201
|
Wang M, Li Q, Liu L. Factors and Methods for the Detection of Gene Expression Regulation. Biomolecules 2023; 13:biom13020304. [PMID: 36830673 PMCID: PMC9953580 DOI: 10.3390/biom13020304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gene-expression regulation involves multiple processes and a range of regulatory factors. In this review, we describe the key factors that regulate gene expression, including transcription factors (TFs), chromatin accessibility, histone modifications, DNA methylation, and RNA modifications. In addition, we also describe methods that can be used to detect these regulatory factors.
Collapse
|
202
|
Pei XM, Yeung MHY, Wong ANN, Tsang HF, Yu ACS, Yim AKY, Wong SCC. Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells 2023; 12:493. [PMID: 36766834 PMCID: PMC9913990 DOI: 10.3390/cells12030493] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The outbreak of COVID-19 has positively impacted the NGS market recently. Targeted sequencing (TS) has become an important routine technique in both clinical and research settings, with advantages including high confidence and accuracy, a reasonable turnaround time, relatively low cost, and fewer data burdens with the level of bioinformatics or computational demand. Since there are no clear consensus guidelines on the wide range of next-generation sequencing (NGS) platforms and techniques, there is a vital need for researchers and clinicians to develop efficient approaches, especially for the molecular diagnosis of diseases in the emergency of the disease and the global pandemic outbreak of COVID-19. In this review, we aim to summarize different methods of TS, demonstrate parameters for TS assay designs, illustrate different TS panels, discuss their limitations, and present the challenges of TS concerning their clinical application for the molecular diagnosis of human diseases.
Collapse
Affiliation(s)
- Xiao Meng Pei
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Martin Ho Yin Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Alex Ngai Nick Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Hin Fung Tsang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Department of Clinical Laboratory and Pathology, Hong Kong Adventist Hospital, Hong Kong, China
| | - Allen Chi Shing Yu
- Codex Genetics Limited, Unit 212, 2/F., Building 16W, No. 16 Science Park West Avenue, The Hong Kong Science Park, Hong Kong 852, China
| | - Aldrin Kay Yuen Yim
- Codex Genetics Limited, Unit 212, 2/F., Building 16W, No. 16 Science Park West Avenue, The Hong Kong Science Park, Hong Kong 852, China
| | - Sze Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
203
|
Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat Biotechnol 2023; 41:212-221. [PMID: 36076083 DOI: 10.1038/s41587-022-01447-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
The analysis of cell-free DNA (cfDNA) in plasma provides information on pathological processes in the body. Blood cfDNA is in the form of nucleosomes, which maintain their tissue- and cancer-specific epigenetic state. We developed a single-molecule multiparametric assay to comprehensively profile the epigenetics of plasma-isolated nucleosomes (EPINUC), DNA methylation and cancer-specific protein biomarkers. Our system allows for high-resolution detection of six active and repressive histone modifications and their ratios and combinatorial patterns on millions of individual nucleosomes by single-molecule imaging. In addition, our system provides sensitive and quantitative data on plasma proteins, including detection of non-secreted tumor-specific proteins, such as mutant p53. EPINUC analysis of a cohort of 63 colorectal cancer, 10 pancreatic cancer and 33 healthy plasma samples detected cancer with high accuracy and sensitivity, even at early stages. Finally, combining EPINUC with direct single-molecule DNA sequencing revealed the tissue of origin of colorectal, pancreatic, lung and breast tumors. EPINUC provides multilayered information of potential clinical relevance from limited (<1 ml) liquid biopsy material.
Collapse
|
204
|
Chen G, Zhang J, Fu Q, Taly V, Tan F. Integrative analysis of multi-omics data for liquid biopsy. Br J Cancer 2023; 128:505-518. [PMID: 36357703 PMCID: PMC9938261 DOI: 10.1038/s41416-022-02048-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
The innovation of liquid biopsy holds great potential to revolutionise cancer management through early diagnosis and timely treatment of cancer. Integrative analysis of different tumour-derived omics data (such as genomics, epigenetics, fragmentomics, and proteomics) from body fluids for cancer detection and monitoring could outperform the analysis of single modality data alone. In this review, we focussed on the discussion of early cancer detection and molecular residual disease surveillance based on multi-omics data of blood. We summarised diverse types of tumour-derived components, current popular platforms for profiling cancer-associated signals, machine learning approaches for joint analysis of liquid biopsy data, as well as multi-omics-based early detection of cancers, molecular residual disease monitoring, and treatment response surveillance. We also discussed the challenges and future directions of multi-omics-based liquid biopsy. With the development of both experimental protocols and computational methods dedicated to liquid biopsy, the implementation of multi-omics strategies into the clinical workflow will likely benefit the clinical management of cancers including decision-making guidance and patient outcome improvement.
Collapse
Affiliation(s)
- Geng Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China.
- Center for Bioinformatics and Computational Biology, School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| | - Jing Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Qiaoting Fu
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, 200443, Shanghai, China
| | - Valerie Taly
- Université de Paris, UMR-S1138, CNRS SNC5096, Équipe labélisée Ligue Nationale contre le cancer, Centre de Recherche des Cordeliers, Paris, France.
| | - Fei Tan
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China.
- Shanghai Skin Disease Clinical College, The Fifth Clinical Medical College, Anhui Medical University, 200443, Shanghai, China.
| |
Collapse
|
205
|
Madueke I, Lee RJ, Miyamoto DT. Circulating Tumor Cells and Circulating Tumor DNA in Urologic Cancers. Urol Clin North Am 2023; 50:109-114. [DOI: 10.1016/j.ucl.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
206
|
Circulating Tumor DNA Methylation Biomarkers for Characterization and Determination of the Cancer Origin in Malignant Liver Tumors. Cancers (Basel) 2023; 15:cancers15030859. [PMID: 36765815 PMCID: PMC9913861 DOI: 10.3390/cancers15030859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Malignant liver tumors include primary malignant liver tumors and liver metastases. They are among the most common malignancies worldwide. The disease has a poor prognosis and poor overall survival, especially with liver metastases. Therefore, early detection and differentiation between malignant liver tumors are critical for patient treatment selection. The detection of cancer and the prediction of its origin is possible with a DNA methylation profile of the tumor DNA compared to that of normal cells, which reflects tissue differentiation and malignant transformation. New technologies enable the characterization of the tumor methylome in circulating tumor DNA (ctDNA), providing a variety of new ctDNA methylation biomarkers, which can provide additional information to clinical decision-making. Our review of the literature provides insight into methylation changes in ctDNA from patients with common malignant liver tumors and can serve as a starting point for further research.
Collapse
|
207
|
Schroers-Martin JG, Alig S, Garofalo A, Tessoulin B, Sugio T, Alizadeh AA. Molecular Monitoring of Lymphomas. ANNUAL REVIEW OF PATHOLOGY 2023; 18:149-180. [PMID: 36130071 DOI: 10.1146/annurev-pathol-050520-044652] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular monitoring of tumor-derived alterations has an established role in the surveillance of leukemias, and emerging nucleic acid sequencing technologies are likely to similarly transform the clinical management of lymphomas. Lymphomas are well suited for molecular surveillance due to relatively high cell-free DNA and circulating tumor DNA concentrations, high somatic mutational burden, and the existence of stereotyped variants enabling focused interrogation of recurrently altered regions. Here, we review the clinical scenarios and key technologies applicable for the molecular monitoring of lymphomas, summarizing current evidence in the literature regarding molecular subtyping and classification, evaluation of treatment response, the surveillance of active cellular therapies, and emerging clinical trial strategies.
Collapse
Affiliation(s)
- Joseph G Schroers-Martin
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA;
| | - Stefan Alig
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA;
| | - Andrea Garofalo
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA;
| | - Benoit Tessoulin
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA; .,Current affiliation: Clinical Hematology Department, Nantes University Hospital, Nantes, France
| | - Takeshi Sugio
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA;
| | - Ash A Alizadeh
- Department of Medicine, Divisions of Hematology and Oncology, Stanford University Medical Center, Stanford, California, USA; .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA.,Stanford Cancer Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
208
|
An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma L, Zhao Y, Xu G, Du S, Wu X, Zhang S, Hong X, Jin X, Sun K. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun 2023; 14:287. [PMID: 36653380 PMCID: PMC9849216 DOI: 10.1038/s41467-023-35959-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) are small molecules generated through a non-random fragmentation procedure. Despite commendable translational values in cancer liquid biopsy, however, the biology of cfDNA, especially the principles of cfDNA fragmentation, remains largely elusive. Through orientation-aware analyses of cfDNA fragmentation patterns against the nucleosome structure and integration with multidimensional functional genomics data, here we report a DNA methylation - nuclease preference - cutting end - size distribution axis, demonstrating the role of DNA methylation as a functional molecular regulator of cfDNA fragmentation. Hence, low-level DNA methylation could increase nucleosome accessibility and alter the cutting activities of nucleases during DNA fragmentation, which further leads to variation in cutting sites and size distribution of cfDNA. We further develop a cfDNA ending preference-based metric for cancer diagnosis, whose performance has been validated by multiple pan-cancer datasets. Our work sheds light on the molecular basis of cfDNA fragmentation towards broader applications in cancer liquid biopsy.
Collapse
Affiliation(s)
- Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xin Zhao
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Li Ma
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 518107, Shenzhen, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Shuowen Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China.
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| |
Collapse
|
209
|
Pandey S, Gupta VK, Lavania SP. Role of epigenetics in pancreatic ductal adenocarcinoma. Epigenomics 2023; 15:89-110. [PMID: 36647796 DOI: 10.2217/epi-2022-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, associated with poor survival outcomes. Lack of early diagnosis, resistance to conventional therapeutic treatments (including immunotherapy) and recurrence are some of the major hurdles in PDAC and contribute to its poor survival rate. While the risk of genetic predisposition to cancers is widely acknowledged and understood, recent advances in whole-genome and next-generation sequencing techniques have led to the acknowledgment of the role played by epigenetics, especially in PDAC. Epigenetic changes are heritable genetic modifications that influence gene expression without altering the DNA sequence. Epigenetic mechanisms (e.g., DNA methylation, post-translational modification of histone complexes and ncRNA) that result in reversible changes in gene expression are increasingly understood to be responsible for tumor initiation, development and even escape from immune surveillance. Our review seeks to highlight the various components of the epigenetic machinery that are known to be implicated in PDAC initiation and development and the feasibility of targeting these components to identify novel pharmacological strategies that could potentially lead to breakthroughs in PDAC treatment.
Collapse
Affiliation(s)
- Somnath Pandey
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Vineet K Gupta
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Shweta P Lavania
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
210
|
Grant BM, Pugh TJ, Oza AM. Molecular Monitoring in Endometrial Cancer-Ready for Prime Time? Clin Cancer Res 2023; 29:305-308. [PMID: 36354753 DOI: 10.1158/1078-0432.ccr-22-2781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022]
Abstract
SUMMARY Efforts are under way to define the role of minimally invasive strategies for molecular monitoring and risk stratification in endometrial cancer. A recent publication aims to define the association between circulating tumor DNA level and disease stage in patients with newly diagnosed endometrial cancer and determine whether sequencing of longitudinal cell-free DNA samples can be used for disease monitoring and detection of progression or recurrence. These results accelerate the current knowledge of molecular follow-up in endometrial cancer. See related article by Ashley et al., p. 410.
Collapse
Affiliation(s)
- Brooke M Grant
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
211
|
Darbeheshti F, Makrigiorgos GM. Enzymatic Methods for Mutation Detection in Cancer Samples and Liquid Biopsies. Int J Mol Sci 2023; 24:923. [PMID: 36674433 PMCID: PMC9865676 DOI: 10.3390/ijms24020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Low-level tumor somatic DNA mutations in tissue and liquid biopsies obtained from cancer patients can have profound implications for development of metastasis, prognosis, choice of treatment, follow-up, or early cancer detection. Unless detected, such low-frequency DNA alterations can misinform patient management decisions or become missed opportunities for personalized medicine. Next-generation sequencing technologies and digital-PCR can resolve low-level mutations but require access to specialized instrumentation, time, and resources. Enzymatic-based approaches to detection of low-level mutations provide a simple, straightforward, and affordable alternative to enrich and detect such alterations and is broadly available to low-resource laboratory settings. This review summarizes the traditional uses of enzymatic mutation detection and describes the latest exciting developments, potential, and applications with specific reference to the field of liquid biopsy in cancer.
Collapse
Affiliation(s)
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
212
|
Søreide K, Ismail W, Roalsø M, Ghotbi J, Zaharia C. Early Diagnosis of Pancreatic Cancer: Clinical Premonitions, Timely Precursor Detection and Increased Curative-Intent Surgery. Cancer Control 2023; 30:10732748231154711. [PMID: 36916724 PMCID: PMC9893084 DOI: 10.1177/10732748231154711] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The overall poor prognosis in pancreatic cancer is related to late clinical detection. Early diagnosis remains a considerable challenge in pancreatic cancer. Unfortunately, the onset of clinical symptoms in patients usually indicate advanced disease or presence of metastasis. ANALYSIS AND RESULTS Currently, there are no designated diagnostic or screening tests for pancreatic cancer in clinical use. Thus, identifying risk groups, preclinical risk factors or surveillance strategies to facilitate early detection is a target for ongoing research. Hereditary genetic syndromes are a obvious, but small group at risk, and warrants close surveillance as suggested by society guidelines. Screening for pancreatic cancer in asymptomatic individuals is currently associated with the risk of false positive tests and, thus, risk of harms that outweigh benefits. The promise of cancer biomarkers and use of 'omics' technology (genomic, transcriptomics, metabolomics etc.) has yet to see a clinical breakthrough. Several proposed biomarker studies for early cancer detection lack external validation or, when externally validated, have shown considerably lower accuracy than in the original data. Biopsies or tissues are often taken at the time of diagnosis in research studies, hence invalidating the value of a time-dependent lag of the biomarker to detect a pre-clinical, asymptomatic yet operable cancer. New technologies will be essential for early diagnosis, with emerging data from image-based radiomics approaches, artificial intelligence and machine learning suggesting avenues for improved detection. CONCLUSIONS Early detection may come from analytics of various body fluids (eg 'liquid biopsies' from blood or urine). In this review we present some the technological platforms that are explored for their ability to detect pancreatic cancer, some of which may eventually change the prospects and outcomes of patients with pancreatic cancer.
Collapse
Affiliation(s)
- Kjetil Søreide
- Department of Gastrointestinal Surgery, HPB unit, 60496Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, 60496Stavanger University Hospital, Stavanger, Norway
| | - Warsan Ismail
- Department of Gastrointestinal Surgery, HPB unit, 60496Stavanger University Hospital, Stavanger, Norway
| | - Marcus Roalsø
- Department of Gastrointestinal Surgery, HPB unit, 60496Stavanger University Hospital, Stavanger, Norway.,Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, 60496Stavanger University Hospital, Stavanger, Norway.,Department of Quality and Health Technology, 60496University of Stavanger, Stavanger, Norway
| | - Jacob Ghotbi
- Department of Gastrointestinal Surgery, HPB unit, 60496Stavanger University Hospital, Stavanger, Norway
| | - Claudia Zaharia
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, 60496Stavanger University Hospital, Stavanger, Norway.,Department of Pathology, 60496Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
213
|
Fabrizio FP, Sparaneo A, Muscarella LA. Monitoring EGFR-lung cancer evolution: a possible beginning of a "methylation era" in TKI resistance prediction. Front Oncol 2023; 13:1137384. [PMID: 37152062 PMCID: PMC10157092 DOI: 10.3389/fonc.2023.1137384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The advances in scientific knowledge on biological therapies of the last two decades have impressively oriented the clinical management of non-small-cell lung cancer (NSCLC) patients. The treatment with tyrosine kinase inhibitors (TKIs) in patients harboring Epidermal Growth Factor Receptor (EGFR)-activating mutations is dramatically associated with an improvement in disease control. Anyhow, the prognosis for this selected group of patients remains unfavorable, due to the innate and/or acquired resistance to biological therapies. The methylome analysis of many tumors revealed multiple patterns of methylation at single/multiple cytosine-phosphate-guanine (CpG) sites that are linked to the modulation of several cellular pathways involved in cancer onset and progression. In lung cancer patients, ever increasing evidences also suggest that the association between DNA methylation changes at promoter/intergenic regions and the consequent alteration of gene-expression signatures could be related to the acquisition of resistance to biological therapies. Despite this intriguing hypothesis, large confirmatory studies are demanded to consolidate and finalize many preliminary observations made in this field. In this review, we will summarize the available knowledge about the dynamic role of DNA methylation in EGFR-mutated NSCLC patients.
Collapse
|
214
|
Sivapalan L, Murray JC, Canzoniero JV, Landon B, Jackson J, Scott S, Lam V, Levy BP, Sausen M, Anagnostou V. Liquid biopsy approaches to capture tumor evolution and clinical outcomes during cancer immunotherapy. J Immunother Cancer 2023; 11:e005924. [PMID: 36657818 PMCID: PMC9853269 DOI: 10.1136/jitc-2022-005924] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Circulating cell-free tumor DNA (ctDNA) can serve as a real-time biomarker of tumor burden and provide unique insights into the evolving molecular landscape of cancers under the selective pressure of immunotherapy. Tracking the landscape of genomic alterations detected in ctDNA may reveal the clonal architecture of the metastatic cascade and thus improve our understanding of the molecular wiring of therapeutic responses. While liquid biopsies may provide a rapid and accurate evaluation of tumor burden dynamics during immunotherapy, the complexity of antitumor immune responses is not fully captured through single-feature ctDNA analyses. This underscores a need for integrative studies modeling the tumor and the immune compartment to understand the kinetics of tumor clearance in association with the quality of antitumor immune responses. Clinical applications of ctDNA testing in patients treated with immune checkpoint inhibitors have shown both predictive and prognostic value through the detection of genomic biomarkers, such as tumor mutational burden and microsatellite instability, as well as allowing for real-time monitoring of circulating tumor burden and the assessment of early on-therapy responses. These efforts highlight the emerging role of liquid biopsies in selecting patients for cancer immunotherapy, monitoring therapeutic efficacy, determining the optimal duration of treatment and ultimately guiding treatment selection and sequencing. The clinical translation of liquid biopsies is propelled by the increasing number of ctDNA-directed interventional clinical trials in the immuno-oncology space, signifying a critical step towards implementation of liquid biopsies in precision immuno-oncology.
Collapse
Affiliation(s)
- Lavanya Sivapalan
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph C Murray
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jenna VanLiere Canzoniero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Blair Landon
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Susan Scott
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent Lam
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin P Levy
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Sausen
- Personal Genome Diagnostics, Baltimore, Maryland, USA
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
215
|
Wang Q, Gümüş ZH, Colarossi C, Memeo L, Wang X, Kong CY, Boffetta P. SCLC: Epidemiology, Risk Factors, Genetic Susceptibility, Molecular Pathology, Screening, and Early Detection. J Thorac Oncol 2023; 18:31-46. [PMID: 36243387 PMCID: PMC10797993 DOI: 10.1016/j.jtho.2022.10.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022]
Abstract
We review research regarding the epidemiology, risk factors, genetic susceptibility, molecular pathology, and early detection of SCLC, a deadly tumor that accounts for 14% of lung cancers. We first summarize the changing incidences of SCLC globally and in the United States among males and females. We then review the established risk factor (i.e., tobacco smoking) and suspected nonsmoking-related risk factors for SCLC, and emphasize the importance of continued effort in tobacco control worldwide. Review of genetic susceptibility and molecular pathology suggests different molecular pathways in SCLC development compared with other types of lung cancer. Last, we comment on the limited utility of low-dose computed tomography screening in SCLC and on several promising blood-based molecular biomarkers as potential tools in SCLC early detection.
Collapse
Affiliation(s)
- Qian Wang
- University Hospitals Seidman Cancer Center, Cleveland, Ohio.
| | - Zeynep H Gümüş
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York; Center for Thoracic Oncology, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Catania, Italy
| | - Xintong Wang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chung Yin Kong
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paolo Boffetta
- Department of Family, Population & Preventive Medicine, Stony Brook University, Stony Brook, New York; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
216
|
Takano S, Fukasawa M, Enomoto N. Molecular assessment of endoscopically collected pancreatic juice and duodenal fluid from patients with pancreatic diseases. Dig Endosc 2023; 35:19-32. [PMID: 35665966 DOI: 10.1111/den.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023]
Abstract
One concern associated with pancreatic diseases is the poor prognosis of pancreatic cancer. Even with advances in diagnostic modalities, risk stratification of premalignant lesions and differentiation of pancreatic cysts are challenging. Pancreatic lesions of concern include intraductal papillary mucinous neoplasms, mucinous cystic neoplasms, serous cystadenomas, pseudocysts, and retention cysts, as well as cystic degeneration of solid tumors such as solid pseudopapillary neoplasms and pancreatic neuroendocrine neoplasms. Pancreatic juice obtained during endoscopic retrograde cholangiopancreatography has previously been used for the detection of KRAS mutation. Recently, duodenal fluid, which can be obtained during the relatively minimally invasive procedures of endoscopic ultrasound (EUS) and esophagogastroduodenoscopy, and cyst fluid collected by EUS-guided fine-needle aspiration (FNA) were used for molecular biological analysis. Furthermore, advanced analytic methods with high sensitivity were used for the detection of single and multiple markers. Early detection of malignant pancreatic tumors and risk stratification of premalignant tumors can be performed using duodenal fluid samples with a single marker with high sensitivity. Technological advances in simultaneous detection of multiple markers allow for the differentiation of cystic pancreatic tumors. One thing to note is that the clinical guidelines do not recommend pancreatic cyst fluid and pancreatic juice (PJ) sampling by EUS-FNA and endoscopic retrograde cholangiopancreatography, respectively, in actual clinical practice, but state that they be performed at experienced facilities, and duodenal fluid sampling is not mentioned in the guidelines. With improved specimen handling and the combination of markers, molecular markers in PJ samples may be used in clinical practice in the near future.
Collapse
Affiliation(s)
- Shinichi Takano
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Mitsuharu Fukasawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
217
|
Eyck BM, Jansen MP, Noordman BJ, Atmodimedjo PN, van der Wilk BJ, Martens JW, Helmijr JA, Beaufort CM, Mostert B, Doukas M, Wijnhoven BP, Lagarde SM, van Lanschot JJB, Dinjens WN. Detection of circulating tumour DNA after neoadjuvant chemoradiotherapy in patients with locally advanced oesophageal cancer. J Pathol 2023; 259:35-45. [PMID: 36196486 PMCID: PMC10092085 DOI: 10.1002/path.6016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/05/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Active surveillance instead of standard surgery after neoadjuvant chemoradiotherapy (nCRT) has been proposed for patients with oesophageal cancer. Circulating tumour DNA (ctDNA) may be used to facilitate selection of patients for surgery. We show that detection of ctDNA after nCRT seems highly suggestive of major residual disease. Tumour biopsies and blood samples were taken before, and 6 and 12 weeks after, nCRT. Biopsies were analysed with regular targeted next-generation sequencing (NGS). Circulating cell-free DNA (cfDNA) was analysed using targeted NGS with unique molecular identifiers and digital polymerase chain reaction. cfDNA mutations matching pre-treatment biopsy mutations confirmed the presence of ctDNA. In total, 31 patients were included, of whom 24 had a biopsy mutation that was potentially detectable in cfDNA (77%). Pre-treatment ctDNA was detected in nine of 24 patients (38%), four of whom had incurable disease progression before surgery. Pre-treatment ctDNA detection had a sensitivity of 47% (95% CI 24-71) (8/17), specificity of 85% (95% CI 42-99) (6/7), positive predictive value (PPV) of 89% (95% CI 51-99) (8/9), and negative predictive value (NPV) of 40% (95% CI 17-67) (6/15) for detecting major residual disease (>10% residue in the resection specimen or progression before surgery). After nCRT, ctDNA was detected in three patients, two of whom had disease progression. Post-nCRT ctDNA detection had a sensitivity of 21% (95% CI 6-51) (3/14), specificity of 100% (95% CI 56-100) (7/7), PPV of 100% (95% CI 31-100) (3/3), and NPV of 39% (95% CI 18-64) (7/18) for detecting major residual disease. The addition of ctDNA to the current set of diagnostics did not lead to more patients being clinically identified with residual disease. These results indicate that pre-treatment and post-nCRT ctDNA detection may be useful in identifying patients at high risk of disease progression. The addition of ctDNA analysis to the current set of diagnostic modalities may not improve detection of residual disease after nCRT. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ben M Eyck
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Maurice Phm Jansen
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bo Jan Noordman
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Peggy N Atmodimedjo
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Berend J van der Wilk
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - John Wm Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Jean A Helmijr
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Corine M Beaufort
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bianca Mostert
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Bas Pl Wijnhoven
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Sjoerd M Lagarde
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - J Jan B van Lanschot
- Department of Surgery, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Winand Nm Dinjens
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
218
|
Shoukat I, Mueller CR. Searching for DNA methylation in patients triple-negative breast cancer: a liquid biopsy approach. Expert Rev Mol Diagn 2023; 23:41-51. [PMID: 36715539 DOI: 10.1080/14737159.2023.2173579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Liquid biopsies are proving to have diagnostic and prognostic value in many different cancers, and in breast cancer they have the potential to improve outcomes by providing valuable information throughout a patient's cancer journey. However, patients with triple negative breast cancer (TNBC) have received little benefit from such liquid biopsies due to underlying limitations in the discovery and utility of robust biomarkers. Here, we examine the development of DNA methylation-based liquid biopsy assays for breast cancer and how they pertain to TNBC. AREAS COVERED We conducted a systematic review of liquid biopsy assays for breast cancer and analyzed their relevance in TNBC. We show that the utility of DNA mutation-based assays is poor for TNBC due to the low mutational frequencies across the genome in this subtype. We offer a detailed review of mDETECT - a liquid biopsy specifically designed for assessing tumor burden in TNBC patients. EXPERT OPINION DNA methylation are foundational and robust events that occur in cancer evolution and may differentiate almost all forms of cancer, including TNBC. Longitudinal patient monitoring using DNA methylation-based liquid biopsies offers great potential for improving the detection and management of TNBC.
Collapse
Affiliation(s)
- Irsa Shoukat
- Queen's Cancer Research Institute, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Christopher R Mueller
- Queen's Cancer Research Institute, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
219
|
Malta TM, Snyder J, Noushmehr H, Castro AV. Advances in Central Nervous System Tumor Classification. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:121-135. [PMID: 37432624 DOI: 10.1007/978-3-031-29750-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Historically, the classification of tumors of the central nervous system (CNS) relies on the histologic appearance of cells under a microscope; however, the molecular era of medicine has resulted in new diagnostic paradigms anchored in the intrinsic biology of disease. The 2021 World Health Organization (WHO) reformulated the classification of CNS tumors to incorporate molecular parameters, in addition to histology, to define many tumor types. A contemporary classification system with integrated molecular features aims to provide an unbiased tool to define tumor subtype, the risk of tumor progression, and even the response to certain therapeutic agents. Meningiomas are heterogeneous tumors as depicted by the current 15 distinct variants defined by histology in the 2021 WHO classification, which also incorporated the first moelcular critiera for meningioma grading: homozygous loss of CDKN2A/B and TERT promoter mutation as criteria for a WHO grade 3 meningioma. The proper classification and clinical management of meningioma patients requires a multidisciplinary approach, which in addition to the information on microscopic (histology) and macroscopic (Simpson grade and imaging), should also include molecular alterations. In this chapter, we present the most up-to-date knowledge in CNS tumor classification, particularly in meningioma, in the molecular era and how it could affect their future classification and clinical management of patients with these diseases.
Collapse
Affiliation(s)
- Tathiane M Malta
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - James Snyder
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA.
| | | |
Collapse
|
220
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
221
|
Martins-Ferreira R, Leal B, Chaves J, Ciudad L, Samões R, Martins da Silva A, Pinho Costa P, Ballestar E. Circulating cell-free DNA methylation mirrors alterations in cerebral patterns in epilepsy. Clin Epigenetics 2022; 14:188. [PMID: 36575526 PMCID: PMC9795776 DOI: 10.1186/s13148-022-01416-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND DNA methylation profiling of circulating cell-free DNA (cfDNA) has rapidly become a promising strategy for biomarker identification and development. The cell-type-specific nature of DNA methylation patterns and the direct relationship between cfDNA and apoptosis can potentially be used non-invasively to predict local alterations. In addition, direct detection of altered DNA methylation patterns performs well as a biomarker. In a previous study, we demonstrated marked DNA methylation alterations in brain tissue from patients with mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). RESULTS We performed DNA methylation profiling in cfDNA isolated from the serum of MTLE patients and healthy controls using BeadChip arrays followed by systematic bioinformatic analysis including deconvolution analysis and integration with DNase accessibility data sets. Differential cfDNA methylation analysis showed an overrepresentation of gene ontology terms and transcription factors related to central nervous system function and regulation. Deconvolution analysis of the DNA methylation data sets ruled out the possibility that the observed differences were due to changes in the proportional contribution of cortical neurons in cfDNA. Moreover, we found no overrepresentation of neuron- or glia-specific patterns in the described cfDNA methylation patterns. However, the MTLE-HS cfDNA methylation patterns featured a significant overrepresentation of the epileptic DNA methylation alterations previously observed in the hippocampus. CONCLUSIONS Our results support the use of cfDNA methylation profiling as a rational approach to seeking non-invasive and reproducible epilepsy biomarkers.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain ,grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Bárbara Leal
- grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - João Chaves
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,grid.413438.90000 0004 0574 5247Neurology Service, Hospital de Santo António - Centro Hospitalar Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain
| | - Raquel Samões
- grid.413438.90000 0004 0574 5247Neurology Service, Hospital de Santo António - Centro Hospitalar Universitário do Porto (HSA-CHUP), Porto, Portugal
| | - António Martins da Silva
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,Neurophysiology Service, HSA-CHUP, Porto, Portugal
| | - Paulo Pinho Costa
- grid.5808.50000 0001 1503 7226Immunogenetics Laboratory, Molecular Pathology and Immunology Instituto de Ciências Biomédicas Abel Salazar – Universidade do Porto (ICBAS-UPorto), Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal ,grid.5808.50000 0001 1503 7226Laboratório Para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal ,grid.422270.10000 0001 2287 695XDepartment of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge, Porto, Portugal
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916 Badalona, Barcelona Spain ,grid.22069.3f0000 0004 0369 6365Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241 China
| |
Collapse
|
222
|
Solar Vasconcelos JP, Boutin M, Loree JM. Circulating tumor DNA in early-stage colon cancer: ready for prime time or needing refinement? Ther Adv Med Oncol 2022; 14:17588359221143975. [PMID: 36570410 PMCID: PMC9772953 DOI: 10.1177/17588359221143975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022] Open
Abstract
Liquid biopsies are the detection of molecular information in fluids from patients with cancer. In colorectal cancer (CRC), the most promising liquid biopsy strategy is the use of circulating tumor DNA (ctDNA) from plasma. In early-stage CRC, the potential for ctDNA to impact care stems from the detection of minimal residual disease (MRD) to guide adjuvant therapy after curative intent treatment and in identifying recurrences during surveillance. As for any new diagnostic test, ctDNA assays must overcome pre-analytical and analytical challenges before clinical implementation. We will discuss important logistical and assay considerations that clinicians and patients should understand when assessing ctDNA assays. We will also delve into important concepts to aid in interpreting ctDNA results and potential incidental findings that may arise. Sequencing errors, germline variants, and clonal hematopoiesis of indeterminate potential (CHIP) must be addressed to properly interpret results. CHIP is also an important consideration that impacts patient prognosis through association with cardiovascular and hematologic diseases. With this background in place, we next review the best available evidence for the use of ctDNA in early-stage colon cancer. Observational cohorts have established MRD after surgery as a significant prognostic factor for recurrence in stage II and III colon cancer. It also has the ability to anticipate clinical recurrence before standard investigations when used in surveillance. The first and only interventional randomized trial to date evaluating ctDNA is DYNAMIC. The study demonstrated the noninferiority of a MRD detection-guided approach in selecting patients with stage II colon cancer for adjuvant treatment. Notwithstanding the important results, there are still important questions to be answered before ctDNA enters prime time in the clinic. However, future appears bright and ongoing trials will help clarify how to best use this technology in early-stage colon cancer.
Collapse
Affiliation(s)
| | - Melina Boutin
- BC Cancer, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
223
|
Shen H, Jin Y, Zhao H, Wu M, Zhang K, Wei Z, Wang X, Wang Z, Li Y, Yang F, Wang J, Chen K. Potential clinical utility of liquid biopsy in early-stage non-small cell lung cancer. BMC Med 2022; 20:480. [PMID: 36514063 PMCID: PMC9749360 DOI: 10.1186/s12916-022-02681-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Liquid biopsy has been widely researched for early diagnosis, prognostication and disease monitoring in lung cancer, but there is a need to investigate its clinical utility for early-stage non-small cell lung cancer (NSCLC). METHODS We performed a meta-analysis and systematic review to evaluate diagnostic and prognostic values of liquid biopsy for early-stage NSCLC, regarding the common biomarkers, circulating tumor cells, circulating tumor DNA (ctDNA), methylation signatures, and microRNAs. Cochrane Library, PubMed, EMBASE databases, ClinicalTrials.gov, and reference lists were searched for eligible studies since inception to 17 May 2022. Sensitivity, specificity and area under the curve (AUC) were assessed for diagnostic values. Hazard ratio (HR) with a 95% confidence interval (CI) was extracted from the recurrence-free survival (RFS) and overall survival (OS) plots for prognostic analysis. Also, potential predictive values and treatment response evaluation were further investigated. RESULTS In this meta-analysis, there were 34 studies eligible for diagnostic assessment and 21 for prognostic analysis. The estimated diagnostic values of biomarkers for early-stage NSCLC with AUCs ranged from 0.84 to 0.87. The factors TNM stage I, T1 stage, N0 stage, adenocarcinoma, young age, and nonsmoking contributed to a lower tumor burden, with a median cell-free DNA concentration of 8.64 ng/ml. For prognostic analysis, the presence of molecular residual disease (MRD) detection was a strong predictor of disease relapse (RFS, HR, 4.95; 95% CI, 3.06-8.02; p < 0.001) and inferior OS (HR, 3.93; 95% CI, 1.97-7.83; p < 0.001), with average lead time of 179 ± 74 days between molecular recurrence and radiographic progression. Predictive values analysis showed adjuvant therapy significantly benefited the RFS of MRD + patients (HR, 0.27; p < 0.001), while an opposite tendency was detected for MRD - patients (HR, 1.51; p = 0.19). For treatment response evaluation, a strong correlation between pathological response and ctDNA clearance was detected, and both were associated with longer survival after neoadjuvant therapy. CONCLUSIONS In conclusion, our study indicated liquid biopsy could reliably facilitate more precision and effective management of early-stage NSCLC. Improvement of liquid biopsy techniques and detection approaches and platforms is still needed, and higher-quality trials are required to provide more rigorous evidence prior to their routine clinical application.
Collapse
Affiliation(s)
- Haifeng Shen
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Yichen Jin
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Heng Zhao
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Manqi Wu
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Kai Zhang
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Zihan Wei
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Xin Wang
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Ziyang Wang
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Yun Li
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Fan Yang
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Jun Wang
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China
| | - Kezhong Chen
- Thoracic Oncology Institute, Department of Thoracic Surgery, Peking University People's Hospital, Peking University, Xi Zhi Men South Ave No.11, Beijing, 100044, China.
| |
Collapse
|
224
|
Zhou X, Cheng Z, Dong M, Liu Q, Yang W, Liu M, Tian J, Cheng W. Tumor fractions deciphered from circulating cell-free DNA methylation for cancer early diagnosis. Nat Commun 2022; 13:7694. [PMID: 36509772 PMCID: PMC9744803 DOI: 10.1038/s41467-022-35320-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Tumor-derived circulating cell-free DNA (cfDNA) provides critical clues for cancer early diagnosis, yet it often suffers from low sensitivity. Here, we present a cancer early diagnosis approach using tumor fractions deciphered from circulating cfDNA methylation signatures. We show that the estimated fractions of tumor-derived cfDNA from cancer patients increase significantly as cancer progresses in two independent datasets. Employing the predicted tumor fractions, we establish a Bayesian diagnostic model in which training samples are only derived from late-stage patients and healthy individuals. When validated on early-stage patients and healthy individuals, this model exhibits a sensitivity of 86.1% for cancer early detection and an average accuracy of 76.9% for tumor localization at a specificity of 94.7%. By highlighting the potential of tumor fractions on cancer early diagnosis, our approach can be further applied to cancer screening and tumor progression monitoring.
Collapse
Affiliation(s)
- Xiao Zhou
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Zhen Cheng
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Mingyu Dong
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Qi Liu
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Weiyang Yang
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China
| | - Min Liu
- grid.12527.330000 0001 0662 3178Department of Automation, Tsinghua University, Beijing, 100084 China ,grid.413405.70000 0004 1808 0686Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
| | - Junzhang Tian
- grid.413405.70000 0004 1808 0686Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
| | - Weibin Cheng
- grid.413405.70000 0004 1808 0686Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, 510317 China
| |
Collapse
|
225
|
Jamshidi A, Liu MC, Klein EA, Venn O, Hubbell E, Beausang JF, Gross S, Melton C, Fields AP, Liu Q, Zhang N, Fung ET, Kurtzman KN, Amini H, Betts C, Civello D, Freese P, Calef R, Davydov K, Fayzullina S, Hou C, Jiang R, Jung B, Tang S, Demas V, Newman J, Sakarya O, Scott E, Shenoy A, Shojaee S, Steffen KK, Nicula V, Chien TC, Bagaria S, Hunkapiller N, Desai M, Dong Z, Richards DA, Yeatman TJ, Cohn AL, Thiel DD, Berry DA, Tummala MK, McIntyre K, Sekeres MA, Bryce A, Aravanis AM, Seiden MV, Swanton C. Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell 2022; 40:1537-1549.e12. [PMID: 36400018 DOI: 10.1016/j.ccell.2022.10.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology. Clinical LODs mirror relative sensitivities for all approaches. The WG methylation feature best predicts cancer signal origin. WG methylation is the most promising technology for MCED and informs development of a targeted methylation MCED test.
Collapse
Affiliation(s)
| | - Minetta C Liu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | - Nan Zhang
- GRAIL, LLC, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhao Dong
- GRAIL, LLC, Menlo Park, CA 94025, USA
| | | | - Timothy J Yeatman
- Gibbs Cancer Center and Research Institute, Spartanburg, SC 29303, USA; Department of Surgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Allen L Cohn
- Rocky Mountain Cancer Center, Denver, CO 80218, USA
| | - David D Thiel
- Department of Urology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Donald A Berry
- Department of Biostatistics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | - Charles Swanton
- Francis Crick Institute, London, NW1 1AT, UK; UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, WC1E 6DD, UK
| |
Collapse
|
226
|
Eickelschulte S, Riediger AL, Angeles AK, Janke F, Duensing S, Sültmann H, Görtz M. Biomarkers for the Detection and Risk Stratification of Aggressive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246094. [PMID: 36551580 PMCID: PMC9777028 DOI: 10.3390/cancers14246094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Current strategies for the clinical management of prostate cancer are inadequate for a precise risk stratification between indolent and aggressive tumors. Recently developed tissue-based molecular biomarkers have refined the risk assessment of the disease. The characterization of tissue biopsy components and subsequent identification of relevant tissue-based molecular alterations have the potential to improve the clinical decision making and patient outcomes. However, tissue biopsies are invasive and spatially restricted due to tumor heterogeneity. Therefore, there is an urgent need for complementary diagnostic and prognostic options. Liquid biopsy approaches are minimally invasive with potential utility for the early detection, risk stratification, and monitoring of tumors. In this review, we focus on tissue and liquid biopsy biomarkers for early diagnosis and risk stratification of prostate cancer, including modifications on the genomic, epigenomic, transcriptomic, and proteomic levels. High-risk molecular alterations combined with orthogonal clinical parameters can improve the identification of aggressive tumors and increase patient survival.
Collapse
Affiliation(s)
- Samaneh Eickelschulte
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Anja Lisa Riediger
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Arlou Kristina Angeles
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Florian Janke
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Magdalena Görtz
- Junior Clinical Cooperation Unit, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-42-2603
| |
Collapse
|
227
|
Zhou X, Zheng H, Fu H, Dillehay McKillip KL, Pinney SM, Liu Y. CRAG: de novo characterization of cell-free DNA fragmentation hotspots in plasma whole-genome sequencing. Genome Med 2022; 14:138. [PMID: 36482487 PMCID: PMC9733064 DOI: 10.1186/s13073-022-01141-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
The fine-scale cell-free DNA fragmentation patterns in early-stage cancers are poorly understood. We developed a de novo approach to characterize the cell-free DNA fragmentation hotspots from plasma whole-genome sequencing. Hotspots are enriched in open chromatin regions, and, interestingly, 3'end of transposons. Hotspots showed global hypo-fragmentation in early-stage liver cancers and are associated with genes involved in the initiation of hepatocellular carcinoma and associated with cancer stem cells. The hotspots varied across multiple early-stage cancers and demonstrated high performance for the diagnosis and identification of tissue-of-origin in early-stage cancers. We further validated the performance with a small number of independent case-control-matched early-stage cancer samples.
Collapse
Affiliation(s)
- Xionghui Zhou
- grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.35155.370000 0004 1790 4137Present address: Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070 China
| | - Haizi Zheng
- grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Hailu Fu
- grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Kelsey L. Dillehay McKillip
- grid.24827.3b0000 0001 2179 9593University of Cincinnati Cancer Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Susan M. Pinney
- grid.24827.3b0000 0001 2179 9593University of Cincinnati Cancer Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA
| | - Yaping Liu
- grid.239573.90000 0000 9025 8099Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati Cancer Center, Cincinnati, OH 45229 USA ,grid.239573.90000 0000 9025 8099Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593Department of Electrical Engineering and Computing Sciences, University of Cincinnati College of Engineering and Applied Science, Cincinnati, OH 45229 USA
| |
Collapse
|
228
|
Doebley AL, Ko M, Liao H, Cruikshank AE, Santos K, Kikawa C, Hiatt JB, Patton RD, De Sarkar N, Collier KA, Hoge ACH, Chen K, Zimmer A, Weber ZT, Adil M, Reichel JB, Polak P, Adalsteinsson VA, Nelson PS, MacPherson D, Parsons HA, Stover DG, Ha G. A framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA. Nat Commun 2022; 13:7475. [PMID: 36463275 PMCID: PMC9719521 DOI: 10.1038/s41467-022-35076-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Cell-free DNA (cfDNA) has the potential to inform tumor subtype classification and help guide clinical precision oncology. Here we develop Griffin, a framework for profiling nucleosome protection and accessibility from cfDNA to study the phenotype of tumors using as low as 0.1x coverage whole genome sequencing data. Griffin employs a GC correction procedure tailored to variable cfDNA fragment sizes, which generates a better representation of chromatin accessibility and improves the accuracy of cancer detection and tumor subtype classification. We demonstrate estrogen receptor subtyping from cfDNA in metastatic breast cancer. We predict estrogen receptor subtype in 139 patients with at least 5% detectable circulating tumor DNA with an area under the receive operator characteristic curve (AUC) of 0.89 and validate performance in independent cohorts (AUC = 0.96). In summary, Griffin is a framework for accurate tumor subtyping and can be generalizable to other cancer types for precision oncology applications.
Collapse
Affiliation(s)
- Anna-Lisa Doebley
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Minjeong Ko
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hanna Liao
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - A Eden Cruikshank
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | | | - Caroline Kikawa
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Joseph B Hiatt
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Robert D Patton
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Navonil De Sarkar
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Anna C H Hoge
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katharine Chen
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Anat Zimmer
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Zachary T Weber
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mohamed Adil
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jonathan B Reichel
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Paz Polak
- Department of Oncological Sciences, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | | | - Peter S Nelson
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
- Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - David MacPherson
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Daniel G Stover
- Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Gavin Ha
- Division of Public Health Sciences and Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
229
|
Janke F, Angeles AK, Riediger AL, Bauer S, Reck M, Stenzinger A, Schneider MA, Muley T, Thomas M, Christopoulos P, Sültmann H. Longitudinal monitoring of cell-free DNA methylation in ALK-positive non-small cell lung cancer patients. Clin Epigenetics 2022; 14:163. [PMID: 36461127 PMCID: PMC9719130 DOI: 10.1186/s13148-022-01387-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND DNA methylation (5-mC) signals in cell-free DNA (cfDNA) of cancer patients represent promising biomarkers for minimally invasive tumor detection. The high abundance of cancer-associated 5-mC alterations permits parallel and highly sensitive assessment of multiple 5-mC biomarkers. Here, we performed genome-wide 5-mC profiling in the plasma of metastatic ALK-rearranged non-small cell lung cancer (NSCLC) patients receiving tyrosine kinase inhibitor therapy. We established a strategy to identify ALK-specific 5-mC changes from cfDNA and demonstrated the suitability of the identified markers for cancer detection, prognosis, and therapy monitoring. METHODS Longitudinal plasma samples (n = 79) of 21 ALK-positive NSCLC patients and 13 healthy donors were collected alongside 15 ALK-positive tumor tissue and 10 healthy lung tissue specimens. All plasma and tissue samples were analyzed by cell-free DNA methylation immunoprecipitation sequencing to generate genome-wide 5-mC profiles. Information on genomic alterations (i.e., somatic mutations/fusions and copy number alterations) determined in matched plasma samples was available from previous studies. RESULTS We devised a strategy that identified tumor-specific 5-mC biomarkers by reducing 5-mC background signals derived from hematopoietic cells. This was followed by differential methylation analysis (cases vs. controls) and biomarker validation using 5-mC profiles of ALK-positive tumor tissues. The resulting 245 differentially methylated regions were enriched for lung adenocarcinoma-specific 5-mC patterns in TCGA data and indicated transcriptional repression of several genes described to be silenced in NSCLC (e.g., PCDH10, TBX2, CDO1, and HOXA9). Additionally, 5-mC-based tumor DNA (5-mC score) was highly correlated with other genomic alterations in cell-free DNA (Spearman, ρ > 0.6), while samples with high 5-mC scores showed significantly shorter overall survival (log-rank p = 0.025). Longitudinal 5-mC scores reflected radiologic disease assessments and were significantly elevated at disease progression compared to the therapy start (p = 0.0023). In 7 out of 8 instances, rising 5-mC scores preceded imaging-based evaluation of disease progression. CONCLUSION We demonstrated a strategy to identify 5-mC biomarkers from the plasma of cancer patients and integrated them into a quantitative measure of cancer-associated 5-mC alterations. Using longitudinal plasma samples of ALK-positive NSCLC patients, we highlighted the suitability of cfDNA methylation for prognosis and therapy monitoring.
Collapse
Affiliation(s)
- Florian Janke
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
| | - Arlou Kristina Angeles
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany
| | - Anja Lisa Riediger
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Helmholtz Young Investigator Group, Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Urology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Simone Bauer
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany
| | - Martin Reck
- grid.452624.3Lung Clinic Grosshansdorf, Airway Research Center North, German Center for Lung Research, Grosshansdorf, Germany
| | - Albrecht Stenzinger
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc A. Schneider
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Muley
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Thomas
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Petros Christopoulos
- grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Department of Oncology, Thoraxklinik and National Center for Tumor Disease (NCT) at Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Sültmann
- grid.5253.10000 0001 0328 4908Division of Cancer Genome Research, German Cancer Research Center, National Center for Tumor Diseases, Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), TLRC Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
230
|
Kärcher J, Schulze B, Dörr A, Tierling S, Walter J. Transfer of blocker-based qPCR reactions for DNA methylation analysis into a microfluidic LoC system using thermal modeling. BIOMICROFLUIDICS 2022; 16:064102. [PMID: 36506005 PMCID: PMC9729016 DOI: 10.1063/5.0108374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Changes in the DNA methylation landscape are associated with many diseases like cancer. Therefore, DNA methylation analysis is of great interest for molecular diagnostics and can be applied, e.g., for minimally invasive diagnostics in liquid biopsy samples like blood plasma. Sensitive detection of local de novo methylation, which occurs in various cancer types, can be achieved with quantitative HeavyMethyl-PCR using oligonucleotides that block the amplification of unmethylated DNA. A transfer of these quantitative PCRs (qPCRs) into point-of-care (PoC) devices like microfluidic Lab-on-Chip (LoC) cartridges can be challenging as LoC systems show significantly different thermal properties than qPCR cyclers. We demonstrate how an adequate thermal model of the specific LoC system can help us to identify a suitable thermal profile, even for complex HeavyMethyl qPCRs, with reduced experimental effort. Using a simulation-based approach, we demonstrate a proof-of-principle for the successful LoC transfer of colorectal SEPT9/ACTB-qPCR from Epi Procolon® colorectal carcinoma test, by avoidance of oligonucleotide interactions.
Collapse
Affiliation(s)
- Janik Kärcher
- Robert Bosch GmbH, Corporate Research, Robert Bosch Campus 1, 71272 Renninge, Germany
| | - Britta Schulze
- Robert Bosch GmbH, Corporate Research, Robert Bosch Campus 1, 71272 Renninge, Germany
| | - Aaron Dörr
- Robert Bosch GmbH, Corporate Research, Robert Bosch Campus 1, 71272 Renninge, Germany
| | - Sascha Tierling
- University of Saarland, Institute for Genetics and Epigenetics, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Jörn Walter
- University of Saarland, Institute for Genetics and Epigenetics, Campus Saarbrücken, 66123 Saarbrücken, Germany
| |
Collapse
|
231
|
He W, Xiao Y, Yan S, Zhu Y, Ren S. Cell-free DNA in the management of prostate cancer: Current status and future prospective. Asian J Urol 2022. [PMID: 37538150 PMCID: PMC10394290 DOI: 10.1016/j.ajur.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective With the escalating prevalence of prostate cancer (PCa) in China, there is an urgent demand for novel diagnostic and therapeutic approaches. Extensive investigations have been conducted on the clinical implementation of circulating free DNA (cfDNA) in PCa. This review aims to provide a comprehensive overview of the present state of cfDNA as a biomarker for PCa and to examine its merits and obstacles for future clinical utilization. Methods Relevant peer-reviewed manuscripts on cfDNA as a PCa marker were evaluated by PubMed search (2010-2022) to evaluate the roles of cfDNA in PCa diagnosis, prognosis, and prediction, respectively. Results cfDNA is primarily released from cells undergoing necrosis and apoptosis, allowing for non-invasive insight into the genomic, transcriptomic, and epigenomic alterations within various PCa disease states. Next-generation sequencing, among other detection methods, enables the assessment of cfDNA abundance, mutation status, fragment characteristics, and epigenetic modifications. Multidimensional analysis based on cfDNA can facilitate early detection of PCa, risk stratification, and treatment monitoring. However, standardization of cfDNA detection methods is still required to expedite its clinical application. Conclusion cfDNA provides a non-invasive, rapid, and repeatable means of acquiring multidimensional information from PCa patients, which can aid in guiding clinical decisions and enhancing patient management. Overcoming the application barriers of cfDNA necessitates increased data sharing and international collaboration.
Collapse
|
232
|
Wang L, Zhang M, Pan X, Zhao M, Huang L, Hu X, Wang X, Qiao L, Guo Q, Xu W, Qian W, Xue T, Ye X, Li M, Su H, Kuang Y, Lu X, Ye X, Qian K, Lou J. Integrative Serum Metabolic Fingerprints Based Multi-Modal Platforms for Lung Adenocarcinoma Early Detection and Pulmonary Nodule Classification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203786. [PMID: 36257825 PMCID: PMC9731719 DOI: 10.1002/advs.202203786] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Indexed: 05/16/2023]
Abstract
Identification of novel non-invasive biomarkers is critical for the early diagnosis of lung adenocarcinoma (LUAD), especially for the accurate classification of pulmonary nodule. Here, a multiplexed assay is developed on an optimized nanoparticle-based laser desorption/ionization mass spectrometry platform for the sensitive and selective detection of serum metabolic fingerprints (SMFs). Integrative SMFs based multi-modal platforms are constructed for the early detection of LUAD and the classification of pulmonary nodule. The dual modal model, metabolic fingerprints with protein tumor marker neural network (MP-NN), integrating SMFs with protein tumor marker carcinoembryonic antigen (CEA) via deep learning, shows superior performance compared with the single modal model Met-NN (p < 0.001). Based on MP-NN, the tri modal model MPI-RF integrating SMFs, tumor marker CEA, and image features via random forest demonstrates significantly higher performance than the clinical models (Mayo Clinic and Veterans Affairs) and the image artificial intelligence in pulmonary nodule classification (p < 0.001). The developed platforms would be promising tools for LUAD screening and pulmonary nodule management, paving the conceptual and practical foundation for the clinical application of omics tools.
Collapse
Affiliation(s)
- Lin Wang
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
- Department of Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Mengji Zhang
- State Key Laboratory for Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Xufeng Pan
- Department of Thoracic SurgeryShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Mingna Zhao
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
- Department of Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Lin Huang
- Department of Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Xiaomeng Hu
- Department of Laboratory MedicineThe Third Hospital of Hebei Medical UniversityShijiazhuang050051P. R. China
| | - Xueqing Wang
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Lihua Qiao
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Qiaomei Guo
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Wanxing Xu
- School of MedicineJiangsu UniversityZhenjiang212013P. R. China
| | - Wenli Qian
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Tingjia Xue
- Department of RadiologyShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| | - Xiaodan Ye
- Department of RadiologyShanghai Institute of Medical ImagingZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Ming Li
- Department of Laboratory DiagnosticsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Haixiang Su
- Gansu Academic Institute for Medical ResearchGansu Cancer HospitalLanzhouGansu730050P. R. China
| | - Yinglan Kuang
- Department of A. I. ResearchJoint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and MacaoZhuhaiGuangdong519000P. R. China
| | - Xing Lu
- Department of A. I. ResearchJoint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and MacaoZhuhaiGuangdong519000P. R. China
| | - Xin Ye
- Department of Product DevelopmentJoint Research Center of Liquid Biopsy in Guangdong, Hong Kong, and MacaoZhuhaiGuangdong519000P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related GenesSchool of Biomedical EngineeringInstitute of Medical Robotics and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesDivision of CardiologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jiatao Lou
- Department of Laboratory MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
- Department of Laboratory MedicineShanghai Chest HospitalShanghai Jiao Tong University School of MedicineShanghai200030P. R. China
| |
Collapse
|
233
|
Zhang Y, Qin H, Bian J, Ma Z, Yi H. SLC2As as diagnostic markers and therapeutic targets in LUAD patients through bioinformatic analysis. Front Pharmacol 2022; 13:1045179. [PMID: 36518662 PMCID: PMC9742449 DOI: 10.3389/fphar.2022.1045179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 11/05/2023] Open
Abstract
Facilitative glucose transporters (GLUTs), which are encoded by solute carrier 2A (SLC2A) genes, are responsible for mediating glucose absorption. In order to meet their higher energy demands, cancer cells are more likely than normal tissue cells to have elevated glucose transporters. Multiple pathogenic processes, such as cancer and immunological disorders, have been linked to GLUTs. Few studies, meanwhile, have been conducted on individuals with lung adenocarcinoma (LUAD) to evaluate all 14 SLC2A genes. We first identified increased protein levels of SLC2A1, SLC2A5, SLC2A6, and SLC2A9 via HPA database and downregulated mRNA levels of SLC2A3, SLC2A6, SLC2A9, and SLC2A14 by ONCOMINE and UALCAN databases in patients with LUAD. Additionally, lower levels of SLC2A3, SLC2A6, SLC2A9, SLC2A12, and SLC2A14 and higher levels of SLC2A1, SLC2A5, SLC2A10, and SLC2A11 had an association with advanced tumor stage. SLC2A1, SLC2A7, and SLC2A11 were identified as prognostic signatures for LUAD. Kaplan-Meier analysis, Univariate Cox regression, multivariate Cox regression and ROC analyses further revealed that these three genes signature was a novel and important prognostic factor. Mechanistically, the aberrant expression of these molecules was caused, in part, by the hypomethylation of SLC2A3, SLC2A10, and SLC2A14 and by the hypermethylation of SLC2A1, SLC2A2, SLC2A5, SLC2A6, SLC2A7, and SLC2A11. Additionally, SLC2A3, SLC2A5, SLC2A6, SLC2A9, and SLC2A14 contributed to LUAD by positively modulating M2 macrophage and T cell exhaustion. Finally, pathways involving SLC2A1/BUB1B/mitotic cell cycle, SLC2A5/CD86/negative regulation of immune system process, SLC2A6/PLEK/lymphocyte activation, SLC2A9/CD4/regulation of cytokine production might participate in the pathogenesis of LUAD. In summary, our results will provide the theoretical basis on SLC2As as diagnostic markers and therapeutic targets in LUAD.
Collapse
Affiliation(s)
- Yanli Zhang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
- Echocardiography Department, The First Hospital of Jilin University, Changchun, China
| | - Han Qin
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Jing Bian
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, Jilin, China
| |
Collapse
|
234
|
Wu H, Guo S, Liu X, Li Y, Su Z, He Q, Liu X, Zhang Z, Yu L, Shi X, Gao S, Wang H, Pan Y, Ma C, Liu R, Dai M, Jin G, Liang Z. Noninvasive detection of pancreatic ductal adenocarcinoma using the methylation signature of circulating tumour DNA. BMC Med 2022; 20:458. [PMID: 36434648 PMCID: PMC9701032 DOI: 10.1186/s12916-022-02647-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has the lowest overall survival rate primarily due to the late onset of symptoms and rapid progression. Reliable and accurate tests for early detection are lacking. We aimed to develop a noninvasive test for early PDAC detection by capturing the circulating tumour DNA (ctDNA) methylation signature in blood. METHODS Genome-wide methylation profiles were generated from PDAC and nonmalignant tissues and plasma. Methylation haplotype blocks (MHBs) were examined to discover de novo PDAC markers. They were combined with multiple cancer markers and screened for PDAC classification accuracy. The most accurate markers were used to develop PDACatch, a targeted methylation sequencing assay. PDACatch was applied to additional PDAC and healthy plasma cohorts to train, validate and independently test a PDAC-discriminating classifier. Finally, the classifier was compared and integrated with carbohydrate antigen 19-9 (CA19-9) to evaluate and maximize its accuracy and utility. RESULTS In total, 90 tissues and 546 plasma samples were collected from 232 PDAC patients, 25 chronic pancreatitis (CP) patients and 323 healthy controls. Among 223 PDAC cases with known stage information, 43/119/38/23 cases were of Stage I/II/III/IV. A total of 171 de novo PDAC-specific markers and 595 multicancer markers were screened for PDAC classification accuracy. The top 185 markers were included in PDACatch, from which a 56-marker classifier for PDAC plasma was trained, validated and independently tested. It achieved an area under the curve (AUC) of 0.91 in both the validation (31 PDAC, 26 healthy; sensitivity = 84%, specificity = 89%) and independent tests (74 PDAC, 65 healthy; sensitivity = 82%, specificity = 88%). Importantly, the PDACatch classifier detected CA19-9-negative PDAC plasma at sensitivities of 75 and 100% during the validation and independent tests, respectively. It was more sensitive than CA19-9 in detecting Stage I (sensitivity = 80 and 68%, respectively) and early-stage (Stage I-IIa) PDAC (sensitivity = 76 and 70%, respectively). A combinatorial classifier integrating PDACatch and CA19-9 outperformed (AUC=0.94) either PDACatch (0.91) or CA19-9 (0.89) alone (p < 0.001). CONCLUSIONS The PDACatch assay demonstrated high sensitivity for early PDAC plasma, providing potential utility for noninvasive detection of early PDAC and indicating the effectiveness of methylation haplotype analyses in discovering robust cancer markers.
Collapse
Affiliation(s)
- Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Xiaoding Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Yatong Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Zhixi Su
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Qiye He
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Xiaoqian Liu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Zhiwen Zhang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Lianyuan Yu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Huan Wang
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Yaqi Pan
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China
| | - Chengcheng Ma
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China
| | - Rui Liu
- Singlera Genomics (Shanghai) Ltd., No. 500, Furonghua Road, Shanghai, 201203, China.
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Navy Medical, University (the Second Military Medical University), No.168, Changhai Road, Shanghai, 200433, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
235
|
Matsuzaki J, Kato K, Oono K, Tsuchiya N, Sudo K, Shimomura A, Tamura K, Shiino S, Kinoshita T, Daiko H, Wada T, Katai H, Ochiai H, Kanemitsu Y, Takamaru H, Abe S, Saito Y, Boku N, Kondo S, Ueno H, Okusaka T, Shimada K, Ohe Y, Asakura K, Yoshida Y, Watanabe SI, Asano N, Kawai A, Ohno M, Narita Y, Ishikawa M, Kato T, Fujimoto H, Niida S, Sakamoto H, Takizawa S, Akiba T, Okanohara D, Shiraishi K, Kohno T, Takeshita F, Nakagama H, Ota N, Ochiya T, Project Team for Development and Diagnostic Technology for Detection of miRNA in Body Fluids
HottaTomomitsuNakagamaHitoshiOchiyaTakahiroFurutaKohKatoKenOchiaiAtsushiMitsunagaShuichiNiidaShumpeiMimoriKoshiHatadaIzuhoKurodaMasahikoYokotaTakanoriMoriMasakiIshiiHideshiMurakamiYoshikiTaharaHidetoshiBabaYoshinobuAkioKoboriTakizawaSatokoHashimotoKojiHiraiMitsuharuKobayashiMasahikoFujimiyaHitoshiOkanoharaDaisukeNakaeHirokiTakashimaHideaki. Prediction of tissue-of-origin of early stage cancers using serum miRNomes. JNCI Cancer Spectr 2022; 7:6847090. [PMID: 36426871 PMCID: PMC9825310 DOI: 10.1093/jncics/pkac080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Noninvasive detection of early stage cancers with accurate prediction of tumor tissue-of-origin could improve patient prognosis. Because miRNA profiles differ between organs, circulating miRNomics represent a promising method for early detection of cancers, but this has not been shown conclusively. METHODS A serum miRNA profile (miRNomes)-based classifier was evaluated for its ability to discriminate cancer types using advanced machine learning. The training set comprised 7931 serum samples from patients with 13 types of solid cancers and 5013 noncancer samples. The validation set consisted of 1990 cancer and 1256 noncancer samples. The contribution of each miRNA to the cancer-type classification was evaluated, and those with a high contribution were identified. RESULTS Cancer type was predicted with an accuracy of 0.88 (95% confidence interval [CI] = 0.87 to 0.90) in all stages and an accuracy of 0.90 (95% CI = 0.88 to 0.91) in resectable stages (stages 0-II). The F1 score for the discrimination of the 13 cancer types was 0.93. Optimal classification performance was achieved with at least 100 miRNAs that contributed the strongest to accurate prediction of cancer type. Assessment of tissue expression patterns of these miRNAs suggested that miRNAs secreted from the tumor environment could be used to establish cancer type-specific serum miRNomes. CONCLUSIONS This study demonstrates that large-scale serum miRNomics in combination with machine learning could lead to the development of a blood-based cancer classification system. Further investigations of the regulating mechanisms of the miRNAs that contributed strongly to accurate prediction of cancer type could pave the way for the clinical use of circulating miRNA diagnostics.
Collapse
Affiliation(s)
- Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan,Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Minato-ku, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck, Esophageal Medical Oncology and Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kenta Oono
- Preferred Networks, Inc, Chiyoda-ku, Tokyo, Japan
| | - Naoto Tsuchiya
- Laboratory of Molecular Carcinogenesis, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kazuki Sudo
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Sho Shiino
- Department of Breast Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takayuki Kinoshita
- Department of Breast Surgery, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Hiroyuki Daiko
- Department of Esophageal Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takeyuki Wada
- Department of Gastric Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Hiroki Ochiai
- Department of Colorectal Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yukihide Kanemitsu
- Department of Colorectal Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Hiroyuki Takamaru
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Seiichiro Abe
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Narikazu Boku
- Department of Head and Neck, Esophageal Medical Oncology and Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shunsuke Kondo
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Hideki Ueno
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Takuji Okusaka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Kazuaki Shimada
- Department of Hepatobiliary and Pancreatic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Keisuke Asakura
- Department of Thoracic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yukihiro Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Naofumi Asano
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Makoto Ohno
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, Chuo-ku, Tokyo, Japan
| | - Shumpei Niida
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Hiromi Sakamoto
- Department of Biobank and Tissue Resources, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Satoko Takizawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan,Toray Industries, Inc, Kamakura, Kanagawa, Japan
| | - Takuya Akiba
- Preferred Networks, Inc, Chiyoda-ku, Tokyo, Japan
| | | | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Fumitaka Takeshita
- Department of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | - Takahiro Ochiya
- Correspondence to: Takahiro Ochiya, PhD, Department of Molecular and Cellular Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan (e-mail: )
| | | |
Collapse
|
236
|
Gianni C, Palleschi M, Merloni F, Di Menna G, Sirico M, Sarti S, Virga A, Ulivi P, Cecconetto L, Mariotti M, De Giorgi U. Cell-Free DNA Fragmentomics: A Promising Biomarker for Diagnosis, Prognosis and Prediction of Response in Breast Cancer. Int J Mol Sci 2022; 23:14197. [PMID: 36430675 PMCID: PMC9695769 DOI: 10.3390/ijms232214197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Identifying novel circulating biomarkers predictive of response and informative about the mechanisms of resistance, is the new challenge for breast cancer (BC) management. The integration of omics information will gradually revolutionize the clinical approach. Liquid biopsy is being incorporated into the diagnostic and decision-making process for the treatment of BC, in particular with the analysis of circulating tumor DNA, although with some relevant limitations, including costs. Circulating cell-free DNA (cfDNA) fragmentomics and its integrity index may become a cheaper, noninvasive biomarker that could provide significant additional information for monitoring response to systemic treatments in BC. The purpose of our review is to focus on the available research on cfDNA integrity and its features as a biomarker of diagnosis, prognosis and response to treatments in BC, highlighting new perspectives and critical issues for future applications.
Collapse
Affiliation(s)
- Caterina Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Michela Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Filippo Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Giandomenico Di Menna
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Samanta Sarti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Alessandra Virga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Lorenzo Cecconetto
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Marita Mariotti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| |
Collapse
|
237
|
2cChIP-seq and 2cMeDIP-seq: The Carrier-Assisted Methods for Epigenomic Profiling of Small Cell Numbers or Single Cells. Int J Mol Sci 2022; 23:ijms232213984. [PMID: 36430462 PMCID: PMC9692998 DOI: 10.3390/ijms232213984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) can profile genome-wide epigenetic marks associated with regulatory genomic elements. However, conventional ChIP-seq is challenging when examining limited numbers of cells. Here, we developed a new technique by supplementing carrier materials of both chemically modified mimics with epigenetic marks and dUTP-containing DNA fragments during conventional ChIP procedures (hereafter referred to as 2cChIP-seq), thus dramatically improving immunoprecipitation efficiency and reducing DNA loss of low-input ChIP-seq samples. Using this strategy, we generated high-quality epigenomic profiles of histone modifications or DNA methylation in 10-1000 cells. By introducing Tn5 transposase-assisted fragmentation, 2cChIP-seq reliably captured genomic regions with histone modification at the single-cell level in about 100 cells. Moreover, we characterized the methylome of 100 differentiated female germline stem cells (FGSCs) and observed a particular DNA methylation signature potentially involved in the differentiation of mouse germline stem cells. Hence, we provided a reliable and robust epigenomic profiling approach for small cell numbers and single cells.
Collapse
|
238
|
Abstract
There have been significant strides toward understanding the molecular landscape of brain cancer. These advances have been focused on analyses of the tumor microenvironment and have recently expanded to include liquid biopsies to identify molecular biomarkers noninvasively. Moving from tissue to liquid-based analyses of molecular biomarkers has been challenging and currently, there are no approved noninvasive tests that are clinically useful. However, the emerging field of molecular liquid biopsy assay development in the neuro-oncology space has great potential to revolutionize the detection and monitoring of patients with brain cancer.
Collapse
Affiliation(s)
- Dimitrios Mathios
- Department of Neurosurgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland , USA
| | - Jillian Phallen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland , USA
| |
Collapse
|
239
|
Abstract
In 2020, nearly 20 million peoples got cancer and nearly 10 million peoples died of cancer, indicating the cancer remains a great threat to human health and life. New therapies are still in urgent demand. We here develop a novel cancer therapy named Ferroptosis ASsassinates Tumor (FAST) by combining iron oxide nanoparticles with cancer-selective knockdown of seven key ferroptosis-resistant genes (FPN, LCN2, FTH1, FSP1, GPX4, SLC7A11, NRF2). We found that FAST had notable anti-tumor activity in a variety of cancer cells but little effect on normal cells. Especially, FAST eradicated three different types of tumors (leukemia, colon cancer, and lung metastatic melanoma) from over 50% of cancer mice, making the mice survive up to 250 days without tumor relapse. FAST also significantly inhibited and prevented the growth of spontaneous breast cancer and improved survival in mice. FAST showed high pan anti-tumor efficacy, high cancer specificity, and in vivo safety. FAST defines a new form of advanced nanomaterials, advanced combinatorial nanomaterials, by combining two kinds of nanomaterials, a chemical nanomaterial (iron oxide nanoparticles) and a biochemical nanomaterial (adeno-associated virus), which successfully turns a general iron nanomaterial into an unprecedented assassin to cancer.
Collapse
Affiliation(s)
- Tao Luo
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| | - Yile Wang
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| | - Jinke Wang
- grid.263826.b0000 0004 1761 0489State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, China
| |
Collapse
|
240
|
The cell-free DNA methylome captures distinctions between localized and metastatic prostate tumors. Nat Commun 2022; 13:6467. [PMID: 36309516 PMCID: PMC9617856 DOI: 10.1038/s41467-022-34012-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 10/07/2022] [Indexed: 12/25/2022] Open
Abstract
Metastatic prostate cancer remains a major clinical challenge and metastatic lesions are highly heterogeneous and difficult to biopsy. Liquid biopsy provides opportunities to gain insights into the underlying biology. Here, using the highly sensitive enrichment-based sequencing technology, we provide analysis of 60 and 175 plasma DNA methylomes from patients with localized and metastatic prostate cancer, respectively. We show that the cell-free DNA methylome can capture variations beyond the tumor. A global hypermethylation in metastatic samples is observed, coupled with hypomethylation in the pericentromeric regions. Hypermethylation at the promoter of a glucocorticoid receptor gene NR3C1 is associated with a decreased immune signature. The cell-free DNA methylome is reflective of clinical outcomes and can distinguish different disease types with 0.989 prediction accuracy. Finally, we show the ability of predicting copy number alterations from the data, providing opportunities for joint genetic and epigenetic analysis on limited biological samples.
Collapse
|
241
|
Rodriguez-Casanova A, Costa-Fraga N, Castro-Carballeira C, González-Conde M, Abuin C, Bao-Caamano A, García-Caballero T, Brozos-Vazquez E, Rodriguez-López C, Cebey V, Palacios P, Cueva JF, López-López R, Costa C, Díaz-Lagares A. A genome-wide cell-free DNA methylation analysis identifies an episignature associated with metastatic luminal B breast cancer. Front Cell Dev Biol 2022; 10:1016955. [PMID: 36393855 PMCID: PMC9641197 DOI: 10.3389/fcell.2022.1016955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/12/2022] [Indexed: 08/27/2023] Open
Abstract
Breast cancers of the luminal B subtype are frequent tumors with high proliferation and poor prognosis. Epigenetic alterations have been found in breast tumors and in biological fluids. We aimed to profile the cell-free DNA (cfDNA) methylome of metastatic luminal B breast cancer (LBBC) patients using an epigenomic approach to discover potential noninvasive biomarkers. Plasma cfDNA was analyzed using the Infinium MethylationEpic array in a cohort of 14 women, including metastatic LBBC patients and nontumor controls. The methylation levels of cfDNA and tissue samples were validated with droplet digital PCR. The methylation and gene expression data of 582 primary luminal breast tumors and 79 nontumor tissues were obtained from The Cancer Genome Atlas (TCGA). We found an episignature of 1,467 differentially methylated CpGs that clearly identified patients with LBBC. Among the genes identified, the promoter hypermethylation of WNT1 was validated in cfDNA, showing an area under the ROC curve (AUC) of 0.86 for the noninvasive detection of metastatic LBBC. Both paired cfDNA and primary/metastatic breast tumor samples showed hypermethylation of WNT1. TCGA analysis revealed significant WNT1 hypermethylation in the primary tumors of luminal breast cancer patients, with a negative association between WNT1 methylation and gene expression. In this proof-of-principle study, we discovered an episignature associated with metastatic LBBC using a genome-wide cfDNA methylation approach. We also identified the promoter hypermethylation of WNT1 in cfDNA as a potential noninvasive biomarker for luminal breast cancer. Our results support the use of EPIC arrays to identify new epigenetic noninvasive biomarkers in breast cancer.
Collapse
Affiliation(s)
- Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolas Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | | | - Miriam González-Conde
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Carmen Abuin
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Tomás García-Caballero
- Department of Morphological Sciences, University of Santiago de Compostela and Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Elena Brozos-Vazquez
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Carmela Rodriguez-López
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Victor Cebey
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Patricia Palacios
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Juan F. Cueva
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Clotilde Costa
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, Madrid, Spain
| |
Collapse
|
242
|
Zhang C, Zhou W, Tan Y, Tian D, Zhong C. 5-Hydroxymethylcytosines in circulating cell-free DNA reveal a diagnostic biomarker for glioma. Heliyon 2022; 8:e11022. [PMID: 36281400 PMCID: PMC9587273 DOI: 10.1016/j.heliyon.2022.e11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Gliomas typically have unfavorable prognosis, due to late detection and interventions. However, effective biomarkers for early glioma diagnosis based on 5-hydroxymethylcytosines (5 hm C) in circulating cell-free DNA (cfDNA) are not currently available. 5 hm C profiles in GSE132118 set were subjected for establishment of diagnostic model using the LASSO (least absolute shrinkage and selection operator) algorithm. The 5 hm C-based models demonstrated great potency in differentiating healthy subjects from gliomas, with area under the curves (AUCs) > 0.91 in the training and validation sets. Moreover, the indicator performed well in combination with clinicopathological characteristics to differentiate glioblastomas (GBMs) from lower grade glioma (LGGs). Enrichment analysis on 5 hm C profiles displayed great correlation with glioma pathophysiology. The 5 hm C-derived biomarker might act as an effective and non-invasive measure in glioma screening.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China,Department of Neurosurgery, Huzhou Central Hospital, Huzhou 313099, Zhejiang Province, China
| | - Wei Zhou
- Department of Anesthesiology, Huzhou Central Hospital, Huzhou 313099, Zhejiang Province, China
| | - Yinqiu Tan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430060, Hubei Province, China
| | - Daofeng Tian
- Department of Neurosurgery, Wuhan University, Renmin Hospital, Wuhan 430060, Hubei Province, China,Corresponding author.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China,Corresponding author.
| |
Collapse
|
243
|
Clinical Efficacy of Pyrotinib Combined with Capecitabine in the Second-Line or Above Treatment for HER-2 Positive Advanced Breast Cancer and Its Association with Cell-Free DNA. JOURNAL OF ONCOLOGY 2022; 2022:9449489. [PMID: 36245977 PMCID: PMC9568365 DOI: 10.1155/2022/9449489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Purpose To evaluate the clinical efficacy of pyrotinib combined with capecitabine in the treatment of HER-2 positive breast cancer in real world and its correlation with cfDNA. Methods From September 2020 to June 2021, 181 cases of HER-2 positive advanced breast cancer patients who were treated in Jiangsu Cancer Hospital and Nantong Cancer Hospital were analyzed. Patients were given pyrotinib combined with capecitabine or trastuzumab combined with capecitabine. Eighty-one patients who received pyrotinib+capecitabine second-line or above treatment were included in the pyrotinib group, and 100 patients who received trastuzumab+capecitabine second-line or above treatment were included in the trastuzumab group. The objective response rate (ORR) and clinical benefit rate (CBR) of the two groups were compared. The follow-up results of the patients were analyzed, and the progression-free survival (PFS) and adverse reactions were compared between the two groups. Plasma cfDNA was detected by real-time fluorescence quantitative PCR. The cfDNA levels of patients before and after treatment were compared, and the change of cfDNA levels in patients with different curative effects over time was recorded. The patients were further divided into high cfDNA expression and low cfDNA expression groups, and the PFS of patients with different cfDNA levels was analyzed. COX univariate and multivariate analysis of factors influencing posttreatment survival in patients with HER-2-positive breast cancer were performed. Results The ORR of the pyrotinib group (58.02%) was significantly higher than that of the trastuzumab group (42.00%, P = 0.0369). Similarly, the CBR of the pyrotinib group (65.43%) was significantly higher than that of the trastuzumab group (49.00%, P = 0.0347). The incidence of adverse reactions between the two groups was not statistically significant (P > 0.05). The results of survival analysis showed that the PFS of the pyrotinib group was 8.02 ± 3.05 months, the PFS of the trastuzumab group was 7.11 ± 3.06 months, and the PFS of the pyrotinib group was significantly longer than that of the trastuzumab group (P = 0.035). The comparison of cfDNA levels between the two groups showed that on the 28th and 56th day of treatment, the cfDNA levels in the pyrotinib group were significantly lower than those in the trastuzumab group (P < 0.05). Long-term follow-up results showed that compared with patients with high cfDNA expression, the PFS of patients with low cfDNA expression was significantly prolonged (P < 0.05). The level of cfDNA is an independent risk factor affecting the prognosis of patients with HER-2-positive breast cancer. Conclusion The combined use of pyrotinib and capecitabine has good clinical efficacy and high safety in patients with HER-2 positive breast cancer. The combined use of pyrotinib and capecitabine prolongs the PFS of patients and reduces the level of plasma cfDNA. Changes in cfDNA levels can reflect the therapeutic efficacy of patients with HER-2-positive breast cancer to a certain extent and can be used as a potential indicator for evaluating the prognosis of patients with HER-2-positive breast cancer.
Collapse
|
244
|
Birknerova N, Mancikova V, Paul ED, Matyasovsky J, Cekan P, Palicka V, Parova H. Circulating Cell-Free DNA-Based Methylation Pattern in Saliva for Early Diagnosis of Head and Neck Cancer. Cancers (Basel) 2022; 14:4882. [PMID: 36230805 PMCID: PMC9563959 DOI: 10.3390/cancers14194882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck cancer (HNC) remains one of the leading causes of mortality worldwide due to tumor diagnosis at a late stage, loco-regional aggression, and distant metastases. A standardized diagnostic procedure for HNC is a tissue biopsy that cannot faithfully portray the in-depth tumor dynamics. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for cancer detection and follow-up. A saliva-based liquid biopsy allows convenient, non-invasive, and painless collection of high volumes of this biofluid, with the possibility of repetitive sampling, all enabling real-time monitoring of the disease. No approved clinical test for HNC has yet been established. However, epigenetic changes in saliva circulating cell-free DNA (cfDNA) have the potential for a wide range of clinical applications. Therefore, the aim of this review is to present an overview of cfDNA-based methylation patterns in saliva for early detection of HNC, with particular attention to circulating tumor DNA (ctDNA). Due to advancements in isolation and detection technologies, as well as next- and third-generation sequencing, recent data suggest that salivary biomarkers may be successfully applied for early detection of HNC in the future, but large prospective clinical trials are still warranted.
Collapse
Affiliation(s)
- Natalia Birknerova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Veronika Mancikova
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Evan David Paul
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Jan Matyasovsky
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Pavol Cekan
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
245
|
Malapelle U, Pisapia P, Pepe F, Russo G, Buono M, Russo A, Gomez J, Khorshid O, Mack PC, Rolfo C, Troncone G. The evolving role of liquid biopsy in lung cancer. Lung Cancer 2022; 172:53-64. [PMID: 35998482 DOI: 10.1016/j.lungcan.2022.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 12/20/2022]
Abstract
Liquid biopsy has revolutionized the management of cancer patients. In particular, liquid biopsy-based testing has proven to be highly beneficial for identifying actionable cancer markers, especially when solid tissue biopsies are insufficient or unattainable. Beyond the predictive role, liquid biopsy may be a useful tool for comprehensive tumor genotyping, identification of emergent resistance mechanisms, monitoring of minimal residual disease, early detection, and cancer interception. The application of next generation sequencing to liquid biopsy has led to the "quantum leap" of predictive molecular pathology. Here, we review the evolving role of liquid biopsy in lung cancer.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mauro Buono
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Jorge Gomez
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA
| | - Ola Khorshid
- National Cancer Institute, Cairo University, Cairo, Egypt
| | - Philip C Mack
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, New York, NY, USA
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
246
|
Shah UJ, Alsulimani A, Ahmad F, Mathkor DM, Alsaieedi A, Harakeh S, Nasiruddin M, Haque S. Bioplatforms in liquid biopsy: advances in the techniques for isolation, characterization and clinical applications. Biotechnol Genet Eng Rev 2022; 38:339-383. [PMID: 35968863 DOI: 10.1080/02648725.2022.2108994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tissue biopsy analysis has conventionally been the gold standard for cancer prognosis, diagnosis and prediction of responses/resistances to treatments. The existing biopsy procedures used in clinical practice are, however, invasive, painful and often associated with pitfalls like poor recovery of tumor cells and infeasibility for repetition in single patients. To circumvent these limitations, alternative non-invasive, rapid and economical, yet sturdy, consistent and dependable, biopsy techniques are required. Liquid biopsy is an emerging technology that fulfills these criteria and potentially much more in terms of subject-specific real-time monitoring of cancer progression, determination of tumor heterogeneity and treatment responses, and specific identification of the type and stages of cancers. The present review first briefly revisits the state-of-the-art technique of liquid biopsy and then proceeds to address in detail, the advances in the potential clinical applications of four major biological agencies present in liquid biopsy samples (circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs)). Finally, the authors conclude with the limitations that need to be addressed in order for liquid biopsy to effectively replace the conventional invasive biopsy methods in the clinical settings.
Collapse
Affiliation(s)
- Ushma Jaykamal Shah
- MedGenome Labs Ltd, Kailash Cancer Hospital and Research Center, Vadodara, India
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, and Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Nasiruddin
- MedGenome Labs Ltd, Narayana Health City, Bangalore, India.,Genomics Lab, Orbito Asia Diagnostics, Coimbatore, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
247
|
Patel AV, Deubler E, Teras LR, Colditz GA, Lichtman CJ, Cance WG, Clarke CA. Key risk factors for the relative and absolute 5-year risk of cancer to enhance cancer screening and prevention. Cancer 2022; 128:3502-3515. [PMID: 35920750 PMCID: PMC9544865 DOI: 10.1002/cncr.34396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND This study identifies populations who may benefit most from expanded cancer screening. METHODS Two American Cancer Society prospective cohort studies, Cancer Prevention Study-II Nutrition Cohort and Cancer Prevention Study-3, were used to identify the risk factors associated with a > 2% absolute risk of any cancer within 5 years. In total, 429,991 participants with no prior personal history of cancer were followed for cancer for up to 5 years. Multivariable Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals for association. By using these hazard ratios, individualized coherent absolute risk estimation was used to calculate absolute risks by age. RESULTS Overall, 15,226 invasive cancers were diagnosed among participants within 5 years of enrollment. The multivariable-adjusted relative risk of any cancer was strongest for current smokers compared with never-smokers. In men, alcohol intake, family history of cancer, red meat consumption, and physical inactivity were also associated with risk (p < .05). In women, body mass index, type 2 diabetes, hysterectomy, parity, family history of cancer, hypertension, tubal ligation, and physical inactivity were associated (p < .05). The absolute 5-year risk exceeded 2% among nearly all participants older than 50 years and among some participants younger than 50 years, including current or former smokers (<30 years since quitting) and long-term nonsmokers with a body mass index >25 kg/m2 or a first-degree family history of cancer. The absolute 5-year risk was as high as 29% in men and 25% in women. CONCLUSIONS Older age and smoking were the two most important risk factors associated with the relative and absolute 5-year risk of developing any cancer.
Collapse
Affiliation(s)
- Alpa V. Patel
- Department of Population ScienceAmerican Cancer SocietyKennesawGeorgiaUSA
| | - Emily Deubler
- Department of Population ScienceAmerican Cancer SocietyKennesawGeorgiaUSA
| | - Lauren R. Teras
- Department of Population ScienceAmerican Cancer SocietyKennesawGeorgiaUSA
| | - Graham A. Colditz
- Division of Public Health Sciences, Department of SurgeryWashington UniversitySt LouisMissouriUSA
| | - Cari J. Lichtman
- Department of Population ScienceAmerican Cancer SocietyKennesawGeorgiaUSA
| | - William G. Cance
- Department of Population ScienceAmerican Cancer SocietyKennesawGeorgiaUSA
| | - Christina A. Clarke
- GRAIL, LLC, a subsidiary of Illumina, Inc., currently held separate from Illumina Inc., under the terms of the Interim Measures Order of the European Commission dated 29 October 2021Menlo ParkCaliforniaUSA
| |
Collapse
|
248
|
Circulating biomarkers in the diagnosis and management of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2022; 19:670-681. [PMID: 35676420 DOI: 10.1038/s41575-022-00620-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal causes of cancer-related death worldwide. The treatment of HCC remains challenging and is largely predicated on early diagnosis. Surveillance of high-risk groups using abdominal ultrasonography, with or without serum analysis of α-fetoprotein (AFP), can permit detection of early, potentially curable tumours, but is limited by its insensitivity. Reviewed here are two current approaches that aim to address this limitation. The first is to use old re-emerged empirically derived biomarkers such as AFP, now applied within statistical models. The second is to use circulating nucleic acid biomarkers, which include cell-free DNA (for example, circulating tumour DNA, cell-free mitochondrial DNA and cell-free viral DNA) and cell-free RNA, applying modern molecular biology-based technologies and machine learning techniques closely allied to the underlying biology of cancer. Taken together, these approaches are likely to be complementary. Both hold considerable promise for achieving earlier diagnosis as well as offering additional functionalities including improved monitoring of therapy and prediction of response thereto.
Collapse
|
249
|
Stackpole ML, Zeng W, Li S, Liu CC, Zhou Y, He S, Yeh A, Wang Z, Sun F, Li Q, Yuan Z, Yildirim A, Chen PJ, Winograd P, Tran B, Lee YT, Li PS, Noor Z, Yokomizo M, Ahuja P, Zhu Y, Tseng HR, Tomlinson JS, Garon E, French S, Magyar CE, Dry S, Lajonchere C, Geschwind D, Choi G, Saab S, Alber F, Wong WH, Dubinett SM, Aberle DR, Agopian V, Han SHB, Ni X, Li W, Zhou XJ. Cost-effective methylome sequencing of cell-free DNA for accurately detecting and locating cancer. Nat Commun 2022; 13:5566. [PMID: 36175411 PMCID: PMC9522828 DOI: 10.1038/s41467-022-32995-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/26/2022] [Indexed: 11/08/2022] Open
Abstract
Early cancer detection by cell-free DNA faces multiple challenges: low fraction of tumor cell-free DNA, molecular heterogeneity of cancer, and sample sizes that are not sufficient to reflect diverse patient populations. Here, we develop a cancer detection approach to address these challenges. It consists of an assay, cfMethyl-Seq, for cost-effective sequencing of the cell-free DNA methylome (with > 12-fold enrichment over whole genome bisulfite sequencing in CpG islands), and a computational method to extract methylation information and diagnose patients. Applying our approach to 408 colon, liver, lung, and stomach cancer patients and controls, at 97.9% specificity we achieve 80.7% and 74.5% sensitivity in detecting all-stage and early-stage cancer, and 89.1% and 85.0% accuracy for locating tissue-of-origin of all-stage and early-stage cancer, respectively. Our approach cost-effectively retains methylome profiles of cancer abnormalities, allowing us to learn new features and expand to other cancer types as training cohorts grow.
Collapse
Affiliation(s)
- Mary L Stackpole
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- EarlyDiagnostics, Inc., 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Weihua Zeng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- EarlyDiagnostics, Inc., 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Chun-Chi Liu
- EarlyDiagnostics, Inc., 570 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Shanshan He
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Angela Yeh
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Ziye Wang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Fengzhu Sun
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qingjiao Li
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zuyang Yuan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Asli Yildirim
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Pin-Jung Chen
- Department of Surgery, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul Winograd
- Department of Surgery, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin Tran
- Department of Surgery, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Yi-Te Lee
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Paul Shize Li
- Westlake High School, 100N Lakeview Cyn Road, Westlake Village, CA, 91362, USA
| | - Zorawar Noor
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Megumi Yokomizo
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Preeti Ahuja
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - James S Tomlinson
- Department of Surgery, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Edward Garon
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Samuel French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Clara E Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Sarah Dry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Clara Lajonchere
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Precision Health, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniel Geschwind
- Institute for Precision Health, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Gina Choi
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Sammy Saab
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Frank Alber
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Steven M Dubinett
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- VA Greater Los Angeles Health Care System, Los Angeles, CA, 90073, USA
| | - Denise R Aberle
- Department of Radiological Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Vatche Agopian
- Department of Surgery, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Steven-Huy B Han
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xiaohui Ni
- EarlyDiagnostics, Inc., 570 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Wenyuan Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
250
|
Wilson SL, Shen SY, Harmon L, Burgener JM, Triche T, Bratman SV, De Carvalho DD, Hoffman MM. Sensitive and reproducible cell-free methylome quantification with synthetic spike-in controls. CELL REPORTS METHODS 2022; 2:100294. [PMID: 36160046 PMCID: PMC9499995 DOI: 10.1016/j.crmeth.2022.100294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/17/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Cell-free methylated DNA immunoprecipitation sequencing (cfMeDIP-seq) identifies genomic regions with DNA methylation, using a protocol adapted to work with low-input DNA samples and with cell-free DNA (cfDNA). We developed a set of synthetic spike-in DNA controls for cfMeDIP-seq to provide a simple and inexpensive reference for quantitative normalization. We designed 54 DNA fragments with combinations of methylation status (methylated and unmethylated), fragment length (80 bp, 160 bp, 320 bp), G + C content (35%, 50%, 65%), and fraction of CpG dinucleotides within the fragment (1/80 bp, 1/40 bp, 1/20 bp). Using 0.01 ng of spike-in controls enables training a generalized linear model that absolutely quantifies methylated cfDNA in MeDIP-seq experiments. It mitigates batch effects and corrects for biases in enrichment due to known biophysical properties of DNA fragments and other technical biases.
Collapse
Affiliation(s)
- Samantha L. Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shu Yi Shen
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Justin M. Burgener
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tim Triche
- Van Andel Institute, Grand Rapids, MI, USA
| | - Scott V. Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Michael M. Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| |
Collapse
|