201
|
Alhajjar N, Chatterjee A, Spencer BL, Burcham LR, Willett JLE, Dunny GM, Duerkop BA, Doran KS. Genome-Wide Mutagenesis Identifies Factors Involved in Enterococcus faecalis Vaginal Adherence and Persistence. Infect Immun 2020; 88:e00270-20. [PMID: 32778611 PMCID: PMC7504943 DOI: 10.1128/iai.00270-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/26/2020] [Indexed: 02/08/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive commensal bacterium native to the gastrointestinal tract and an opportunistic pathogen of increasing clinical concern. E. faecalis also colonizes the female reproductive tract, and reports suggest vaginal colonization increases following antibiotic treatment or in patients with aerobic vaginitis. Currently, little is known about specific factors that promote E. faecalis vaginal colonization and subsequent infection. We modified an established mouse vaginal colonization model to explore E. faecalis vaginal carriage and demonstrate that both vancomycin-resistant and -sensitive strains colonize the murine vaginal tract. Following vaginal colonization, we observed E. faecalis in vaginal, cervical, and uterine tissue. A mutant lacking endocarditis- and biofilm-associated pili (Ebp) exhibited a decreased ability to associate with human vaginal and cervical cells in vitro but did not contribute to colonization in vivo Thus, we screened a low-complexity transposon (Tn) mutant library to identify novel genes important for E. faecalis colonization and persistence in the vaginal tract. This screen revealed 383 mutants that were underrepresented during vaginal colonization at 1, 5, and 8 days postinoculation compared to growth in culture medium. We confirmed that mutants deficient in ethanolamine catabolism or in the type VII secretion system were attenuated in persisting during vaginal colonization. These results reveal the complex nature of vaginal colonization and suggest that multiple factors contribute to E. faecalis persistence in the reproductive tract.
Collapse
Affiliation(s)
- Norhan Alhajjar
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brady L Spencer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lindsey R Burcham
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julia L E Willett
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Breck A Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
202
|
Ali IAA, Cheung BPK, Matinlinna J, Lévesque CM, Neelakantan P. Trans-cinnamaldehyde potently kills Enterococcus faecalis biofilm cells and prevents biofilm recovery. Microb Pathog 2020; 149:104482. [PMID: 32920147 DOI: 10.1016/j.micpath.2020.104482] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Enterococcus faecalis is a biofilm-forming, nosocomial pathogen that is frequently isolated from failed root canal treatments. Contemporary root canal disinfectants are ineffective in eliminating these biofilms and preventing reinfection. As a result, there is a pressing need to identify novel and safe antibiofilm molecules. The effect of short-term (5 and 15 min) and long-term (24 h) treatments of trans-cinnamaldehyde (TC) on the viability of E. faecalis biofilms was compared with currently used root canal disinfectants. Treatment for 15 min with TC reduced biofilm metabolic activity as effective as 1% sodium hypochlorite and 2% chlorhexidine. Treatment with TC for 24 h was significantly more effective than 2% chlorhexidine in reducing the viable cell counts of biofilms. This serendipitous effect of TC was sustained for 10 days under growth-favoring conditions. For the first time, our study highlights the strong antibacterial activity of TC against E. faecalis biofilms, and notably, its ability to prevent biofilm recovery after treatment.
Collapse
Affiliation(s)
- Islam A A Ali
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Becky P K Cheung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - JukkaP Matinlinna
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
203
|
Enterococci, from Harmless Bacteria to a Pathogen. Microorganisms 2020; 8:microorganisms8081118. [PMID: 32722391 PMCID: PMC7463792 DOI: 10.3390/microorganisms8081118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Enterococci are gastrointestinal commensals whose hardiness allowed them to colonize very diverse environments, including soils, water, food, and feed. This ability to overcome adverse conditions makes enterococci problematic once they colonize hospital niches. Together with the malleability of their genomes, the capacity to acquire and disseminate determinants of antibiotic resistance has contributed to converting what was once just another opportunistic pathogen into a first-class clinical problem. This review discusses the dimension of the emergence of enterococcal resistance to key antimicrobial agents, the dissemination of this resistance, and its significance in terms of public health, with the aim of raising awareness of the need to devise and implement surveillance programs and more effective antibiotic stewardship.
Collapse
|
204
|
Jin M, Liu L, Wang DN, Yang D, Liu WL, Yin J, Yang ZW, Wang HR, Qiu ZG, Shen ZQ, Shi DY, Li HB, Guo JH, Li JW. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. THE ISME JOURNAL 2020; 14:1847-1856. [PMID: 32327733 PMCID: PMC7305130 DOI: 10.1038/s41396-020-0656-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 11/09/2022]
Abstract
Chlorine disinfection to drinking water plays an important role in preventing and controlling waterborne disease outbreaks globally. Nevertheless, little is known about why it enriches the antibiotic resistance genes (ARGs) in bacteria after chlorination. Here, ARGs released from killed antibiotic-resistant bacteria (ARB), and culturable chlorine-injured bacteria produced in the chlorination process as the recipient, were investigated to determine their contribution to the horizontal transfer of ARGs during disinfection treatment. We discovered Escherichia coli, Salmonella aberdeen, Pseudomonas aeruginosa and Enterococcus faecalis showed diverse resistance to sodium hypochlorite, and transferable RP4 could be released from killed sensitive donor consistently. Meanwhile, the survival of chlorine-tolerant injured bacteria with enhanced cell membrane permeabilisation and a strong oxidative stress-response demonstrated that a physiologically competent cell could be transferred by RP4 with an improved transformation frequency of up to 550 times compared with the corresponding untreated bacteria. Furthermore, the water quality factors involving chemical oxygen demand (CODMn), ammonium nitrogen and metal ions (Ca2+ and K+) could significantly promote above transformation frequency of released RP4 into injured E. faecalis. Our findings demonstrated that the chlorination process promoted the horizontal transfer of plasmids by natural transformation, which resulted in the exchange of ARGs across bacterial genera and the emergence of new ARB, as well as the transfer of chlorine-injured opportunistic pathogen from non-ARB to ARB. Considering that the transfer elements were quite resistant to degradation through disinfection, this situation poses a potential risk to public health.
Collapse
Affiliation(s)
- Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China.
| | - Lu Liu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Da-Ning Wang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Wei-Li Liu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Zhong-Wei Yang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Hua-Ran Wang
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Zhi-Gang Qiu
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Zhi-Qiang Shen
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Dan-Yang Shi
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Hai-Bei Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China
| | - Jian-Hua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jun-Wen Li
- Department of Environment and Health, Tianjin Institute of Environmental & Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No 1 Dali Road, Tianjin, 300050, PR China.
| |
Collapse
|
205
|
Isolation and Characterization of a New Endophytic Actinobacterium Streptomyces californicus Strain ADR1 as a Promising Source of Anti-Bacterial, Anti-Biofilm and Antioxidant Metabolites. Microorganisms 2020; 8:microorganisms8060929. [PMID: 32575628 PMCID: PMC7355773 DOI: 10.3390/microorganisms8060929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 11/29/2022] Open
Abstract
In view of the fast depleting armamentarium of drugs against significant pathogens, like methicillin-resistant Staphylococcus aureus (MRSA) and others due to rapidly emerging drug-resistance, the discovery and development of new drugs need urgent action. In this endeavor, a new strain of endophytic actinobacterium was isolated from the plant Datura metel, which produced secondary metabolites with potent anti-infective activities. The isolate was identified as Streptomyces californicus strain ADR1 based on 16S rRNA gene sequence analysis. Metabolites produced by the isolate had been investigated for their antibacterial attributes against important pathogens: S. aureus, MRSA, S. epidermis, Enterococcus faecium and E. faecalis. Minimum inhibitory concentration (MIC90) values against these pathogens varied from 0.23 ± 0.01 to 5.68 ± 0.20 μg/mL. The metabolites inhibited biofilm formation by the strains of S. aureus and MRSA (Biofilm inhibitory concentration [BIC90] values: 0.74 ± 0.08–4.92 ± 0.49 μg/mL). The BIC90 values increased in the case of pre-formed biofilms. Additionally, the metabolites possessed good antioxidant properties, with an inhibitory concentration (IC90) value of 217.24 ± 6.77 µg/mL for 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging. An insight into different classes of compounds produced by the strain ADR1 was obtained by chemical profiling and GC-MS analysis, wherein several therapeutic classes, for example, alkaloids, phenolics, terpenes, terpenoids and glycosides, were discovered.
Collapse
|
206
|
Fu Y, An Q, Cheng Y, Yang Y, Wang L, Zhang H, Ge Y, Li D, Zhang Y. A Textile Pile Debridement Material Consisting of Polyester Fibers for in Vitro Removal of Biofilm. Polymers (Basel) 2020; 12:polym12061360. [PMID: 32560399 PMCID: PMC7362169 DOI: 10.3390/polym12061360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/25/2022] Open
Abstract
Biofilms formed on skin wound lead to inflammation and a delay of healing. In the present work, a novel textile pile debridement material was prepared and treated by plasma. Samples before and after plasma treatment were characterized by a series of methods, including scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and water uptake capacity. Besides, mechanical, coagulation, and in vitro biofilm removal performances of the textile pile debridement material were evaluated, with a medical gauze as a control. The results demonstrate that the plasma treatment produced corrosions and oxygen-containing polar groups on the fiber surface, offering an enhanced water uptake capacity of the textile pile debridement material. In addition, compressive tests certify the mechanical performances of the textile pile debridement material in both dry and wet conditions. The results from a kinetic clotting time test suggest a favorable ability to promote blood coagulation. Furthermore, the results of an MTT cell viability assay, SEM, and confocal laser scanning microscopy (CLSM) illustrate that the textile pile debridement material demonstrates a more superior in vitro biofilm removal performance than medical gauze. All of these characterizations suggest that the textile pile debridement material can offer a feasible application for clinical wound debridement.
Collapse
Affiliation(s)
- Yijun Fu
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, College of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Qi An
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
| | - Yue Cheng
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China;
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai 201620, China;
| | - Haifeng Zhang
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, College of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Yan Ge
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, College of Textile and Clothing, Nantong University, Nantong 226019, China
| | - Dawei Li
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- Correspondence: (D.L.); (Y.Z.); Tel.: +86-513-8501-2837 (D.L.); +86-513-8501-2871 (Y.Z.)
| | - Yu Zhang
- College of Textile and Clothing, Nantong University, Nantong 226019, China; (Y.F.); (Q.A.); (Y.C.); (H.Z.); (Y.G.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, College of Textile and Clothing, Nantong University, Nantong 226019, China
- Correspondence: (D.L.); (Y.Z.); Tel.: +86-513-8501-2837 (D.L.); +86-513-8501-2871 (Y.Z.)
| |
Collapse
|
207
|
Cui P, Feng L, Zhang L, He J, An T, Fu X, Li C, Zhao X, Zhai Y, Li H, Yan W, Li H, Luo X, Lei C, Wang H, Yang X. Antimicrobial Resistance, Virulence Genes, and Biofilm Formation Capacity Among Enterococcus species From Yaks in Aba Tibetan Autonomous Prefecture, China. Front Microbiol 2020; 11:1250. [PMID: 32595625 PMCID: PMC7304059 DOI: 10.3389/fmicb.2020.01250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
Yaks provide necessities such as meat and milk for Tibetans living at high altitudes on and around the Qinghai-Tibetan Plateau. Enterococci are ubiquitous members of the animal gut microbiota that can cause biofilm-associated opportunistic infections. Meanwhile, multidrug-resistant Enterococcus also poses a serious threat to public health. This study aims to characterize antibiotic resistance, virulence genes, and biofilm formation of enterococci from yaks. From April 2018 to July 2019, we collected 395 fecal samples of yaks in Aba Tibetan Autonomous Prefecture, China. Enterococci isolated from the samples were identified and classified according to the 16S rDNA sequence. The antibiotic resistance of each isolate was detected according to the Kirby-Bauer disk diffusion method, and antibiotic resistance genes were detected by polymerase chain reaction (PCR) and sequencing. Enterococcal biofilms were assessed using standard procedures. Different virulence genes were detected by PCR and sequencing. In total, 381 enterococci strains were recovered, with Enterococcus faecalis (41.99%) and Enterococcus faecium (37.80%) being the predominant species. Many isolates were multidrug- resistant (60.37%) and showed a high resistance rate to rifampicin (64.30%) and tetracycline (61.54%). We also detected various antimicrobial resistance (AMR) genes in the tested strains. The E. faecalis strains had higher frequency of biofilm formation and virulence genes than other enterococcal species. This is the first report that shows yaks are repositories for drug-resistant enterococci with virulent determinants and biofilms that may spread into humans and to environment. This study also provides useful data suggesting that enterococci may pose a potential health risk to yaks. Therefore, active surveillance of AMR and pathogenesis in enterococci from yaks is urgently warranted.
Collapse
Affiliation(s)
- Pengfei Cui
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lan Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lan Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan He
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tianwu An
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Xue Fu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Cui Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaodong Zhao
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Yaru Zhai
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hao Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenjun Yan
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huade Li
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
208
|
Evolution of vancomycin-resistant Enterococcus faecium during colonization and infection in immunocompromised pediatric patients. Proc Natl Acad Sci U S A 2020; 117:11703-11714. [PMID: 32393645 PMCID: PMC7261057 DOI: 10.1073/pnas.1917130117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunocompromised patients are at increased risk for multidrug-resistant infections, due to broad-spectrum antibiotic exposure and a host environment with limited innate defenses. This study explored how vancomycin-resistant Enterococcus faecium (VREfm), a pathogen endemic to many hospitals, underwent genomic and phenotypic changes during intestinal colonization and bloodstream infection of immunocompromised pediatric patients. We identified a mutation conferring bacterial growth in alternative sugars that arose de novo in two different patients and was also present in five other patients. We also characterized mutations in surface polysaccharide production associated with better adherence to surfaces and resistance to the innate immune factor lysozyme. These findings suggest that targeting carbohydrate availability and bacterial adherence may be worthwhile strategies to limit VREfm proliferation in immunocompromised hosts. Patients with hematological malignancies or undergoing hematopoietic stem cell transplantation are vulnerable to colonization and infection with multidrug-resistant organisms, including vancomycin-resistant Enterococcus faecium (VREfm). Over a 10-y period, we collected and sequenced the genomes of 110 VREfm isolates from gastrointestinal and blood cultures of 24 pediatric patients undergoing chemotherapy or hematopoietic stem cell transplantation for hematological malignancy at St. Jude Children’s Research Hospital. We used patient-specific reference genomes to identify variants that arose over time in subsequent gastrointestinal and blood isolates from each patient and analyzed these variants for insight into how VREfm adapted during colonization and bloodstream infection within each patient. Variants were enriched in genes involved in carbohydrate metabolism, and phenotypic analysis identified associated differences in carbohydrate utilization among isolates. In particular, a Y585C mutation in the sorbitol operon transcriptional regulator gutR was associated with increased bacterial growth in the presence of sorbitol. We also found differences in biofilm-formation capability between isolates and observed that increased biofilm formation correlated with mutations in the putative E. faecium capsular polysaccharide (cps) biosynthetic locus, with different mutations arising independently in distinct genetic backgrounds. Isolates with cps mutations showed improved survival following exposure to lysozyme, suggesting a possible reason for the selection of capsule-lacking bacteria. Finally, we observed mutations conferring increased tolerance of linezolid and daptomycin in patients who were treated with these antibiotics. Overall, this study documents known and previously undescribed ways that VREfm evolve during intestinal colonization and subsequent bloodstream infection in immunocompromised pediatric patients.
Collapse
|
209
|
Xu H, Wang X, Feng W, Liu Q, Zhou S, Liu Q, Cai L. The gut microbiota and its interactions with cardiovascular disease. Microb Biotechnol 2020; 13:637-656. [PMID: 31984651 PMCID: PMC7111081 DOI: 10.1111/1751-7915.13524] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/13/2022] Open
Abstract
The intestine is colonized by a considerable community of microorganisms that cohabits within the host and plays a critical role in maintaining host homeostasis. Recently, accumulating evidence has revealed that the gut microbial ecology plays a pivotal role in the occurrence and development of cardiovascular disease (CVD). Moreover, the effects of imbalances in microbe-host interactions on homeostasis can lead to the progression of CVD. Alterations in the composition of gut flora and disruptions in gut microbial metabolism are implicated in the pathogenesis of CVD. Furthermore, the gut microbiota functions like an endocrine organ that produces bioactive metabolites, including trimethylamine/trimethylamine N-oxide, short-chain fatty acids and bile acids, which are also involved in host health and disease via numerous pathways. Thus, the gut microbiota and its metabolic pathways have attracted growing attention as a therapeutic target for CVD treatment. The fundamental purpose of this review was to summarize recent studies that have illustrated the complex interactions between the gut microbiota, their metabolites and the development of common CVD, as well as the effects of gut dysbiosis on CVD risk factors. Moreover, we systematically discuss the normal physiology of gut microbiota and potential therapeutic strategies targeting gut microbiota to prevent and treat CVD.
Collapse
Affiliation(s)
- Hui Xu
- Cardiovascular Centerthe First Hospital of Jilin UniversityChangchun130021China
- Pediatric Research InstituteDepartment of Pediatricsthe University of LouisvilleLouisvilleKY40202USA
| | - Xiang Wang
- Cardiovascular Centerthe First Hospital of Jilin UniversityChangchun130021China
| | - Wenke Feng
- Department of Pharmacology and Toxicologythe University of Louisville School of MedicineLouisvilleKY40202USA
- Division of Gastroenterology, Hepatology and NutritionDepartment of Medicinethe University of Louisville School of MedicineLouisvilleKY40202USA
| | - Qi Liu
- Department of Pharmacology and Toxicologythe University of Louisville School of MedicineLouisvilleKY40202USA
- Division of Gastroenterology, Hepatology and NutritionDepartment of Medicinethe University of Louisville School of MedicineLouisvilleKY40202USA
- The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325035China
| | - Shanshan Zhou
- Cardiovascular Centerthe First Hospital of Jilin UniversityChangchun130021China
| | - Quan Liu
- Cardiovascular Centerthe First Hospital of Jilin UniversityChangchun130021China
| | - Lu Cai
- Pediatric Research InstituteDepartment of Pediatricsthe University of LouisvilleLouisvilleKY40202USA
- Department of Pharmacology and Toxicologythe University of Louisville School of MedicineLouisvilleKY40202USA
| |
Collapse
|
210
|
Růžičková M, Vítězová M, Kushkevych I. The Characterization of Enterococcus Genus: Resistance Mechanisms and Inflammatory Bowel Disease. Open Med (Wars) 2020; 15:211-224. [PMID: 32292819 PMCID: PMC7147287 DOI: 10.1515/med-2020-0032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
The constantly growing bacterial resistance against antibiotics is recently causing serious problems in the field of human and veterinary medicine as well as in agriculture. The mechanisms of resistance formation and its preventions are not well explored in most bacterial genera. The aim of this review is to analyse recent literature data on the principles of antibiotic resistance formation in bacteria of the Enterococcus genus. Furthermore, the habitat of the Enterococcus genus, its pathogenicity and pathogenicity factors, its epidemiology, genetic and molecular aspects of antibiotic resistance, and the relationship between these bacteria and bowel diseases are discussed. So-called VREfm - vancomycin resistant Enterococcus faecium and its currently rapidly growing resistance as well as the significance of these bacteria in nosocomial diseases is described.
Collapse
Affiliation(s)
- Michaela Růžičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00Brno, Czech Republic
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00Brno, Czech Republic
| | - Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00Brno, Czech Republic
| |
Collapse
|
211
|
Das AK, Dudeja M, Kohli S, Ray P, Singh M, Kaur PS. Biofilm synthesis and other virulence factors in multidrug-resistant uropathogenic enterococci isolated in Northern India. Indian J Med Microbiol 2020; 38:200-209. [PMID: 32883934 DOI: 10.4103/ijmm.ijmm_19_355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose Enterococci express high degree of resistance towards wide range of antibiotics. Production of biofilm and many virulence factors along with drug resistance makes it difficult to eradicate the infection from urinary tract. The present study detected the expression of such factors including biofilm production by multidrug-resistant (MDR) enterococci. Materials and Methods Drug susceptibility of 103 uropathogenic enterococci was performed followed by estimation of minimum inhibitory concentration of high-level gentamicin and vancomycin by microbroth dilution method. Vancomycin-resistant genes were detected by multiplex polymerase chain reaction. Production of virulence factors such as haemagglutination, caseinase, lipase, gelatinase, haemolysin and β-lactamase was detected by phenotypic methods in MDR strains. Biofilm production was detected by calcofluor-white fluorescence staining and semi-quantitative adherence assay. Results 45% and 18.4% of the isolates were high-level gentamicin-resistant and vancomycin-resistant enterococci (VRE), respectively. vanA gene was detected in 14 and vanB gene in 5 strains. Biofilm, caseinase and gelatinase were the most expressed virulence factor. Expression of caseinase, gelatinase and lipase was significantly higher in Enterococcus faecalis (P < 0.05). Expression of haemagglutination, gelatinase and haemolysin among the vancomycin-resistant isolates was significantly higher (P < 0.05). Conclusion VanA and vanB are the prevalent genotypes responsible for vancomycin resistance. The high prevalence of MDR enterococcal strains producing biofilm and virulence determinants raises concern. asa1, hyl, esp, gelE, cyl and other genes are known to express these factors and contribute to biofilm formation. Most uropathogenic enterococci expressed biofilm at moderate level and can be detected effectively by calcofluor-white staining. No correlation was noted between vancomycin resistance and biofilm production.
Collapse
Affiliation(s)
- Ayan Kumar Das
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Mridu Dudeja
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Sunil Kohli
- Department of Medicine, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Pratima Ray
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Manvi Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Preet Simran Kaur
- Department of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
212
|
Hallinen KM, Karslake J, Wood KB. Delayed antibiotic exposure induces population collapse in enterococcal communities with drug-resistant subpopulations. eLife 2020; 9:e52813. [PMID: 32207406 PMCID: PMC7159880 DOI: 10.7554/elife.52813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
The molecular underpinnings of antibiotic resistance are increasingly understood, but less is known about how these molecular events influence microbial dynamics on the population scale. Here, we show that the dynamics of E. faecalis communities exposed to antibiotics can be surprisingly rich, revealing scenarios where increasing population size or delaying drug exposure can promote population collapse. Specifically, we demonstrate how density-dependent feedback loops couple population growth and antibiotic efficacy when communities include drug-resistant subpopulations, leading to a wide range of behavior, including population survival, collapse, or one of two qualitatively distinct bistable behaviors where survival is favored in either small or large populations. These dynamics reflect competing density-dependent effects of different subpopulations, with growth of drug-sensitive cells increasing but growth of drug-resistant cells decreasing effective drug inhibition. Finally, we demonstrate how populations receiving immediate drug influx may sometimes thrive, while identical populations exposed to delayed drug influx collapse.
Collapse
Affiliation(s)
- Kelsey M Hallinen
- Department of Biophysics, University of MichiganAnn ArborUnited States
| | - Jason Karslake
- Department of Biophysics, University of MichiganAnn ArborUnited States
| | - Kevin B Wood
- Department of Biophysics, University of MichiganAnn ArborUnited States
- Department of Physics, University of MichiganAnn ArborUnited States
| |
Collapse
|
213
|
Tan CAZ, Antypas H, Kline KA. Overcoming the challenge of establishing biofilms in vivo: a roadmap for Enterococci. Curr Opin Microbiol 2020; 53:9-18. [PMID: 32062025 DOI: 10.1016/j.mib.2020.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/28/2022]
Abstract
Enterococcus faecalis forms single and mixed-species biofilms on both tissue and medical devices in the host, often under exposure to fluid flow, giving rise to infections that are recalcitrant to treatment. The factors that drive enterococcal biofilm formation in the host, however, remain unclear. Recent reports in other pathogens show how surface sensing by bacteria can trigger the transition from planktonic to sessile lifestyle. Fluid flow can enhance initial adhesion, but also influence quorum sensing. Biofilm-specific factors, as well as biofilm size and extracellular polymeric substances, can compromise opsonization and phagocytosis. Bacterial interspecies synergy can create favorable conditions in the host for biofilm formation. Through these concepts, we define the knowledge gaps in understanding host-associated E. faecalis biofilm formation and propose a roadmap for future investigations.
Collapse
Affiliation(s)
- Casandra Ai Zhu Tan
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Haris Antypas
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
214
|
Stedman A, van Vliet AHM, A Chambers M, Gutierrez-Merino J. Gut commensal bacteria show beneficial properties as wildlife probiotics. Ann N Y Acad Sci 2020; 1467:112-132. [PMID: 32026493 DOI: 10.1111/nyas.14302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
Probiotics are noninvasive, environmentally friendly alternatives for reducing infectious diseases in wildlife species. Our aim in the present study was to evaluate the potential of gut commensals such as lactic acid bacteria (LAB) as wildlife probiotics. The LAB selected for our analyses were isolated from European badgers (Meles meles), a wildlife reservoir of bovine tuberculosis, and comprised four different genera: Enterococcus, Weissella, Pediococcus, and Lactobacillus. The enterococci displayed a phenotype and genotype that included the production of antibacterial peptides and stimulation of antiviral responses, as well as the presence of virulence and antibiotic resistance genes; Weissella showed antimycobacterial activity owing to their ability to produce lactate and ethanol; and lactobacilli and pediococci modulated proinflammatory phagocytic responses that associate with protection against pathogens, responses that coincide with the presence of immunomodulatory markers in their genomes. Although both lactobacilli and pediococci showed resistance to antibiotics, this was naturally acquired, and almost all isolates demonstrated a phylogenetic relationship with isolates from food and healthy animals. Our results show that LAB display probiotic benefits that depend on the genus, and that lactobacilli and pediococci are probably the most obvious candidates as probiotics against infectious diseases in wildlife because of their food-grade status and ability to modulate protective innate immune responses.
Collapse
Affiliation(s)
- Anna Stedman
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom.,The Pirbright Institute, Surrey, United Kingdom
| | | | - Mark A Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom.,Bacteriology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jorge Gutierrez-Merino
- School of Biosciences and Medicine, University of Surrey-Nutritional Sciences, Guildford, United Kingdom
| |
Collapse
|
215
|
Planktonic and Sessile Artificial Colonic Microbiota Harbor Distinct Composition and Reestablish Differently upon Frozen and Freeze-Dried Long-Term Storage. mSystems 2020; 5:5/1/e00521-19. [PMID: 31964766 PMCID: PMC6977070 DOI: 10.1128/msystems.00521-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation has been successfully applied in the treatment of recurrent Clostridium difficile infection and has been suggested as an alternative therapy for other intestinal disorders such as inflammatory bowel disease or metabolic syndrome. “Artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation, but effective preservation strategies must be developed. In this study, we systematically investigated the response of sessile and planktonic artificial colonic microbiota to cryopreservation and lyophilization. We suggest that functional redundancy is an important factor in providing functional stability with respect to exposure to stress during processing and storage. Functional redundancy in compositionally reduced microbial systems may be considered when designing microbial products for therapy. Biofilm-associated, sessile communities represent the major bacterial lifestyle, whereas planktonic cells mainly appear during initial colonization of new surfaces. Previous research, mainly performed with pathogens, demonstrated increased environmental stress tolerance of biofilm-growing compared to planktonic bacteria. The lifestyle-specific stress response of colonic microbiota, both natural and fermentation produced, has not been addressed before. Planktonic and sessile “artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation in treating gastrointestinal disorders. We therefore characterized planktonic and sessile microbiota produced in two PolyFermS models inoculated with immobilized fecal microbiota and comparatively tested their levels of tolerance of frozen storage (–80°C) and freeze-dried storage (4°C) for 9 months to mimic preservation strategies for therapeutic applications. Sessile microbiota harbored next to shared taxa a unique community distinguishable from planktonic microbiota. Synergistetes and Proteobacteria were highly represented in sessile microbiota, while Firmicutes were more abundant in planktonic microbiota. The community structure and metabolic activity of both microbiota, monitored during standardized reactivation batch fermentations, were better preserved after frozen storage than dried storage, indicated by higher Bray-Curtis similarity and enhanced recovery of metabolite production. For both lifestyles, reestablishment of Bacteroidaceae was impaired after frozen and dried storage along with reduced propionate formation. In contrast, butyrate production was maintained after reactivation despite compositional rearrangements within the butyrate-producing community. Unexpectedly, the rate of recovery of metabolite production was lower after preservation of sessile than planktonic microbiota. We speculate that higher functional dependencies between microbes might have led to the lower stress tolerance of sessile than planktonic microbiota. IMPORTANCE Fecal microbiota transplantation has been successfully applied in the treatment of recurrent Clostridium difficile infection and has been suggested as an alternative therapy for other intestinal disorders such as inflammatory bowel disease or metabolic syndrome. “Artificial” colonic microbiota delivered by PolyFermS continuous fermentation models can provide a controllable and reproducible alternative to fecal transplantation, but effective preservation strategies must be developed. In this study, we systematically investigated the response of sessile and planktonic artificial colonic microbiota to cryopreservation and lyophilization. We suggest that functional redundancy is an important factor in providing functional stability with respect to exposure to stress during processing and storage. Functional redundancy in compositionally reduced microbial systems may be considered when designing microbial products for therapy.
Collapse
|
216
|
Potential of Novel Bacterial Cellulose Dressings Chemisorbed with Antiseptics for the Treatment of Oral Biofilm Infections. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infections of the oral cavity are caused by multicellular communities of microbes, referred to as biofilms. Due to the high tolerance of biofilms to antibiotics and specific conditions within the oral cavity, there is an ongoing search for carriers that are able to deliver high local concentrations of potent antimicrobials that can eradicate pathogenic biofilms. Bacterial cellulose, owing to its high flexibility, absorbance, and release potential, meets these demands. In this work we chemisorbed bacterial cellulose with antiseptics containing povidone-iodine or polihexanide and analyzed their ability to eradicate in vitro biofilms formed by oral pathogens, such as Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Candida albicans, Streptococcus mutans, Staphylococcus aureus, and Pseudomonas aeruginosa. In tests performed by means of standard laboratory methods and with a long contact time (24 h), all antiseptics released from the cellulose dressings displayed a very high antibiofilm efficacy. On the other hand, when conditions imitating the oral cavity were used and cellulose dressings were applied for a 0.5–1 h contact time, the antiseptics released from the dressings displayed lower, though still acceptable, activity. Our findings indicate that besides species-specific resistance to particular antiseptic agents, environmental and experimental settings play an essential role in outcomes. Finally, in a proof-of-concept experiment performed in an oral cavity typodont model, we demonstrated the high flexibility and adhesiveness of antiseptic-containing cellulose dressings. Our novel findings, if developed in further studies, may lead to the introduction of new types of dressings that are able to efficiently deal with biofilm infections of the oral cavity.
Collapse
|
217
|
Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One 2019; 14:e0223925. [PMID: 31770390 PMCID: PMC6879142 DOI: 10.1371/journal.pone.0223925] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Nosocomial infections have become a serious threat in our times and are getting more difficult to handle due to increasing development of resistances in bacteria. In this light, cold atmospheric plasma (CAP), which is known to effectively inactivate microorganisms, may be a promising alternative for application in the fields of dentistry and dermatology. CAPs are partly ionised gases, which operate at low temperature and are composed of electrons, ions, excited atoms and molecules, reactive oxygen and nitrogen species. In this study, the effect of CAP generated from ambient air was investigated against Enterococcus faecalis, grown on agar plates or as biofilms cultured for up to 72 h. CAP reduced the colony forming units (CFU) on agar plates by > 7 log10 steps. Treatment of 24 h old biofilms of E. faecalis resulted in CFU-reductions by ≥ 3 log10 steps after CAP treatment for 5 min and by ≥ 5 log10 steps after CAP treatment for 10 min. In biofilm experiments, chlorhexidine (CHX) and UVC radiation served as positive controls and were only slightly more effective than CAP. There was no damage of cytoplasmic membranes upon CAP treatment as shown by spectrometric measurements for release of nucleic acids. Thus, membrane damage seems not to be the primary mechanism of action for CAP towards E. faecalis. Overall, CAP showed pronounced antimicrobial efficacy against E. faecalis on agar plates as well as in biofilms similar to positive controls CHX or UVC.
Collapse
|
218
|
Wang J, Chen XY, Zhao Y, Yang Y, Wang W, Wu C, Yang B, Zhang Z, Zhang L, Liu Y, Du X, Li W, Qiu L, Jiang P, Mou XZ, Li YQ. pH-Switchable Antimicrobial Nanofiber Networks of Hydrogel Eradicate Biofilm and Rescue Stalled Healing in Chronic Wounds. ACS NANO 2019; 13:11686-11697. [PMID: 31490650 DOI: 10.1021/acsnano.9b05608] [Citation(s) in RCA: 247] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Biofilm infections can induce chronic inflammation and stall the normal orchestrated course of wound-healing cascades. Herein, pH-switchable antimicrobial hydrogel with nanofiber networks for biofilm eradication and rescuing stalled healing in chronic wounds is reported on the basis of the self-assembly of a designed octapeptide (IKFQFHFD) at neutral pH. This hydrogel is biocompatible and exhibits an acidic pH (pathological environment of infected chronic wounds)-switchable broad-spectrum antimicrobial effect via a mechanism involving cell wall and membrane disruption. The antimicrobial activity of hydrogel is derived from its acidic pH-dependent nanofiber network destabilization and activated release of IKFQFHFD, which is antimicrobial only at acidic pH due to the antimicrobial peptide-like molecular structure. In addition, supramolecular nanofiber networks loaded with drugs of cypate (photothermal agent) and proline (procollagen component) are further developed. In vitro experiments show that loaded drugs exhibit acidic pH (pH ∼ 5.5)-responsive release profiles, and synergistic biofilm eradication and subsequent healing cascade activation of cells proliferation are achieved on the basis of the supramolecular nanofiber networks. Remarkably, the nanofiber networks of hydrogel enable in vivo complete healing of MRSA biofilm infected wound in diabetic mice within 20 days, showing great potential as promising chronic wound dressings. The proposed synergistic strategy for eradicating biofilm and activating subsequent healing cascades may offer a powerful modality for the management of clinical chronic wounds.
Collapse
Affiliation(s)
- Jianhao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering and Life Science , Changzhou University , Changzhou 213164 , China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province , Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou 310014 , China
| | - Yuan Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering and Life Science , Changzhou University , Changzhou 213164 , China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , China
| | - Weijie Wang
- Shandong Xiandai University , Jinan 250104 , China
| | - Chun Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Baozhu Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering and Life Science , Changzhou University , Changzhou 213164 , China
| | - Zhaotian Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Leshuai Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Yun Liu
- Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Xuancheng Du
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering and Life Science , Changzhou University , Changzhou 213164 , China
| | - Weifeng Li
- School of Physics , Shandong University , Jinan 250100 , China
| | - Lin Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering and Life Science , Changzhou University , Changzhou 213164 , China
| | - Pengju Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmaceutical Engineering and Life Science , Changzhou University , Changzhou 213164 , China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province , Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou 310014 , China
| | - Yong-Qiang Li
- School of Physics , Shandong University , Jinan 250100 , China
| |
Collapse
|
219
|
Exploiting biofilm phenotypes for functional characterization of hypothetical genes in Enterococcus faecalis. NPJ Biofilms Microbiomes 2019; 5:23. [PMID: 31552139 PMCID: PMC6753144 DOI: 10.1038/s41522-019-0099-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is a commensal organism as well as an important nosocomial pathogen, and its infections are typically linked to biofilm formation. Nearly 25% of the E. faecalis OG1RF genome encodes hypothetical genes or genes of unknown function. Elucidating their function and how these gene products influence biofilm formation is critical for understanding E. faecalis biology. To identify uncharacterized early biofilm determinants, we performed a genetic screen using an arrayed transposon (Tn) library containing ~2000 mutants in hypothetical genes/intergenic regions and identified eight uncharacterized predicted protein-coding genes required for biofilm formation. We demonstrate that OG1RF_10435 encodes a phosphatase that modulates global protein expression and arginine catabolism and propose renaming this gene bph (biofilm phosphatase). We present a workflow for combining phenotype-driven experimental and computational evaluation of hypothetical gene products in E. faecalis, which can be used to study hypothetical genes required for biofilm formation and other phenotypes of diverse bacteria.
Collapse
|
220
|
Memariani H, Memariani M, Ghasemian A. An overview on anti-biofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol 2019; 35:143. [PMID: 31493142 DOI: 10.1007/s11274-019-2719-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/24/2019] [Indexed: 01/22/2023]
Abstract
Bacterial biofilms are multicellular aggregates enclosed in a self-created biopolymer matrix. Biofilm-producing bacteria have become a great public health problem worldwide because biofilms enable these microorganisms to evade several clearance mechanisms produced by host and synthetic sources. Over the past years, different flavonoids including quercetin have engrossed considerable interest among researchers owing to their potential anti-biofilm properties. To our knowledge, there is no review regarding effects of quercetin towards bacterial biofilms, prompting us to summarize experimental evidence on its anti-biofilm properties. Quercetin inhibits biofilm development by a diverse array of bacterial pathogens such as Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Pseudomonas aeruginosa. Prevention of bacterial adhesion, suppression of quorum-sensing pathways, disruption or alteration of plasma membrane, inhibition of efflux pumps, and blocking nucleic acid synthesis have been documented as major anti-biofilm mechanisms of quercetin. Overall, anti-biofilm activity of quercetin can open up new horizons in a wide range of biomedical areas, from food industry to medicine.
Collapse
Affiliation(s)
- Hamed Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
221
|
Dr. Jekyll and Mr. Hide: How Enterococcus faecalis Subverts the Host Immune Response to Cause Infection. J Mol Biol 2019; 431:2932-2945. [DOI: 10.1016/j.jmb.2019.05.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
|
222
|
Ben Braïek O, Smaoui S. Enterococci: Between Emerging Pathogens and Potential Probiotics. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5938210. [PMID: 31240218 PMCID: PMC6556247 DOI: 10.1155/2019/5938210] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/06/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022]
Abstract
Enterococci are ubiquitous microorganisms that could be found everywhere; in water, plant, soil, foods, and gastrointestinal tract of humans and animals. They were previously used as starters in food fermentation due to their biotechnological traits (enzymatic and proteolytic activities) or protective cultures in food biopreservation due to their produced antimicrobial bacteriocins called enterocins or as probiotics, live cells with different beneficial characteristics such as stimulation of immunity, anti-inflammatory activity, hypocholesterolemic effect, and prevention/treatment of some diseases. However, in the last years, the use of enterococci in foods or as probiotics caused an important debate because of their opportunistic pathogenicity implicated in several nosocomial infections due to virulence factors and antibiotic resistance, particularly the emergence of vancomycin-resistant enterococci. These virulence traits of some enterococci are associated with genetic transfer mechanisms. Therefore, the development of new enterococcal probiotics needs a strict assessment with regard to safety aspects for selecting the truly harmless enterococcal strains for safe applications. This review tries to give some data of the different points of view about this question.
Collapse
Affiliation(s)
- Olfa Ben Braïek
- Laboratory of Transmissible Diseases and Biologically Active Substances (LR99ES27), Faculty of Pharmacy, University of Monastir, Tunisia
| | - Slim Smaoui
- Laboratory of Microorganisms and Biomolecules of the Centre of Biotechnology of Sfax, Tunisia
| |
Collapse
|
223
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
224
|
Klebsiella pneumonia carbapenemase (KPC), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus spp. (VRE) in the food production chain and biofilm formation on abiotic surfaces. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
225
|
Liu F, He D, Yu Y, Cheng L, Zhang S. Quaternary Ammonium Salt-Based Cross-Linked Micelles to Combat Biofilm. Bioconjug Chem 2019; 30:541-546. [PMID: 30726061 DOI: 10.1021/acs.bioconjchem.9b00010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to self-produced extracellular polymeric substances (EPS), biofilms are hard to eradicate by common antimicrobials. Herein, a new quaternary ammonium salt based cross-linked micelle (QAS@CM) was created to combat biofilms. The QAS@CM adsorbed first onto the biofilm surface through multicharged interaction, then penetrated the EPS in the form of nanoparticles and diffused throughout the films. By responding to the biofilm acid/lipase microenvironment, these nanoparticles would further break into quaternary ammonium oligomers and act as the polyvalent inhibitors to effectively destroy the established biofilm and kill the corresponding bacteria within it.
Collapse
Affiliation(s)
- Fangqin Liu
- National Engineering Research Center for Biomaterials, and College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Dengfeng He
- National Engineering Research Center for Biomaterials, and College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Yunlong Yu
- National Engineering Research Center for Biomaterials, and College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases , Sichuan University , Chengdu 610041 , China
| | - Shiyong Zhang
- National Engineering Research Center for Biomaterials, and College of Chemistry , Sichuan University , 29 Wangjiang Road , Chengdu 610064 , China
| |
Collapse
|