaling pathways are used to inform new treatments for precision medicine in cancer. Small molecule inhibitors and monoclonal antibodies directed at relevant cancer-related proteins have been instrumental in delivering successful treatments of some blood malignancies (e.g., imatinib with chronic myelogenous leukemia (CML)) and solid tumors (e.g., tamoxifen with ER positive breast cancer and trastuzumab for HER2-positive breast cancer). However, inherent limitations such as drug toxicity, as well as acquisition of de novo or acquired mechanisms of resistance, still cause treatment failure. Here we provide an up-to-date review of the successes and limitations of current targeted therapies for cancer treatment and highlight how recent technological advances have provided a new level of understanding of the molecular complexity underpinning resistance to cancer therapies. We also raise three basic questions concerning cancer drug discovery based on molecular markers and alterations of selected signaling pathways, and further discuss how combination therapies may become the preferable approach over monotherapy for cancer treatments. Finally, we consider novel therapeutic developments that may complement drug delivery and significantly improve clinical response and outcomes of cancer patients.
Collapse
Affiliation(s)
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| |
Collapse
|
232
|
Batalha S, Ferreira S, Brito C. The Peripheral Immune Landscape of Breast Cancer: Clinical Findings and In Vitro Models for Biomarker Discovery. Cancers (Basel) 2021; 13:1305. [PMID: 33804027 PMCID: PMC8001103 DOI: 10.3390/cancers13061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the deadliest female malignancy worldwide and, while much is known about phenotype and function of infiltrating immune cells, the same attention has not been paid to the peripheral immune compartment of breast cancer patients. To obtain faster, cheaper, and more precise monitoring of patients' status, it is crucial to define and analyze circulating immune profiles. This review compiles and summarizes the disperse knowledge on the peripheral immune profile of breast cancer patients, how it departs from healthy individuals and how it changes with disease progression. We propose this data to be used as a starting point for validation of clinically relevant biomarkers of disease progression and therapy response, which warrants more thorough investigation in patient cohorts of specific breast cancer subtypes. Relevant clinical findings may also be explored experimentally using advanced 3D cellular models of human cancer-immune system interactions, which are under intensive development. We review the latest findings and discuss the strengths and limitations of such models, as well as the future perspectives. Together, the scientific advancement of peripheral biomarker discovery and cancer-immune crosstalk in breast cancer will be instrumental to uncover molecular mechanisms and putative biomarkers and drug targets in an all-human setting.
Collapse
Affiliation(s)
- Sofia Batalha
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, University Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Sofia Ferreira
- Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Prof Lima Basto, 1099-023 Lisboa, Portugal;
| | - Catarina Brito
- Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2781-901 Oeiras, Portugal;
- Instituto de Tecnologia Química e Biológica António Xavier, University Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
233
|
Pancreatic Cancers with High Grade Tumor Budding Exhibit Hallmarks of Diminished Anti-Tumor Immunity. Cancers (Basel) 2021; 13:cancers13051090. [PMID: 33806316 PMCID: PMC7961597 DOI: 10.3390/cancers13051090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Pancreatic cancer, in its most common manifestation pancreatic ductal adenocarcinoma (PDAC), is a uniquely lethal disease with very limited treatment options and few prognostic biomarkers. Tumor budding is a proven independent, adverse prognostic factor in many tumor types including PDAC. Tumor buds can be detected histologically as single cancer cells or clusters of up to four cancer cells at the tumor invasive front. Tumor budding is biologically correlated to the induction of epithelial-mesenchymal transitions (EMT) and disease progression. In this study, we sought to investigate the immunological composition of tumors with high levels of tumor budding. We show that PDAC cases with a high grade of tumor budding display notably diminished anti-tumor immunity. These findings were further validated by gene expression analysis of PDAC cases from The Cancer Genome Atlas (TCGA). Our results provide insight on the immune escape mechanisms of tumor cells undergoing EMT. This offers the potential of designing novel treatments combining immunotherapies with EMT-targeted drugs. Abstract Tumor budding is associated with epithelial-mesenchymal transition and diminished survival in a number of cancer types including pancreatic ductal adenocarcinoma (PDAC). In this study, we dissect the immune landscapes of patients with high grade versus low grade tumor budding to determine the features associated with immune escape and disease progression in pancreatic cancer. We performed immunohistochemistry-based quantification of tumor-infiltrating leukocytes and tumor bud assessment in a cohort of n = 111 PDAC patients in a tissue microarray (TMA) format. Patients were divided based on the ITBCC categories of tumor budding as Low Grade (LG: categories 1 and 2) and High Grade (HG: category 3). Tumor budding numbers and tumor budding grade demonstrated a significant association with diminished overall survival (OS). HG cases exhibit notably reduced densities of stromal (S) and intratumoral (IT) T cells. HG cases also display lower M1 macrophages (S) and increased M2 macrophages (IT). These findings were validated using gene expression data from TCGA. A published tumor budding gene signature demonstrated a significant association with diminished survival in PDAC patients in TCGA. Immune-related gene expression revealed an immunosuppressive TME in PDAC cases with high expression of the budding signature. Our findings highlight a number of immune features that permit an improved understanding of disease progression and EMT in pancreatic cancer.
Collapse
|
234
|
Brouillard A, Deshpande N, Kulkarni AA. Engineered Multifunctional Nano- and Biological Materials for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2001680. [PMID: 33448159 DOI: 10.1002/adhm.202001680] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapy is set to emerge as the future of cancer therapy. However, recent immunotherapy trials in different cancers have yielded sub-optimal results, with durable responses seen in only a small fraction of patients. Engineered multifunctional nanomaterials and biological materials are versatile platforms that can elicit strong immune responses and improve anti-cancer efficacy when applied to cancer immunotherapy. While there are traditional systems such as polymer- and lipid-based nanoparticles, there is a wide variety of other materials with inherent and additive properties that can allow for more potent activation of the immune system. By synthesizing and applying multifunctional strategies, it allows for a more extensive and more effective repertoire of tools to use in the wide variety of situations that cancer presents itself. Here, several types of nanoscale and biological material strategies and platforms that provide their inherent benefits for targeting and activating multiple aspects of the immune system are discussed. Overall, this review aims to provide a comprehensive understanding of recent advances in the field of multifunctional cancer immunotherapy and trends that pave the way for more diverse and tactical regression of tumors through soliciting responses by either the adaptive or innate immune system, and even both simultaneously.
Collapse
Affiliation(s)
- Anthony Brouillard
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Nilesh Deshpande
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering University of Massachusetts Amherst MA 01003 USA
- Center for Bioactive Delivery Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
235
|
Modulation of the Vascular-Immune Environment in Metastatic Cancer. Cancers (Basel) 2021; 13:cancers13040810. [PMID: 33671981 PMCID: PMC7919367 DOI: 10.3390/cancers13040810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced metastatic cancer is rarely curable. While immunotherapy has changed the oncological landscape profoundly, cure in metastatic disease remains the exception. Tumor blood vessels are crucial regulators of tumor perfusion, immune cell influx and metastatic dissemination. Indeed, vascular hyperpermeability is a key feature of primary tumors, the pre-metastatic niche in host tissue and overt metastases at secondary sites. Combining anti-angiogenesis and immune therapies may therefore unlock synergistic effects by inducing a stabilized vascular network permissive for effector T cell trafficking and function. However, anti-angiogenesis therapies, as currently applied, are hampered by intrinsic or adaptive resistance mechanisms at primary and distant tumor sites. In particular, heterogeneous vascular and immune environments which can arise in metastatic lesions of the same individual pose significant challenges for currently approved drugs. Thus, more consideration needs to be given to tailoring new combinations of vascular and immunotherapies, including dosage and timing regimens to specific disease microenvironments.
Collapse
|
236
|
Li PJ, Roose JP, Jablons DM, Kratz JR. Bioinformatic Approaches to Validation and Functional Analysis of 3D Lung Cancer Models. Cancers (Basel) 2021; 13:cancers13040701. [PMID: 33572297 PMCID: PMC7915264 DOI: 10.3390/cancers13040701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
3D models of cancer have the potential to improve basic, translational, and clinical studies. Patient-derived xenografts, spheroids, and organoids are broad categories of 3D models of cancer, and to date, these 3D models of cancer have been established for a variety of cancer types. In lung cancer, for example, 3D models offer a promising new avenue to gain novel insights into lung tumor biology and improve outcomes for patients afflicted with the number one cancer killer worldwide. However, the adoption and utility of these 3D models of cancer vary, and demonstrating the fidelity of these models is a critical first step before seeking meaningful applications. Here, we review use cases of current 3D lung cancer models and bioinformatic approaches to assessing model fidelity. Bioinformatics approaches play a key role in both validating 3D lung cancer models and high dimensional functional analyses to support downstream applications.
Collapse
Affiliation(s)
- P. Jonathan Li
- Department of Surgery, University of California, San Francisco, CA 94143, USA; (P.J.L.); (D.M.J.)
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, CA 94143, USA;
| | - David M. Jablons
- Department of Surgery, University of California, San Francisco, CA 94143, USA; (P.J.L.); (D.M.J.)
| | - Johannes R. Kratz
- Department of Surgery, University of California, San Francisco, CA 94143, USA; (P.J.L.); (D.M.J.)
- Correspondence:
| |
Collapse
|
237
|
Lannagan TR, Jackstadt R, Leedham SJ, Sansom OJ. Advances in colon cancer research: in vitro and animal models. Curr Opin Genet Dev 2021; 66:50-56. [PMID: 33422950 PMCID: PMC7985292 DOI: 10.1016/j.gde.2020.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Modelling human colon cancer has long been the ambition of researchers and oncologists with the aim to better replicate disease progression and treatment response. Advances in our understanding of genetics, stem cell biology, tumour microenvironment and immunology have prepared the groundwork for recent major advances. In the last two years the field has seen the progression of: using patient derived organoids (alone and in co-culture) as predictors of treatment response; molecular stratification of tumours that predict outcome and treatment response; mouse models of metastatic disease; and transplant models that can be used to de-risk clinical trials. We will discuss these advances in this review.
Collapse
Affiliation(s)
| | - Rene Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany; Division of Cancer Progression and Metastasis German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Simon J Leedham
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1BD, UK.
| |
Collapse
|
238
|
Wei XL, Xu JY, Wang DS, Chen DL, Ren C, Li JN, Wang F, Wang FH, Xu RH. Baseline lesion number as an efficacy predictive and independent prognostic factor and its joint utility with TMB for PD-1 inhibitor treatment in advanced gastric cancer. Ther Adv Med Oncol 2021; 13:1758835921988996. [PMID: 33613701 PMCID: PMC7871293 DOI: 10.1177/1758835921988996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background We previously reported tumor mutation burden (TMB) as a potential prognostic factor for patients with advanced gastric cancer (AGC) receiving immunotherapy. We aimed to comprehensively understand the impact of tumor burden and TMB on efficacy and prognosis in immunotherapy-treated AGC patients. Methods A total of 58 patients with refractory AGC receiving PD-1 inhibitor monotherapy from a phase Ib/II clinical trial (ClinicalTrials.gov identifier: NCT02915432) were retrospectively included. Univariate and multivariate logistical regression analyses and the Cox proportional hazards model were performed for prognostic value of baseline factors. Factors reflecting baseline tumor burden, including baseline lesion number (BLN), the maximum tumor size (MTS) and the sum of target lesion size (SLS) were analyzed. The objective response rate (ORR) and disease control rate (DCR) were compared by Chi-square test. Results In univariate analysis, high BLN was associated with poor median progression-free survival (mPFS) [1.7 months versus 3.4 months; hazard ratio (HR), 2.696, p < 0.05] and median overall survival (mOS) (3.2 months versus 7.6 months; HR, 1.997, p < 0.05), while high TMB was a positive prognostic factor. In multivariable analysis, both BLN and TMB were independent prognostic factors for mOS (BLN: HR, 2.782, p < 0.05; TMB: HR, 0.288, p < 0.05), while MTS or SLS had no association with survival. Better ORR and DCR were observed in the low BLN group (15.4% versus 5.3%, p > 0.05; 86.96% versus 54.29%, p < 0.05). When combining BLN and TMB, the best efficacy and survival were observed in the BLNlowTMBhigh group (ORR: 37.5%, DCR: 62.5%, mPFS and mOS: not reached). The worst efficacy and survival were shown in the BNLhighTMBlow group [ORR: 0% (0/15); DCR: 13.3%; mPFS: 1.7 months; mOS: 2.7 months (all p < 0.05)]. Conclusions BLN, rather than factors regarding baseline tumor size, is perhaps a potential predictor for benefit from immunotherapy and its combination with TMB could further risk-stratify patients with AGC receiving immunotherapy.
Collapse
Affiliation(s)
- Xiao-Li Wei
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jian-Ying Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - De-Shen Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dong-Liang Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chao Ren
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jia-Ning Li
- Department of Clinical Trial Center, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Feng Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong Feng Road East, Guangzhou, Guangdong Province 510060, China
| | - Feng-Hua Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong Feng Road East, Guangzhou, Guangdong Province 510060, China
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dong Feng Road East, Guangzhou, Guangdong Province 510060, China
| |
Collapse
|
239
|
Abdul Pari AA, Singhal M, Augustin HG. Emerging paradigms in metastasis research. J Exp Med 2021; 218:e20190218. [PMID: 33601416 PMCID: PMC7754674 DOI: 10.1084/jem.20190218] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/17/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Historically, therapy of metastatic disease has essentially been limited to using strategies that were identified and established to shrink primary tumors. The limited efficacy of such treatments on overall patient survival stems from diverging intrinsic and extrinsic characteristics of a primary tumor and metastases originating therefrom. To develop better therapeutic strategies to treat metastatic disease, there is an urgent need to shift the paradigm in preclinical metastasis research by conceptualizing metastatic dissemination, colonization, and growth as spatiotemporally dynamic processes and identifying rate-limiting vulnerabilities of the metastatic cascade. Clinically, while metastatic colonization remains the most attractive therapeutic avenue, comprehensive understanding of earlier steps may unravel novel metastasis-restricting therapies for presurgical neoadjuvant application. Moving beyond a primary tumor-centric view, this review adopts a holistic approach to understanding the spatial and temporal progression of metastasis. After reviewing recent developments in metastasis research, we highlight some of the grand challenges and propose a framework to expedite mechanism-based discovery research feeding the translational pipeline.
Collapse
Affiliation(s)
- Ashik Ahmed Abdul Pari
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mahak Singhal
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ-ZMBH Alliance), Heidelberg, Germany
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
240
|
Xie Z, Li X, He Y, Wu S, Wang S, Sun J, He Y, Lun Y, Xin S, Zhang J. Analysis of the Prognostic Value and Potential Molecular Mechanisms of TREM-1 Overexpression in Papillary Thyroid Cancer via Bioinformatics Methods. Front Endocrinol (Lausanne) 2021; 12:646793. [PMID: 34122331 PMCID: PMC8190971 DOI: 10.3389/fendo.2021.646793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Triggering receptor expressed on myeloid cells-1 (TREM-1) has been reported as a biomarker in many cancers. However, the biological function of TREM-1 in papillary thyroid carcinoma (PTC) remains unknown. METHODS We obtained TREM-1 expression data from The Cancer Genome Atlas (TCGA) database. Enrichment analysis of coexpressed genes and TREM-1 methylation analysis were performed via LinkedOmics. The correlations between TREM-1 and immune infiltrates were investigated via ESTIMATE, TIMER and TISIDB. We analyzed the association of TREM-1 expression with pan-cancer overall survival via Gene Expression Profiling Interactive Analysis (GEPIA). RESULTS TREM-1 has lower methylation levels and higher expression levels in PTC tissues compared to normal tissues. TREM-1 expression is significantly associated with poor prognosis, advanced T classification, advanced N classification, and an increased incidence of BRCA2 and BRAF mutations. Genes coexpressed with TREM-1 primarily participate in immune-related pathways. TREM-1 expression is positively correlated with immune infiltration, tumor progression and poor overall survival across cancers. CONCLUSIONS TREM-1 is a good prognostic and diagnostic biomarker in PTC. TREM-1 may promote thyroid cancer progression through immune-related pathways. Methylation may act as an upstream regulator of TREM-1 expression and biological function. Additionally, TREM-1 has broad prognostic value in a pan-cancer cohort.
Collapse
|
241
|
Abstract
Despite recent therapeutic advances in cancer treatment, metastasis remains the principal cause of cancer death. Recent work has uncovered the unique biology of metastasis-initiating cells that results in tumor growth in distant organs, evasion of immune surveillance and co-option of metastatic microenvironments. Here we review recent progress that is enabling therapeutic advances in treating both micro- and macrometastases. Such insights were gained from cancer sequencing, mechanistic studies and clinical trials, including of immunotherapy. These studies reveal both the origins and nature of metastases and identify new opportunities for developing more effective strategies to target metastatic relapse and improve patient outcomes.
Collapse
Affiliation(s)
- Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Hospital, New York, NY, USA.
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
242
|
Abstract
The tumor microenvironment contains many cellular components influencing tumor behaviors, such as metastasis, angiogenesis and chemo-resistance. Tumor-associated macrophages (TAMs) are one of such components that can also manipulate the overall prognosis and patient survival. Analysis of tumor-macrophage crosstalk is crucial as tumor cells can polarize circulatory monocytes into TAMs. Such trans-polarization of macrophages support tumor mediated evasion and suppression of immune response. Additionally, such TAMs significantly influence tumor growth and proliferation, making them a potential candidate for precision therapeutics. However, the failure of macrophage-dependent therapies at clinical trials emphasizes the fault in current perception and research modality. This review discussed this field's progress regarding emerging model systems with a focused view on the in vitro platforms. The inadequacy of currently available models and their implications on existing studies also analyzed. The need for a conceptual and experimental leap toward a human-relevant in vitro custom-built platform for studying tumor-macrophage crosstalk is acknowledged.
Collapse
Affiliation(s)
- Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
243
|
Smolkova B, Cierna Z, Kalavska K, Miklikova S, Plava J, Minarik G, Sedlackova T, Cholujova D, Gronesova P, Cihova M, Majerova K, Karaba M, Benca J, Pindak D, Mardiak J, Mego M. Increased Stromal Infiltrating Lymphocytes Are Associated with the Risk of Disease Progression in Mesenchymal Circulating Tumor Cell-Positive Primary Breast Cancer Patients. Int J Mol Sci 2020; 21:ijms21249460. [PMID: 33322711 PMCID: PMC7763628 DOI: 10.3390/ijms21249460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022] Open
Abstract
Circulating tumor cells (CTCs) and the immune infiltration of tumors are closely related to clinical outcomes. This study aimed to verify the influence of stromal lymphocyte infiltration and the immune context of tumor microenvironment on the hematogenous spread and prognosis of 282 chemotherapy naïve primary BC patients. To detect the presence of mesenchymal CTCs, RNA extracted from CD45-depleted peripheral blood was interrogated for the expression of mesenchymal gene transcripts. Tumor-infiltrating lymphocytes (TILs) were detected in the stromal areas by immunohistochemistry, using CD3, CD8, and CD45RO antibodies. The concentrations of 51 plasma cytokines were measured by multiplex bead arrays. TILs infiltration in mesenchymal CTC-positive patients significantly decreased their progression-free survival (HR = 4.88, 95% CI 2.30–10.37, p < 0.001 for CD3high; HR = 6.17, 95% CI 2.75–13.80, p < 0.001 for CD8high; HR = 6.93, 95% CI 2.86–16.81, p < 0.001 for CD45ROhigh). Moreover, the combination of elevated plasma concentrations of transforming growth factor beta-3 (cut-off 662 pg/mL), decreased monocyte chemotactic protein-3 (cut-off 52.5 pg/mL) and interleukin-15 (cut-off 17.1 pg/mL) significantly increased the risk of disease recurrence (HR = 4.838, 95% CI 2.048–11.427, p < 0.001). Our results suggest a strong impact of the immune tumor microenvironment on BC progression, especially through influencing the dissemination and survival of more aggressive, mesenchymal CTC subtypes.
Collapse
Affiliation(s)
- Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.S.); (S.M.); (J.P.); (D.C.); (P.G.); (M.C.); (K.M.)
| | - Zuzana Cierna
- Department of Pathology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia;
- Department of Pathology, Faculty Hospital, A. Zarnova 11, 917 75 Trnava, Slovakia
| | - Katarina Kalavska
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (K.K.); (J.M.)
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
| | - Svetlana Miklikova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.S.); (S.M.); (J.P.); (D.C.); (P.G.); (M.C.); (K.M.)
| | - Jana Plava
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.S.); (S.M.); (J.P.); (D.C.); (P.G.); (M.C.); (K.M.)
| | - Gabriel Minarik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| | - Tatiana Sedlackova
- Comenius University Science Park, Ilkovicova 8, 841 04 Bratislava, Slovakia;
- Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Dana Cholujova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.S.); (S.M.); (J.P.); (D.C.); (P.G.); (M.C.); (K.M.)
| | - Paulina Gronesova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.S.); (S.M.); (J.P.); (D.C.); (P.G.); (M.C.); (K.M.)
| | - Marina Cihova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.S.); (S.M.); (J.P.); (D.C.); (P.G.); (M.C.); (K.M.)
| | - Karolina Majerova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dubravska Cesta 9, 845 05 Bratislava, Slovakia; (B.S.); (S.M.); (J.P.); (D.C.); (P.G.); (M.C.); (K.M.)
| | - Marian Karaba
- Department of Oncosurgery, National Cancer Institute, Klenova 1, 83310 Bratislava, Slovakia; (M.K.); (J.B.); (D.P.)
| | - Juraj Benca
- Department of Oncosurgery, National Cancer Institute, Klenova 1, 83310 Bratislava, Slovakia; (M.K.); (J.B.); (D.P.)
- Department of Medicine, St. Elizabeth University, Namestie 1. maja 1, 811 02 Bratislava, Slovakia
| | - Daniel Pindak
- Department of Oncosurgery, National Cancer Institute, Klenova 1, 83310 Bratislava, Slovakia; (M.K.); (J.B.); (D.P.)
- Department of Oncosurgery, Slovak Medical University, Limbova 12, 83103 Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (K.K.); (J.M.)
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Klenova 1, 833 10 Bratislava, Slovakia; (K.K.); (J.M.)
- Translational Research Unit, Faculty of Medicine, Comenius University, Klenova 1, 833 10 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
244
|
de Souza ASC, Gonçalves LB, Lepique AP, de Araujo-Souza PS. The Role of Autophagy in Tumor Immunology-Complex Mechanisms That May Be Explored Therapeutically. Front Oncol 2020; 10:603661. [PMID: 33335860 PMCID: PMC7736605 DOI: 10.3389/fonc.2020.603661] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment (TME) is complex, and its composition and dynamics determine tumor fate. From tumor cells themselves, with their capacity for unlimited replication, migration, and invasion, to fibroblasts, endothelial cells, and immune cells, which can have pro and/or anti-tumor potential, interaction among these elements determines tumor progression. The understanding of molecular pathways involved in immune escape has permitted the development of cancer immunotherapies. Targeting molecules or biological processes that inhibit antitumor immune responses has allowed a significant improvement in cancer patient’s prognosis. Autophagy is a cellular process required to eliminate dysfunctional proteins and organelles, maintaining cellular homeostasis. Usually a process associated with protection against cancer, autophagy associated to cancer cells has been reported in response to hypoxia, nutrient deficiency, and oxidative stress, conditions frequently observed in the TME. Recent studies have shown a paradoxical association between autophagy and tumor immune responses. Tumor cell autophagy increases the expression of inhibitory molecules, such as PD-1 and CTLA-4, which block antitumor cytotoxic responses. Moreover, it can also directly affect antitumor immune responses by, for example, degrading NK cell-derived granzyme B and protecting tumor cells. Interestingly, the activation of autophagy on dendritic cells has the opposite effects, enhancing antigen presentation, triggering CD8+ T cells cytotoxic activity, and reducing tumor growth. Therefore, this review will focus on the most recent aspects of autophagy and tumor immune environment. We describe the dual role of autophagy in modulating tumor immune responses and discuss some aspects that must be considered to improve cancer treatment.
Collapse
Affiliation(s)
- Alana Serrano Campelo de Souza
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Letícia Boslooper Gonçalves
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil.,Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| | - Ana Paula Lepique
- Laboratório de Imunomodulação, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia Savio de Araujo-Souza
- Laboratório de Imunogenética e Histocompatibilidade (LIGH), Departamento de Genética, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba, Brazil
| |
Collapse
|
245
|
Atik YT, Cimen HI, Gul D, Arslan S, Kose O, Halis F. Are the preoperative neutrophil/lymphocyte ratio and platelet/lymphocyte ratio predictive for lamina propria invasion in aging patients? Aging Male 2020; 23:1528-1532. [PMID: 33183143 DOI: 10.1080/13685538.2020.1847068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To evaluate if the preoperative neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR) are predictive in discriminating between Ta and T1 tumors in aging male patients. METHODS We retrospectively evaluated 240 male patient data who were ≥ 65 years old, diagnosed primary non-muscle invasive bladder cancer (NMIBC) with transurethral resection between 2008 and 2020. The patients were divided into the two groups according to the pathological stage, which has a stage of Ta defined group 1 and stage of T1 defined group 2. Before the transurethral resection, serum levels of NLR and PLR were obtained from each patient and compared between the groups. RESULTS About 115 patients enrolled in group 1 (pTa patients) and 106 patients enrolled in group 2 (pT1 patients). The median age was 73 years (range 65-89) in group 1 and 75 years (range 65-98) in group 2. In complete blood cell (CBC) parameters, neutrophil count, NLR and PLR were higher and lymphocyte count was lower in group 2. There was no statistical difference in leukocyte and platelet counts between groups. CONCLUSION The present study revealed that higher preoperative NLR and PLR were associated with lamina propria invasion in aging male patients with BC and the results have predictive value.
Collapse
Affiliation(s)
- Yavuz Tarik Atik
- Department of urology, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Haci Ibrahim Cimen
- Department of urology, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Deniz Gul
- Department of urology, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Safa Arslan
- Department of urology, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Osman Kose
- Department of urology, Sakarya University Training and Research Hospital, Sakarya, Turkey
| | - Fikret Halis
- Department of urology, Sakarya University Training and Research Hospital, Sakarya, Turkey
| |
Collapse
|
246
|
Schaller J, Agudo J. Metastatic Colonization: Escaping Immune Surveillance. Cancers (Basel) 2020; 12:E3385. [PMID: 33207601 PMCID: PMC7697481 DOI: 10.3390/cancers12113385] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has shifted the paradigm in cancer therapy by revitalizing immune responses against tumor cells. Specifically, in primary tumors cancer cells evolve in an immunosuppressive microenvironment, which protects them from immune attack. However, during tumor progression, some cancer cells leave the protective tumor mass, disseminating and seeding secondary organs. These initial disseminated tumor cells (DTCs) should potentially be susceptible to recognition by the immune system in the new host tissues. Although Natural Killer or T cells eliminate some of these DTCs, a fraction escape anti-tumor immunity and survive, thus giving rise to metastatic colonization. How DTCs interact with immune cells and the underpinnings that regulate imperfect immune responses during tumor dissemination remain poorly understood. Uncovering such mechanisms of immune evasion may contribute to the development of immunotherapy specifically targeting DTCs. Here we review current knowledge about systemic and site-specific immune-cancer crosstalk in the early steps of metastasis formation. Moreover, we highlight how conventional cancer therapies can shape the pre-metastatic niche enabling immune escape of newly arrived DTCs.
Collapse
Affiliation(s)
- Julien Schaller
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA;
- Department of Fundamental Oncology, University of Lausanne–Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA;
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
247
|
Zhu Y, Yu X, Thamphiwatana SD, Zheng Y, Pang Z. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharm Sin B 2020; 10:2054-2074. [PMID: 33304779 PMCID: PMC7714985 DOI: 10.1016/j.apsb.2020.08.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has veered the paradigm of cancer treatment. Despite recent advances in immunotherapy for improved antitumor efficacy, the complicated tumor microenvironment (TME) is highly immunosuppressive, yielding both astounding and unsatisfactory clinical successes. In this regard, clinical outcomes of currently available immunotherapy are confined to the varied immune systems owing in large part to the lack of understanding of the complexity and diversity of the immune context of the TME. Various advanced designs of nanomedicines could still not fully surmount the delivery barriers of the TME. The immunosuppressive TME may even dampen the efficacy of antitumor immunity. Recently, some nanotechnology-related strategies have been inaugurated to modulate the immunosuppressive cells within the tumor immune microenvironment (TIME) for robust immunotherapeutic responses. In this review, we will highlight the current understanding of the immunosuppressive TIME and identify disparate subclasses of TIME that possess an impact on immunotherapy, especially those unique classes associated with the immunosuppressive effect. The immunoregulatory cell types inside the immunosuppressive TIME will be delineated along with the existing and potential approaches for immunosuppressive cell modulation. After introducing the various strategies, we will ultimately outline both the novel therapeutic targets and the potential issues that affect the efficacy of TIME-based nanomedicines.
Collapse
Affiliation(s)
- Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Xiangrong Yu
- Department of Medical Imaging, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China
| | - Soracha D. Thamphiwatana
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhiqing Pang
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China
| |
Collapse
|
248
|
Jung G, Benítez-Ribas D, Sánchez A, Balaguer F. Current Treatments of Metastatic Colorectal Cancer with Immune Checkpoint Inhibitors-2020 Update. J Clin Med 2020; 9:E3520. [PMID: 33142689 PMCID: PMC7694085 DOI: 10.3390/jcm9113520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/29/2022] Open
Abstract
During the last 20 years, chemotherapy has improved survival rates of colorectal cancer (CRC). However, the majority of metastatic cases do not respond to or progress after first line conventional chemotherapy and contribute to the fatalities of patients with CRC. Insights into the immune contexture of the tumor microenvironment (TME) have enabled the development of new systemic treatments that boost the host immune system against the tumor-the immune checkpoint inhibitors (ICI). These promising drugs have already shown astonishing efficacies in other cancer types and have raised new hope for the treatment of metastatic CRC (mCRC). In this review, we will summarize the results of the clinical trials that led to their accelerated approval by the U.S. Food and Drug Administration (FDA) in 2017, as well as all relevant recent studies conducted since then-some of which are not published yet. We will focus on therapeutic efficacy, but also discuss the available data for drug safety and security, changes in quality of life indicators and predictive biomarkers for treatment response. The burgeoning evidence for a potential use of ICIs in other settings than mCRC will also be mentioned. For each trial, we have made a preliminary assessment of the quality of clinical trial design and of the "European Society of Medical Oncology (ESMO) magnitude of clinical benefit" (ESMO-MCBS) in order to provide the first evidence-based recommendation to the reader.
Collapse
Affiliation(s)
- Gerhard Jung
- Gastroenterology Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, 08036 Barcelona, Spain; (G.J.); (A.S.)
- Colorectal Cancer Research Laboratory, Institute for Research in Biomedicine, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Daniel Benítez-Ribas
- Immunology Department, Centre for Biomedical Diagnosis, Hospital Clínic de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain;
| | - Ariadna Sánchez
- Gastroenterology Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, 08036 Barcelona, Spain; (G.J.); (A.S.)
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, 08036 Barcelona, Spain; (G.J.); (A.S.)
| |
Collapse
|
249
|
Kim K, Yang WH, Jung YS, Cha JH. A new aspect of an old friend: the beneficial effect of metformin on anti-tumor immunity. BMB Rep 2020. [PMID: 32731915 PMCID: PMC7607149 DOI: 10.5483/bmbrep.2020.53.10.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
T-cell-based cancer immunotherapies, such as immune checkpoint blockers (ICBs) and chimeric antigen receptor (CAR)-T-cells, have significant anti-tumor effects against certain types of cancer, providing a new paradigm for cancer treatment. However, the activity of tumor infiltrating T-cells (TILs) can be effectively neutralized in the tumor microenvironment (TME) of most solid tumors, rich in various immunosuppressive factors and cells. Therefore, to improve the clinical outcomes of established T-cell-based immunotherapy, adjuvants that can comprehensively relieve multiple immunosuppressive mechanisms of TME are needed. In this regard, recent studies have revealed that metformin has several beneficial effects on anti-tumor immunity. In this mini-review, we understand the immunosuppressive properties of TME and how metformin comprehensively enhances anti-tumor immunity. Finally, we will discuss this old friend’s potential as an adjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- KyeongJin Kim
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea
| | - Jong-ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, Korea
| |
Collapse
|
250
|
Biswas N, Chakrabarti S. Artificial Intelligence (AI)-Based Systems Biology Approaches in Multi-Omics Data Analysis of Cancer. Front Oncol 2020; 10:588221. [PMID: 33154949 PMCID: PMC7591760 DOI: 10.3389/fonc.2020.588221] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is the manifestation of abnormalities of different physiological processes involving genes, DNAs, RNAs, proteins, and other biomolecules whose profiles are reflected in different omics data types. As these bio-entities are very much correlated, integrative analysis of different types of omics data, multi-omics data, is required to understanding the disease from the tumorigenesis to the disease progression. Artificial intelligence (AI), specifically machine learning algorithms, has the ability to make decisive interpretation of "big"-sized complex data and, hence, appears as the most effective tool for the analysis and understanding of multi-omics data for patient-specific observations. In this review, we have discussed about the recent outcomes of employing AI in multi-omics data analysis of different types of cancer. Based on the research trends and significance in patient treatment, we have primarily focused on the AI-based analysis for determining cancer subtypes, disease prognosis, and therapeutic targets. We have also discussed about AI analysis of some non-canonical types of omics data as they have the capability of playing the determiner role in cancer patient care. Additionally, we have briefly discussed about the data repositories because of their pivotal role in multi-omics data storing, processing, and analysis.
Collapse
Affiliation(s)
- Nupur Biswas
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, Kolkata, India
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, Kolkata, India
| |
Collapse
|