201
|
Reggiano G, Lugmayr W, Farrell D, Marlovits TC, DiMaio F. Residue-level error detection in cryoelectron microscopy models. Structure 2023; 31:860-869.e4. [PMID: 37253357 PMCID: PMC10330749 DOI: 10.1016/j.str.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023]
Abstract
Building accurate protein models into moderate resolution (3-5 Å) cryoelectron microscopy (cryo-EM) maps is challenging and error prone. We have developed MEDIC (Model Error Detection in Cryo-EM), a robust statistical model that identifies local backbone errors in protein structures built into cryo-EM maps by combining local fit-to-density with deep-learning-derived structural information. MEDIC is validated on a set of 28 structures that were subsequently solved to higher resolutions, where we identify the differences between low- and high-resolution structures with 68% precision and 60% recall. We additionally use this model to fix over 100 errors in 12 deposited structures and to identify errors in 4 refined AlphaFold predictions with 80% precision and 60% recall. As modelers more frequently use deep learning predictions as a starting point for refinement and rebuilding, MEDIC's ability to handle errors in structures derived from hand-building and machine learning methods makes it a powerful tool for structural biologists.
Collapse
Affiliation(s)
- Gabriella Reggiano
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Wolfgang Lugmayr
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany; CSSB Centre for Structural Systems Biology, Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | | | - Thomas C Marlovits
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany; CSSB Centre for Structural Systems Biology, Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
202
|
Axelrod JJ, Petrov PN, Zhang JT, Remis J, Buijsse B, Glaeser RM, Mȕller H. Overcoming resolution loss due to thermal magnetic field fluctuations from phase plates in transmission electron microscopy. Ultramicroscopy 2023; 249:113730. [PMID: 37011498 PMCID: PMC11229668 DOI: 10.1016/j.ultramic.2023.113730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
We identify thermal magnetic field fluctuations, caused by thermal electron motion ("Johnson noise") in electrically conductive materials, as a potential resolution limit in transmission electron microscopy with a phase plate. Specifically, resolution loss can occur if the electron diffraction pattern is magnified to extend phase contrast to lower spatial frequencies, and if conductive materials are placed too close to the electron beam. While our initial implementation of a laser phase plate (LPP) was significantly affected by these factors, a redesign eliminated the problem and brought the performance close to the expected level. The resolution now appears to be limited by residual Johnson noise arising from the electron beam liner tube in the region of the LPP, together with the chromatic aberration of the relay optics. These two factors can be addressed during future development of the LPP.
Collapse
Affiliation(s)
- Jeremy J Axelrod
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA.
| | - Petar N Petrov
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jessie T Zhang
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jonathan Remis
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Bart Buijsse
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, the Netherlands
| | - Robert M Glaeser
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Holger Mȕller
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
203
|
Blau C, Yvonnesdotter L, Lindahl E. Gentle and fast all-atom model refinement to cryo-EM densities via a maximum likelihood approach. PLoS Comput Biol 2023; 19:e1011255. [PMID: 37523411 PMCID: PMC10427019 DOI: 10.1371/journal.pcbi.1011255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 08/15/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023] Open
Abstract
Better detectors and automated data collection have generated a flood of high-resolution cryo-EM maps, which in turn has renewed interest in improving methods for determining structure models corresponding to these maps. However, automatically fitting atoms to densities becomes difficult as their resolution increases and the refinement potential has a vast number of local minima. In practice, the problem becomes even more complex when one also wants to achieve a balance between a good fit of atom positions to the map, while also establishing good stereochemistry or allowing protein secondary structure to change during fitting. Here, we present a solution to this challenge using a maximum likelihood approach by formulating the problem as identifying the structure most likely to have produced the observed density map. This allows us to derive new types of smooth refinement potential-based on relative entropy-in combination with a novel adaptive force scaling algorithm to allow balancing of force-field and density-based potentials. In a low-noise scenario, as expected from modern cryo-EM data, the relative-entropy based refinement potential outperforms alternatives, and the adaptive force scaling appears to aid all existing refinement potentials. The method is available as a component in the GROMACS molecular simulation toolkit.
Collapse
Affiliation(s)
- Christian Blau
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Linnea Yvonnesdotter
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Erik Lindahl
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
204
|
Flynn AJ, Antonyuk SV, Eady RR, Muench SP, Hasnain SS. A 2.2 Å cryoEM structure of a quinol-dependent NO Reductase shows close similarity to respiratory oxidases. Nat Commun 2023; 14:3416. [PMID: 37296134 PMCID: PMC10256718 DOI: 10.1038/s41467-023-39140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Quinol-dependent nitric oxide reductases (qNORs) are considered members of the respiratory heme-copper oxidase superfamily, are unique to bacteria, and are commonly found in pathogenic bacteria where they play a role in combating the host immune response. qNORs are also essential enzymes in the denitrification pathway, catalysing the reduction of nitric oxide to nitrous oxide. Here, we determine a 2.2 Å cryoEM structure of qNOR from Alcaligenes xylosoxidans, an opportunistic pathogen and a denitrifying bacterium of importance in the nitrogen cycle. This high-resolution structure provides insight into electron, substrate, and proton pathways, and provides evidence that the quinol binding site not only contains the conserved His and Asp residues but also possesses a critical Arg (Arg720) observed in cytochrome bo3, a respiratory quinol oxidase.
Collapse
Affiliation(s)
- Alex J Flynn
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Svetlana V Antonyuk
- Molecular Biophysics Group, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, England
| | - Robert R Eady
- Molecular Biophysics Group, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, England
| | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - S Samar Hasnain
- Molecular Biophysics Group, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, England.
| |
Collapse
|
205
|
Petkidis A, Andriasyan V, Greber UF. Label-free microscopy for virus infections. Microscopy (Oxf) 2023; 72:204-212. [PMID: 37079744 PMCID: PMC10250014 DOI: 10.1093/jmicro/dfad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
Microscopy has been essential to elucidate micro- and nano-scale processes in space and time and has provided insights into cell and organismic functions. It is widely employed in cell biology, microbiology, physiology, clinical sciences and virology. While label-dependent microscopy, such as fluorescence microscopy, provides molecular specificity, it has remained difficult to multiplex in live samples. In contrast, label-free microscopy reports on overall features of the specimen at minimal perturbation. Here, we discuss modalities of label-free imaging at the molecular, cellular and tissue levels, including transmitted light microscopy, quantitative phase imaging, cryogenic electron microscopy or tomography and atomic force microscopy. We highlight how label-free microscopy is used to probe the structural organization and mechanical properties of viruses, including virus particles and infected cells across a wide range of spatial scales. We discuss the working principles of imaging procedures and analyses and showcase how they open new avenues in virology. Finally, we discuss orthogonal approaches that enhance and complement label-free microscopy techniques.
Collapse
Affiliation(s)
- Anthony Petkidis
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| |
Collapse
|
206
|
He J, Li T, Huang SY. Improvement of cryo-EM maps by simultaneous local and non-local deep learning. Nat Commun 2023; 14:3217. [PMID: 37270635 DOI: 10.1038/s41467-023-39031-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Cryo-EM has emerged as the most important technique for structure determination of macromolecular complexes. However, raw cryo-EM maps often exhibit loss of contrast at high resolution and heterogeneity over the entire map. As such, various post-processing methods have been proposed to improve cryo-EM maps. Nevertheless, it is still challenging to improve both the quality and interpretability of EM maps. Addressing the challenge, we present a three-dimensional Swin-Conv-UNet-based deep learning framework to improve cryo-EM maps, named EMReady, by not only implementing both local and non-local modeling modules in a multiscale UNet architecture but also simultaneously minimizing the local smooth L1 distance and maximizing the non-local structural similarity between processed experimental and simulated target maps in the loss function. EMReady was extensively evaluated on diverse test sets of 110 primary cryo-EM maps and 25 pairs of half-maps at 3.0-6.0 Å resolutions, and compared with five state-of-the-art map post-processing methods. It is shown that EMReady can not only robustly enhance the quality of cryo-EM maps in terms of map-model correlations, but also improve the interpretability of the maps in automatic de novo model building.
Collapse
Affiliation(s)
- Jiahua He
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Li
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng-You Huang
- School of Physics and Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
207
|
Klar PB, Krysiak Y, Xu H, Steciuk G, Cho J, Zou X, Palatinus L. Accurate structure models and absolute configuration determination using dynamical effects in continuous-rotation 3D electron diffraction data. Nat Chem 2023; 15:848-855. [PMID: 37081207 PMCID: PMC10239730 DOI: 10.1038/s41557-023-01186-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
Continuous-rotation 3D electron diffraction methods are increasingly popular for the structure analysis of very small organic molecular crystals and crystalline inorganic materials. Dynamical diffraction effects cause non-linear deviations from kinematical intensities that present issues in structure analysis. Here, a method for structure analysis of continuous-rotation 3D electron diffraction data is presented that takes multiple scattering effects into account. Dynamical and kinematical refinements of 12 compounds-ranging from small organic compounds to metal-organic frameworks to inorganic materials-are compared, for which the new approach yields significantly improved models in terms of accuracy and reliability with up to fourfold reduction of the noise level in difference Fourier maps. The intrinsic sensitivity of dynamical diffraction to the absolute structure is also used to assign the handedness of 58 crystals of 9 different chiral compounds, showing that 3D electron diffraction is a reliable tool for the routine determination of absolute structures.
Collapse
Affiliation(s)
- Paul B Klar
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Geosciences, University of Bremen, Bremen, Germany
| | - Yaşar Krysiak
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
- Institute of Inorganic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Gwladys Steciuk
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jung Cho
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Xiaodong Zou
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Lukas Palatinus
- Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
208
|
Maki-Yonekura S, Kawakami K, Takaba K, Hamaguchi T, Yonekura K. Measurement of charges and chemical bonding in a cryo-EM structure. Commun Chem 2023; 6:98. [PMID: 37258702 DOI: 10.1038/s42004-023-00900-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Hydrogen bonding, bond polarity, and charges in protein molecules play critical roles in the stabilization of protein structures, as well as affecting their functions such as enzymatic catalysis, electron transfer, and ligand binding. These effects can potentially be measured in Coulomb potentials using cryogenic electron microscopy (cryo-EM). We here present charges and bond properties of hydrogen in a sub-1.2 Å resolution structure of a protein complex, apoferritin, by single-particle cryo-EM. A weighted difference map reveals positive densities for most hydrogen atoms in the core region of the complex, while negative densities around acidic amino-acid side chains are likely related to negative charges. The former positive densities identify the amino- and oxo-termini of asparagine and glutamine side chains. The latter observations were verified by spatial-resolution selection and a dose-dependent frame series. The average position of the hydrogen densities depends on the parent bonded-atom type, and this is validated by the estimated level of the standard uncertainties in the bond lengths.
Collapse
Affiliation(s)
- Saori Maki-Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Keisuke Kawakami
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Kiyofumi Takaba
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| |
Collapse
|
209
|
Vilas JL, Tagare HD. New measures of anisotropy of cryo-EM maps. Nat Methods 2023:10.1038/s41592-023-01874-3. [PMID: 37248387 DOI: 10.1038/s41592-023-01874-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/05/2023] [Indexed: 05/31/2023]
Abstract
We propose two new measures of resolution anisotropy for cryogenic electron microscopy maps: Fourier shell occupancy (FSO), and the Bingham test (BT). FSO varies from 1 to 0, with 1 representing perfect isotropy, and lower values indicating increasing anisotropy. The threshold FSO = 0.5 occurs at Fourier shell correlation resolution. BT is a hypothesis test that complements the FSO to ensure the existence of anisotropy. FSO and BT allow visualization of resolution anisotropy. We illustrate their use with different experimental cryogenic electron microscopy maps.
Collapse
Affiliation(s)
- Jose-Luis Vilas
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
| | - Hemant D Tagare
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
210
|
Yang R, Kvetny M, Brown W, Ogbonna EN, Wang G. A Single-Entity Method for Actively Controlled Nucleation and High-Quality Protein Crystal Synthesis. Anal Chem 2023. [PMID: 37243709 DOI: 10.1021/acs.analchem.3c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Lack of controls and understanding in nucleation, which proceeds crystal growth and other phase transitions, has been a bottleneck challenge in chemistry, materials, biology, and other fields. The exemplary needs for better methods for biomacromolecule crystallization include (1) synthesizing crystals for high-resolution structure determinations in fundamental research and (2) tuning the crystal habit and thus the corresponding properties in materials and pharmaceutical applications. Herein, a deterministic method is established capable of sustaining the nucleation and growth of a single crystal using the protein lysozyme as a prototype. The supersaturation is localized at the interface between a sample and a precipitant solution, spatially confined by the tip of a single nanopipette. The exchange of matter between the two solutions determines the supersaturation, which is controlled by electrokinetic ion transport driven by an external potential waveform. Nucleation and subsequent crystal growth disrupt the ionic current limited by the nanotip and are detected. The nucleation and growth of individual single crystals are measured in real time. Electroanalytical and optical signatures are elucidated as feedbacks with which active controls in crystal quality and method consistency are achieved: five out of five crystals diffract at a true atomic resolution of up to 1.2 Å. As controls, those synthesized under less optimized conditions diffract poorly. The crystal habits during the growth process are tuned successfully by adjusting the flux. The universal mechanism of nano-transport kinetics, together with the correlations of the diffraction quality and crystal habit with the crystallization control parameters, lay the foundation for the generalization to other materials systems.
Collapse
Affiliation(s)
- Ruoyu Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Maksim Kvetny
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Warren Brown
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Edwin N Ogbonna
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
211
|
Last MGF, Tuijtel MW, Voortman LM, Sharp TH. Selecting optimal support grids for super-resolution cryogenic correlated light and electron microscopy. Sci Rep 2023; 13:8270. [PMID: 37217690 DOI: 10.1038/s41598-023-35590-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/20/2023] [Indexed: 05/24/2023] Open
Abstract
Cryogenic transmission electron microscopy (cryo-TEM) and super-resolution fluorescence microscopy are two popular and ever improving methods for high-resolution imaging of biological samples. In recent years, the combination of these two techniques into one correlated workflow has gained attention as a promising route towards contextualizing and enriching cryo-TEM imagery. A problem that is often encountered in the combination of these methods is that of light-induced damage to the sample during fluorescence imaging that renders the sample structure unsuitable for TEM imaging. In this paper, we describe how absorption of light by TEM sample support grids leads to sample damage, and we systematically explore the importance of parameters of grid design. We explain how, by changing the grid geometry and materials, one can increase the maximum illumination power density in fluorescence microscopy by up to an order of magnitude. Finally, we demonstrate the significant improvements in super-resolution image quality that are enabled by the selection of support grids that are optimally suited for correlated cryo-microscopy.
Collapse
Affiliation(s)
- Mart G F Last
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2300 RC, Leiden, The Netherlands
| | - Maarten W Tuijtel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt Am Main, Germany
| | - Lenard M Voortman
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2300 RC, Leiden, The Netherlands
| | - Thomas H Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
212
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Tertiary structure of single-instant RNA molecule reveals folding landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541511. [PMID: 37292713 PMCID: PMC10245749 DOI: 10.1101/2023.05.19.541511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The folding of RNA and protein molecules during their synthesis is a crucial self-assembly process that nature employs to convert genetic information into the complex molecular machinery that supports life. Misfolding events are the cause of several diseases, and the folding pathway of central biomolecules, such as the ribosome, is strictly regulated by programmed maturation processes and folding chaperones. However, the dynamic folding processes are challenging to study because current structure determination methods heavily rely on averaging, and existing computational methods do not efficiently simulate non-equilibrium dynamics. Here we utilize individual-particle cryo-electron tomography (IPET) to investigate the folding landscape of a rationally designed RNA origami 6-helix bundle that undergoes slow maturation from a "young" to "mature" conformation. By optimizing the IPET imaging and electron dose conditions, we obtain 3D reconstructions of 120 individual particles at resolutions ranging from 23-35 Å, enabling us first-time to observe individual RNA helices and tertiary structures without averaging. Statistical analysis of 120 tertiary structures confirms the two main conformations and suggests a possible folding pathway driven by helix-helix compaction. Studies of the full conformational landscape reveal both trapped states, misfolded states, intermediate states, and fully compacted states. The study provides novel insight into RNA folding pathways and paves the way for future studies of the energy landscape of molecular machines and self-assembly processes.
Collapse
|
213
|
Mészáros B, Park E, Malinverni D, Sejdiu BI, Immadisetty K, Sandhu M, Lang B, Babu MM. Recent breakthroughs in computational structural biology harnessing the power of sequences and structures. Curr Opin Struct Biol 2023; 80:102608. [PMID: 37182396 DOI: 10.1016/j.sbi.2023.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
Recent advances in computational approaches and their integration into structural biology enable tackling increasingly complex questions. Here, we discuss several key areas, highlighting breakthroughs and remaining challenges. Theoretical modeling has provided tools to accurately predict and design protein structures on a scale currently difficult to achieve using experimental approaches. Molecular Dynamics simulations have become faster and more precise, delivering actionable information inaccessible by current experimental methods. Virtual screening workflows allow a high-throughput approach to discover ligands that bind and modulate protein function, while Machine Learning methods enable the design of proteins with new functionalities. Integrative structural biology combines several of these approaches, pushing the frontiers of structural and functional characterization to ever larger systems, advancing towards a complete understanding of the living cell. These breakthroughs will accelerate and significantly impact diverse areas of science.
Collapse
Affiliation(s)
- Bálint Mészáros
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Electa Park
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Duccio Malinverni
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA. https://twitter.com/DucMalinverni
| | - Besian I Sejdiu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA. https://twitter.com/bisejdiu
| | - Kalyan Immadisetty
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA. https://twitter.com/k_immadisetty
| | - Manbir Sandhu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA. https://twitter.com/M5andhu
| | - Benjamin Lang
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA. https://twitter.com/langbnj
| | - M Madan Babu
- Department of Structural Biology and Center of Excellence for Data Driven Discovery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
214
|
de Beer M, Daviran D, Roverts R, Rutten L, Macías-Sánchez E, Metz JR, Sommerdijk N, Akiva A. Precise targeting for 3D cryo-correlative light and electron microscopy volume imaging of tissues using a FinderTOP. Commun Biol 2023; 6:510. [PMID: 37169904 PMCID: PMC10175257 DOI: 10.1038/s42003-023-04887-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/28/2023] [Indexed: 05/13/2023] Open
Abstract
Cryo-correlative light and electron microscopy (cryoCLEM) is a powerful strategy to high resolution imaging in the unperturbed hydrated state. In this approach fluorescence microscopy aids localizing the area of interest, and cryogenic focused ion beam/scanning electron microscopy (cryoFIB/SEM) allows preparation of thin cryo-lamellae for cryoET. However, the current method cannot be accurately applied on bulky (3D) samples such as tissues and organoids. 3D cryo-correlative imaging of large volumes is needed to close the resolution gap between cryo-light microscopy and cryoET, placing sub-nanometer observations in a larger biological context. Currently technological hurdles render 3D cryoCLEM an unexplored approach. Here we demonstrate a cryoCLEM workflow for tissues, correlating cryo-Airyscan confocal microscopy with 3D cryoFIB/SEM volume imaging. Accurate correlation is achieved by imprinting a FinderTOP pattern in the sample surface during high pressure freezing, and allows precise targeting for cryoFIB/SEM volume imaging.
Collapse
Affiliation(s)
- Marit de Beer
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Deniz Daviran
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rona Roverts
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luco Rutten
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Macías-Sánchez
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Stratigraphy and Paleontology, University of Granada, Granada, Spain
| | - Juriaan R Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Nico Sommerdijk
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Anat Akiva
- Electron Microscopy Center, Radboud Technology Center Microscopy, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
215
|
Chari A, Stark H. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. Annu Rev Biophys 2023; 52:391-411. [PMID: 37159297 DOI: 10.1146/annurev-biophys-111622-091300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has matured into a robust method for the determination of biological macromolecule structures in the past decade, complementing X-ray crystallography and nuclear magnetic resonance. Constant methodological improvements in both cryo-EM hardware and image processing software continue to contribute to an exponential growth in the number of structures solved annually. In this review, we provide a historical view of the many steps that were required to make cryo-EM a successful method for the determination of high-resolution protein complex structures. We further discuss aspects of cryo-EM methodology that are the greatest pitfalls challenging successful structure determination to date. Lastly, we highlight and propose potential future developments that would improve the method even further in the near future.
Collapse
Affiliation(s)
- Ashwin Chari
- Research Group for Structural Biochemistry and Mechanisms, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
216
|
Haubrich K, Spiteri VA, Farnaby W, Sobott F, Ciulli A. Breaking free from the crystal lattice: Structural biology in solution to study protein degraders. Curr Opin Struct Biol 2023; 79:102534. [PMID: 36804675 DOI: 10.1016/j.sbi.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Structural biology offers a versatile arsenal of techniques and methods to investigate the structure and conformational dynamics of proteins and their assemblies. The growing field of targeted protein degradation centres on the premise of developing small molecules, termed degraders, to induce proximity between an E3 ligase and a protein of interest to be signalled for degradation. This new drug modality brings with it new opportunities and challenges to structural biologists. Here we discuss how several structural biology techniques, including nuclear magnetic resonance, cryo-electron microscopy, structural mass spectrometry and small angle scattering, have been explored to complement X-ray crystallography in studying degraders and their ternary complexes. Together the studies covered in this review make a case for the invaluable perspectives that integrative structural biology techniques in solution can bring to understanding ternary complexes and designing degraders.
Collapse
Affiliation(s)
- Kevin Haubrich
- Centre for Targeted Protein Degradation & Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK. https://twitter.com/KevinHaubrich1
| | - Valentina A Spiteri
- Centre for Targeted Protein Degradation & Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK. https://twitter.com/val_spiteri
| | - William Farnaby
- Centre for Targeted Protein Degradation & Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK. https://twitter.com/farnaby84
| | - Frank Sobott
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK. https://twitter.com/FrankSobott
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation & Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
217
|
Millán C, McCoy AJ, Terwilliger TC, Read RJ. Likelihood-based docking of models into cryo-EM maps. Acta Crystallogr D Struct Biol 2023; 79:281-289. [PMID: 36920336 PMCID: PMC10071562 DOI: 10.1107/s2059798323001602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Optimized docking of models into cryo-EM maps requires exploiting an understanding of the signal expected in the data to minimize the calculation time while maintaining sufficient signal. The likelihood-based rotation function used in crystallography can be employed to establish plausible orientations in a docking search. A phased likelihood translation function yields scores for the placement and rigid-body refinement of oriented models. Optimized strategies for choices of the resolution of data from the cryo-EM maps to use in the calculations and the size of search volumes are based on expected log-likelihood-gain scores computed in advance of the search calculation. Tests demonstrate that the new procedure is fast, robust and effective at placing models into even challenging cryo-EM maps.
Collapse
Affiliation(s)
- Claudia Millán
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Airlie J. McCoy
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Thomas C. Terwilliger
- New Mexico Consortium, Los Alamos National Laboratory, 100 Entrada Drive, Los Alamos, NM 87544, USA
| | - Randy J. Read
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
218
|
Takaba K, Maki-Yonekura S, Inoue I, Tono K, Hamaguchi T, Kawakami K, Naitow H, Ishikawa T, Yabashi M, Yonekura K. Structural resolution of a small organic molecule by serial X-ray free-electron laser and electron crystallography. Nat Chem 2023; 15:491-497. [PMID: 36941396 PMCID: PMC10719108 DOI: 10.1038/s41557-023-01162-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
Structure analysis of small crystals is important in areas ranging from synthetic organic chemistry to pharmaceutical and material sciences, as many compounds do not yield large crystals. Here we present the detailed characterization of the structure of an organic molecule, rhodamine-6G, determined at a resolution of 0.82 Å by an X-ray free-electron laser (XFEL). Direct comparison of this structure with that obtained by electron crystallography from the same sample batch of microcrystals shows that both methods can accurately distinguish the position of some of the hydrogen atoms, depending on the type of chemical bond in which they are involved. Variations in the distances measured by XFEL and electron diffraction reflect the expected differences in X-ray and electron scatterings. The reliability for atomic coordinates was found to be better with XFEL, but the electron beam showed a higher sensitivity to charges.
Collapse
Affiliation(s)
| | | | | | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Tasuku Hamaguchi
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Aoba-ku, Japan
| | | | | | | | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Koji Yonekura
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, Sayo, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Aoba-ku, Japan.
| |
Collapse
|
219
|
Berger C, Premaraj N, Ravelli RBG, Knoops K, López-Iglesias C, Peters PJ. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat Methods 2023; 20:499-511. [PMID: 36914814 DOI: 10.1038/s41592-023-01783-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/20/2023] [Indexed: 03/16/2023]
Abstract
Cryogenic electron microscopy and data processing enable the determination of structures of isolated macromolecules to near-atomic resolution. However, these data do not provide structural information in the cellular environment where macromolecules perform their native functions, and vital molecular interactions can be lost during the isolation process. Cryogenic focused ion beam (FIB) fabrication generates thin lamellae of cellular samples and tissues, enabling structural studies on the near-native cellular interior and its surroundings by cryogenic electron tomography (cryo-ET). Cellular cryo-ET benefits from the technological developments in electron microscopes, detectors and data processing, and more in situ structures are being obtained and at increasingly higher resolution. In this Review, we discuss recent studies employing cryo-ET on FIB-generated lamellae and the technological developments in ultrarapid sample freezing, FIB fabrication of lamellae, tomography, data processing and correlative light and electron microscopy that have enabled these studies. Finally, we explore the future of cryo-ET in terms of both methods development and biological application.
Collapse
Affiliation(s)
- Casper Berger
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
| | - Navya Premaraj
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Kèvin Knoops
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht MultiModal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
220
|
Mrazova K, Bacovsky J, Sedrlova Z, Slaninova E, Obruca S, Fritz I, Krzyzanek V. Urany-Less Low Voltage Transmission Electron Microscopy: A Powerful Tool for Ultrastructural Studying of Cyanobacterial Cells. Microorganisms 2023; 11:888. [PMID: 37110311 PMCID: PMC10146862 DOI: 10.3390/microorganisms11040888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Sample preparation protocols for conventional high voltage transmission electron microscopy (TEM) heavily rely on the usage of staining agents containing various heavy metals, most commonly uranyl acetate and lead citrate. However high toxicity, rising legal regulations, and problematic waste disposal of uranyl acetate have increased calls for the reduction or even complete replacement of this staining agent. One of the strategies for uranyless imaging is the employment of low-voltage transmission electron microscopy. To investigate the influence of different imaging and staining strategies on the final image of cyanobacterial cells, samples stained by uranyl acetate with lead citrate, as well as unstained samples, were observed using TEM and accelerating voltages of 200 kV or 25 kV. Moreover, to examine the possibilities of reducing chromatic aberration, which often causes issues when imaging using electrons of lower energies, samples were also imaged using a scanning transmission electron microscopy at 15 kV accelerating voltages. The results of this study demonstrate that low-voltage electron microscopy offers great potential for uranyless electron microscopy.
Collapse
Affiliation(s)
- Katerina Mrazova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic;
| | - Jaromir Bacovsky
- Delong Instruments a.s., Palackeho Trida 3019/153 b, 612 00 Brno, Czech Republic;
| | - Zuzana Sedrlova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (Z.S.); (E.S.); (S.O.)
| | - Eva Slaninova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (Z.S.); (E.S.); (S.O.)
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (Z.S.); (E.S.); (S.O.)
| | - Ines Fritz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strase 20, 3430 Tulln an der Donau, Austria;
| | - Vladislav Krzyzanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic;
| |
Collapse
|
221
|
Cheng J, Liu T, You X, Zhang F, Sui SF, Wan X, Zhang X. Determining protein structures in cellular lamella at pseudo-atomic resolution by GisSPA. Nat Commun 2023; 14:1282. [PMID: 36922493 PMCID: PMC10017804 DOI: 10.1038/s41467-023-36175-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/18/2023] [Indexed: 03/17/2023] Open
Abstract
Cryo-electron tomography is a major tool used to study the structure of protein complexes in situ. However, the throughput of tilt-series image data collection is still quite low. Here, we show that GisSPA, a GPU accelerated program, can translationally and rotationally localize the target protein complex in cellular lamellae, as prepared with a focused ion beam, using single cryo-electron microscopy images without tilt-series, and reconstruct the protein complex at near-atomic resolution. GisSPA allows high-throughput data collection without the acquisition of tilt-series images and reconstruction of the tomogram, which is essential for high-resolution reconstruction of asymmetric or low-symmetry protein complexes. We demonstrate the power of GisSPA with 3.4-Å and 3.9-Å resolutions of resolving phycobilisome and tetrameric photosystem II complex structures in cellular lamellae, respectively. In this work, we present GisSPA as a practical tool that facilitates high-resolution in situ protein structure determination.
Collapse
Affiliation(s)
- Jing Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tong Liu
- High Performance Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fa Zhang
- Beijing Institute of Technology, Beijing, 100081, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohua Wan
- Beijing Institute of Technology, Beijing, 100081, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
222
|
Zhu KF, Yuan C, Du YM, Sun KL, Zhang XK, Vogel H, Jia XD, Gao YZ, Zhang QF, Wang DP, Zhang HW. Applications and prospects of cryo-EM in drug discovery. Mil Med Res 2023; 10:10. [PMID: 36872349 PMCID: PMC9986049 DOI: 10.1186/s40779-023-00446-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time- and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy (cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence (AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of medium-resolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.
Collapse
Affiliation(s)
- Kong-Fu Zhu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Chuang Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Yong-Ming Du
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Kai-Lei Sun
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Hong Kong, 999077 China
| | - Xiao-Kang Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 Guangdong China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
| | - Xu-Dong Jia
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Yuan-Zhu Gao
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Qin-Fen Zhang
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Da-Ping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 Guangdong China
| | - Hua-Wei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| |
Collapse
|
223
|
Khavnekar S, Wan W, Majumder P, Wietrzynski W, Erdmann PS, Plitzko JM. Multishot tomography for high-resolution in situ subtomogram averaging. J Struct Biol 2023; 215:107911. [PMID: 36343843 DOI: 10.1016/j.jsb.2022.107911] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) can resolve protein complexes at near atomic resolution, and when combined with focused ion beam (FIB) milling, macromolecules can be observed within their native context. Unlike single particle acquisition (SPA), cryo-ET can be slow, which may reduce overall project throughput. We here propose a fast, multi-position tomographic acquisition scheme based on beam-tilt corrected beam-shift imaging along the tilt axis, which yields sub-nanometer in situ STA averages.
Collapse
Affiliation(s)
| | - W Wan
- Vanderbilt University, United States
| | | | | | - P S Erdmann
- MPI for Biochemistry, Germany; Human Technopole, Italy.
| | | |
Collapse
|
224
|
Du DX, Simjanoska M, Fitzpatrick AWP. Four-dimensional microED of conformational dynamics in protein microcrystals on the femto-to-microsecond timescales. J Struct Biol 2023; 215:107941. [PMID: 36773734 DOI: 10.1016/j.jsb.2023.107941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
As structural determination of protein complexes approaches atomic resolution, there is an increasing focus on conformational dynamics. Here we conceptualize the combination of two techniques which have become established in recent years: microcrystal electron diffraction and ultrafast electron microscopy. We show that the extremely low dose of pulsed photoemission still enables microED due to the strength of the electron bunching from diffraction of the protein crystals. Indeed, ultrafast electron diffraction experiments on protein crystals have already been demonstrated to be effective in measuring intermolecular forces in protein microcrystals. We discuss difficulties that may arise in the acquisition and processing of data and the overall feasibility of the experiment, paying specific attention to dose and signal-to-noise ratio. In doing so, we outline a detailed workflow that may be effective in minimizing the dose on the specimen. A series of model systems that would be good candidates for initial experiments is provided.
Collapse
Affiliation(s)
- Daniel X Du
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Marija Simjanoska
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W P Fitzpatrick
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
225
|
Harrison PJ, Vecerkova T, Clare DK, Quigley A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J Struct Biol 2023; 215:107959. [PMID: 37004781 DOI: 10.1016/j.jsb.2023.107959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Membrane proteins (MPs) are essential components of all biological membranes, contributing to key cellular functions that include signalling, molecular transport and energy metabolism. Consequently, MPs are important biomedical targets for therapeutics discovery. Despite hardware and software developments in cryo-electron microscopy, as well as MP sample preparation, MPs smaller than 100 kDa remain difficult to study structurally. Significant investment is required to overcome low levels of naturally abundant protein, MP hydrophobicity as well as conformational and compositional instability. Here we have reviewed the sample preparation approaches that have been taken to successfully express, purify and prepare small MPs for analysis by cryo-EM (those with a total solved molecular weight of under 100 kDa), as well as examining the differing approaches towards data processing and ultimately obtaining a structural solution. We highlight common challenges at each stage in the process as well as strategies that have been developed to overcome these issues. Finally, we discuss future directions and opportunities for the study of sub-100 kDa membrane proteins by cryo-EM.
Collapse
|
226
|
Fréchin L, Holvec S, von Loeffelholz O, Hazemann I, Klaholz BP. High-resolution cryo-EM performance comparison of two latest-generation cryo electron microscopes on the human ribosome. J Struct Biol 2023; 215:107905. [PMID: 36241135 DOI: 10.1016/j.jsb.2022.107905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/23/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
Abstract
Recent technological advances in cryo electron microscopy (cryo-EM) have led to new opportunities in the structural biology field. Here we benchmark the performance of two 300 kV latest-generation cryo electron microscopes, Titan Krios G4 from Thermofisher Scientific and CRYO ARM 300 from Jeol, with regards to achieving high resolution single particle reconstructions on a real case sample. We compare potentially limiting factors such as drift rates, astigmatism & coma aberrations and performance during image processing and show that both microscopes, while comprising rather different technical setups & parameter settings and equipped with different types of energy filters & cameras, achieve a resolution of around 2 Å on the human ribosome, a non-symmetric object which constitutes a key drug target. Astigmatism correction, CTF refinement and correction of higher order aberrations through refinement in separate optics groups helped to account for astigmatism/coma caused by beam tilting during multi-spot and multi-hole acquisition in neighbouring holes without stage movement. The obtained maps resolve Mg2+ ions, water molecules, inhibitors and side-chains including chemical modifications. The fact that both instruments can resolve such detailed features will greatly facilitate understanding molecular mechanisms of various targets and helps in cryo-EM structure based drug design. The methods and analysis tools used here will be useful also to characterize existing instruments and optimize data acquisition settings and are applicable broadly to other drug targets in structural biology.
Collapse
Affiliation(s)
- Léo Fréchin
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Samuel Holvec
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
227
|
Muenks A, Zepeda S, Zhou G, Veesler D, DiMaio F. Automatic and accurate ligand structure determination guided by cryo-electron microscopy maps. Nat Commun 2023; 14:1164. [PMID: 36859493 PMCID: PMC9976687 DOI: 10.1038/s41467-023-36732-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Advances in cryo-electron microscopy (cryoEM) and deep-learning guided protein structure prediction have expedited structural studies of protein complexes. However, methods for accurately determining ligand conformations are lacking. In this manuscript, we develop EMERALD, a tool for automatically determining ligand structures guided by medium-resolution cryoEM density. We show this method is robust at predicting ligands along with surrounding side chains in maps as low as 4.5 Å local resolution. Combining this with a measure of placement confidence and running on all protein/ligand structures in the EMDB, we show that 57% of ligands replicate the deposited model, 16% confidently find alternate conformations, 22% have ambiguous density where multiple conformations might be present, and 5% are incorrectly placed. For five cases where our approach finds an alternate conformation with high confidence, high-resolution crystal structures validate our placement. EMERALD and the resulting analysis should prove critical in using cryoEM to solve protein-ligand complexes.
Collapse
Affiliation(s)
- Andrew Muenks
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - Samantha Zepeda
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Guangfeng Zhou
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
228
|
Faille A, Dent KC, Pellegrino S, Jaako P, Warren AJ. The chemical landscape of the human ribosome at 1.67 Å resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530191. [PMID: 36909531 PMCID: PMC10002709 DOI: 10.1101/2023.02.28.530191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The ability of ribosomes to translate the genetic code into protein requires a finely tuned ion and solvent ecosystem. However, the lack of high-resolution structures has precluded accurate positioning of all the functional elements of the ribosome and limited our understanding of the specific role of ribosomal RNA chemical modifications in modulating ribosome function in health and disease. Here, using a new sample preparation methodology based on functionalised pristine graphene-coated grids, we solve the cryo-EM structure of the human large ribosomal subunit to a resolution of 1.67 Å. The accurate assignment of water molecules, magnesium and potassium ions in our model highlights the fundamental biological role of ribosomal RNA methylation in harnessing unconventional carbon-oxygen hydrogen bonds to establish chemical interactions with the environment and fine-tune the functional interplay with tRNA. In addition, the structures of three translational inhibitors bound to the human large ribosomal subunit at better than 2 Å resolution provide mechanistic insights into how three key druggable pockets of the ribosome are targeted and illustrate the potential of this methodology to accelerate high-throughput structure-based design of anti-cancer therapeutics.
Collapse
|
229
|
Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochem Soc Trans 2023; 51:87-99. [PMID: 36695514 PMCID: PMC9987995 DOI: 10.1042/bst20220221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.
Collapse
|
230
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
231
|
Warmack RA, Maggiolo AO, Orta A, Wenke BB, Howard JB, Rees DC. Structural consequences of turnover-induced homocitrate loss in nitrogenase. Nat Commun 2023; 14:1091. [PMID: 36841829 PMCID: PMC9968304 DOI: 10.1038/s41467-023-36636-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen to ammonia during the process of biological nitrogen fixation that is essential for sustaining life. The active site FeMo-cofactor contains a [7Fe:1Mo:9S:1C] metallocluster coordinated with an R-homocitrate (HCA) molecule. Here, we establish through single particle cryoEM and chemical analysis of two forms of the Azotobacter vinelandii MoFe-protein - a high pH turnover inactivated species and a ∆NifV variant that cannot synthesize HCA - that loss of HCA is coupled to α-subunit domain and FeMo-cofactor disordering, and formation of a histidine coordination site. We further find a population of the ∆NifV variant complexed to an endogenous protein identified through structural and proteomic approaches as the uncharacterized protein NafT. Recognition by endogenous NafT demonstrates the physiological relevance of the HCA-compromised form, perhaps for cofactor insertion or repair. Our results point towards a dynamic active site in which HCA plays a role in enabling nitrogenase catalysis by facilitating activation of the FeMo-cofactor from a relatively stable form to a state capable of reducing dinitrogen under ambient conditions.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- Division of Chemistry and Chemical Engineering 147-75, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Ailiena O Maggiolo
- Division of Chemistry and Chemical Engineering 147-75, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Andres Orta
- Biochemistry and Molecular Biophysics Graduate Program, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Belinda B Wenke
- Division of Chemistry and Chemical Engineering 147-75, California Institute of Technology, Pasadena, CA, 91125, USA
| | - James B Howard
- Department of Biochemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering 147-75, California Institute of Technology, Pasadena, CA, 91125, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
232
|
Fromm SA, O'Connor KM, Purdy M, Bhatt PR, Loughran G, Atkins JF, Jomaa A, Mattei S. The translating bacterial ribosome at 1.55 Å resolution generated by cryo-EM imaging services. Nat Commun 2023; 14:1095. [PMID: 36841832 PMCID: PMC9968351 DOI: 10.1038/s41467-023-36742-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Our understanding of protein synthesis has been conceptualised around the structure and function of the bacterial ribosome. This complex macromolecular machine is the target of important antimicrobial drugs, an integral line of defence against infectious diseases. Here, we describe how open access to cryo-electron microscopy facilities combined with bespoke user support enabled structural determination of the translating ribosome from Escherichia coli at 1.55 Å resolution. The obtained structures allow for direct determination of the rRNA sequence to identify ribosome polymorphism sites in the E. coli strain used in this study and enable interpretation of the ribosomal active and peripheral sites at unprecedented resolution. This includes scarcely populated chimeric hybrid states of the ribosome engaged in several tRNA translocation steps resolved at ~2 Å resolution. The current map not only improves our understanding of protein synthesis but also allows for more precise structure-based drug design of antibiotics to tackle rising bacterial resistance.
Collapse
Affiliation(s)
- Simon A Fromm
- EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Kate M O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Michael Purdy
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland
| | - John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, T12 XF62, Ireland. .,MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Ahmad Jomaa
- Department of Molecular Physiology and Biological Physics, School of Medicine, University of Virginia, Charlottesville, VA, USA. .,Centre for Cell and Membrane Physiology, University of Virginia, Charlottesville, VA, USA.
| | - Simone Mattei
- EMBL Imaging Centre, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany. .,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
233
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
234
|
Axelrod JJ, Petrov PN, Zhang JT, Remis J, Buijsse B, Glaeser RM, Mȕller H. Overcoming resolution loss due to thermal magnetic field fluctuations from phase plates in transmission electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528160. [PMID: 36824829 PMCID: PMC9949102 DOI: 10.1101/2023.02.12.528160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
We identify thermal magnetic field fluctuations, caused by thermal electron motion ("Johnson noise") in electrically conductive materials, as a potential resolution limit in transmission electron microscopy with a phase plate. Specifically, resolution loss can occur if the electron diffraction pattern is magnified to extend phase contrast to lower spatial frequencies, and if conductive materials are placed too close to the electron beam. While our initial implementation of a laser phase plate (LPP) was significantly affected by these factors, a redesign eliminated the problem and brought the performance close to the expected level. The resolution now appears to be limited by residual Johnson noise arising from the electron beam liner tube in the region of the LPP, together with the chromatic aberration of the relay optics. These two factors can be addressed during future development of the LPP.
Collapse
Affiliation(s)
- Jeremy J. Axelrod
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Petar N. Petrov
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Jessie T. Zhang
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jonathan Remis
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Bart Buijsse
- Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG, Eindhoven, the Netherlands
| | - Robert M. Glaeser
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Holger Mȕller
- Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA
- Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
235
|
Fujita J, Makino F, Asahara H, Moriguchi M, Kumano S, Anzai I, Kishikawa JI, Matsuura Y, Kato T, Namba K, Inoue T. Epoxidized graphene grid for highly efficient high-resolution cryoEM structural analysis. Sci Rep 2023; 13:2279. [PMID: 36755111 PMCID: PMC9908306 DOI: 10.1038/s41598-023-29396-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Functionalization of graphene is one of the most important fundamental technologies in a wide variety of fields including industry and biochemistry. We have successfully achieved a novel oxidative modification of graphene using photoactivated ClO2· as a mild oxidant and confirmed the oxidized graphene grid is storable with its functionality for at least three months under N2 atmosphere. Subsequent chemical functionalization enabled us to develop an epoxidized graphene grid (EG-grid™), which effectively adsorbs protein particles for electron cryomicroscopy (cryoEM) image analysis. The EG-grid dramatically improved the particle density and orientation distribution. The density maps of GroEL and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were reconstructed at 1.99 and 2.16 Å resolution from only 504 and 241 micrographs, respectively. A sample solution of 0.1 mg ml-1 was sufficient to reconstruct a 3.10 Å resolution map of SARS-CoV-2 spike protein from 1163 micrographs. The map resolutions of β-galactosidase and apoferritin easily reached 1.81 Å and 1.29 Å resolution, respectively, indicating its atomic-resolution imaging capability. Thus, the EG-grid will be an extremely powerful tool for highly efficient high-resolution cryoEM structural analysis of biological macromolecules.
Collapse
Affiliation(s)
- Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,JEOL Ltd, 3-2-1 Musashino, Akishima, Tokyo, 196-8558, Japan
| | - Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Open and Transdisciplinary Research Initiatives, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Maiko Moriguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shota Kumano
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Itsuki Anzai
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Molecular Biosciences, Kyoto Sangyo University, Motoyama Kamigamo, Kita-ku, Kyoto, 603-8555, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Open and Transdisciplinary Research Initiatives, Osaka University, 2-8 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,dotAqua Inc., 2-1 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
236
|
Nickl P, Hilal T, Olal D, Donskyi IS, Radnik J, Ludwig K, Haag R. A New Support Film for Cryo Electron Microscopy Protein Structure Analysis Based on Covalently Functionalized Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205932. [PMID: 36507556 DOI: 10.1002/smll.202205932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Protein adsorption at the air-water interface is a serious problem in cryogenic electron microscopy (cryoEM) as it restricts particle orientations in the vitrified ice-film and promotes protein denaturation. To address this issue, the preparation of a graphene-based modified support film for coverage of conventional holey carbon transmission electron microscopy (TEM) grids is presented. The chemical modification of graphene sheets enables the universal covalent anchoring of unmodified proteins via inherent surface-exposed lysine or cysteine residues in a one-step reaction. Langmuir-Blodgett (LB) trough approach is applied for deposition of functionalized graphene sheets onto commercially available holey carbon TEM grids. The application of the modified TEM grids in single particle analysis (SPA) shows high protein binding to the surface of the graphene-based support film. Suitability for high resolution structure determination is confirmed by SPA of apoferritin. Prevention of protein denaturation at the air-water interface and improvement of particle orientations is shown using human 20S proteasome, demonstrating the potential of the support film for structural biology.
Collapse
Affiliation(s)
- Philip Nickl
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Tarek Hilal
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Daniel Olal
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Ievgen Sergeevitch Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Jörg Radnik
- Division 6.1 - Surface Analysis and Interfacial Chemistry, BAM - Federal Institute for Material Science and Testing, Unter den Eichen 44-46, 12205, Berlin, Germany
| | - Kai Ludwig
- Forschungszentrum für Elektronenmikroskopie und Core Facility BioSupraMol, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| |
Collapse
|
237
|
Neselu K, Wang B, Rice WJ, Potter CS, Carragher B, Chua EY. Measuring the effects of ice thickness on resolution in single particle cryo-EM. J Struct Biol X 2023; 7:100085. [PMID: 36742017 PMCID: PMC9894782 DOI: 10.1016/j.yjsbx.2023.100085] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Ice thickness is a critical parameter in single particle cryo-EM - too thin ice can break during imaging or exclude the sample of interest, while ice that is too thick contributes to more inelastic scattering that precludes obtaining high resolution reconstructions. Here we present the practical effects of ice thickness on resolution, and the influence of energy filters, accelerating voltage, or detector mode. We collected apoferritin data with a wide range of ice thicknesses on three microscopes with different instrumentation and settings. We show that on a 300 kV microscope, using a 20 eV energy filter slit has a greater effect on improving resolution in thicker ice; that operating at 300 kV instead of 200 kV accelerating voltage provides significant resolution improvements at an ice thickness above 150 nm; and that on a 200 kV microscope using a detector operating in super resolution mode enables good reconstructions for up to 200 nm ice thickness, while collecting in counting instead of linear mode leads to improvements in resolution for ice of 50-150 nm thickness. Our findings can serve as a guide for users seeking to optimize data collection or sample preparation routines for both single particle and in situ cryo-EM. We note that most in situ data collection is done on samples in a range of ice thickness above 150 nm so these results may be especially relevant to that community.
Collapse
Affiliation(s)
- Kasahun Neselu
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University Grossman School of Medicine, New York, NY, USA
| | - William J. Rice
- Cryo-Electron Microscopy Core, New York University Grossman School of Medicine, New York, NY, USA,Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Clinton S. Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA,Corresponding authors.
| | - Eugene Y.D. Chua
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA,Corresponding authors.
| |
Collapse
|
238
|
Du DX, Fitzpatrick AW. Design of an ultrafast pulsed ponderomotive phase plate for cryo-electron tomography. CELL REPORTS METHODS 2023; 3:100387. [PMID: 36814846 PMCID: PMC9939428 DOI: 10.1016/j.crmeth.2022.100387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Ponderomotive phase plates have shown that temporally consistent phase contrast is possible within electron microscopes via high-fluence static laser modes resonating in Fabry-Perot cavities. Here, we explore using pulsed laser beams as an alternative method of generating high fluences. We find through forward-stepping finite element models that picosecond or shorter interactions are required for meaningful fluences and phase shifts, with higher pulse energies and smaller beam waists leading to predicted higher fluences. An additional model based on quasi-classical assumptions is used to discover the shape of the phase plate by incorporating the oscillatory nature of the electric field. From these results, we find the transient nature of the laser pulses removes the influence of Kapitza-Dirac diffraction patterns that appear in the static resonator cases. We conclude by predicting that a total laser pulse energy of 8.7 μJ is enough to induce the required π/2 phase shift for Zernike-like phase microscopy.
Collapse
Affiliation(s)
- Daniel X. Du
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Anthony W.P. Fitzpatrick
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
239
|
Cooney I, Mack DC, Ferrell AJ, Stewart MG, Wang S, Donelick HM, Tamayo-Jaramillo D, Greer DL, Zhu D, Li W, Shen PS. Lysate-to-grid: Rapid Isolation of Native Complexes from Budding Yeast for Cryo-EM Imaging. Bio Protoc 2023; 13:e4596. [PMID: 36789166 PMCID: PMC9901474 DOI: 10.21769/bioprotoc.4596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/09/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Single-particle electron cryo-microscopy (cryo-EM) is an effective tool to determine high-resolution structures of macromolecular complexes. Its lower requirements for sample concentration and purity make it an accessible method to determine structures of low-abundant protein complexes, such as those isolated from native sources. While there are many approaches to protein purification for cryo-EM, attaining suitable particle quality and abundance is generally the major bottleneck to the typical single-particle project workflow. Here, we present a protocol using budding yeast ( S. cerevisiae ), in which a tractable immunoprecipitation tag (3xFLAG) is appended at the endogenous locus of a gene of interest (GOI). The modified gene is expressed under its endogenous promoter, and cells are grown and harvested using standard procedures. Our protocol describes the steps in which the tagged proteins and their associated complexes are isolated within three hours of thawing cell lysates, after which the recovered proteins are used directly for cryo-EM specimen preparation. The prioritization of speed maximizes the ability to recover intact, scarce complexes. The protocol is generalizable to soluble yeast proteins that tolerate C-terminal epitope tags. Graphical abstract Overview of lysate-to-grid workflow. Yeast cells are transformed to express a tractable tag on a gene of interest. Following cell culture and lysis, particles of interest are rapidly isolated by co-immunoprecipitation and prepared for cryo-EM imaging (created with BioRender.com).
Collapse
Affiliation(s)
- Ian Cooney
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Deirdre C. Mack
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Aaron J. Ferrell
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Michael G. Stewart
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Shuxin Wang
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Helen M. Donelick
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Daniela Tamayo-Jaramillo
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Dakota L. Greer
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Danyang Zhu
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Wenyan Li
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
| | - Peter S. Shen
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, Utah, USA 84112
,
*For correspondence:
| |
Collapse
|
240
|
Vuillemot R, Mirzaei A, Harastani M, Hamitouche I, Fréchin L, Klaholz BP, Miyashita O, Tama F, Rouiller I, Jonic S. MDSPACE: Extracting Continuous Conformational Landscapes from Cryo-EM Single Particle Datasets Using 3D-to-2D Flexible Fitting based on Molecular Dynamics Simulation. J Mol Biol 2023; 435:167951. [PMID: 36638910 DOI: 10.1016/j.jmb.2023.167951] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
This article presents an original approach for extracting atomic-resolution landscapes of continuous conformational variability of biomolecular complexes from cryo electron microscopy (cryo-EM) single particle images. This approach is based on a new 3D-to-2D flexible fitting method, which uses molecular dynamics (MD) simulation and is embedded in an iterative conformational-landscape refinement scheme. This new approach is referred to as MDSPACE, which stands for Molecular Dynamics simulation for Single Particle Analysis of Continuous Conformational hEterogeneity. The article describes the MDSPACE approach and shows its performance using synthetic and experimental datasets.
Collapse
Affiliation(s)
- Rémi Vuillemot
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France; Department of Biochemistry & Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Alex Mirzaei
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mohamad Harastani
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Ilyes Hamitouche
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC-UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC-UMR 7104 CNRS, U964 Inserm, Université de Strasbourg, Strasbourg, France
| | | | - Florence Tama
- RIKEN Center for Computational Science, Kobe, Japan; Institute of Transformative Biomolecules, Graduate School of Science, Nagoya University, Nagoya, Japan; Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Isabelle Rouiller
- Department of Biochemistry & Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Slavica Jonic
- IMPMC-UMR 7590 CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
241
|
Amann SJ, Keihsler D, Bodrug T, Brown NG, Haselbach D. Frozen in time: analyzing molecular dynamics with time-resolved cryo-EM. Structure 2023; 31:4-19. [PMID: 36584678 PMCID: PMC9825670 DOI: 10.1016/j.str.2022.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/10/2022] [Accepted: 11/25/2022] [Indexed: 12/30/2022]
Abstract
Molecular machines, such as polymerases, ribosomes, or proteasomes, fulfill complex tasks requiring the thermal energy of their environment. They achieve this by restricting random motion along a path of possible conformational changes. These changes are often directed through engagement with different cofactors, which can best be compared to a Brownian ratchet. Many molecular machines undergo three major steps throughout their functional cycles, including initialization, repetitive processing, and termination. Several of these major states have been elucidated by cryogenic electron microscopy (cryo-EM). However, the individual steps for these machines are unique and multistep processes themselves, and their coordination in time is still elusive. To measure these short-lived intermediate events by cryo-EM, the total reaction time needs to be shortened to enrich for the respective pre-equilibrium states. This approach is termed time-resolved cryo-EM (trEM). In this review, we sum up the methodological development of trEM and its application to a range of biological questions.
Collapse
Affiliation(s)
- Sascha Josef Amann
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Demian Keihsler
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Tatyana Bodrug
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - David Haselbach
- IMP - Research Institute of Molecular Pathology, Campus-Vienna-Biocenter 1, 1030 Vienna, Austria; Institute for Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany.
| |
Collapse
|
242
|
Burton-Smith RN, Murata K. Cryo-electron Microscopy of Protein Cages. Methods Mol Biol 2023; 2671:173-210. [PMID: 37308646 DOI: 10.1007/978-1-0716-3222-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein cages are one of the most widely studied objects in the field of cryogenic electron microscopy-encompassing natural and synthetic constructs, from enzymes assisting protein folding such as chaperonin to virus capsids. Tremendous diversity of morphology and function is demonstrated by the structure and role of proteins, some of which are nearly ubiquitous, while others are present in few organisms. Protein cages are often highly symmetrical, which helps improve the resolution obtained by cryo-electron microscopy (cryo-EM). Cryo-EM is the study of vitrified samples using an electron probe to image the subject. A sample is rapidly frozen in a thin layer on a porous grid, attempting to keep the sample as close to a native state as possible. This grid is kept at cryogenic temperatures throughout imaging in an electron microscope. Once image acquisition is complete, a variety of software packages may be employed to carry out analysis and reconstruction of three-dimensional structures from the two-dimensional micrograph images. Cryo-EM can be used on samples that are too large or too heterogeneous to be amenable to other structural biology techniques like NMR or X-ray crystallography. In recent years, advances in both hardware and software have provided significant improvements to the results obtained using cryo-EM, recently demonstrating true atomic resolution from vitrified aqueous samples. Here, we review these advances in cryo-EM, especially in that of protein cages, and introduce several tips for situations we have experienced.
Collapse
Affiliation(s)
- Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Natural Sciences, Okazaki, Aichi, Japan
- National Institute for Physiological Sciences (NIPS), National Institute for Natural Sciences, Okazaki, Aichi, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Natural Sciences, Okazaki, Aichi, Japan.
- National Institute for Physiological Sciences (NIPS), National Institute for Natural Sciences, Okazaki, Aichi, Japan.
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan.
| |
Collapse
|
243
|
Golmohammadzadeh M, Sexton DL, Parmar S, Tocheva EI. Advanced imaging techniques: Microscopy. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:1-25. [PMID: 37085191 DOI: 10.1016/bs.aambs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
For decades, bacteria were thought of as "bags" of enzymes, lacking organelles and significant subcellular structures. This stood in sharp contrast with eukaryotes, where intracellular compartmentalization and the role of large-scale order had been known for a long time. However, the emerging field of Bacterial Cell Biology has established that bacteria are in fact highly organized, with most macromolecular components having specific subcellular locations that can change depending on the cell's physiological state (Barry & Gitai, 2011; Lenz & Søgaard-Andersen, 2011; Thanbichler & Shapiro, 2008). For example, we now know that many processes in bacteria are orchestrated by cytoskeletal proteins, which polymerize into surprisingly diverse superstructures, such as rings, sheets, and tread-milling rods (Pilhofer & Jensen, 2013). These superstructures connect individual proteins, macromolecular assemblies, and even two neighboring cells, to affect essential higher-order processes including cell division, DNA segregation, and motility. Understanding these processes requires resolving the in vivo dynamics and ultrastructure at different functional stages of the cell, at macromolecular resolution and in 3-dimensions (3D). Fluorescence light microscopy (fLM) of tagged proteins is highly valuable for investigating protein localization and dynamics, and the resolution power of transmission electron microscopy (TEM) is required to elucidate the structure of macromolecular complexes in vivo and in vitro. This chapter summarizes the most recent advances in LM and TEM approaches that have revolutionized our knowledge and understanding of the microbial world.
Collapse
Affiliation(s)
- Mona Golmohammadzadeh
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle L Sexton
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shweta Parmar
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, Health Sciences Mall, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
244
|
Hall M, Schexnaydre E, Holmlund C, Carroni M. Protein Structural Analysis by Cryogenic Electron Microscopy. Methods Mol Biol 2023; 2652:439-463. [PMID: 37093490 DOI: 10.1007/978-1-0716-3147-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) is constantly developing and growing as a major technique for structure determination of protein complexes. Here, we detail the first steps of any cryo-EM project: specimen preparation and data collection. Step by step, a list of material needed is provided and the sequence of actions to carry out is given. We hope that these protocols will be useful to all people getting started with cryo-EM.
Collapse
Affiliation(s)
- Michael Hall
- SciLifeLab Cryo-EM Facility, Department of Chemistry, Umeå University, Umeå, Sweden.
| | - Erin Schexnaydre
- SciLifeLab Cryo-EM Facility, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Camilla Holmlund
- SciLifeLab Cryo-EM Facility, Department of Chemistry, Umeå University, Umeå, Sweden
| | - Marta Carroni
- SciLifeLab Cryo-EM Facility, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
| |
Collapse
|
245
|
Loconte V, Chen J, Vanslembrouck B, Ekman AA, McDermott G, Le Gros MA, Larabell CA. Soft X-ray tomograms provide a structural basis for whole-cell modeling. FASEB J 2023; 37:e22681. [PMID: 36519968 PMCID: PMC10107707 DOI: 10.1096/fj.202200253r] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
Developing in silico models that accurately reflect a whole, functional cell is an ongoing challenge in biology. Current efforts bring together mathematical models, probabilistic models, visual representations, and data to create a multi-scale description of cellular processes. A realistic whole-cell model requires imaging data since it provides spatial constraints and other critical cellular characteristics that are still impossible to obtain by calculation alone. This review introduces Soft X-ray Tomography (SXT) as a powerful imaging technique to visualize and quantify the mesoscopic (~25 nm spatial scale) organelle landscape in whole cells. SXT generates three-dimensional reconstructions of cellular ultrastructure and provides a measured structural framework for whole-cell modeling. Combining SXT with data from disparate technologies at varying spatial resolutions provides further biochemical details and constraints for modeling cellular mechanisms. We conclude, based on the results discussed here, that SXT provides a foundational dataset for a broad spectrum of whole-cell modeling experiments.
Collapse
Affiliation(s)
- Valentina Loconte
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Jian‐Hua Chen
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Bieke Vanslembrouck
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Axel A. Ekman
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Gerry McDermott
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Mark A. Le Gros
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| | - Carolyn A. Larabell
- Department of AnatomyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- National Center for X‐ray TomographyAdvanced Light SourceBerkeleyCaliforniaUSA
| |
Collapse
|
246
|
Terashi G, Wang X, Kihara D. Protein model refinement for cryo-EM maps using AlphaFold2 and the DAQ score. Acta Crystallogr D Struct Biol 2023; 79:10-21. [PMID: 36601803 PMCID: PMC9815095 DOI: 10.1107/s2059798322011676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As more protein structure models have been determined from cryogenic electron microscopy (cryo-EM) density maps, establishing how to evaluate the model accuracy and how to correct models in cases where they contain errors is becoming crucial to ensure the quality of the structural models deposited in the public database, the PDB. Here, a new protocol is presented for evaluating a protein model built from a cryo-EM map and applying local structure refinement in the case where the model has potential errors. Firstly, model evaluation is performed using a deep-learning-based model-local map assessment score, DAQ, that has recently been developed. The subsequent local refinement is performed by a modified AlphaFold2 procedure, in which a trimmed template model and a trimmed multiple sequence alignment are provided as input to control which structure regions to refine while leaving other more confident regions of the model intact. A benchmark study showed that this protocol, DAQ-refine, consistently improves low-quality regions of the initial models. Among 18 refined models generated for an initial structure, DAQ shows a high correlation with model quality and can identify the best accurate model for most of the tested cases. The improvements obtained by DAQ-refine were on average larger than other existing methods.
Collapse
Affiliation(s)
- Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiao Wang
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
247
|
DiIorio MC, Kulczyk AW. Exploring the Structural Variability of Dynamic Biological Complexes by Single-Particle Cryo-Electron Microscopy. MICROMACHINES 2022; 14:118. [PMID: 36677177 PMCID: PMC9866264 DOI: 10.3390/mi14010118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 05/15/2023]
Abstract
Biological macromolecules and assemblies precisely rearrange their atomic 3D structures to execute cellular functions. Understanding the mechanisms by which these molecular machines operate requires insight into the ensemble of structural states they occupy during the functional cycle. Single-particle cryo-electron microscopy (cryo-EM) has become the preferred method to provide near-atomic resolution, structural information about dynamic biological macromolecules elusive to other structure determination methods. Recent advances in cryo-EM methodology have allowed structural biologists not only to probe the structural intermediates of biochemical reactions, but also to resolve different compositional and conformational states present within the same dataset. This article reviews newly developed sample preparation and single-particle analysis (SPA) techniques for high-resolution structure determination of intrinsically dynamic and heterogeneous samples, shedding light upon the intricate mechanisms employed by molecular machines and helping to guide drug discovery efforts.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry and Microbiology, Rutgers University, 75 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
248
|
Heymann JB. The Ewald sphere/focus gradient does not limit the resolution of cryoEM reconstructions. J Struct Biol X 2022; 7:100083. [PMID: 36632443 PMCID: PMC9826812 DOI: 10.1016/j.yjsbx.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022] Open
Abstract
In our quest to solve biomolecular structures to higher resolutions in cryoEM, care must be taken to deal with all aspects of image formation in the electron microscope. One of these is the Ewald sphere/focus gradient that derives from the scattering geometry in the microscope and its implications for recovering high resolution and handedness information. While several methods to deal with it has been proposed and implemented, there are still questions as to the correct approach. At the high acceleration voltages used for cryoEM, the traditional projection approximation that ignores the Ewald sphere breaks down around 2-3 Å and with large particles. This is likely not crucial for most biologically interesting molecules, but is required to understand detail about catalytic events, molecular orbitals, orientation of bound water molecules, etc. Through simulation I show that integration along the Ewald spheres in frequency space during reconstruction, the "simple insertion method" is adequate to reach resolutions to the Nyquist frequency. Both theory and simulations indicate that the handedness information encoded in such phases is irretrievably lost in the formation of real space images. The conclusion is that correct reconstruction along the Ewald spheres avoids the limitations of the projection approximation.
Collapse
Affiliation(s)
- J. Bernard Heymann
- National Cryo-EM Program, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| |
Collapse
|
249
|
Cary BP, Zhang X, Cao J, Johnson RM, Piper SJ, Gerrard EJ, Wootten D, Sexton PM. New insights into the structure and function of class B1 GPCRs. Endocr Rev 2022; 44:492-517. [PMID: 36546772 PMCID: PMC10166269 DOI: 10.1210/endrev/bnac033] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors. Class B1 GPCRs constitute a subfamily of 15 receptors that characteristically contain large extracellular domains (ECDs) and respond to long polypeptide hormones. Class B1 GPCRs are critical regulators of homeostasis, and as such, many are important drug targets. While most transmembrane proteins, including GPCRs, are recalcitrant to crystallization, recent advances in electron cryo-microscopy (cryo-EM) have facilitated a rapid expansion of the structural understanding of membrane proteins. As a testament to this success, structures for all the class B1 receptors bound to G proteins have been determined by cryo-EM in the past five years. Further advances in cryo-EM have uncovered dynamics of these receptors, ligands, and signalling partners. Here, we examine the recent structural underpinnings of the class B1 GPCRs with an emphasis on structure-function relationships.
Collapse
Affiliation(s)
- Brian P Cary
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Xin Zhang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Jianjun Cao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Rachel M Johnson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Sarah J Piper
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Elliot J Gerrard
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Patrick M Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.,ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| |
Collapse
|
250
|
Liu N, Wang HW. Better Cryo-EM Specimen Preparation: How to Deal with the Air-Water Interface? J Mol Biol 2022; 435:167926. [PMID: 36563741 DOI: 10.1016/j.jmb.2022.167926] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) is now one of the most powerful and widely used methods to determine high-resolution structures of macromolecules. A major bottleneck of cryo-EM is to prepare high-quality vitrified specimen, which still faces many practical challenges. During the conventional vitrification process, macromolecules tend to adsorb at the air-water interface (AWI), which is known unfriendly to biological samples. In this review, we outline the nature of AWI and the problems caused by it, such as unpredictable or uneven particle distribution, protein denaturation, dissociation of complex and preferential orientation. We review and discuss the approaches and underlying mechanisms to deal with AWI: 1) Additives, exemplified by detergents, forming a protective layer at AWI and thus preserving the native folds of target macromolecules. 2) Fast vitrification devices based on the idea to freeze in-solution macromolecules before their touching of AWI. 3) Thin layer of continuous supporting films to adsorb macromolecules, and when functionalized with affinity ligands, to specifically anchor the target particles away from the AWI. Among these supporting films, graphene, together with its derivatives, with negligible background noise and mechanical robustness, has emerged as a new generation of support. These strategies have been proven successful in various cases and enable us a better handling of the problems caused by the AWI in cryo-EM specimen preparation.
Collapse
Affiliation(s)
- Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|