201
|
Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. MOLECULAR BIOMEDICINE 2023; 4:15. [PMID: 37183207 PMCID: PMC10183318 DOI: 10.1186/s43556-023-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
202
|
Dolina JS, Lee J, Brightman SE, McArdle S, Hall SM, Thota RR, Lanka M, Premlal ALR, Greenbaum JA, Cohen EEW, Peters B, Schoenberger SP. Linked CD4 + /CD8 + T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539290. [PMID: 37205330 PMCID: PMC10187312 DOI: 10.1101/2023.05.06.539290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response of an aggressive low TMB squamous cell tumor to ICB could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4 + and CD8 + T cells. We found that, whereas vaccination with CD4 + or CD8 + NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1 + tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4 + /CD8 + T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8 + T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. The concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Collapse
|
203
|
Del Prete A, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, Sozzani S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell Mol Immunol 2023; 20:432-447. [PMID: 36949244 PMCID: PMC10203372 DOI: 10.1038/s41423-023-00990-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 127.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/24/2023] Open
Abstract
Dendritic cells (DCs) exhibit a specialized antigen-presenting function and play crucial roles in both innate and adaptive immune responses. Due to their ability to cross-present tumor cell-associated antigens to naïve T cells, DCs are instrumental in the generation of specific T-cell-mediated antitumor effector responses in the control of tumor growth and tumor cell dissemination. Within an immunosuppressive tumor microenvironment, DC antitumor functions can, however, be severely impaired. In this review, we focus on the mechanisms of DC capture and activation by tumor cell antigens and the role of the tumor microenvironment in shaping DC functions, taking advantage of recent studies showing the phenotype acquisition, transcriptional state and functional programs revealed by scRNA-seq analysis. The therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is also discussed.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center-IRCCS Rozzano, Milano, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Soriani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mattia Laffranchi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Sozio
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
204
|
Cao Y, Li Y, Liu R, Zhou J, Wang K. Preclinical and Basic Research Strategies for Overcoming Resistance to Targeted Therapies in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15092568. [PMID: 37174034 PMCID: PMC10177527 DOI: 10.3390/cancers15092568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The amplification of epidermal growth factor receptor 2 (HER2) is associated with a poor prognosis and HER2 gene is overexpressed in approximately 15-30% of breast cancers. In HER2-positive breast cancer patients, HER2-targeted therapies improved clinical outcomes and survival rates. However, drug resistance to anti-HER2 drugs is almost unavoidable, leaving some patients with an unmet need for better prognoses. Therefore, exploring strategies to delay or revert drug resistance is urgent. In recent years, new targets and regimens have emerged continuously. This review discusses the fundamental mechanisms of drug resistance in the targeted therapies of HER2-positive breast cancer and summarizes recent research progress in this field, including preclinical and basic research studies.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Yunjin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Ruijie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| |
Collapse
|
205
|
Abstract
T cells and natural killer (NK) cells have complementary roles in tumor immunity, and dual T cell and NK cell attack thus offers opportunities to deepen the impact of immunotherapy. Recent work has also shown that NK cells play an important role in recruiting dendritic cells to tumors and thus enhance induction of CD8 T cell responses, while IL-2 secreted by T cells activates NK cells. Targeting of immune evasion mechanisms from the activating NKG2D receptor and its MICA and MICB ligands on tumor cells offers opportunities for therapeutic intervention. Interestingly, T cells and NK cells share several important inhibitory and activating receptors that can be targeted to enhance T cell- and NK cell-mediated immunity. These inhibitory receptor-ligand systems include CD161-CLEC2D, TIGIT-CD155, and NKG2A/CD94-HLA-E. We also discuss emerging therapeutic strategies based on inhibitory and activating cytokines that profoundly impact the function of both lymphocyte populations within tumors.
Collapse
Affiliation(s)
- Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
206
|
Okuda S, Ohuchida K, Nakamura S, Tsutsumi C, Hisano K, Mochida Y, Kawata J, Ohtsubo Y, Shinkawa T, Iwamoto C, Torata N, Mizuuchi Y, Shindo K, Moriyama T, Nakata K, Torisu T, Morisaki T, Kitazono T, Oda Y, Nakamura M. Neoadjuvant chemotherapy enhances anti-tumor immune response of tumor microenvironment in human esophageal squamous cell carcinoma. iScience 2023; 26:106480. [PMID: 37091252 PMCID: PMC10113784 DOI: 10.1016/j.isci.2023.106480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/08/2023] [Accepted: 03/19/2023] [Indexed: 04/25/2023] Open
Abstract
Although chemotherapy has been an essential treatment for cancer, the development of immune checkpoint blockade therapy was revolutionary, and a comprehensive understanding of the immunological tumor microenvironment (TME) has become crucial. Here, we investigated the impact of neoadjuvant chemotherapy (NAC) on immune cells in the TME of human esophageal squamous cell carcinoma using single cell RNA-sequencing. Analysis of 30 fresh samples revealed that CD8+/CD4+ T cells, dendritic cells (DCs), and macrophages in the TME of human esophageal squamous cell carcinoma showed higher levels of an anti-tumor immune response in the NAC(+) group than in the NAC(-) group. Furthermore, the immune cells of the NAC(+) group interacted with each other resulting in enhanced anti-tumor immune response via various cytokines, including IFNG in CD8+/CD4+ T cells, EBI3 in DCs, and NAMPT in macrophages. Our results suggest that NAC potentially enhances the anti-tumor immune response of immune cells in the TME.
Collapse
Affiliation(s)
- Sho Okuda
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Corresponding author
| | - Shoichi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kyoko Hisano
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Mochida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Jun Kawata
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu Hospital, Fukuoka 812-8582, Japan
| | - Yoshiki Ohtsubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiko Shinkawa
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chika Iwamoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nobuhiro Torata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusuke Mizuuchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Taiki Moriyama
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Morisaki
- Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka 812-0018, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu Hospital, Fukuoka 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
207
|
Zheng H, Yu X, Ibrahim ML, Foresman D, Xie M, Johnson JO, Boyle TA, Ruffell B, Perez BA, Antonia SJ, Ready N, Saltos AN, Cantwell MJ, Beg AA. Combination IFNβ and Membrane-Stable CD40L Maximize Tumor Dendritic Cell Activation and Lymph Node Trafficking to Elicit Systemic T-cell Immunity. Cancer Immunol Res 2023; 11:466-485. [PMID: 36757308 PMCID: PMC10165690 DOI: 10.1158/2326-6066.cir-22-0927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Oncolytic virus therapies induce the direct killing of tumor cells and activation of conventional dendritic cells (cDC); however, cDC activation has not been optimized with current therapies. We evaluated the adenoviral delivery of engineered membrane-stable CD40L (MEM40) and IFNβ to locally activate cDCs in mouse tumor models. Combined tumor MEM40 and IFNβ expression induced the highest cDC activation coupled with increased lymph node migration, increased systemic antitumor CD8+ T-cell responses, and regression of established tumors in a cDC1-dependent manner. MEM40 + IFNβ combined with checkpoint inhibitors led to effective control of distant tumors and lung metastases. An oncolytic adenovirus (MEM-288) expressing MEM40 + IFNβ in phase I clinical testing induced cancer cell loss concomitant with enhanced T-cell infiltration and increased systemic presence of tumor T-cell clonotypes in non-small cell lung cancer (NSCLC) patients. This approach to simultaneously target two major DC-activating pathways has the potential to significantly affect the solid tumor immunotherapy landscape.
Collapse
Affiliation(s)
- Hong Zheng
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Xiaoqing Yu
- Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Mohammed L Ibrahim
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dana Foresman
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | - Mengyu Xie
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Theresa A Boyle
- Pathology, Moffitt Cancer Center, Tampa, Florida
- Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Brian Ruffell
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
| | | | - Scott J Antonia
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Neal Ready
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | | | | | - Amer A Beg
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida
- Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
208
|
Stadinski BD, Cleveland SB, Brehm MA, Greiner DL, Huseby PG, Huseby ES. I-A g7 β56/57 polymorphisms regulate non-cognate negative selection to CD4 + T cell orchestrators of type 1 diabetes. Nat Immunol 2023; 24:652-663. [PMID: 36807641 PMCID: PMC10623581 DOI: 10.1038/s41590-023-01441-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023]
Abstract
Genetic susceptibility to type 1 diabetes is associated with homozygous expression of major histocompatibility complex class II alleles that carry specific beta chain polymorphisms. Why heterozygous expression of these major histocompatibility complex class II alleles does not confer a similar predisposition is unresolved. Using a nonobese diabetic mouse model, here we show that heterozygous expression of the type 1 diabetes-protective allele I-Ag7 β56P/57D induces negative selection to the I-Ag7-restricted T cell repertoire, including beta-islet-specific CD4+ T cells. Surprisingly, negative selection occurs despite I-Ag7 β56P/57D having a reduced ability to present beta-islet antigens to CD4+ T cells. Peripheral manifestations of non-cognate negative selection include a near complete loss of beta-islet-specific CXCR6+ CD4+ T cells, an inability to cross-prime islet-specific glucose-6-phosphatase catalytic subunit-related protein and insulin-specific CD8+ T cells and disease arrest at the insulitis stage. These data reveal that negative selection on non-cognate self-antigens in the thymus can promote T cell tolerance and protection from autoimmunity.
Collapse
Affiliation(s)
- Brian D Stadinski
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah B Cleveland
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael A Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA, USA
| | - Priya G Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Eric S Huseby
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
209
|
Ferris ST, Liu T, Chen J, Ohara RA, Ou F, Wu R, Kim S, Murphy TL, Murphy KM. WDFY4 deficiency in NOD mice ameliorates autoimmune diabetes and insulitis. Proc Natl Acad Sci U S A 2023; 120:e2219956120. [PMID: 36940342 PMCID: PMC10068798 DOI: 10.1073/pnas.2219956120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/13/2023] [Indexed: 03/22/2023] Open
Abstract
The events that initiate autoimmune diabetes in nonobese diabetic (NOD) mice remain poorly understood. CD4+ and CD8+ T cells are both required to develop disease, but their relative roles in initiating disease are unclear. To test whether CD4+ T cell infiltration into islets requires damage to β cells induced by autoreactive CD8+ T cells, we inactivated Wdfy4 in nonobese diabetic (NOD) mice (NOD.Wdfy4-/--) using CRISPR/Cas9 targeting to eliminate cross-presentation by type 1 conventional dendritic cells (cDC1s). Similar to C57BL/6 Wdfy4-/- mice, cDC1 in NOD.Wdfy4-/- mice are unable to cross-present cell-associated antigens to prime CD8+ T cells, while cDC1 from heterozygous NOD.Wdfy4+/- mice cross-present normally. Further, NOD.Wdfy4-/- mice fail to develop diabetes while heterozygous NOD.Wdfy4+/- mice develop diabetes similarly to wild-type NOD mice. NOD.Wdfy4-/- mice remain capable of processing and presenting major histocompatibility complex class II (MHC-II)-restricted autoantigens and can activate β cell-specific CD4+ T cells in lymph nodes. However, disease in these mice does not progress beyond peri-islet inflammation. These results indicate that the priming of autoreactive CD8+ T cells in NOD mice requires cross-presentation by cDC1. Further, autoreactive CD8+ T cells appear to be required not only to develop diabetes, but to recruit autoreactive CD4+ T cells into islets of NOD mice, perhaps in response to progressive β cell damage.
Collapse
Affiliation(s)
- Stephen T. Ferris
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Tiantian Liu
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Jing Chen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Ray A. Ohara
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Feiya Ou
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Renee Wu
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Sunkyung Kim
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Theresa L. Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO63110
| |
Collapse
|
210
|
Preet Kaur A, Alice A, Crittenden MR, Gough MJ. The role of dendritic cells in radiation-induced immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:61-104. [PMID: 37438021 DOI: 10.1016/bs.ircmb.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Dendritic cells perform critical functions in bridging innate and adaptive immunity. Their ability to sense adjuvant signals in their environment, migrate on maturation, and cross-present cell-associated antigens enables these cells to carry antigen from tissue sites to lymph nodes, and thereby prime naïve T cells that cannot enter tissues. Despite being an infrequent cell type in tumors, we discuss how dendritic cells impact the immune environment of tumors and their response to cancer therapies. We review how radiation therapy of tumors can impact dendritic cells, through transfer of cell associated antigens to dendritic cells and the release of endogenous adjuvants, resulting in increased antigen presentation in the tumor-draining lymph nodes. We explore how tumor specific factors can result in negative regulation of dendritic cell function in the tumor, and the impact of direct radiation exposure to dendritic cells in the treatment field. These data suggest an important role for dendritic cell subpopulations in activating new T cell responses and boosting existing T cell responses to tumor associated antigens in tumor draining lymph nodes following radiation therapy. It further justifies a focus on the needs of the lymph node T cells to improve systemic anti-immunity following radiation therapy.
Collapse
Affiliation(s)
- Aanchal Preet Kaur
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro Alice
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States; The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Portland, OR, United States.
| |
Collapse
|
211
|
Sanmarco LM, Rone JM, Polonio CM, Giovannoni F, Lahore GF, Ferrara K, Gutierrez-Vazquez C, Li N, Sokolovska A, Plasencia A, Akl CF, Nanda P, Heck ES, Li Z, Lee HG, Chao CC, Rejano-Gordillo CM, Fonseca-Castro PH, Illouz T, Linnerbauer M, Kenison JE, Barilla RM, Farrenkopf D, Piester G, Dailey L, Kuchroo VK, Hava D, Wheeler MA, Clish C, Nowarski R, Balsa E, Lora JM, Quintana FJ. Engineered probiotics limit CNS autoimmunity by stabilizing HIF-1α in dendritic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.532101. [PMID: 36993446 PMCID: PMC10055137 DOI: 10.1101/2023.03.17.532101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology. Specifically, we found that lactate, produced by activated DCs and other immune cells, boosts NDUFA4L2 expression through a mechanism mediated by HIF-1α. NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs involved in the control of pathogenic autoimmune T cells. Moreover, we engineered a probiotic that produces lactate and suppresses T-cell autoimmunity in the central nervous system via the activation of HIF-1α/NDUFA4L2 signaling in DCs. In summary, we identified an immunometabolic pathway that regulates DC function, and developed a synthetic probiotic for its therapeutic activation.
Collapse
|
212
|
Singh A, Ranjan A. Adrenergic receptor signaling regulates the CD40-receptor mediated anti-tumor immunity. Front Immunol 2023; 14:1141712. [PMID: 37006295 PMCID: PMC10050348 DOI: 10.3389/fimmu.2023.1141712] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
InroductionAnti-CD40 agonistic antibody (αCD40), an activator of dendritic cells (DC) can enhance antigen presentation and activate cytotoxic T-cells against poorly immunogenic tumors. However, cancer immunotherapy trials also suggest that αCD40 is only moderately effective in patients, falling short of achieving clinical success. Identifying factors that decrease αCD40 immune-stimulating effects can aid the translation of this agent to clinical reality.Method/ResultsHere, we reveal that β-adrenergic signaling on DCs directly interferes with αCD40 efficacy in immunologically cold head and neck tumor model. We discovered that β-2 adrenergic receptor (β2AR) activation rewires CD40 signaling in DCs by directly inhibiting the phosphorylation of IκBα and indirectly by upregulating levels of phosphorylated-cAMP response element-binding protein (pCREB). Importantly, the addition of propranolol, a pan β-Blocker reprograms the CD40 pathways, inducing superior tumor regressions, increased infiltration of cytotoxic T-cells, and a reduced burden of regulatory T-cells in tumors compared to monotherapy.Discussion/ConclusionThus, our study highlights an important mechanistic link between stress-induced β2AR signaling and reduced αCD40 efficacy in cold tumors, providing a new combinatorial approach to improve clinical outcomes in patients.
Collapse
|
213
|
CD4 + T cells in cancer. NATURE CANCER 2023; 4:317-329. [PMID: 36894637 DOI: 10.1038/s43018-023-00521-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 01/20/2023] [Indexed: 03/11/2023]
Abstract
Cancer immunology and immunotherapy are driving forces of research and development in oncology, mostly focusing on CD8+ T cells and the tumor microenvironment. Recent progress highlights the importance of CD4+ T cells, corresponding to the long-known fact that CD4+ T cells are central players and coordinators of innate and antigen-specific immune responses. Moreover, they have now been recognized as anti-tumor effector cells in their own right. Here we review the current status of CD4+ T cells in cancer, which hold great promise for improving knowledge and therapies in cancer.
Collapse
|
214
|
Webb ER, Dodd GL, Noskova M, Bullock E, Muir M, Frame MC, Serrels A, Brunton VG. Kindlin-1 regulates IL-6 secretion and modulates the immune environment in breast cancer models. eLife 2023; 12:e85739. [PMID: 36883731 PMCID: PMC10023156 DOI: 10.7554/elife.85739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/08/2023] [Indexed: 03/09/2023] Open
Abstract
The adhesion protein Kindlin-1 is over-expressed in breast cancer where it is associated with metastasis-free survival; however, the mechanisms involved are poorly understood. Here, we report that Kindlin-1 promotes anti-tumor immune evasion in mouse models of breast cancer. Deletion of Kindlin-1 in Met-1 mammary tumor cells led to tumor regression following injection into immunocompetent hosts. This was associated with a reduction in tumor infiltrating Tregs. Similar changes in T cell populations were seen following depletion of Kindlin-1 in the polyomavirus middle T antigen (PyV MT)-driven mouse model of spontaneous mammary tumorigenesis. There was a significant increase in IL-6 secretion from Met-1 cells when Kindlin-1 was depleted and conditioned media from Kindlin-1-depleted cells led to a decrease in the ability of Tregs to suppress the proliferation of CD8+ T cells, which was dependent on IL-6. In addition, deletion of tumor-derived IL-6 in the Kindlin-1-depleted tumors reversed the reduction of tumor-infiltrating Tregs. Overall, these data identify a novel function for Kindlin-1 in regulation of anti-tumor immunity, and that Kindlin-1 dependent cytokine secretion can impact the tumor immune environment.
Collapse
Affiliation(s)
- Emily R Webb
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Georgia L Dodd
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Michaela Noskova
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Esme Bullock
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Morwenna Muir
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Alan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
215
|
Mahadevan KK, Dyevoich AM, Chen Y, Li B, Sugimoto H, Sockwell AM, McAndrews KM, Wang H, Shalapour S, Watowich SS, Kalluri R. Antigen-presenting type-I conventional dendritic cells facilitate curative checkpoint blockade immunotherapy in pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.05.531191. [PMID: 36945457 PMCID: PMC10028824 DOI: 10.1101/2023.03.05.531191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Inflammation and tissue damage associated with pancreatitis can precede or occur concurrently with pancreatic ductal adenocarcinoma (PDAC). We demonstrate that in PDAC coupled with pancreatitis (ptPDAC), antigen-presenting type-I conventional dendritic cells (cDC1s) are specifically activated. Immune checkpoint blockade therapy (iCBT) leads to cytotoxic CD8 + T cell activation and eradication of ptPDAC with restoration of lifespan even upon PDAC re-challenge. Such eradication of ptPDAC was reversed following specific depletion of dendritic cells. Employing PDAC antigen-loaded cDC1s as a vaccine, immunotherapy-resistant PDAC was rendered sensitive to iCBT with a curative outcome. Analysis of the T-cell receptor (TCR) sequences in the tumor infiltrating CD8 + T cells following cDC1 vaccination coupled with iCBT identified unique CDR3 sequences with potential therapeutic significance. Our findings identify a fundamental difference in the immune microenvironment and adaptive immune response in PDAC concurrent with, or without pancreatitis, and provides a rationale for combining cDC1 vaccination with iCBT as a potential treatment option.
Collapse
|
216
|
Domenjo-Vila E, Casella V, Iwabuchi R, Fossum E, Pedragosa M, Castellví Q, Cebollada Rica P, Kaisho T, Terahara K, Bocharov G, Argilaguet J, Meyerhans A. XCR1+ DCs are critical for T cell-mediated immunotherapy of chronic viral infections. Cell Rep 2023; 42:112123. [PMID: 36795562 DOI: 10.1016/j.celrep.2023.112123] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/11/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The contribution of cross-presenting XCR1+ dendritic cells (DCs) and SIRPα+ DCs in maintaining T cell function during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized. Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection and highly activated compared with SIRPα+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1 blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 therapy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of SIRPα+ DCs dampened their proliferation. Together, this demonstrates that XCR1+ DCs are crucial for the success of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.
Collapse
Affiliation(s)
- Eva Domenjo-Vila
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan; Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Even Fossum
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
| | - Mireia Pedragosa
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Quim Castellví
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Paula Cebollada Rica
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jordi Argilaguet
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain; IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
217
|
Rodrigues PF, Kouklas A, Cvijetic G, Bouladoux N, Mitrovic M, Desai JV, Lima-Junior DS, Lionakis MS, Belkaid Y, Ivanek R, Tussiwand R. pDC-like cells are pre-DC2 and require KLF4 to control homeostatic CD4 T cells. Sci Immunol 2023; 8:eadd4132. [PMID: 36827419 PMCID: PMC10165717 DOI: 10.1126/sciimmunol.add4132] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) have been shown to play an important role during immune responses, ranging from initial viral control through the production of type I interferons to antigen presentation. However, recent studies uncovered unexpected heterogeneity among pDCs. We identified a previously uncharacterized immune subset, referred to as pDC-like cells, that not only resembles pDCs but also shares conventional DC (cDC) features. We show that this subset is a circulating precursor distinct from common DC progenitors, with prominent cDC2 potential. Our findings from human CD2-iCre and CD300c-iCre lineage tracing mouse models suggest that a substantial fraction of cDC2s originates from pDC-like cells, which can therefore be referred to as pre-DC2. This precursor subset responds to homeostatic cytokines, such as macrophage colony stimulating factor, by expanding and differentiating into cDC2 that efficiently prime T helper 17 (TH17) cells. Development of pre-DC2 into CX3CR1+ ESAM- cDC2b but not CX3CR1- ESAM+ cDC2a requires the transcription factor KLF4. Last, we show that, under homeostatic conditions, this developmental pathway regulates the immune threshold at barrier sites by controlling the pool of TH17 cells within skin-draining lymph nodes.
Collapse
Affiliation(s)
| | | | - Grozdan Cvijetic
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Microbiome and Immunity, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Mladen Mitrovic
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Microbiome and Immunity, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Roxane Tussiwand
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
218
|
He M, Roussak K, Ma F, Borcherding N, Garin V, White M, Schutt C, Jensen TI, Zhao Y, Iberg CA, Shah K, Bhatia H, Korenfeld D, Dinkel S, Gray J, Antonova AU, Ferris S, Donermeyer D, Arlehamn CL, Gubin MM, Luo J, Gorvel L, Pellegrini M, Sette A, Tung T, Bak R, Modlin RL, Fields RC, Schreiber RD, Allen PM, Klechevsky E. CD5 expression by dendritic cells directs T cell immunity and sustains immunotherapy responses. Science 2023; 379:eabg2752. [PMID: 36795805 PMCID: PMC10424698 DOI: 10.1126/science.abg2752] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 01/17/2023] [Indexed: 02/18/2023]
Abstract
The induction of proinflammatory T cells by dendritic cell (DC) subtypes is critical for antitumor responses and effective immune checkpoint blockade (ICB) therapy. Here, we show that human CD1c+CD5+ DCs are reduced in melanoma-affected lymph nodes, with CD5 expression on DCs correlating with patient survival. Activating CD5 on DCs enhanced T cell priming and improved survival after ICB therapy. CD5+ DC numbers increased during ICB therapy, and low interleukin-6 (IL-6) concentrations promoted their de novo differentiation. Mechanistically, CD5 expression by DCs was required to generate optimally protective CD5hi T helper and CD8+ T cells; further, deletion of CD5 from T cells dampened tumor elimination in response to ICB therapy in vivo. Thus, CD5+ DCs are an essential component of optimal ICB therapy.
Collapse
Affiliation(s)
- Mingyu He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kate Roussak
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Feiyang Ma
- Molecular Cell and Developmental Biology at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vince Garin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mike White
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Charles Schutt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Trine I. Jensen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Yun Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Courtney A. Iberg
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kairav Shah
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Himanshi Bhatia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Korenfeld
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabrina Dinkel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Judah Gray
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen Ferris
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Donermeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cecilia Lindestam Arlehamn
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Matthew M. Gubin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laurent Gorvel
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matteo Pellegrini
- Molecular Cell and Developmental Biology at University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Thomas Tung
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rasmus Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, 8000 Aarhus C, Denmark
| | - Robert L. Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ryan C. Fields
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Paul M. Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
219
|
Raccosta L, Marinozzi M, Costantini S, Maggioni D, Ferreira LM, Corna G, Zordan P, Sorice A, Farinello D, Bianchessi S, Riba M, Lazarevic D, Provero P, Mack M, Bondanza A, Nalvarte I, Gustafsson JA, Ranzani V, De Sanctis F, Ugel S, Baron S, Lobaccaro JMA, Pontini L, Pacciarini M, Traversari C, Pagani M, Bronte V, Sitia G, Antonson P, Brendolan A, Budillon A, Russo V. Harnessing the reverse cholesterol transport pathway to favor differentiation of monocyte-derived APCs and antitumor responses. Cell Death Dis 2023; 14:129. [PMID: 36792589 PMCID: PMC9932151 DOI: 10.1038/s41419-023-05620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/17/2023]
Abstract
Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.
Collapse
Affiliation(s)
- Laura Raccosta
- grid.18887.3e0000000417581884Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Maura Marinozzi
- grid.9027.c0000 0004 1757 3630Big Ideas in Organic Synthesis (BIOS) Laboratory, Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06123 Italy
| | - Susan Costantini
- grid.508451.d0000 0004 1760 8805Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Daniela Maggioni
- grid.18887.3e0000000417581884Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Lorena Maria Ferreira
- grid.18887.3e0000000417581884Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianfranca Corna
- grid.18887.3e0000000417581884Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Paola Zordan
- grid.18887.3e0000000417581884Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angela Sorice
- grid.508451.d0000 0004 1760 8805Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Diego Farinello
- grid.18887.3e0000000417581884Lymphoid Organ Development Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Silvia Bianchessi
- grid.18887.3e0000000417581884Lymphoid Organ Development Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Michela Riba
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Dejan Lazarevic
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Paolo Provero
- grid.18887.3e0000000417581884Center for Translational Genomics and Bioinformatics IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Matthias Mack
- grid.7727.50000 0001 2190 5763Division of Internal Medicine II-Nephrology, University of Regensburg, Regensburg, 93042 Germany
| | - Attilio Bondanza
- grid.18887.3e0000000417581884Innovative Immunotherapy Unit, IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Ivan Nalvarte
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, S-14183 Sweden
| | - J-A Gustafsson
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, S-14183 Sweden ,grid.266436.30000 0004 1569 9707Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77004 USA
| | - Valeria Ranzani
- grid.428717.f0000 0004 1802 9805Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy
| | - Francesco De Sanctis
- grid.411475.20000 0004 1756 948XDepartment of Medicine, Section of Immunology, Verona University Hospital, 37134 Verona, Italy
| | - Stefano Ugel
- grid.411475.20000 0004 1756 948XDepartment of Medicine, Section of Immunology, Verona University Hospital, 37134 Verona, Italy
| | - Silvère Baron
- grid.463855.90000 0004 0385 8889Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d’Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- grid.463855.90000 0004 0385 8889Université Clermont Auvergne, GReD, CNRS, INSERM, and Centre de Recherche en Nutrition Humaine d’Auvergne Clermont-Ferrand, Clermont-Ferrand, France
| | - Lorenzo Pontini
- grid.9027.c0000 0004 1757 3630Big Ideas in Organic Synthesis (BIOS) Laboratory, Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06123 Italy
| | - Manuela Pacciarini
- grid.9027.c0000 0004 1757 3630Big Ideas in Organic Synthesis (BIOS) Laboratory, Department of Pharmaceutical Sciences, University of Perugia, Perugia, 06123 Italy
| | - Catia Traversari
- grid.425866.b0000 0004 1764 3096MolMed S.p.A., Milan, 20132 Italy
| | - Massimiliano Pagani
- grid.428717.f0000 0004 1802 9805Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20133 Milan, Italy
| | - Vincenzo Bronte
- grid.419546.b0000 0004 1808 1697Veneto Institute of Oncology - Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), 35128 Padova, Italy
| | - Giovanni Sitia
- grid.18887.3e0000000417581884Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Per Antonson
- grid.4714.60000 0004 1937 0626Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, S-14183 Sweden
| | - Andrea Brendolan
- grid.18887.3e0000000417581884Lymphoid Organ Development Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, 20132 Italy
| | - Alfredo Budillon
- grid.508451.d0000 0004 1760 8805Experimental Pharmacology Unit, Laboratori di Mercogliano, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Vincenzo Russo
- Immuno-Biotherapy of Melanoma and Solid Tumors Unit, Division of Experimental Oncology, IRCCS Scientific Institute San Raffaele, Milan, 20132, Italy. .,Vita-Salute San Raffaele University, 20132, Milan, Italy.
| |
Collapse
|
220
|
Mangani D, Yang D, Anderson AC. Learning from the nexus of autoimmunity and cancer. Immunity 2023; 56:256-271. [PMID: 36792572 PMCID: PMC9986833 DOI: 10.1016/j.immuni.2023.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
The immune system plays critical roles in both autoimmunity and cancer, diseases at opposite ends of the immune spectrum. Autoimmunity arises from loss of T cell tolerance against self, while in cancer, poor immunity against transformed self fails to control tumor growth. Blockade of pathways that preserve self-tolerance is being leveraged to unleash immunity against many tumors; however, widespread success is hindered by the autoimmune-like toxicities that arise in treated patients. Knowledge gained from the treatment of autoimmunity can be leveraged to treat these toxicities in patients. Further, the understanding of how T cell dysfunction arises in cancer can be leveraged to induce a similar state in autoreactive T cells. Here, we review what is known about the T cell response in autoimmunity and cancer and highlight ways in which we can learn from the nexus of these two diseases to improve the application, efficacy, and management of immunotherapies.
Collapse
Affiliation(s)
- Davide Mangani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA; Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Universita della Svizzera Italiana, Bellinzona 6500, Switzerland.
| | - Dandan Yang
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Mass General Brigham, Boston, MA 02115, USA.
| |
Collapse
|
221
|
Kilian M, Sheinin R, Tan CL, Friedrich M, Krämer C, Kaminitz A, Sanghvi K, Lindner K, Chih YC, Cichon F, Richter B, Jung S, Jähne K, Ratliff M, Prins RM, Etminan N, von Deimling A, Wick W, Madi A, Bunse L, Platten M. MHC class II-restricted antigen presentation is required to prevent dysfunction of cytotoxic T cells by blood-borne myeloids in brain tumors. Cancer Cell 2023; 41:235-251.e9. [PMID: 36638785 DOI: 10.1016/j.ccell.2022.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/20/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Cancer immunotherapy critically depends on fitness of cytotoxic and helper T cell responses. Dysfunctional cytotoxic T cell states in the tumor microenvironment (TME) are a major cause of resistance to immunotherapy. Intratumoral myeloid cells, particularly blood-borne myeloids (bbm), are key drivers of T cell dysfunction in the TME. We show here that major histocompatibility complex class II (MHCII)-restricted antigen presentation on bbm is essential to control the growth of brain tumors. Loss of MHCII on bbm drives dysfunctional intratumoral tumor-reactive CD8+ T cell states through increased chromatin accessibility and expression of Tox, a critical regulator of T cell exhaustion. Mechanistically, MHCII-dependent activation of CD4+ T cells restricts myeloid-derived osteopontin that triggers a chronic activation of NFAT2 in tumor-reactive CD8+ T cells. In summary, we provide evidence that MHCII-restricted antigen presentation on bbm is a key mechanism to directly maintain functional cytotoxic T cell states in brain tumors.
Collapse
Affiliation(s)
- Michael Kilian
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ron Sheinin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Blavatnik School of Computer Science, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Chin Leng Tan
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Mirco Friedrich
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ayelet Kaminitz
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Khwab Sanghvi
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Katharina Lindner
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Yu-Chan Chih
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Frederik Cichon
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Joint Immunotherapeutics Laboratory of the DKFZ-Bayer Innovation Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Richter
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Jung
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristine Jähne
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Ratliff
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Robert M Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Andreas von Deimling
- DKTK CCU Neuropathology, DKFZ, Heidelberg, Germany; Department of Neuropathology, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany; DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany; Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany; DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
222
|
Pei L, Liu Y, Liu L, Gao S, Gao X, Feng Y, Sun Z, Zhang Y, Wang C. Roles of cancer-associated fibroblasts (CAFs) in anti- PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:29. [PMID: 36759842 PMCID: PMC9912573 DOI: 10.1186/s12943-023-01731-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
In recent years, breakthroughs have been made in tumor immunotherapy. However, tumor immunotherapy, particularly anti-PD-1/PD-L1 immune checkpoint inhibitors, is effective in only a small percentage of patients in solid cancer. How to improve the efficiency of cancer immunotherapy is an urgent problem to be solved. As we all know, the state of the tumor microenvironment (TME) is an essential factor affecting the effectiveness of tumor immunotherapy, and the cancer-associated fibroblasts (CAFs) in TME have attracted much attention in recent years. As one of the main components of TME, CAFs interact with cancer cells and immune cells by secreting cytokines and vesicles, participating in ECM remodeling, and finally affecting the immune response process. With the in-depth study of CAFs heterogeneity, new strategies are provided for finding targets of combination immunotherapy and predicting immune efficacy. In this review, we focus on the role of CAFs in the solid cancer immune microenvironment, and then further elaborate on the potential mechanisms and pathways of CAFs influencing anti-PD-1/PD-L1 immunotherapy. In addition, we summarize the potential clinical application value of CAFs-related targets and markers in solid cancers.
Collapse
Affiliation(s)
- Liping Pei
- grid.412633.10000 0004 1799 0733Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yang Liu
- grid.414008.90000 0004 1799 4638Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Lin Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Shuochen Gao
- grid.412633.10000 0004 1799 0733Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Xueyan Gao
- grid.412633.10000 0004 1799 0733Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yudi Feng
- grid.412633.10000 0004 1799 0733Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhenqiang Sun
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yan Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chengzeng Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
223
|
Parker S, McDowall C, Sanchez-Perez L, Osorio C, Duncker PC, Briley A, Swartz AM, Herndon JE, Yu YRA, McLendon RE, Tedder TF, Desjardins A, Ashley DM, Gunn MD, Enterline DS, Knorr DA, Pastan IH, Nair SK, Bigner DD, Chandramohan V. Immunotoxin-αCD40 therapy activates innate and adaptive immunity and generates a durable antitumor response in glioblastoma models. Sci Transl Med 2023; 15:eabn5649. [PMID: 36753564 PMCID: PMC10440725 DOI: 10.1126/scitranslmed.abn5649] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
D2C7-immunotoxin (IT), a dual-specific IT targeting wild-type epidermal growth factor receptor (EGFR) and mutant EGFR variant III (EGFRvIII) proteins, demonstrates encouraging survival outcomes in a subset of patients with glioblastoma. We hypothesized that immunosuppression in glioblastoma limits D2C7-IT efficacy. To improve the response rate and reverse immunosuppression, we combined D2C7-IT tumor cell killing with αCD40 costimulation of antigen-presenting cells. In murine glioma models, a single intratumoral injection of D2C7-IT+αCD40 treatment activated a proinflammatory phenotype in microglia and macrophages, promoted long-term tumor-specific CD8+ T cell immunity, and generated cures. D2C7-IT+αCD40 treatment increased intratumoral Slamf6+CD8+ T cells with a progenitor phenotype and decreased terminally exhausted CD8+ T cells. D2C7-IT+αCD40 treatment stimulated intratumoral CD8+ T cell proliferation and generated cures in glioma-bearing mice despite FTY720-induced peripheral T cell sequestration. Tumor transcriptome profiling established CD40 up-regulation, pattern recognition receptor, cell senescence, and immune response pathway activation as the drivers of D2C7-IT+αCD40 antitumor responses. To determine potential translation, immunohistochemistry staining confirmed CD40 expression in human GBM tissue sections. These promising preclinical data allowed us to initiate a phase 1 study with D2C7-IT+αhCD40 in patients with malignant glioma (NCT04547777) to further evaluate this treatment in humans.
Collapse
Affiliation(s)
- Scott Parker
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Charlotte McDowall
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Sanchez-Perez
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Cristina Osorio
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Aaron Briley
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Adam M Swartz
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James E Herndon
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Yen-Rei A Yu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Roger E McLendon
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael Dee Gunn
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - David S Enterline
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - David A Knorr
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ira H Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Smita K Nair
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Darell D Bigner
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vidyalakshmi Chandramohan
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
224
|
Wong JL, Smith P, Angulo-Lozano J, Ranti D, Bochner BH, Sfakianos JP, Horowitz A, Ravetch JV, Knorr DA. IL-15 synergizes with CD40 agonist antibodies to induce durable immunity against bladder cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526266. [PMID: 36778311 PMCID: PMC9915460 DOI: 10.1101/2023.01.30.526266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
CD40 is a central co-stimulatory receptor implicated in the development of productive anti-tumor immune responses across multiple cancers, including bladder cancer. Despite strong preclinical rationale, systemic administration of therapeutic agonistic antibodies targeting the CD40 pathway have demonstrated dose limiting toxicities with minimal clinical activity to date, emphasizing an important need for optimized CD40-targeted approaches, including rational combination therapy strategies. Here, we describe an important role for the endogenous IL-15 pathway in contributing to the therapeutic activity of CD40 agonism in orthotopic bladder tumors, with upregulation of trans-presented IL-15/IL-15Rα surface complexes, particularly by cross-presenting cDC1s, and associated enrichment of activated CD8 T cells within the bladder tumor microenvironment. In bladder cancer patient samples, we identify DCs as the primary source of IL-15, however, they lack high levels of IL-15Rα at baseline. Using humanized immunocompetent orthotopic bladder tumor models, we demonstrate the ability to therapeutically augment this interaction through combined treatment with anti-CD40 agonist antibodies and exogenous IL-15, including the fully-human Fc-optimized antibody 2141-V11 currently in clinical development for the treatment of bladder cancer. Combination therapy enhances the crosstalk between Batf3-dependent cDC1s and CD8 T cells, driving robust primary anti-tumor activity and further stimulating long-term systemic anti-tumor memory responses associated with circulating memory-phenotype T and NK cell populations. Collectively, these data reveal an important role for IL-15 in mediating anti-tumor CD40 agonist responses in bladder cancer and provide key proof-of-concept for combined use of Fc-optimized anti-CD40 agonist antibodies and agents targeting the IL-15 pathway. These data support expansion of ongoing clinical studies evaluating anti-CD40 agonist antibodies and IL-15-based approaches to evaluate combinations of these promising therapeutics for the treatment of patients with bladder cancer.
Collapse
Affiliation(s)
- Jeffrey L. Wong
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Current address: Genentech, Inc., South San Francisco, CA, USA
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - Juan Angulo-Lozano
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - Daniel Ranti
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Bernard H. Bochner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | - John P. Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Amir Horowitz
- The Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
| | - David A. Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
225
|
Bourque J, Hawiger D. Life and death of tolerogenic dendritic cells. Trends Immunol 2023; 44:110-118. [PMID: 36599743 PMCID: PMC9892261 DOI: 10.1016/j.it.2022.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
In contrast to conventional dendritic cells (cDCs) that are constantly exposed to microbial signals at anatomical barriers, cDCs in systemic lymphoid organs are sheltered from proinflammatory stimulation in the steady state but respond to inflammatory signals by gaining specific immune functions in a process referred to as maturation. Recent findings show that, during maturation, a population of systemic tolerogenic cDCs undergoes an acute tumor necrosis factor α (TNFα)-mediated cell death, resulting in the loss of tolerance-inducing capacity. This tolerogenic cDC population is restored upon return to the homeostatic baseline. We propose that such a dynamic reshaping of cDC populations becomes the foundation of a novel framework for maintaining tolerance at the steady state while being conducive to unhampered initiation of immune responses under proinflammatory conditions.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
226
|
Zagorulya M, Spranger S. Once upon a prime: DCs shape cancer immunity. Trends Cancer 2023; 9:172-184. [PMID: 36357313 PMCID: PMC10827483 DOI: 10.1016/j.trecan.2022.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Cytotoxic CD8+ T cells are potent killers of diseased cells, but their functional capacity is often compromised in cancer. The quality of antitumor T cell immunity is determined during T cell priming in the lymph node and further influenced by the local microenvironment of the tumor. Increasing evidence indicates that dendritic cells (DCs) have the capacity to precisely regulate the functional quality of antitumor T cell responses in both locations. In this review, we discuss recent advances in our understanding of how distinct DC-derived signals influence CD8+ T cell differentiation and antitumor functions. Insight into the mechanisms of DC-mediated regulation of antitumor immunity could inspire the development of improved approaches to prevent and reverse T cell dysfunction in cancer.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Department of Biology, MIT, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Ludwig Center at MIT's Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
227
|
Schaettler MO, Desai R, Wang AZ, Livingstone AJ, Kobayashi DK, Coxon AT, Bowman-Kirigin JA, Liu CJ, Li M, Bender DE, White MJ, Kranz DM, Johanns TM, Dunn GP. TCR-engineered adoptive cell therapy effectively treats intracranial murine glioblastoma. J Immunother Cancer 2023; 11:e006121. [PMID: 36808076 PMCID: PMC9944319 DOI: 10.1136/jitc-2022-006121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Adoptive cellular therapies with chimeric antigen receptor T cells have revolutionized the treatment of some malignancies but have shown limited efficacy in solid tumors such as glioblastoma and face a scarcity of safe therapeutic targets. As an alternative, T cell receptor (TCR)-engineered cellular therapy against tumor-specific neoantigens has generated significant excitement, but there exist no preclinical systems to rigorously model this approach in glioblastoma. METHODS We employed single-cell PCR to isolate a TCR specific for the Imp3D81N neoantigen (mImp3) previously identified within the murine glioblastoma model GL261. This TCR was used to generate the Mutant Imp3-Specific TCR TransgenIC (MISTIC) mouse in which all CD8 T cells are specific for mImp3. The therapeutic efficacy of neoantigen-specific T cells was assessed through a model of cellular therapy consisting of the transfer of activated MISTIC T cells and interleukin 2 into lymphodepleted tumor-bearing mice. We employed flow cytometry, single-cell RNA sequencing, and whole-exome and RNA sequencing to examine the factors underlying treatment response. RESULTS We isolated and characterized the 3×1.1C TCR that displayed a high affinity for mImp3 but no wild-type cross-reactivity. To provide a source of mImp3-specific T cells, we generated the MISTIC mouse. In a model of adoptive cellular therapy, the infusion of activated MISTIC T cells resulted in rapid intratumoral infiltration and profound antitumor effects with long-term cures in a majority of GL261-bearing mice. The subset of mice that did not respond to the adoptive cell therapy showed evidence of retained neoantigen expression but intratumoral MISTIC T cell dysfunction. The efficacy of MISTIC T cell therapy was lost in mice bearing a tumor with heterogeneous mImp3 expression, showcasing the barriers to targeted therapy in polyclonal human tumors. CONCLUSIONS We generated and characterized the first TCR transgenic against an endogenous neoantigen within a preclinical glioma model and demonstrated the therapeutic potential of adoptively transferred neoantigen-specific T cells. The MISTIC mouse provides a powerful novel platform for basic and translational studies of antitumor T-cell responses in glioblastoma.
Collapse
Affiliation(s)
- Maximilian O Schaettler
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anthony Z Wang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Dale K Kobayashi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew T Coxon
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jay A Bowman-Kirigin
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Connor J Liu
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mao Li
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diane E Bender
- Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J White
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David M Kranz
- Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tanner M Johanns
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
228
|
Brightman SE, Naradikian MS, Thota RR, Becker A, Montero L, Bahmanof M, Premlal ALR, Greenbaum JA, Peters B, Cohen EE, Miller AM, Schoenberger SP. Tumor cells fail to present MHC-II-restricted epitopes derived from oncogenes to CD4+ T cells. JCI Insight 2023; 8:e165570. [PMID: 36512410 PMCID: PMC9977289 DOI: 10.1172/jci.insight.165570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
CD4+ T cells play a critical role in antitumor immunity via recognition of peptide antigens presented on MHC class II (MHC-II). Although some solid cancers can be induced to express MHC-II, the extent to which this enables direct recognition by tumor-specific CD4+ T cells is unclear. We isolated and characterized T cell antigen receptors (TCRs) from naturally primed CD4+ T cells specific for 2 oncoproteins, HPV-16 E6 and the activating KRASG12V mutation, from patients with head and neck squamous cell carcinoma and pancreatic ductal adenocarcinoma, respectively, and determined their ability to recognize autologous or human leukocyte antigen-matched antigen-expressing tumor cells. We found in both cases that the TCRs were capable of recognizing peptide-loaded target cells expressing the relevant MHC-II or B cell antigen-presenting cells (APCs) when the antigens were endogenously expressed and directed to the endosomal pathway but failed to recognize tumor cells expressing the source protein even after induction of surface MHC-II expression by IFN-γ or transduction with CIITA. These results suggest that priming and functional recognition of both a nuclear (E6) and a membrane-associated (KRAS) oncoprotein are predominantly confined to crosspresenting APCs rather than via direct recognition of tumor cells induced to express MHC-II.
Collapse
Affiliation(s)
- Spencer E. Brightman
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Biomedical Sciences Program, School of Medicine, UCSD, La Jolla, California, USA
| | - Martin S. Naradikian
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA
- Novartis, San Diego, California, USA
| | - Rukman R. Thota
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Angelica Becker
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- IconOVir Bio, San Diego, California, USA
| | - Leslie Montero
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Milad Bahmanof
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| | | | | | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Ezra E.W. Cohen
- Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA
| | - Aaron M. Miller
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
- Division of Hematology and Oncology, UCSD Moores Cancer Center, La Jolla, California, USA
| | - Stephen P. Schoenberger
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
229
|
Lei X, Khatri I, de Wit T, de Rink I, Nieuwland M, Kerkhoven R, van Eenennaam H, Sun C, Garg AD, Borst J, Xiao Y. CD4 + helper T cells endow cDC1 with cancer-impeding functions in the human tumor micro-environment. Nat Commun 2023; 14:217. [PMID: 36639382 PMCID: PMC9839676 DOI: 10.1038/s41467-022-35615-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 12/12/2022] [Indexed: 01/15/2023] Open
Abstract
Despite their low abundance in the tumor microenvironment (TME), classical type 1 dendritic cells (cDC1) play a pivotal role in anti-cancer immunity, and their abundance positively correlates with patient survival. However, their interaction with CD4+ T-cells to potentially enable the cytotoxic T lymphocyte (CTL) response has not been elucidated. Here we show that contact with activated CD4+ T-cells enables human ex vivo cDC1, but no other DC types, to induce a CTL response to cell-associated tumor antigens. Single cell transcriptomics reveals that CD4+ T-cell help uniquely optimizes cDC1 in many functions that support antigen cross-presentation and T-cell priming, while these changes don't apply to other DC types. We robustly identify "helped" cDC1 in the TME of a multitude of human cancer types by the overlap in their transcriptomic signature with that of recently defined, tumor-infiltrating DC states that prove to be positively prognostic. As predicted from the functional effects of CD4+ T-cell help, the transcriptomic signature of "helped" cDC1 correlates with tumor infiltration by CTLs and Thelper(h)-1 cells, overall survival and response to PD-1-targeting immunotherapy. These findings reveal a critical role for CD4+ T-cell help in enabling cDC1 function in the TME and may establish the helped cDC1 transcriptomic signature as diagnostic marker in cancer.
Collapse
Affiliation(s)
- Xin Lei
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Indu Khatri
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom de Wit
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Iris de Rink
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marja Nieuwland
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ron Kerkhoven
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Chong Sun
- Immune Regulation in Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands. .,Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| | - Yanling Xiao
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands. .,Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
230
|
Lybaert L, Lefever S, Fant B, Smits E, De Geest B, Breckpot K, Dirix L, Feldman SA, van Criekinge W, Thielemans K, van der Burg SH, Ott PA, Bogaert C. Challenges in neoantigen-directed therapeutics. Cancer Cell 2023; 41:15-40. [PMID: 36368320 DOI: 10.1016/j.ccell.2022.10.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
A fundamental prerequisite for the efficacy of cancer immunotherapy is the presence of functional, antigen-specific T cells within the tumor. Neoantigen-directed therapy is a promising strategy that aims at targeting the host's immune response against tumor-specific antigens, thereby eradicating cancer cells. Initial forays have been made in clinical environments utilizing vaccines and adoptive cell therapy; however, many challenges lie ahead. We provide an in-depth overview of the current state of the field with an emphasis on in silico neoantigen discovery and the clinical aspects that need to be addressed to unlock the full potential of this therapy.
Collapse
Affiliation(s)
| | | | | | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium
| | - Bruno De Geest
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Wim van Criekinge
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
231
|
Characterizing the tumor microenvironment at the single-cell level reveals a novel immune evasion mechanism in osteosarcoma. Bone Res 2023; 11:4. [PMID: 36596773 PMCID: PMC9810605 DOI: 10.1038/s41413-022-00237-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/08/2022] [Accepted: 09/04/2022] [Indexed: 01/04/2023] Open
Abstract
The immune microenvironment extensively participates in tumorigenesis as well as progression in osteosarcoma (OS). However, the landscape and dynamics of immune cells in OS are poorly characterized. By analyzing single-cell RNA sequencing (scRNA-seq) data, which characterize the transcription state at single-cell resolution, we produced an atlas of the immune microenvironment in OS. The results suggested that a cluster of regulatory dendritic cells (DCs) might shape the immunosuppressive microenvironment in OS by recruiting regulatory T cells. We also found that major histocompatibility complex class I (MHC-I) molecules were downregulated in cancer cells. The findings indicated a reduction in tumor immunogenicity in OS, which can be a potential mechanism of tumor immune escape. Of note, CD24 was identified as a novel "don't eat me" signal that contributed to the immune evasion of OS cells. Altogether, our findings provide insights into the immune landscape of OS, suggesting that myeloid-targeted immunotherapy could be a promising approach to treat OS.
Collapse
|
232
|
Park JH, Lee HK. The Role of Hypoxia in Brain Tumor Immune Responses. Brain Tumor Res Treat 2023; 11:39-46. [PMID: 36762807 PMCID: PMC9911710 DOI: 10.14791/btrt.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Oxygen is a vital component of living cells. Low levels of oxygen in body tissues, known as hypoxia, can affect multiple cellular functions across a variety of cell types and are a hallmark of brain tumors. In the tumor microenvironment, abnormal vasculature and enhanced oxygen consumption by tumor cells induce broad hypoxia that affects not only tumor cell characteristics but also the antitumor immune system. Although some immune reactions require hypoxia, hypoxia generally negatively affects immunity. Hypoxia induces tumor cell invasion, cellular adaptations to hypoxia, and tumor cell radioresistance. In addition, hypoxia limits the efficacy of immunotherapy and hinders antitumor responses. Therefore, understanding the role of hypoxia in the brain tumor, which usually does not respond to immunotherapy alone is important for the development of effective anti-tumor therapies. In this review, we discuss recent evidence supporting the role of hypoxia in the context of brain tumors.
Collapse
Affiliation(s)
- Jang Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
233
|
Xiao Q, Xia Y. Insights into dendritic cell maturation during infection with application of advanced imaging techniques. Front Cell Infect Microbiol 2023; 13:1140765. [PMID: 36936763 PMCID: PMC10018208 DOI: 10.3389/fcimb.2023.1140765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the initiation and regulation of adaptive immune responses. When encountering immune stimulus such as bacterial and viral infection, parasite invasion and dead cell debris, DCs capture antigens, mature, acquire immunostimulatory activity and transmit the immune information to naïve T cells. Then activated cytotoxic CD8+ T cells directly kill the infected cells, while CD4+ T helper cells release cytokines to aid the activity of other immune cells, and help B cells produce antibodies. Thus, detailed insights into the DC maturation process are necessary for us to understand the working principle of immune system, and develop new medical treatments for infection, cancer and autoimmune disease. This review summarizes the DC maturation process, including environment sensing and antigen sampling by resting DCs, antigen processing and presentation on the cell surface, DC migration, DC-T cell interaction and T cell activation. Application of advanced imaging modalities allows visualization of subcellular and molecular processes in a super-high resolution. The spatiotemporal tracking of DCs position and migration reveals dynamics of DC behavior during infection, shedding novel lights on DC biology.
Collapse
Affiliation(s)
- Qi Xiao
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
- *Correspondence: Qi Xiao,
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
234
|
Maisonneuve L, Manoury B. In Vitro and In Vivo Assays to Evaluate Dendritic Cell Phagocytic Capacity. Methods Mol Biol 2023; 2618:279-288. [PMID: 36905524 DOI: 10.1007/978-1-0716-2938-3_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Phagocytosis is a process by which specific immune cells such as macrophages or dendritic cells engulf large particles. It is an important innate immune defense mechanism for removing a wide variety of pathogens and apoptotic cells. Following phagocytosis, nascent phagosomes are formed which, when fused to lysosome to become phagolysosome containing acidic proteases, will allow the degradation of ingested material. This chapter describes in vitro and in vivo assays to measure phagocytosis by murine dendritic cells using amine beads coupled with streptavidin Alexa 488. This protocol can also be applied to monitor phagocytosis in human dendritic cells.
Collapse
Affiliation(s)
- Lucie Maisonneuve
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université de Paris, Faculté de Médecine Necker, Paris, France
| | - Bénédicte Manoury
- Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université de Paris, Faculté de Médecine Necker, Paris, France.
| |
Collapse
|
235
|
Duluc D, Sisirak V. Origin, Phenotype, and Function of Mouse Dendritic Cell Subsets. Methods Mol Biol 2023; 2618:3-16. [PMID: 36905505 DOI: 10.1007/978-1-0716-2938-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Dendritic cells are cells of hematopoietic origin that are specialized in antigen presentation and instruction of innate and adaptive immune responses. They are a heterogenous group of cells populating lymphoid organs and most tissues. Dendritic cells are commonly separated in three main subsets that differ in their developmental paths, phenotype, and functions. Most studies on dendritic cells were done primarily in mice; therefore, in this chapter, we propose to summarize the current knowledge and recent progress on mouse dendritic cell subsets' development, phenotype, and functions.
Collapse
Affiliation(s)
- Dorothée Duluc
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France.
| | - Vanja Sisirak
- UMR CNRS 5164 - Immunoconcept, Université de Bordeaux, Bordeaux, France.
| |
Collapse
|
236
|
Arabpour M, Paul S, Grauers Wiktorin H, Kaya M, Kiffin R, Lycke N, Hellstrand K, Martner A. An adjuvant-containing cDC1-targeted recombinant fusion vaccine conveys strong protection against murine melanoma growth and metastasis. Oncoimmunology 2022; 11:2115618. [PMID: 36046810 PMCID: PMC9423856 DOI: 10.1080/2162402x.2022.2115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Type 1 conventional dendritic cells (cDC1) efficiently cross-present antigens that prime cytotoxic CD8+ T cells. cDC1 therefore constitute conceivable targets in cancer vaccine development. We generated recombinant fusion cancer vaccines that aimed to concomitantly deliver tumor antigen and adjuvant to CD103+ migratory cDC1, following intranasal administration. The fusion vaccine constructs comprised a cDC1-targeting anti-CD103 single chain antibody (aCD103) and a cholera toxin A1 (CTA1) subunit adjuvant, fused with MHC class I and II- or class II-restricted tumor cell antigens to generate a CTA1-I/II-aCD103 vaccine and a CTA1-II-aCD103 vaccine. The immunostimulatory and anti-tumor efficacy of these vaccines was evaluated in murine B16F1-ovalbumin (OVA) melanoma models in C57BL/6 J mice. The CTA1-I/II-aCD103 vaccine was most efficacious and triggered robust tumor antigen-specific CD8+ T cell responses along with a Th17-polarized CD4+ T cell response. This vaccine construct reduced the local growth of implanted B16F1-OVA melanomas and efficiently prevented hematogenous lung metastasis after prophylactic and therapeutic vaccination. Anti-tumor effects of the CTA1-I/II-aCD103 vaccine were antigen-specific and long-lasting. These results imply that adjuvant-containing recombinant fusion vaccines that target and activate cDC1 trigger effective anti-tumor immunity to control tumor growth and metastasis.
Collapse
Affiliation(s)
- Mohammad Arabpour
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sanchari Paul
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mustafa Kaya
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
237
|
Chu X, Zhang Y, Cheng S, Cheng S. Heterogeneity of tumor-infiltrating myeloid cells in era of single-cell genomics. Chin J Cancer Res 2022; 34:543-553. [PMID: 36714348 PMCID: PMC9829493 DOI: 10.21147/j.issn.1000-9604.2022.06.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Tumor microenvironment (TME) is highly heterogeneous and composed of complex cellular components, including multiple kinds of immune cells. Among all immune cells in TME, tumor-infiltrating myeloid cells (TIMs) account for a large proportion and play roles as key regulators in a variety of functions, ranging from immune-mediated tumor killing to tumor immune evasion. Understanding the heterogeneity of TIMs will provide valuable insights for new therapeutic targeting of myeloid cells. Single-cell genomic technologies deciphering cell composition and gene expression at single-cell resolution have largely improved our understanding of the cellular heterogeneity of TIMs and highlighted several novel cell subtypes contributing to the variation of patient survival and treatment response. However, these cell subtypes were defined based on limited data without a concordant nomenclature, which makes it difficult to understand whether they exist in different studies. Thus, in this review, we comprehensively summarized the common agreements and current different opinions on the heterogeneity of TIMs gained from single-cell studies; evaluated the feasibility of current myeloid cell targets at single-cell level and proposed a uniform nomenclature for TIM subsets.
Collapse
Affiliation(s)
| | - Yu Zhang
- Changping Laboratory, Beijing 102206, China
| | - Sijin Cheng
- Changping Laboratory, Beijing 102206, China,Sijin Cheng. Changping Laboratory, Beijing 102206, China.
| | | |
Collapse
|
238
|
Kagamu H, Yamasaki S, Kitano S, Yamaguchi O, Mouri A, Shiono A, Nishihara F, Miura Y, Hashimoto K, Imai H, Kaira K, Kobayashi K, Kanai Y, Shibata T, Horimoto K. Single-Cell Analysis Reveals a CD4+ T-cell Cluster That Correlates with PD-1 Blockade Efficacy. Cancer Res 2022; 82:4641-4653. [PMID: 36219677 PMCID: PMC9755963 DOI: 10.1158/0008-5472.can-22-0112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/30/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
CD4+ T-cell immunity helps clonal proliferation, migration, and cancer cell killing activity of CD8+ T cells and is essential in antitumor immune responses. To identify CD4+ T-cell clusters responsible for antitumor immunity, we simultaneously analyzed the naïve-effector state, Th polarization, and T-cell receptor clonotype based on single-cell RNA-sequencing data. Unsupervised clustering analysis uncovered the presence of a new CD4+ T-cell metacluster in the CD62Llow CD4+ T-cell subpopulation, which contained multicellular clonotypes associated with efficacy of programmed death-ligand 1 (PD-1) blockade therapy. The CD4+ T-cell metacluster consisted of CXCR3+CCR4-CCR6+ and CXCR3-CCR4-CCR6+ cells and was characterized by high expression of IL7 receptor and TCF7. The frequency of these cells in the peripheral blood significantly correlated with progression-free survival and overall survival of patients with lung cancer after PD-1 blockade therapy. In addition, the CD4+ metacluster in the peripheral blood correlated with CD4+ T-cell infiltration in the tumor microenvironment, whereas peripheral Th1 correlated with local CD8+ T-cell infiltration. Together, these findings suggest that CD62Llow CCR4-CCR6+ CD4+ T cells form a novel metacluster with predictive potential of the immune status and sensitivity to PD-1 blockade, which may pave the way for personalized antitumor immunotherapy strategies for patients. SIGNIFICANCE The identification of a new CD4+ T-cell metacluster that corresponds with immune status could guide effective tumor treatment by predicting response to immunotherapy using peripheral blood samples from patients.
Collapse
Affiliation(s)
- Hiroshi Kagamu
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Corresponding Author: Hiroshi Kagamu, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka City 350-1298, Japan. Phone: 814-2984-4581; Fax: 814-2984-4581; E-mail:
| | - Satoshi Yamasaki
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Department of Clinical Cancer Genomics, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ou Yamaguchi
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Atsuto Mouri
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Ayako Shiono
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Fuyumi Nishihara
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yu Miura
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kosuke Hashimoto
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Hisao Imai
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kyoichi Kaira
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Kunihiko Kobayashi
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Katsuhisa Horimoto
- Division of Respiratory Medicine, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan.,Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| |
Collapse
|
239
|
Poirier A, Tremblay ML. Pharmacological potentiation of monocyte-derived dendritic cell cancer immunotherapy. Cancer Immunol Immunother 2022; 72:1343-1353. [DOI: 10.1007/s00262-022-03333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
|
240
|
Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat Immunol 2022; 23:1536-1550. [PMID: 36271147 PMCID: PMC9896965 DOI: 10.1038/s41590-022-01324-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
CD40 signaling in classical type 1 dendritic cells (cDC1s) is required for CD8 T cell-mediated tumor rejection, but the underlying mechanisms are incompletely understood. Here, we identified CD40-induced genes in cDC1s, including Cd70, Tnfsf9, Ptgs2 and Bcl2l1, and examined their contributions to anti-tumor immunity. cDC1-specific inactivation of CD70 and COX-2, and global CD27 inactivation, only partially impaired tumor rejection or tumor-specific CD8 T cell expansion. Loss of 4-1BB, alone or in Cd27-/- mice, did not further impair anti-tumor immunity. However, cDC1-specific CD40 inactivation reduced cDC1 mitochondrial transmembrane potential and increased caspase activation in tumor-draining lymph nodes, reducing migratory cDC1 numbers in vivo. Similar impairments occurred during in vitro antigen presentation by Cd40-/- cDC1s to CD8+ T cells, which were reversed by re-expression of Bcl2l1. Thus, CD40 signaling in cDC1s not only induces costimulatory ligands for CD8+ T cells but also induces Bcl2l1 that sustains cDC1 survival during priming of anti-tumor responses.
Collapse
|
241
|
Fu C, Ma T, Zhou L, Mi QS, Jiang A. Dendritic Cell-Based Vaccines Against Cancer: Challenges, Advances and Future Opportunities. Immunol Invest 2022; 51:2133-2158. [PMID: 35946383 DOI: 10.1080/08820139.2022.2109486] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the most potent professional antigen presenting cells, dendritic cells (DCs) have the ability to activate both naive CD4 and CD8 T cells. Recognized for their exceptional ability to cross-present exogenous antigens to prime naive antigen-specific CD8 T cells, DCs play a critical role in generating CD8 T cell immunity, as well as mediating CD8 T cell tolerance to tumor antigens. Despite the ability to potentiate host CD8 T cell-mediated anti-tumor immunity, current DC-based cancer vaccines have not yet achieved the promised success clinically with the exception of FDA-approved Provenge. Interestingly, recent studies have shown that type 1 conventional DCs (cDC1s) play a critical role in cross-priming tumor-specific CD8 T cells and determining the anti-tumor efficacy of cancer immunotherapies including immune checkpoint blockade (ICB). Together with promising clinical results in neoantigen-based cancer vaccines, there is a great need for DC-based vaccines to be further developed and refined either as monotherapies or in combination with other immunotherapies. In this review, we will present a brief review of DC development and function, discuss recent progress, and provide a perspective on future directions to realize the promising potential of DC-based cancer vaccines.
Collapse
Affiliation(s)
- Chunmei Fu
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Tianle Ma
- Department of Computer Science and Engineering, School of Engineering and Computer Science, Oakland University, Rochester, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Aimin Jiang
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| |
Collapse
|
242
|
Sittplangkoon C, Alameh MG, Weissman D, Lin PJC, Tam YK, Prompetchara E, Palaga T. mRNA vaccine with unmodified uridine induces robust type I interferon-dependent anti-tumor immunity in a melanoma model. Front Immunol 2022; 13:983000. [PMID: 36311701 PMCID: PMC9614103 DOI: 10.3389/fimmu.2022.983000] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
An mRNA with unmodified nucleosides induces type I interferons (IFN-I) through the stimulation of innate immune sensors. Whether IFN-I induced by mRNA vaccine is crucial for anti-tumor immune response remains to be elucidated. In this study, we investigated the immunogenicity and anti-tumor responses of mRNA encoding tumor antigens with different degrees of N1-methylpseudouridine (m1Ψ) modification in B16 melanoma model. Our results demonstrated that ovalbumin (OVA) encoding mRNA formulated in a lipid nanoparticle (OVA-LNP) induced substantial IFN-I production and the maturation of dendritic cells (DCs) with negative correlation with increasing percentages of m1Ψ modification. In B16-OVA murine melanoma model, unmodified OVA-LNP significantly reduced tumor growth and prolonged survival, compared to OVA-LNP with m1Ψ modification. This robust anti-tumor effect correlated with the increase in intratumoral CD40+ DCs and the frequency of granzyme B+/IFN-γ+/TNF-α+ polyfunctional OVA peptide-specific CD8+ T cells. Blocking type I IFN receptor completely reversed the anti-tumor immunity of unmodified mRNA-OVA reflected in a significant decrease in OVA-specific IFN-γ secreting T cells and enrichment of PD-1+ tumor-infiltrating T cells. The robust anti-tumor effect of unmodified OVA-LNP was also observed in the lung metastatic tumor model. Finally, this mRNA vaccine was tested using B16 melanoma neoantigens (Pbk-Actn4) which resulted in delayed tumor growth. Taken together, our findings demonstrated that an unmodified mRNA vaccine induces IFN-I production or the downstream signaling cascades which plays a crucial role in inducing robust anti-tumor T cell response for controlling tumor growth and metastasis.
Collapse
Affiliation(s)
- Chutamath Sittplangkoon
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Mohamad-Gabriel Alameh
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Drew Weissman
- Division of Infectious Diseases, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | | | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Tanapat Palaga,
| |
Collapse
|
243
|
Mestrallet G, Sone K, Bhardwaj N. Strategies to overcome DC dysregulation in the tumor microenvironment. Front Immunol 2022; 13:980709. [PMID: 36275666 PMCID: PMC9583271 DOI: 10.3389/fimmu.2022.980709] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Dendritic cells (DCs) play a key role to modulate anti-cancer immunity in the tumor microenvironment (TME). They link innate to adaptive immunity by processing and presenting tumor antigens to T cells thereby initiating an anti-tumor response. However, subsets of DCs also induce immune-tolerance, leading to tumor immune escape. In this regard, the TME plays a major role in adversely affecting DC function. Better understanding of DC impairment mechanisms in the TME will lead to more efficient DC-targeting immunotherapy. Here, we review the different subtypes and functions of DCs in the TME, including conventional DCs, plasmacytoid DC and the newly proposed subset, mregDC. We further focus on how cancer cells modulate DCs to escape from the host's immune-surveillance. Immune checkpoint expression, small molecule mediators, metabolites, deprivation of pro-immunogenic and release of pro-tumorigenic cytokine secretion by tumors and tumor-attracted immuno-suppressive cells inhibit DC differentiation and function. Finally, we discuss the impact of established therapies on DCs, such as immune checkpoint blockade. Creative DC-targeted therapeutic strategies will be highlighted, including cancer vaccines and cell-based therapies.
Collapse
Affiliation(s)
- Guillaume Mestrallet
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kazuki Sone
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science & Medicine, Tisch Cancer Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Extramural Member, Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
244
|
Chrisikos TT, Zhou Y, Kahn LM, Patel B, Denne NL, Brooks A, Shen L, Wang J, Watowich SS. STAT3 Inhibits Autocrine IFN Signaling in Type I Conventional Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1286-1299. [PMID: 36038291 PMCID: PMC9529896 DOI: 10.4049/jimmunol.2101104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
Type I conventional dendritic cells (cDC1s) are an essential Ag-presenting population required for generating adaptive immunity against intracellular pathogens and tumors. While the transcriptional control of cDC1 development is well understood, the mechanisms by which extracellular stimuli regulate cDC1 function remain unclear. We previously demonstrated that the cytokine-responsive transcriptional regulator STAT3 inhibits polyinosinic:polycytidylic acid [poly(I:C)]-induced cDC1 maturation and cDC1-mediated antitumor immunity in murine breast cancer, indicating an intrinsic, suppressive role for STAT3 in cDC1s. To probe transcriptional mechanisms regulating cDC1 function, we generated novel RNA sequencing datasets representing poly(I:C)-, IL-10-, and STAT3-mediated gene expression responses in murine cDC1s. Bioinformatics analyses indicated that poly(I:C) stimulates multiple inflammatory pathways independent of STAT3, while IL-10-activated STAT3 uniquely inhibits the poly(I:C)-induced type I IFN (IFN-I) transcriptional response. We validated this mechanism using purified cDC1s deficient for STAT3 or IFN signaling. Our data reveal IL-10-activated STAT3 suppresses production of IFN-β and IFN-γ, accrual of tyrosine phosphorylated STAT1, and IFN-stimulated gene expression in cDC1s after poly(I:C) exposure. Moreover, we found that maturation of cDC1s in response to poly(I:C) is dependent on the IFN-I receptor, but not the type II IFN receptor, or IFN-λ. Taken together, we elucidate an essential role for STAT3 in restraining autocrine IFN-I signaling in cDC1s elicited by poly(I:C) stimulation, and we provide novel RNA sequencing datasets that will aid in further delineating inflammatory and anti-inflammatory mechanisms in cDC1s.
Collapse
Affiliation(s)
- Taylor T Chrisikos
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX; and
| | - Yifan Zhou
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Laura M Kahn
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX; and
| | - Bhakti Patel
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nina L Denne
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Athena Brooks
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Li Shen
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie S Watowich
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX;
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX; and
| |
Collapse
|
245
|
Hoogerland JA, Staels B, Dombrowicz D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol Metab 2022; 33:690-709. [PMID: 35961913 DOI: 10.1016/j.tem.2022.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/16/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) has increased significantly over the past two decades. NAFLD ranges from simple steatosis (NAFL) to nonalcoholic steatohepatitis (NASH) and predisposes to fibrosis and hepatocellular carcinoma (HCC). The importance of the immune system in hepatic physiology and in the progression of NAFLD is increasingly recognized. At homeostasis, the liver participates in immune defense against pathogens and in tolerance of gut-derived microbial compounds. Hepatic immune cells also respond to metabolic stimuli and have a role in NAFLD progression to NASH. In this review, we discuss how metabolic perturbations affect immune cell phenotype and function in NAFL and NASH, and then focus on the role of immune cells in liver homeostasis and in the development of NASH.
Collapse
Affiliation(s)
- Joanne A Hoogerland
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Bart Staels
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - David Dombrowicz
- Univeristy of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
246
|
Christian DA, Adams TA, Shallberg LA, Phan AT, Smith TE, Abraha M, Perry J, Ruthel G, Clark JT, Pritchard GH, Aronson LR, Gossa S, McGavern DB, Kedl RM, Hunter CA. cDC1 coordinate innate and adaptive responses in the omentum required for T cell priming and memory. Sci Immunol 2022; 7:eabq7432. [PMID: 36179012 PMCID: PMC9835709 DOI: 10.1126/sciimmunol.abq7432] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the peritoneal cavity, the omentum contains fat-associated lymphoid clusters (FALCs) whose role in response to infection is poorly understood. After intraperitoneal immunization with Toxoplasma gondii, conventional type 1 dendritic cells (cDC1s) were critical to induce innate sources of IFN-γ and cellular changes in the FALCs. Unexpectedly, infected peritoneal macrophages that migrated into the FALCs primed CD8+ T cells. Although T cell priming was cDC1 independent, these DCs were required for maximal CD8+ T cell expansion. An agent-based computational model and experimental data highlighted that cDC1s affected the magnitude of the proliferative burst and promoted CD8+ T cell expression of nutrient uptake receptors and cell survival. Thus, although FALCs lack the organization of secondary lymphoid organs, cDC1s resident in this tissue coordinate innate responses to microbial challenge and provide secondary signals required for T cell expansion and memory formation.
Collapse
Affiliation(s)
- David A. Christian
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Thomas A. Adams
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario
| | | | - Anthony T. Phan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Tony E. Smith
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Mosana Abraha
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario
| | - Joseph Perry
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Joseph T. Clark
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Lillian R. Aronson
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104
- Section of Surgery, Department of Clinical Studies, University of Pennsylvania, Philadelphia, PA 19104
| | - Selamawit Gossa
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Ross M. Kedl
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | |
Collapse
|
247
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
248
|
Moore C, Bae J, Liu L, Li H, Fu YX, Qiao J. Exogenous signaling repairs defective T cell signaling inside the tumor microenvironment for better immunity. JCI Insight 2022; 7:e159479. [PMID: 36073543 PMCID: PMC9536281 DOI: 10.1172/jci.insight.159479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
It is known that tumor-reactive T cells are initially activated in the draining lymph node, but it is not well known whether and how tumor-infiltrating lymphocytes (TILs) are reactivated in the tumor microenvironment (TME). We hypothesize that defective T cell receptor (TCR) signaling and cosignals in the TME limit T cell reactivation. To address this, we designed a mesenchymal stromal cell-based delivery of local membrane-bound anti-CD3 and/or cosignals to explore their contribution to reactivate T cells inside the TME. Combined anti-CD3 and CD40L rather than CD80 led to superior antitumor efficacy compared with either alone. Mechanistically, TCR activation of preexisting CD8+ T cells synergized with CD40L activation of DCs inside the TME for optimum tumor control. Exogenous TCR signals could better reactivate TILs that then exited to attack distal tumors. This study supplies further evidence that TCR signaling for T cell reactivation in the TME is defective but can be rescued by proper exogenous signals.
Collapse
Affiliation(s)
- Casey Moore
- Department of Immunology
- Department of Pathology, and
| | | | | | - Huiyu Li
- Hamon Center for Therapeutic Oncology Research, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Yang-Xin Fu
- Department of Immunology
- Department of Pathology, and
| | | |
Collapse
|
249
|
Leavenworth JW, Liu X, Ma Y, Zhu Y, Qi C. Editorial: Dendritic cell-primed T cells in anti-tumor immune responses and relevant vaccine strategies. Front Immunol 2022; 13:1023967. [PMID: 36148223 PMCID: PMC9489217 DOI: 10.3389/fimmu.2022.1023967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jianmei W. Leavenworth
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- The O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, Heersink School of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunfeng Ma
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yibei Zhu
- Department of Immunology, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chunjian Qi
- Medical Research Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
250
|
Melssen MM, Fisher CT, Slingluff CL, Melief CJM. Peptide emulsions in incomplete Freund's adjuvant create effective nurseries promoting egress of systemic CD4 + and CD8 + T cells for immunotherapy of cancer. J Immunother Cancer 2022; 10:jitc-2022-004709. [PMID: 36939214 PMCID: PMC9472143 DOI: 10.1136/jitc-2022-004709] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
Water-in-oil emulsion incomplete Freund's adjuvant (IFA) has been used as an adjuvant in preventive and therapeutic vaccines since its development. New generation, highly purified modulations of the adjuvant, Montanide incomplete seppic adjuvant (ISA)-51 and Montanide ISA-720, were developed to reduce toxicity. Montanide adjuvants are generally considered to be safe, with adverse events largely consisting of antigen and adjuvant dose-dependent injection site reactions (ISRs). Peptide vaccines in Montanide ISA-51 or ISA-720 are capable of inducing both high antibody titers and durable effector T cell responses. However, an efficient T cell response depends on the affinity of the peptide to the presenting major histocompatibility complex class I molecule, CD4+ T cell help and/or the level of co-stimulation. In fact, in the therapeutic cancer vaccine setting, presence of a CD4+ T cell epitope seems crucial to elicit a robust and durable systemic T cell response. Additional inclusion of a Toll-like receptor ligand can further increase the magnitude and durability of the response. Use of extended peptides that need a processing step only accomplished effectively by dendritic cells (DCs) can help to avoid antigen presentation by nucleated cells other than DC. Based on recent clinical trial results, therapeutic peptide-based cancer vaccines using emulsions in adjuvant Montanide ISA-51 can elicit robust antitumor immune responses, provided that sufficient tumor-specific CD4+ T cell help is given in addition to CD8+ T cell epitopes. Co-treatment with PD-1 T cell checkpoint inhibitor, chemotherapy or other immunomodulatory drugs may address local and systemic immunosuppressive mechanisms, and further enhance efficacy of therapeutic cancer peptide vaccines in IFA and its modern variants. Blinded randomized placebo-controlled trials are critical to definitively prove clinical efficacy. Mineral oil-based adjuvants for preventive vaccines, to tackle spread and severity of infectious disease, induce immune responses, but require more studies to reduce toxicity.
Collapse
Affiliation(s)
- Marit M Melssen
- Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|