201
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
202
|
Yang M, Jiang Y, Shao X. Case Report: A Novel Homozygous Frameshift Mutation of the SKIV2L Gene in a Trichohepatoenteric Syndrome Patient Presenting With Short Stature, Premature Ovarian Failure, and Osteoporosis. Front Genet 2022; 13:879899. [PMID: 35571060 PMCID: PMC9094698 DOI: 10.3389/fgene.2022.879899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Trichohepatoenteric syndrome (THES) is a rare Mendelian autosomal recessive genetic disease characterized by intractable diarrhea, woolly hair, facial abnormality, immune dysfunction, and intrauterine growth restriction. THES mutations are found in the TTC37 and SKIV2L genes, which encode two components of the human superkiller (SKI) complex. Methods and results: We report one case of a 32-year-old woman of Chinese descent with THES, who was born with a low weight (2000 g). She had intractable diarrhea during the neonatal period and was allergic to cow’s milk and condensed milk, but did not require total parenteral nutrition. She experienced menarche at age 12 and amenorrhea at age 28. In May 2019, the patient presented with a left fibular head fracture and was diagnosed with osteoporosis. Genetic testing showed a novel mutation in exon1 [p.E5Afs∗37 (c.12_13del)] of SKIV2L, which is composed of 28 exons. After the diagnosis, hormone replacement therapy was prescribed, in addition to the routine calcium and vitamin D supplements. Conclusion: This case expands the clinical characteristic and phenotype spectrum of THES, providing further understanding of SKIV2L and its autoimmune influence.
Collapse
Affiliation(s)
- Minyi Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Jiang
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
203
|
Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nat Chem 2022; 14:823-830. [PMID: 35577919 PMCID: PMC9252900 DOI: 10.1038/s41557-022-00944-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.
Collapse
|
204
|
Kurisaki I, Tanaka S. Computational prediction of heteromeric protein complex disassembly order using hybrid Monte Carlo/molecular dynamics simulation. Phys Chem Chem Phys 2022; 24:10575-10587. [PMID: 35445673 DOI: 10.1039/d2cp00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The physicochemical entities comprising the biological phenomena in the cell form a network of biochemical reactions and the activity of such a network is regulated by multimeric protein complexes. Mass spectroscopy (MS) experiments and multimeric protein docking simulations based on structural bioinformatics techniques have revealed the molecular-level stoichiometry and static configuration of subcomplexes in their bound forms, thus revealing the subcomplex population and formation orders. Meanwhile, these methodologies are not designed to straightforwardly examine the temporal dynamics of multimeric protein assembly and disassembly, essential physicochemical properties to understand the functional expression mechanisms of proteins in the biological environment. To address this problem, we have developed an atomistic simulation in the framework of the hybrid Monte Carlo/molecular dynamics (hMC/MD) method and succeeded in observing the disassembly of a homomeric pentamer of the serum amyloid P component protein in an experimentally consistent order. In this study, we improved the hMC/MD method to examine the disassembly processes of the tryptophan synthase tetramer, a paradigmatic heteromeric protein complex in MS studies. We employed the likelihood-based selection scheme to determine a dissociation-prone subunit pair at every hMC/MD simulation cycle and achieved highly reliable predictions of the disassembly orders without a priori knowledge of the MS experiments and structural bioinformatics simulations. The success rate for the experimentally-observed disassembly order is over 0.9. We similarly succeeded in reliable predictions for three other tetrameric protein complexes. These achievements indicate the potential applicability of our hMC/MD approach as a general-purpose methodology to obtain microscopic and physicochemical insights into multimeric protein complex formation.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| | - Shigenori Tanaka
- Department of Computational Science, Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
| |
Collapse
|
205
|
Zhang L, Wang X, Chen J, Kleyman TR, Sheng S. Accessibility of ENaC extracellular domain central core residues. J Biol Chem 2022; 298:101860. [PMID: 35339489 PMCID: PMC9052164 DOI: 10.1016/j.jbc.2022.101860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022] Open
Abstract
The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain β10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of β10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of β and γ subunit β10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two β, and two γ subunit β10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of β10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of β10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.
Collapse
Affiliation(s)
- Lei Zhang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueqi Wang
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingxin Chen
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Thomas R Kleyman
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Shaohu Sheng
- Departments of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
206
|
Ducich NH, Mears JA, Bedoyan JK. Solvent accessibility of E1α and E1β residues with known missense mutations causing pyruvate dehydrogenase complex (PDC) deficiency: Impact on PDC-E1 structure and function. J Inherit Metab Dis 2022; 45:557-570. [PMID: 35038180 PMCID: PMC9297371 DOI: 10.1002/jimd.12477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/08/2022]
Abstract
Pyruvate dehydrogenase complex deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. PDHA1 mutations are responsible for >82% of cases. The E1 component of PDC is a symmetric dimer of heterodimers (αβ/α'β') encoded by PDHA1 and PDHB. We measured solvent accessibility surface area (SASA), utilized nearest-neighbor analysis, incorporated sequence changes using mutagenesis tool in PyMOL, and performed molecular modeling with SWISS-MODEL, to investigate the impact of residues with disease-causing missense variants (DMVs) on E1 structure and function. We reviewed 166 and 13 genetically resolved cases due to PDHA1 and PDHB, respectively, from variant databases. We expanded on 102 E1α and 13 E1β nonduplicate DMVs. DMVs of E1α Arg112-Arg224 stretch (exons 5-7) and of E1α Arg residues constituted 40% and 39% of cases, respectively, with invariant Arg349 accounting for 22% of arginine replacements. SASA analysis showed that 86% and 84% of residues with nonduplicate DMVs of E1α and E1β, respectively, are solvent inaccessible ("buried"). Furthermore, 30% of E1α buried residues with DMVs are deleterious through perturbation of subunit-subunit interface contact (SSIC), with 73% located in the Arg112-Arg224 stretch. E1α Arg349 represented 74% of buried E1α Arg residues involved in SSIC. Structural perturbations resulting from residue replacements in some matched neighboring pairs of amino acids on different subunits involved in SSIC at 2.9-4.0 Å interatomic distance apart, exhibit similar clinical phenotype. Collectively, this work provides insight for future target-based advanced molecular modeling studies, with implications for development of novel therapeutics for specific recurrent DMVs of E1α.
Collapse
Affiliation(s)
- Nicole H. Ducich
- Case Western Reserve University (CWRU) School of Medicine, Cleveland, Ohio, USA
| | - Jason A. Mears
- Department of Pharmacology, CWRU, Cleveland, Ohio, USA
- Center for Mitochondrial Diseases, CWRU, Cleveland, Ohio, USA
| | - Jirair K. Bedoyan
- Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
207
|
Ali IH, Abdel-Mohsen HT, Mounier MM, Abo-elfadl MT, El Kerdawy AM, Ghannam IA. Design, Synthesis and Anticancer Activity of Novel 2-Arylbenzimidazole/2-Thiopyrimidines and 2-Thioquinazolin-4(3H)-ones Conjugates as Targeted RAF and VEGFR-2 Kinases Inhibitors. Bioorg Chem 2022; 126:105883. [DOI: 10.1016/j.bioorg.2022.105883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023]
|
208
|
Abouwarda AM, Ismail TA, Abu El-Wafa WM, Faraag AHI. Synergistic activity and molecular modelling of fosfomycin combinations with some antibiotics against multidrug resistant Helicobacter pylori. World J Microbiol Biotechnol 2022; 38:102. [PMID: 35486219 PMCID: PMC9054914 DOI: 10.1007/s11274-022-03289-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance represents the main challenge of Helicobacter pylori infection worldwide. This study investigates the potential bactericidal effects of fosfomycin combinations with clarithromycin, metronidazole, ciprofloxacin, amoxicillin, rifampicin, and doxycycline against thirty-six H. pylori strains using the checkerboard and time-kill assay methods. The results showed that ≥ 50% of the strains were resistant to the six antibiotics. Remarkably, only six strains exerted resistance to these antibiotics, with the minimum inhibitory concentrations (MICs) ranges of (3.2–12.8 mg/l), (32–256 mg/l), (3.2–51.2 mg/l), (3.2–25.6 mg/l), (1.6–3.2 mg/l), and (25.6 > 51.2 mg/l), respectively. The seven antibiotics were evaluated through in silico studies for their permeability and ability to bind UDP-N-acetylglucosamine1-carboxyvinyltransferase (MurA) of H. pylori. The results indicated that fosfomycin exhibited the highest predicted membrane permeability (membrane ∆G insert = − 37.54 kcal/mol) and binding affinity (docking score = − 5.310 kcal/mol) for H. pylori MurA, compared to other tested antibiotics. The combinations of fosfomycin with these antibiotics exerted synergistic interactions (Fractional inhibitory concentration, FIC index < 1) against the six strains. Importantly, the combinations of fosfomycin with clarithromycin, doxycycline and rifampicin achieved bactericidal effects (reduction ≥ 3.0 Log10 cfu/ml) against the most resistant H. pylori strain. Notably, these effects increased with presence of metronidazole, which enhanced the activity of the fosfomycin combination with amoxicillin from a weak inhibition to bactericidal effect. This study provides evidence that the combination of fosfomycin with either clarithromycin, amoxicillin, doxycycline, or rifampicin (especially with the presence of metronidazole) could be a promising option for treating MDR H. pylori infection.
Collapse
Affiliation(s)
- Ahmed Megahed Abouwarda
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tarek Abdelmonem Ismail
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Wael Mohamed Abu El-Wafa
- Department of Microbiology, General Division of Basic Medical Sciences, Egyptian Drug Authority (EDA), Formerly National Organization for Drug Control and Research (NODCAR), Giza, Egypt.
| | | |
Collapse
|
209
|
Yu J, Li X, Huang J, Yu M, Wu Z, Cao S. Molecular dynamics simulation of α‐gliadin in ethanol/aqueous organic solvents. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jie‐Ting Yu
- School of Food Science and Engineering Foshan University Foshan528000China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan528000China
| | - Xin‐Yao Li
- School of Food Science and Engineering Foshan University Foshan528000China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan528000China
| | - Jia‐Hui Huang
- School of Food College South China Agricultural University Guangzhou510642China
| | - Ming‐Yi Yu
- School of Food Science and Engineering Foshan University Foshan528000China
| | - Zi‐Yi Wu
- School of Food College South China Agricultural University Guangzhou510642China
| | - Shi‐Lin Cao
- School of Food Science and Engineering Foshan University Foshan528000China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan528000China
| |
Collapse
|
210
|
Erath J, Djuranovic S. Association of the receptor for activated C-kinase 1 with ribosomes in Plasmodium falciparum. J Biol Chem 2022; 298:101954. [PMID: 35452681 PMCID: PMC9120242 DOI: 10.1016/j.jbc.2022.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
The receptor for activated C-kinase 1 (RACK1), a highly conserved eukaryotic protein, is known to have many varying biological roles and functions. Previous work has established RACK1 as a ribosomal protein, with defined regions important for ribosome binding in eukaryotic cells. In Plasmodium falciparum, RACK1 has been shown to be required for parasite growth, however, conflicting evidence has been presented about RACK1 ribosome binding and its role in mRNA translation. Given the importance of RACK1 as a regulatory component of mRNA translation and ribosome quality control, the case could be made in parasites that RACK1 either binds or does not bind the ribosome. Here, we used bioinformatics and transcription analyses to further characterize the P. falciparum RACK1 protein. Based on homology modeling and structural analyses, we generated a model of P. falciparum RACK1. We then explored mutant and chimeric human and P. falciparum RACK1 protein binding properties to the human and P. falciparum ribosome. We found that WT, chimeric, and mutant RACK1 exhibit distinct ribosome interactions suggesting different binding characteristics for P. falciparum and human RACK1 proteins. The ribosomal binding of RACK1 variants in human and parasite cells shown here demonstrates that although RACK1 proteins have highly conserved sequences and structures across species, ribosomal binding is affected by species-specific alterations to this protein. In conclusion, we show that in the case of P. falciparum, contrary to the structural data, RACK1 is found to bind ribosomes and actively translating polysomes in parasite cells.
Collapse
Affiliation(s)
- Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
211
|
Yang C, Cheng J, Lin J, Zheng Y, Yu X, Sun J. Corrigendum: Sex Pheromone Receptors of Lepidopteran Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.900818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
212
|
Peng M, Siebert DL, Engqvist MKM, Niemeyer CM, Rabe KS. Modeling-Assisted Design of Thermostable Benzaldehyde Lyases from Rhodococcus erythropolis for Continuous Production of α-Hydroxy Ketones. Chembiochem 2022; 23:e202100468. [PMID: 34558792 PMCID: PMC9293332 DOI: 10.1002/cbic.202100468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Indexed: 12/18/2022]
Abstract
Enantiopure α-hydroxy ketones are important building blocks of active pharmaceutical ingredients (APIs), which can be produced by thiamine-diphosphate-dependent lyases, such as benzaldehyde lyase. Here we report the discovery of a novel thermostable benzaldehyde lyase from Rhodococcus erythropolis R138 (ReBAL). While the overall sequence identity to the only experimentally confirmed benzaldehyde lyase from Pseudomonas fluorescens Biovar I (PfBAL) was only 65 %, comparison of a structural model of ReBAL with the crystal structure of PfBAL revealed only four divergent amino acids in the substrate binding cavity. Based on rational design, we generated two ReBAL variants, which were characterized along with the wild-type enzyme in terms of their substrate spectrum, thermostability and biocatalytic performance in the presence of different co-solvents. We found that the new enzyme variants have a significantly higher thermostability (up to 22 °C increase in T50 ) and a different co-solvent-dependent activity. Using the most stable variant immobilized in packed-bed reactors via the SpyCatcher/SpyTag system, (R)-benzoin was synthesized from benzaldehyde over a period of seven days with a stable space-time-yield of 9.3 mmol ⋅ L-1 ⋅ d-1 . Our work expands the important class of benzaldehyde lyases and therefore contributes to the development of continuous biocatalytic processes for the production of α-hydroxy ketones and APIs.
Collapse
Affiliation(s)
- Martin Peng
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Dominik L. Siebert
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Martin K. M. Engqvist
- Chalmers University of TechnologyDepartment of Biology and Biological EngineeringDivision of Systems and Synthetic BiologyKemivägen 10412 96GothenburgSweden
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| |
Collapse
|
213
|
Discovery of a new generation of angiotensin receptor blocking drugs: receptor mechanisms and in silico binding to enzymes relevant to covid-19. Comput Struct Biotechnol J 2022; 20:2091-2111. [PMID: 35432786 PMCID: PMC8994259 DOI: 10.1016/j.csbj.2022.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The discovery and facile synthesis of a new class of sartan-like arterial antihypertensive drugs (angiotensin receptor blockers [ARBs]), subsequently referred to as “bisartans” is reported. In vivo results and complementary molecular modelling presented in this communication indicate bisartans may be beneficial for the treatment of not only heart disease, diabetes, renal dysfunction, and related illnesses, but possibly COVID-19. Bisartans are novel bis-alkylated imidazole sartan derivatives bearing dual symmetric anionic biphenyl tetrazole moieties. In silico docking and molecular dynamics studies revealed bisartans exhibited higher binding affinities for the ACE2/spike protein complex (PDB 6LZG) compared to all other known sartans. They also underwent stable docking to the Zn2+ domain of the ACE2 catalytic site as well as the critical interfacial region between ACE2 and the SARS-CoV-2 receptor binding domain. Additionally, semi-stable docking of bisartans at the arginine-rich furin-cleavage site of the SARS-CoV-2 spike protein (residues 681–686) required for virus entry into host cells, suggest bisartans may inhibit furin action thereby retarding viral entry into host cells. Bisartan tetrazole groups surpass nitrile, the pharmacophoric “warhead” of PF-07321332, in its ability to disrupt the cysteine charge relay system of 3CLpro. However, despite the apparent targeting of multifunctional sites, bisartans do not inhibit SARS-CoV-2 infection in bioassays as effectively as PF-07321332 (Paxlovid).
Collapse
|
214
|
A Second Gamma-Glutamylpolyamine Synthetase, GlnA2, Is Involved in Polyamine Catabolism in Streptomyces coelicolor. Int J Mol Sci 2022; 23:ijms23073752. [PMID: 35409114 PMCID: PMC8998196 DOI: 10.3390/ijms23073752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Streptomyces coelicolor is a soil bacterium living in a habitat with very changeable nutrient availability. This organism possesses a complex nitrogen metabolism and is able to utilize the polyamines putrescine, cadaverine, spermidine, and spermine and the monoamine ethanolamine. We demonstrated that GlnA2 (SCO2241) facilitates S. coelicolor to survive under high toxic polyamine concentrations. GlnA2 is a gamma-glutamylpolyamine synthetase, an enzyme catalyzing the first step in polyamine catabolism. The role of GlnA2 was confirmed in phenotypical studies with a glnA2 deletion mutant as well as in transcriptional and biochemical analyses. Among all GS-like enzymes in S. coelicolor, GlnA2 possesses the highest specificity towards short-chain polyamines (putrescine and cadaverine), while its functional homolog GlnA3 (SCO6962) prefers long-chain polyamines (spermidine and spermine) and GlnA4 (SCO1613) accepts only monoamines. The genome-wide RNAseq analysis in the presence of the polyamines putrescine, cadaverine, spermidine, or spermine revealed indication of the occurrence of different routes for polyamine catabolism in S. coelicolor involving GlnA2 and GlnA3. Furthermore, GlnA2 and GlnA3 are differently regulated. From our results, we can propose a complemented model of polyamine catabolism in S. coelicolor, which involves the gamma-glutamylation pathway as well as other alternative utilization pathways.
Collapse
|
215
|
Baeza M, Zúñiga S, Peragallo V, Gutierrez F, Barahona S, Alcaino J, Cifuentes V. Response to Cold: A Comparative Transcriptomic Analysis in Eight Cold-Adapted Yeasts. Front Microbiol 2022; 13:828536. [PMID: 35283858 PMCID: PMC8905146 DOI: 10.3389/fmicb.2022.828536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/19/2022] [Indexed: 02/03/2023] Open
Abstract
Microorganisms have evolved to colonize all biospheres, including extremely cold environments, facing several stressor conditions, mainly low/freezing temperatures. In general, terms, the strategies developed by cold-adapted microorganisms include the synthesis of cryoprotectant and stress-protectant molecules, cold-active proteins, especially enzymes, and membrane fluidity regulation. The strategy could differ among microorganisms and concerns the characteristics of the cold environment of the microorganism, such as seasonal temperature changes. Microorganisms can develop strategies to grow efficiently at low temperatures or tolerate them and grow under favorable conditions. These differences can be found among the same kind of microorganisms and from the same cold habitat. In this work, eight cold-adapted yeasts isolated from King George Island, subAntarctic region, which differ in their growth properties, were studied about their response to low temperatures at the transcriptomic level. Sixteen ORFeomes were assembled and used for gene prediction and functional annotation, determination of gene expression changes, protein flexibilities of translated genes, and codon usage bias. Putative genes related to the response to all main kinds of stress were found. The total number of differentially expressed genes was related to the temperature variation that each yeast faced. The findings from multiple comparative analyses among yeasts based on gene expression changes and protein flexibility by cellular functions and codon usage bias raise significant differences in response to cold among the studied Antarctic yeasts. The way a yeast responds to temperature change appears to be more related to its optimal temperature for growth (OTG) than growth velocity. Yeasts with higher OTG prepare to downregulate their metabolism to enter the dormancy stage. In comparison, yeasts with lower OTG perform minor adjustments to make their metabolism adequate and maintain their growth at lower temperatures.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sergio Zúñiga
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente Peragallo
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Gutierrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Salvador Barahona
- Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Jennifer Alcaino
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Centro de Biotecnología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
216
|
Sun Z, Zhou Y, Hu Y, Jiang N, Hu S, Li L, Li T. Identification of Wheat LACCASEs in Response to Fusarium graminearum as Potential Deoxynivalenol Trappers. FRONTIERS IN PLANT SCIENCE 2022; 13:832800. [PMID: 35360333 PMCID: PMC8964265 DOI: 10.3389/fpls.2022.832800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Fusarium graminearum (F. graminearum) can cause huge yield reductions and contamination of grain with deoxynivalenol (DON), and thus is one of the most problematic pathogen of wheat worldwide. Although great efforts have been paid and great achievements have been made to control the pathogens, there is still a wide gap for understanding the mechanism underlying F. graminearum resistance. Plant LACCASEs (LACs) catalyze the oxidative polymerization of monolignols by reinforcing cell-wall of various cell types to provide mechanical support, xylem sap transportation, and defense against pest and pathogens. To date, little has been known about LAC genes in bread wheat and their potential roles in wheat-F. graminearum interaction. Through systematic analysis of the genome-wide homologs and transcriptomes of wheat, a total of 95 Triticum aestivum laccases (TaLACs) were identified, and 14 of them were responsive to F. graminearum challenge. 3D structure modelings of the 14 TaLAC proteins showed that only TaLAC78 contains the entire activity center for oxidation and the others lack the type 1 copper ion ligand (T1Cu). Both amino acid sequence alignment and three-dimensional reconstruction after amino acid mutation showed that the loss of T1Cu is not only related to variation of the key amino acid coordinating T1Cu, but also closely related to the flanking amino acids. Significantly differential temporal expression patterns of TaLACs suggested that their subfunctionalization might occur. Promoter array analysis indicated that the induction of TaLACs may be closely associated with salicylic acid signaling, dehydration, and low-oxygen stress under F. graminearum infection. Molecular docking simulation demonstrated that TaLACs can not only catalyze lignin as a substrate, but also interact with DON, which may be docked into the binding position of the monolignols, where the LACs recognize substrates. The current study provides clues for exploring the novel functions of TaLACs in wheat resistance to F. graminearum, and TaLACs maybe candidates for conferring a high level of resistance against F. graminearum in wheat.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Collaborative Innovation of Modern Crops and Food Crops in Jiangsu, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| |
Collapse
|
217
|
Nangia-Makker P, Shekhar MP, Hogan V, Balan V, Raz A. MYH9 binds to dNTPs via deoxyribose moiety and plays an important role in DNA synthesis. Oncotarget 2022; 13:534-550. [PMID: 35309869 PMCID: PMC8923078 DOI: 10.18632/oncotarget.28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
The accepted notion of dNTP transport following cytoplasmic biosynthesis is 'facilitated diffusion'; however, whether this alone is sufficient for moving dNTPs for DNA synthesis remains an open question. The data presented here show that the MYH9 gene encoded heavy chain of non-muscle myosin IIA binds dNTPs potentially serving as a 'reservoir'. Pull-down assays showed that MYH9 present in the cytoplasmic, mitochondrial and nuclear compartments bind to DNA and this interaction is inhibited by dNTPs and 2-deoxyribose-5-phosphate (dRP) suggesting that MYH9-DNA binding is mediated via pentose sugar recognition. Direct dNTP-MYH9 binding was demonstrated by ELISA and a novel PCR-based method, which showed that all dNTPs bind to MYH9 with varying efficiencies. Cellular thermal shift assays showed that MYH9 thermal stability is enhanced by dNTPs. MYH9 siRNA transfection or treatment with myosin II selective inhibitors ML7 or blebbistatin decreased cell proliferation compared to controls. EdU labeling and cell cycle analysis by flow cytometry confirmed MYH9 siRNA and myosin II inhibitors decreased progression to S-phase with accumulation of cells in G0/G1 phase. Taken together, our data suggest a novel role for MYH9 in dNTP binding and DNA synthesis.
Collapse
Affiliation(s)
- Pratima Nangia-Makker
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Malathy P.V. Shekhar
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Victor Hogan
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | - Avraham Raz
- Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Pathology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
218
|
Liu Z, Wu G, Wu H. Molecular cloning, and optimized production and characterization of recombinant cyclodextrin glucanotransferase from Bacillus sp. T1. 3 Biotech 2022; 12:58. [PMID: 35186655 PMCID: PMC8816995 DOI: 10.1007/s13205-022-03111-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022] Open
Abstract
Cyclodextrin glucosyltransferase (CGTase) is an enzyme which degrades starch to produce cyclodextrins (CDs). In this study, the β-CGTase producing strain T1 was identified as Bacillus sp. by its morphological characteristics and 16S rDNA sequence analysis. The cgt-T1 gene was cloned and expressed in Escherichia coli. CGTase-T1 was purified by Ni-nitrilotriacetic acid agarose column and the molecular weight was determined as approximately 75 kDa using SDS-PAGE analysis. For the expression of soluble proteins, the optimal induction conditions were 10 h at 25 °C with OD600 at 0.8. The purified CGTase-T1 exhibited maximum activity with an optimal pH and temperature of 6.0 and 65 °C. The enzyme was stable in a pH range of 7.0-10.0, retaining over 85% relative activity for 1 h. CGTase-T1 activity can be significantly enhanced by adding 1 mM Ba2+. Using a soluble starch substrate, the kinetic parameters were revealed with K M and k cat/K M values of 2.75 mg mL-1 and 1253.97 s-1 mL mg-1, respectively. Additionally, the four enzyme activities of CGTase-T1 were determined. The highest conversion rate to CDs (40.9%) was achieved from soluble starch after 8 h of enzyme reaction, where mainly β-CD was produced (79.1% of the total CDs yield), indicating that CGTase-T1 potentially has industrial application prospect. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03111-8.
Collapse
Affiliation(s)
- Zhenyang Liu
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
| | - Guogan Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Bei Zhai Road, Shanghai, 201106 China
| | - Huawei Wu
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
- College of Life Sciences, Yangtze University, 1 South-Loop Road, Jingzhou, 434025 China
| |
Collapse
|
219
|
Gain H, Nandi D, Kumari D, Das A, Dasgupta SB, Banerjee J. Genome‑wide identification of CAMTA gene family members in rice (Oryza sativa L.) and in silico study on their versatility in respect to gene expression and promoter structure. Funct Integr Genomics 2022; 22:193-214. [PMID: 35169940 DOI: 10.1007/s10142-022-00828-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/29/2021] [Accepted: 01/29/2022] [Indexed: 12/20/2022]
Abstract
The calmodulin-binding transcription activator (CAMTA) is a family of transcriptional factors containing a cluster of calmodulin-binding proteins that can activate gene regulation in response to stresses. The presence of this family of genes has been reported earlier, though, the comprehensive analyses of rice CAMTA (OsCAMTA) genes, their promoter regions, and the proteins were not deliberated till date. The present report revealed the existence of seven CAMTA genes along with their alternate transcripts in five chromosomes of rice (Oryza sativa) genome. Phylogenetic trees classified seven CAMTA genes into three clades indicating the evolutionary conservation in gene structure and their association with other plant species. The in silico study was carried out considering 2 kilobases (kb) promoter regions of seven OsCAMTA genes regarding the distribution of transcription factor binding sites (TFbs) of major and plant-specific transcription factors whereas OsCAMTA7a was identified with highest number of TFbs, while OsCAMTA4 had the lowest. Comparative modelling, i.e., homology modelling, and molecular docking of the CAMTA proteins contributed the thoughtful comprehension of protein 3D structures and protein-protein interaction with probable partners. Gene ontology annotation identified the involvement of the proteins in biological processes, molecular functions, and localization in cellular components. Differential gene expression study gave an insight on functional multiplicity to showcase OsCAMTA3b as most upregulated stress-responsive gene. Summarization of the present findings can be interpreted that OsCAMTA gene duplication, variation in TFbs available in the promoters, and interactions of OsCAMTA proteins with their binding partners might be linked to tolerance against multiple biotic and abiotic cues.
Collapse
Affiliation(s)
- Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debarati Nandi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepika Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
220
|
Yang C, Cheng J, Lin J, Zheng Y, Yu X, Sun J. Sex Pheromone Receptors of Lepidopteran Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.797287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sex pheromone receptors (SPRs) of Lepidopteran insects play important roles in chemical communication. In the sex pheromone detection processes, sex pheromone molecule (SPM), SPR, co-receptor (Orco), pheromone binding protein (PBP), sensory neuron membrane protein (SNMP), and pheromone degradation enzyme (PDE) play individual and cooperative roles. Commonly known as butterfly and moth, the Lepidopteran insects are widely distributed throughout the world, most of which are pests. Comprehensive knowledge of the SPRs of Lepidopteran insects would help the development of sex lure technology and the sex communication pathway research. In this review, we summarized SPR/Orco information from 10 families of Lepidopteran insects from corresponding studies. According to the research progress in the literature, we speculated the evolution of SPRs/Orcos and phylogenetically analyzed the Lepidopteran SPRs and Orcos with the neighbor-joining tree and further concluded the relationship between the cluster of SPRs and their ligands; we analyzed the predicted structural features of SPRs and gave our prediction results of SPRs and Orcos with Consensus Constrained TOPology Prediction (CCTOP) and SwissModel; we summarized the functional characterization of Lepidopteran SPRs and SPR-ligand interaction and then described the progress in the sex pheromone signaling pathways and metabotropic ion channel. Further studies are needed to work out the cryo-electron microscopy (EM) structure of SPR and the SPR-ligand docking pattern in a biophysical perspective, which will directly facilitate the understanding of sex pheromone signal transduction pathways and provide guidance in the sex lure technology in field pest control.
Collapse
|
221
|
Petrenko VA, Gillespie JW, De Plano LM, Shokhen MA. Phage-Displayed Mimotopes of SARS-CoV-2 Spike Protein Targeted to Authentic and Alternative Cellular Receptors. Viruses 2022; 14:v14020384. [PMID: 35215976 PMCID: PMC8879608 DOI: 10.3390/v14020384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The evolution of the SARS-CoV-2 virus during the COVID-19 pandemic was accompanied by the emergence of new heavily mutated viral variants with increased infectivity and/or resistance to detection by the human immune system. To respond to the urgent need for advanced methods and materials to empower a better understanding of the mechanisms of virus’s adaptation to human host cells and to the immuno-resistant human population, we suggested using recombinant filamentous bacteriophages, displaying on their surface foreign peptides termed “mimotopes”, which mimic the structure of viral receptor-binding sites on the viral spike protein and can serve as molecular probes in the evaluation of molecular mechanisms of virus infectivity. In opposition to spike-binding antibodies that are commonly used in studying the interaction of the ACE2 receptor with SARS-CoV-2 variants in vitro, phage spike mimotopes targeted to other cellular receptors would allow discovery of their role in viral infection in vivo using cell culture, tissue, organs, or the whole organism. Phage mimotopes of the SARS-CoV-2 Spike S1 protein have been developed using a combination of phage display and molecular mimicry concepts, termed here “phage mimicry”, supported by bioinformatics methods. The key elements of the phage mimicry concept include: (1) preparation of a collection of p8-type (landscape) phages, which interact with authentic active receptors of live human cells, presumably mimicking the binding interactions of human coronaviruses such as SARS-CoV-2 and its variants; (2) discovery of closely related amino acid clusters with similar 3D structural motifs on the surface of natural ligands (FGF1 and NRP1), of the model receptor of interest FGFR and the S1 spike protein; and (3) an ELISA analysis of the interaction between candidate phage mimotopes with FGFR3 (a potential alternative receptor) in comparison with ACE2 (the authentic receptor).
Collapse
Affiliation(s)
- Valery A. Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence: (V.A.P.); (J.W.G.); Tel.: +1-334-844-2897 (V.A.P.); +1-334-844-2625 (J.W.G.)
| | - James W. Gillespie
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence: (V.A.P.); (J.W.G.); Tel.: +1-334-844-2897 (V.A.P.); +1-334-844-2625 (J.W.G.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy;
| | | |
Collapse
|
222
|
Bimela JS, Nanfack AJ, Yang P, Dai S, Kong XP, Torimiro JN, Duerr R. Antiretroviral Imprints and Genomic Plasticity of HIV-1 pol in Non-clade B: Implications for Treatment. Front Microbiol 2022; 12:812391. [PMID: 35222310 PMCID: PMC8864110 DOI: 10.3389/fmicb.2021.812391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Combinational antiretroviral therapy (cART) is the most effective tool to prevent and control HIV-1 infection without an effective vaccine. However, HIV-1 drug resistance mutations (DRMs) and naturally occurring polymorphisms (NOPs) can abrogate cART efficacy. Here, we aimed to characterize the HIV-1 pol mutation landscape in Cameroon, where highly diverse HIV clades circulate, and identify novel treatment-associated mutations that can potentially affect cART efficacy. More than 8,000 functional Cameroonian HIV-1 pol sequences from 1987 to 2020 were studied for DRMs and NOPs. Site-specific amino acid frequencies and quaternary structural features were determined and compared between periods before (≤2003) and after (2004-2020) regional implementation of cART. cART usage in Cameroon induced deep mutation imprints in reverse transcriptase (RT) and to a lower extent in protease (PR) and integrase (IN), according to their relative usage. In the predominant circulating recombinant form (CRF) 02_AG (CRF02_AG), 27 canonical DRMs and 29 NOPs significantly increased or decreased in RT during cART scale-up, whereas in IN, no DRM and only seven NOPs significantly changed. The profound genomic imprints and higher prevalence of DRMs in RT compared to PR and IN mirror the dominant use of reverse transcriptase inhibitors (RTIs) in sub-Saharan Africa and the predominantly integrase strand transfer inhibitor (InSTI)-naïve study population. Our results support the potential of InSTIs for antiretroviral treatment in Cameroon; however, close surveillance of IN mutations will be required to identify emerging resistance patterns, as observed in RT and PR. Population-wide genomic analyses help reveal the presence of selective pressures and viral adaptation processes to guide strategies to bypass resistance and reinstate effective treatment.
Collapse
Affiliation(s)
- Jude S. Bimela
- Department of Pathology, New York University School of Medicine, New York, NY, United States
- Department of Biochemistry, University of Yaoundé 1, Yaoundé, Cameroon
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Aubin J. Nanfack
- Medical Diagnostic Center, Yaoundé, Cameroon
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
| | - Pengpeng Yang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Shaoxing Dai
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Judith N. Torimiro
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention and Management (CIRCB), Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY, United States
- Department of Microbiology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
223
|
Zhou L, Wu L, Peng C, Yang Y, Shi Y, Gong L, Xu Z, Zhu W. Predicting spike protein NTD mutations of SARS-CoV-2 causing immune evasion by molecular dynamics simulations. Phys Chem Chem Phys 2022; 24:3410-3419. [PMID: 35073390 DOI: 10.1039/d1cp05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Among all the potential targets studied for developing drugs and antibodies, the spike (S) protein is the most striking one, which is on the surface of the virus. In contrast with the intensively investigated immunodominant receptor-binding domain (RBD) of the protein, little is known about the neutralizing antibody binding mechanisms of the N-terminal domain (NTD), let alone the effects of NTD mutations on antibody binding and thereby the risk of immune evasion. Based on 400 ns molecular dynamics simulation for 11 NTD-antibody complexes together with other computational approaches in this study, we investigated critical residues for NTD-antibody binding and their detailed mechanisms. The results show that 36 residues on the NTD including R246, Y144, K147, Y248, L249 and P251 are critically involved in the direct interaction of the NTD with many monoclonal antibodies (mAbs), indicating that the viruses harboring these residue mutations may have a high risk of immune evasion. Binding free energy calculations and an interaction mechanism study reveal that R246I, which is present in the Beta (B.1.351/501Y.V2) variant, may have various impacts on current NTD antibodies through abolishing the hydrogen bonds and electrostatic interaction with the antibodies or affecting other interface residues. Therefore, special attention should be paid to the mutations of these key residues in future antibody and vaccine design and development.
Collapse
Affiliation(s)
- Liping Zhou
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Leyun Wu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Cheng Peng
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yanqing Yang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yulong Shi
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Likun Gong
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China.,Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
224
|
Zhong D, Wan Z, Cai J, Quan L, Zhang R, Teng T, Gao H, Fan C, Wang M, Guo D, Zhang H, Jia Z, Sun Y. mPGES-2 blockade antagonizes β-cell senescence to ameliorate diabetes by acting on NR4A1. Nat Metab 2022; 4:269-283. [PMID: 35228744 DOI: 10.1038/s42255-022-00536-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
β-cell dysfunction is a hallmark of type 1 and type 2 diabetes. Type 2 diabetes is strongly associated with ageing-related β-cell abnormalities that arise through unknown mechanisms. Here we show better β-cell identity, less β-cell senescence, enhanced glucose-stimulated insulin secretion and improved glucose homeostasis in global microsomal prostaglandin E synthase-2 (mPGES-2)-deficient mice challenged with a high-fat diet or bred with a genetic model of type 2 diabetes (db/db mice). Furthermore, the function of mPGES-2 in β-cells is validated using mice with β-cell-specific mPGES-2 deficiency or overexpression. Mechanistically, the protective role of mPGES-2 deletion is induced by antagonizing β-cell senescence via interference of the PGE2-EP3-NR4A1 signalling axis. We also discover an inhibitor of mPGES-2, SZ0232, which protects against β-cell dysfunction and diabetes, similar to mPGES-2 deletion. We conclude that mPGES-2 contributes to ageing-associated β-cell senescence and dysfunction via the PGE2-EP3-NR4A1 signalling axis. Pharmacologic blockade of mPGES-2 might be effective for treating ageing-associated β-cell dysfunction and diabetes.
Collapse
Affiliation(s)
- Dandan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zhikang Wan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Jie Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, P. R. China
| | - Lingling Quan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Rumeng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
- Public Experimental Research Center of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, P. R. China
| | - Tian Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Chenyu Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, P. R. China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, P. R. China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, P. R. China.
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, P. R. China.
| |
Collapse
|
225
|
Voinkov EK, Drokin RA, Fedotov VV, Butorin II, Savateev KV, Lyapustin DN, Gazizov DA, Gorbunov EB, Slepukhin PA, Gerasimova NA, Evstigneeva NP, Zilberberg NV, Kungurov NV, Ulomsky EN, Rusinov VL. Azolo[5,1‐
c
][1,2,4]triazines and Azoloazapurines: Synthesis, Antimicrobial activity and
in silico
Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202104253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Egor K. Voinkov
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Roman A. Drokin
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Victor V. Fedotov
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Ilya I. Butorin
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Konstantin V. Savateev
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Daniil N. Lyapustin
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
| | - Denis A. Gazizov
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| | - Evgeny B. Gorbunov
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| | - Pavel A. Slepukhin
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| | - Natalya A. Gerasimova
- Ural Research Institute of Dermatovenereology and Immunopathology 8 Shcherbakova st. Yekaterinburg Russian Federation
| | - Natalya P. Evstigneeva
- Ural Research Institute of Dermatovenereology and Immunopathology 8 Shcherbakova st. Yekaterinburg Russian Federation
| | - Natalya V. Zilberberg
- Ural Research Institute of Dermatovenereology and Immunopathology 8 Shcherbakova st. Yekaterinburg Russian Federation
| | - Nikolay V. Kungurov
- Ural Research Institute of Dermatovenereology and Immunopathology 8 Shcherbakova st. Yekaterinburg Russian Federation
| | - Evgeny N. Ulomsky
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| | - Vladimir L. Rusinov
- Department of Organic and Biomolecular Chemistry Institute of Chemical Technology Ural Federal University 19 Mira St. Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic Synthesis Ural Division of the Russian Academy of Sciences 22/20 S. Kovalevskoy st. / Akademicheskaya st. Yekaterinburg Russian Federation
| |
Collapse
|
226
|
Pedersen TB, Nielsen MR, Kristensen SB, Spedtsberg EML, Sørensen T, Petersen C, Muff J, Sondergaard TE, Nielsen KL, Wimmer R, Gardiner DM, Sørensen JL. Speed dating for enzymes! Finding the perfect phosphopantetheinyl transferase partner for your polyketide synthase. Microb Cell Fact 2022; 21:9. [PMID: 35012550 PMCID: PMC8751348 DOI: 10.1186/s12934-021-01734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The biosynthetic pathways for the fungal polyketides bikaverin and bostrycoidin, from Fusarium verticillioides and Fusarium solani respectively, were reconstructed and heterologously expressed in S. cerevisiae alongside seven different phosphopantetheinyl transferases (PPTases) from a variety of origins spanning bacterial, yeast and fungal origins. In order to gauge the efficiency of the interaction between the ACP-domains of the polyketide synthases (PKS) and PPTases, each were co-expressed individually and the resulting production of target polyketides were determined after 48 h of growth. In co-expression with both biosynthetic pathways, the PPTase from Fusarium verticillioides (FvPPT1) proved most efficient at producing both bikaverin and bostrycoidin, at 1.4 mg/L and 5.9 mg/L respectively. Furthermore, the remaining PPTases showed the ability to interact with both PKS's, except for a single PKS-PPTase combination. The results indicate that it is possible to boost the production of a target polyketide, simply by utilizing a more optimal PPTase partner, instead of the commonly used PPTases; NpgA, Gsp and Sfp, from Aspergillus nidulans, Brevibacillus brevis and Bacillus subtilis respectively.
Collapse
Affiliation(s)
- Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | | | - Eva Mie Lang Spedtsberg
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Celine Petersen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Jens Muff
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University Aalborg, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Donald Max Gardiner
- The University of Queensland, 306 Carmody Rd, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University Esbjerg, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
227
|
Dvoryakova EA, Vinokurov KS, Tereshchenkova VF, Dunaevsky YE, Belozersky MA, Oppert B, Filippova IY, Elpidina EN. Primary digestive cathepsins L of Tribolium castaneum larvae: Proteomic identification, properties, comparison with human lysosomal cathepsin L. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103679. [PMID: 34763092 DOI: 10.1016/j.ibmb.2021.103679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
We previously described the most highly expressed enzymes from the gut of the red flour beetle, Tribolium castaneum, as cathepsins L. In the present study, two C1 family-specific cysteine cathepsin L enzymes from the larval midgut were isolated and identified using MALDI-TOF MS analysis. The isolated T. castaneum cathepsins were characterized according to their specificity against chromogenic and fluorogenic peptide substrates, and the most efficiently hydrolyzed substrate was Z-FR-pNA with Arg in the P1 subsite. The specificity of insect digestive cathepsins was compared with human lysosomal cathepsin L, the well-studied peptidase of the C1 family cathepsins. T. castaneum digestive cathepsins efficiently hydrolyzed substrates with small and uncharged amino acid residues at P1 (Ala, Gln) more than human cathepsin L. In particular, these insect digestive cathepsins cleaved with higher efficiency the analogs of immunogenic peptides of gliadins, which contribute to autoimmune celiac disease in susceptible people, and thus insect enzymes may be useful in enzymatic treatments for this disease. A bioinformatic study supported by the proteomic analysis of the primary structures of the isolated cathepsins was used to compare tertiary models. The phylogenetic analysis of coleopteran and human cathepsins from the L subfamily indicated that insect digestive cathepsins grouped separately from lysosomal cathepsins.
Collapse
Affiliation(s)
- E A Dvoryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - K S Vinokurov
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Czech Republic, Branišovská 1160/31, České Budějovice, 370 05, Czech Republic
| | - V F Tereshchenkova
- Department of Chemistry, Moscow State University, Moscow, 119991, Russia
| | - Y E Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - M A Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - B Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS, 66502, USA.
| | - I Y Filippova
- Department of Chemistry, Moscow State University, Moscow, 119991, Russia
| | - E N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
228
|
Lone MA, Bourquin F, Hornemann T. Serine Palmitoyltransferase Subunit 3 and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:47-56. [DOI: 10.1007/978-981-19-0394-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
229
|
Mu J, Zhou J, Gong Q, Xu Q. An allosteric regulation mechanism of Arabidopsis Serine/Threonine kinase 1 (SIK1) through phosphorylation. Comput Struct Biotechnol J 2022; 20:368-379. [PMID: 35035789 PMCID: PMC8749016 DOI: 10.1016/j.csbj.2021.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
The Arabidopsis Serine/Threonine Kinase 1 (SIK1) is a Sterile 20 (STE20)/Hippo orthologue that is also categorized as a Mitogen-Activated Protein Kinase Kinase Kinase Kinase (MAP4K). Like its animal and fungi orthologues, SIK1 is required for cell cycle exit, cell expansion, polarity establishment, as well as pathogenic response. The catalytic activity of SIK1, like other MAPKs, is presumably regulated by its phosphorylation states. Since no crystal structure for SIK1 has been reported yet, we built structural models for SIK1 kinase domain in different phosphorylation states with different pocket conformation to see how this kinase may be regulated. Using computational structural biology methods, we outlined a conduction path in which a phosphorylation site on the A-loop regulates the catalytic activity of SIK1 by controlling the closing or opening of the catalytic pocket at the G-loop. Furthermore, with analyses on the dynamic motions and in vitro kinase assay, we confirmed that three key residues in this conduction path, Lys278, Glu295, and Arg370, are indeed important for the kinase activity of SIK1. Since these residues are conserved in all STE20 kinases examined, the regulatory mechanism that we discovered may be common in STE20 kinases.
Collapse
|
230
|
Wang X, Wang L, Li F, Teng Y, Ji C, Wu H. Toxicity pathways of lipid metabolic disorders induced by typical replacement flame retardants via data-driven analysis, in silico and in vitro approaches. CHEMOSPHERE 2022; 287:132419. [PMID: 34600017 DOI: 10.1016/j.chemosphere.2021.132419] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals can interfere with hormone action via various pathways, thereby increasing the risk of adverse health outcomes. Organophosphorus ester (OPEs) retardants, a group of new emerging endocrine disruption chemicals, have been referred to as metabolism disruptors and reported to induce chronic health problems. However, the toxicity pathways were mainly focused on nuclear receptor signaling pathways. Significantly, the membrane receptor pathway (such as G protein-coupled estrogen receptor 1 (GPER) signaling pathway) had been gradually realized as the important role in respond more effective to lipid metabolism disorder than traditional nuclear receptors, whereas the detailed mechanism was unclear yet. Therefore, this study innovatively integrated the bibliometric analysis, in silico and in vitro approach to develop toxicity pathways for the mechanism interpretation. Bibliometric analysis found that the typical OPEs - triphenyl phosphate was a major concern of lipid metabolism abnormality. Results verified that TPP could damage the structures of cell membranes and exert an agonistic effect of GPER as the molecular initiating event. Then, the activated GPER could trigger the PI3K-Akt/NCOR1 and mTOR/S6K2/PPARα transduction pathways as key event 1 (KE1) and affect the process of lipid metabolism and synthesis (CPT1A, CPT2, SREBF2 and SCD) as KE2. As a result, these alterations led to lipid accumulation as adverse effect at cellular-levels. Furthermore, the potential outcomes (such as immunity damage, weight change and steatohepatitis) at high biological levels were expanded. These findings improved knowledge to deeply understand toxicity pathways of phosphorus flame retardants and then provided a theoretical basis for risk assessments.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Li Wang
- Yantai Yuhuangding Hosp, Dept Western Med, Yuhuangdingdong Rd 20, Yantai, 264000, Shandong, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
231
|
Kelleher SL, Alam S, Rivera OC, Barber-Zucker S, Zarivach R, Wagatsuma T, Kambe T, Soybel DI, Wright J, Lamendella R. Loss-of-function SLC30A2 mutants are associated with gut dysbiosis and alterations in intestinal gene expression in preterm infants. Gut Microbes 2022; 14:2014739. [PMID: 34965180 PMCID: PMC8726655 DOI: 10.1080/19490976.2021.2014739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 02/04/2023] Open
Abstract
Loss of Paneth cell (PC) function is implicated in intestinal dysbiosis, mucosal inflammation, and numerous intestinal disorders, including necrotizing enterocolitis (NEC). Studies in mouse models show that zinc transporter ZnT2 (SLC30A2) is critical for PC function, playing a role in granule formation, secretion, and antimicrobial activity; however, no studies have investigated whether loss of ZnT2 function is associated with dysbiosis, mucosal inflammation, or intestinal dysfunction in humans. SLC30A2 was sequenced in healthy preterm infants (26-37 wks; n = 75), and structural analysis and functional assays determined the impact of mutations. In human stool samples, 16S rRNA sequencing and RNAseq of bacterial and human transcripts were performed. Three ZnT2 variants were common (>5%) in this population: H346Q, f = 19%; L293R, f = 7%; and a previously identified compound substitution in Exon7, f = 16%). H346Q had no effect on ZnT2 function or beta-diversity. Exon7 impaired zinc transport and was associated with a fractured gut microbiome. Analysis of microbial pathways suggested diverse effects on nutrient metabolism, glycan biosynthesis and metabolism, and drug resistance, which were associated with increased expression of host genes involved in tissue remodeling. L293R caused profound ZnT2 dysfunction and was associated with overt gut dysbiosis. Microbial pathway analysis suggested effects on nucleotide, amino acid and vitamin metabolism, which were associated with the increased expression of host genes involved in inflammation and immune response. In addition, L293R was associated with reduced weight gain in the early postnatal period. This implicates ZnT2 as a novel modulator of mucosal homeostasis in humans and suggests that genetic variants in ZnT2 may affect the risk of mucosal inflammation and intestinal disease.
Collapse
MESH Headings
- Animals
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Cation Transport Proteins/deficiency
- Cation Transport Proteins/genetics
- Dysbiosis/genetics
- Dysbiosis/metabolism
- Dysbiosis/microbiology
- Exons
- Female
- Gastrointestinal Microbiome
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/microbiology
- Infant, Premature/metabolism
- Intestines/metabolism
- Intestines/microbiology
- Loss of Function Mutation
- Male
- Mice, Knockout
- Mutation
- Mutation, Missense
- Polysaccharides/metabolism
- Mice
Collapse
Affiliation(s)
- Shannon L Kelleher
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Pharmacology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Samina Alam
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Olivia C Rivera
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Shiran Barber-Zucker
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, The National Institute for Biotechnology in the Negev and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Takumi Wagatsuma
- The Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- The Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - David I Soybel
- Department of Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania, USA
| | - Justin Wright
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, USA
| |
Collapse
|
232
|
Galvis CC, Jimenez-Villegas T, Reyes Romero DP, Velandia A, Taniwaki S, Oliveira de Souza Silva S, Brandão P, Santana-Clavijo NF. Molecular diversity of the VP2 of Carnivore protoparvovirus 1 (CPV-2) of fecal samples from Bogotá. J Vet Sci 2022; 23:e14. [PMID: 34931505 PMCID: PMC8799948 DOI: 10.4142/jvs.21181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Carnivore protoparvovirus 1, also known as canine parvovirus type 2 (CPV-2), is the main pathogen in hemorrhagic gastroenteritis in dogs, with a high mortality rate. Three subtypes (a, b, c) have been described based on VP2 residue 426, where 2a, 2b, and 2c have asparagine, aspartic acid, and glutamic acid, respectively. OBJECTIVES This study examined the presence of CPV-2 variants in the fecal samples of dogs diagnosed with canine parvovirus in Bogotá. METHODS Fecal samples were collected from 54 puppies and young dogs (< 1 year) that tested positive for the CPV through rapid antigen test detection between 2014-2018. Molecular screening was developed for VP1 because primers 555 for VP2 do not amplify, it was necessary to design a primer set for VP2 amplification of 982 nt. All samples that were amplified were sequenced by Sanger. Phylogenetics and structural analysis was carried out, focusing on residue 426. RESULTS As a result 47 out of 54 samples tested positive for VP1 screening, and 34/47 samples tested positive for VP2 980 primers as subtype 2a (n = 30) or 2b (n = 4); subtype 2c was not detected. All VP2 sequences had the amino acid, T, at 440, and most Colombian sequences showed an S514A substitution, which in the structural modeling is located in an antigenic region, together with the 426 residue. CONCLUSIONS The 2c variant was not detected, and these findings suggest that Colombian strains of CPV-2 might be under an antigenic drift.
Collapse
Affiliation(s)
- Cristian Camilo Galvis
- College of Veterinary Medicine, Antonio Nariño University, Bogotá 111511, Colombia
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Tatiana Jimenez-Villegas
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
- DIBYPA, Fauna Care Sub-Direction, Bogotá 111121, Colombia
| | | | | | - Sueli Taniwaki
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Sheila Oliveira de Souza Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Paulo Brandão
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
| | - Nelson Fernando Santana-Clavijo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270, Brazil
- University of Applied and Environmental Sciences, Bogotá 111166, Colombia.
| |
Collapse
|
233
|
Inducible knockdown of Mycobacterium smegmatis MSMEG_2975 (glyoxalase II) affected bacterial growth, antibiotic susceptibility, biofilm, and transcriptome. Arch Microbiol 2021; 204:97. [DOI: 10.1007/s00203-021-02652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
234
|
Akter T, Chakma M, Tanzina AY, Rumi MH, Shimu MSS, Saleh MA, Mahmud S, Sami SA, Emran TB. Curcumin Analogues as a Potential Drug against Antibiotic Resistant Protein, β-Lactamases and L, D-Transpeptidases Involved in Toxin Secretion in Salmonella typhi: A Computational Approach. BIOMEDINFORMATICS 2021; 2:77-100. [DOI: 10.3390/biomedinformatics2010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Typhoid fever caused by the bacteria Salmonella typhi gained resistance through multidrug-resistant S. typhi strains. One of the reasons behind β-lactam antibiotic resistance is -lactamase. L, D-Transpeptidases is responsible for typhoid fever as it is involved in toxin release that results in typhoid fever in humans. A molecular modeling study of these targeted proteins was carried out by various methods, such as homology modeling, active site prediction, prediction of disease-causing regions, and by analyzing the potential inhibitory activities of curcumin analogs by targeting these proteins to overcome the antibiotic resistance. The five potent drug candidate compounds were identified to be natural ligands that can inhibit those enzymes compared to controls in our research. The binding affinity of both the Go-Y032 and NSC-43319 were found against β-lactamase was −7.8 Kcal/mol in AutoDock, whereas, in SwissDock, the binding energy was −8.15 and −8.04 Kcal/mol, respectively. On the other hand, the Cyclovalone and NSC-43319 had an equal energy of −7.60 Kcal/mol in AutoDock, whereas −7.90 and −8.01 Kcal/mol in SwissDock against L, D-Transpeptidases. After the identification of proteins, the determination of primary and secondary structures, as well as the gene producing area and homology modeling, was accomplished. The screened drug candidates were further evaluated in ADMET, and pharmacological properties along with positive drug-likeness properties were observed for these ligand molecules. However, further in vitro and in vivo experiments are required to validate these in silico data to develop novel therapeutics against antibiotic resistance.
Collapse
|
235
|
Stephan OOH. Interactions, structural aspects, and evolutionary perspectives of the yeast 'START'-regulatory network. FEMS Yeast Res 2021; 22:6461095. [PMID: 34905017 DOI: 10.1093/femsyr/foab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/11/2021] [Indexed: 11/12/2022] Open
Abstract
Molecular signal transduction networks which conduct transcription at the G1 to S phase transition of the eukaryotic cell division cycle have been identified in diverse taxa from mammals to baker´s yeast with analogous functional organization. However, regarding some network components, such as the transcriptional regulators STB1 and WHI5, only few orthologs exist which are confined to individual Saccharomycotina species. While Whi5 has been characterized as yeast analog of human Rb protein, in the particular case of Stb1 (Sin three binding protein 1) identification of functional analogs emerges as difficult because to date its exact functionality still remains obscured. By aiming to resolve Stb1´s enigmatic role this Perspectives article especially surveys works covering relations between Cyclin/CDKs, the heteromeric transcription factor complexes SBF (Swi4/Swi6) and MBF (Mbp1/Swi6), as well as additional coregulators (Whi5, Sin3, Rpd3, Nrm1) which are collectively associated with the orderly transcription at 'Start' of the Saccharomyces cerevisiae cell cycle. In this context, interaction capacities of the Sin3-scaffold protein are widely surveyed because its four PAH domains (Paired Amphiphatic Helix) represent a 'recruitment-code' for gene-specific targeting of repressive histone deacetylase activity (Rpd3) via different transcription factors. Here Stb1 plays a role in Sin3´s action on transcription at the G1/S-boundary. Through bioinformatic analyses a potential Sin3-interaction domain (SID) was detected in Stb1, and beyond that, connections within the G1/S-regulatory network are discussed in structural and evolutionary context thereby providing conceptual perspectives.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Bavaria, Germany
| |
Collapse
|
236
|
Ishihara Y, Ohata Y, Takeyari S, Kitaoka T, Fujiwara M, Nakano Y, Yamamoto K, Yamada C, Yamamoto K, Michigami T, Mabe H, Yamaguchi T, Matsui K, Tamada I, Namba N, Yamamoto A, Etoh J, Kawaguchi A, Kosugi R, Ozono K, Kubota T. Genotype-phenotype analysis, and assessment of the importance of the zinc-binding site in PHEX in Japanese patients with X-linked hypophosphatemic rickets using 3D structure modeling. Bone 2021; 153:116135. [PMID: 34333162 DOI: 10.1016/j.bone.2021.116135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
X-linked hypophosphatemic rickets (XLH) is an inheritable type of rickets caused by inactivating variants in the phosphate regulating endopeptidase homolog X-linked (PHEX) gene, which results in the overproduction of fibroblast growth factor 23 (FGF23). The mechanism by which PHEX impairment leads to FGF23 overproduction is unknown. Because little is known regarding the genotype-phenotype correlation in Japanese XLH, we summarized the available clinical and genetic data and analyzed the genotype-phenotype relationships using 3-dimensional (3D) structure modeling to clarify the XLH pathophysiology. We retrospectively reviewed the clinical features and performed genetic analysis of 39 Japanese patients with XLH from 28 unrelated pedigrees carrying any known or novel PHEX variant. To predict changes in the 3D structure of mutant PHEX, we constructed a putative 3D model of each mutant and evaluated the effect of structural alteration by genotype-phenotype correlation analysis. Genetic analysis revealed 23 PHEX variants, including eight novel variants. They were associated with high i-FGF23 levels, hypophosphatemia, phosphaturia, high alkaline phosphatase levels, and short stature. No gene dosage effect or genotype-phenotype correlation was observed when truncating and non-truncating variants were compared. However, the conservation of the zinc-binding site and cavity in PHEX had an impact on the elevation of i-FGF23 levels. Via genotype-phenotype relationship analysis using 3D modeling, we showed that the zinc-binding site and cavity in PHEX can play a critical role in its function. These findings provide new genetic clues for investigating the function of PHEX and the pathogenesis of XLH.
Collapse
Affiliation(s)
- Yasuki Ishihara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; The 1st. Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan; Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; The 1st. Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Chieko Yamada
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsusuke Yamamoto
- Department of Pediatric Nephrology and Metabolism, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroyo Mabe
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| | - Takeshi Yamaguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Katsuyuki Matsui
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Izumi Tamada
- Department of Pediatrics, Imakiire General Hospital, Kagoshima, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan; Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Akiko Yamamoto
- Department of Pediatrics, Kumamoto Chuo Hospital, Kumamoto, Japan
| | - Junya Etoh
- Department of Pediatrics, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Azusa Kawaguchi
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Rieko Kosugi
- Department of Diabetes and Endocrinology, Shizuoka General Hospital, Shizuoka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
237
|
Kong Y, Ji C, Qu J, Chen Y, Wu S, Zhu X, Niu L, Zhao M. Old pesticide, new use: Smart and safe enantiomer of isocarbophos in locust control. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112710. [PMID: 34481357 DOI: 10.1016/j.ecoenv.2021.112710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Locust plagues are still worldwide problems. Selecting active enantiomers from current chiral insecticides is necessary for controlling locusts and mitigating the pesticide pollution in agricultural lands. Herein, two enantiomers of isocarbophos (ICP) were separated and the enantioselectivity in insecticidal activity against the pest Locusta migratoria manilensis (L. migratoria) and mechanisms were investigated. The significant difference of LD50 between (+)-ICP (0.609 mg/kg bw) and (-)-ICP (79.412 mg/kg bw) demonstrated that (+)-ICP was a more effective enantiomer. The enantioselectivity in insecticidal activity of ICP enantiomers could be attributed to the selective affinity to acetylcholinesterase (AChE). Results of in vivo and in vitro assays suggested that AChE was more sensitive to (+)-ICP. In addition, molecular docking showed that the -CDOKER energies of (+)-ICP and (-)-ICP were 25.6652 and 24.4169, respectively, which suggested a stronger affinity between (+)-ICP and AChE. Significant selectivity also occurred in detoxifying enzymes activities (carboxylesterases (CarEs) and glutathione S-transferases (GSTs)) and related gene expressions. Suppression of detoxifying enzymes activities with (+)-ICP treatment suggested that (-)-ICP may induce the detoxifying enzyme-mediated ICP resistance. A more comprehensive understanding of the enantioselectivity of ICP is necessary for improving regulation and risk assessment of ICP.
Collapse
Affiliation(s)
- Yuan Kong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyang Ji
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shenggan Wu
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinkai Zhu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering under the National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lixi Niu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering under the National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
238
|
Rasool M, Carracedo A, Sibiany A, Al-Sayes F, Karim S, Haque A, Natesan Pushparaj P, Asif M, Achakzai NM. Discovery of a novel and a rare Kristen rat sarcoma viral oncogene homolog (KRAS) gene mutation in colorectal cancer patients. Bioengineered 2021; 12:5099-5109. [PMID: 34369256 PMCID: PMC8806922 DOI: 10.1080/21655979.2021.1960715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most important causes of morbidity and mortality in the developed world and is gradually more frequent in the developing world including Saudi Arabia. According to the Saudi Cancer Registry report 2015, CRC is the most common cancer in men (14.9%) and the second most prevalent cancer. Oncogenic mutations in the KRAS gene play a central role in tumorigenesis and are mutated in 30-40% of all CRC patients. To explore the prevalence of KRAS gene mutations in the Saudi population, we collected 80 CRC tumor tissues and sequenced the KRAS gene using automated sequencing technologies. The chromatograms presented mutations in 26 patients (32.5%) in four different codons, that is, 12, 13, 17, and 31. Most of the mutations were identified in codon 12 in 16 patients (61.5% of all mutations). We identified a novel mutation c.51 G>A in codon 17, where serine was substituted by arginine (S17R) in four patients. We also identified a very rare mutation, c.91 G>A, in which glutamic acid was replaced by lysine (E31K) in three patients. In conclusion, our findings further the knowledge about KRAS mutations in different ethnic groups is indispensable to fully understand their role in the development and progression of CRC.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angel Carracedo
- Genomic Medicine Group, University of Santiago De Compostela, Spain
| | | | - Faten Al-Sayes
- Faculty of Medicine, KAUH, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Absarul Haque
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Asif
- ORIC, Department of Biotechnology, Buitems, Quetta, Pakistan
| | - Niaz M. Achakzai
- Department of Molecular Biology, City Medical Complex, Kabul, Afghanistan
- Department of Molecular Biology, DNA Section, Legal Medicine Directorate, Ministry of Public Health, Kabul, Afghanistan
| |
Collapse
|
239
|
Liu W, Liu Z, Mo Z, Guo S, Liu Y, Xie Q. ATG8-Interacting Motif: Evolution and Function in Selective Autophagy of Targeting Biological Processes. FRONTIERS IN PLANT SCIENCE 2021; 12:783881. [PMID: 34912364 PMCID: PMC8666691 DOI: 10.3389/fpls.2021.783881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 05/26/2023]
Abstract
Autophagy is an evolutionarily conserved vacuolar process functioning in the degradation of cellular components for reuse. In plants, autophagy is generally activated upon stress and its regulation is executed by numbers of AuTophaGy-related genes (ATGs), of which the ATG8 plays a dual role in both biogenesis of autophagosomes and recruitment of ATG8-interacting motif (AIM) anchored selective autophagy receptors (SARs). Such motif is either termed as AIM or ubiquitin-interacting motif (UIM), corresponding to the LC3-interacting region (LIR)/AIM docking site (LDS) or the UIM docking site (UDS) of ATG8, respectively. To date, dozens of AIM or UIM containing SARs have been characterized. However, the knowledge of these motifs is still obscured. In this review, we intend to summarize the current understanding of SAR proteins and discuss the conservation and diversification of the AIMs/UIMs, expectantly providing new insights into the evolution of them in various biological processes in plants.
Collapse
Affiliation(s)
- Wanqing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of New Technology in Rice Breeding/Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Zinan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zulong Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shaoying Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yunfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
240
|
Faraag AHI, Shafaa MW, Elkholy NS, Abdel-Hafez LJM. Stress impact of liposomes loaded with ciprofloxacin on the expression level of MepA and NorB efflux pumps of methicillin-resistant Staphylococcus aureus. Int Microbiol 2021; 25:427-446. [PMID: 34822035 DOI: 10.1007/s10123-021-00219-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
One mechanism of ciprofloxacin resistance is attributed to chromosomal DNA-encoded efflux pumps such as the MepA and NorB proteins. The goal of this research is to find a way to bypass Staphylococcus aureus' efflux pumps. Because of its high membrane permeability and low association with NorB and MepA efflux proteins, a liposome-encapsulating antibiotic is one of the promising, cost-effective drug carriers and coating mechanisms for overcoming active transport of methicillin-resistant S. aureus (MRSA) multidrug-resistant efflux protein . The calculated "Log Perm RRCK" membrane permeability values of 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) ciprofloxacin liposome-encapsulated (CFL) showed a lower negative value of - 4,652 cm/s and greater membrane permeability than ciprofloxacin free (CPF). The results of RT-qPCR showed that cationic liposomes containing ciprofloxacin in liposome-encapsulated form (CFL) improved CPF antibacterial activity and affinity for negatively charged bacterial cell surface membrane in comparison to free drug and liposome, as it overcame several resistance mechanisms and reduced the expression of efflux pumps. Ciprofloxacin liposome-encapsulated (CFL) is therefore more effective than ciprofloxacin alone. Liposomes can be combined with a variety of drugs that interact with bacterial cell efflux pumps to maintain high sustained levels of antibiotics in bacterial cells.
Collapse
Affiliation(s)
| | - Medhat W Shafaa
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nourhan S Elkholy
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Lina Jamil M Abdel-Hafez
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University, 6 October City, Giza, Egypt
| |
Collapse
|
241
|
Papadopoulos AO, Ealand C, Gordhan BG, VanNieuwenhze M, Kana BD. Characterisation of a putative M23-domain containing protein in Mycobacterium tuberculosis. PLoS One 2021; 16:e0259181. [PMID: 34784363 PMCID: PMC8594824 DOI: 10.1371/journal.pone.0259181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/14/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.
Collapse
Affiliation(s)
- Andrea Olga Papadopoulos
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher Ealand
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Bhavna Gowan Gordhan
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Michael VanNieuwenhze
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Bavesh Davandra Kana
- Faculty of Health Sciences, DSI/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
242
|
Wang Y, Zhang Z, Shang L, Gao H, Du X, Li F, Gao Y, Qi G, Guo W, Qu Z, Dong T. Immunological Study of Reconstructed Common Ancestral Sequence of Adenovirus Hexon Protein. Front Microbiol 2021; 12:717047. [PMID: 34777273 PMCID: PMC8578728 DOI: 10.3389/fmicb.2021.717047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: To reconstruct the ancestral sequence of human adenoviral hexon protein by combining sequence variations and structural information. And to provide a candidate hexon protein for developing new adenoviral vector capable of escaping the pre-existing immunity in healthy populations. Methods: The sequences of 74 adenovirus-type strains were used to predict the ancestral sequence of human adenovirus hexon protein using FastML and MEGA software. The three-dimensional structure model was built using homology modeling methods. The immunological features of ancestral loop 1 and loop 2 regions of sequences were tested using protein segments expressed in a prokaryotic expression system and polypeptides synthesized with human serum samples. Results: The tower region of the hexon protein had the highest sequence variability, while the neck and base regions remained constant among different types. The modern strains successfully predicted the common ancestral sequence of the human adenovirus hexon. The positive sera against neutralizing epitopes on the common ancestor of adenoviral hexon were relatively rare among healthy adults. Conclusion: The existing strains inferred the common ancestor of human adenoviruses, with epitopes never observed in the current human strains. The predicted common ancestor hexon is a good prospect in the improvement of adenovirus vectors.
Collapse
Affiliation(s)
- Yingchen Wang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Zhe Zhang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Lei Shang
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Hong Gao
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Xiqiao Du
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China.,Harbin Center for Disease Control and Prevention, Harbin, China
| | - Falong Li
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Ya Gao
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| | - Guiyun Qi
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Weiyuan Guo
- The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhangyi Qu
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China.,Department of Natural Focus Disease Control, Institute of Environment-Associated Disease, Sino-Russia Joint Medical Research Center, Harbin Medical University, Harbin, China
| | - Tuo Dong
- Department of Microbiology, Public Health College, Harbin Medical University, Harbin, China
| |
Collapse
|
243
|
Dabravolski SA, Isayenkov SV. Evolution of the Cytokinin Dehydrogenase (CKX) Domain. J Mol Evol 2021; 89:665-677. [PMID: 34757471 DOI: 10.1007/s00239-021-10035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/30/2021] [Indexed: 01/05/2023]
Abstract
Plant hormone cytokinins are important regulators of plant development, response to environmental stresses and interplay with other plant hormones. Cytokinin dehydrogenases (CKXs) are proteins responsible for the irreversible break-down of cytokinins to the adenine and aldehyde. Even though plant CKXs have been extensively studied, homologous proteins from other taxa remain mainly uncharacterised. Here we present our study on the molecular evolution and divergence of the CKX from bacteria, fungi, amoeba and viridiplantae. Although CKXs are present in eukaryotes and prokaryotes, they are missing in algae and metazoan taxa. The prevalent domain architecture consists of the FAD-binding and cytokinin binding domains, whereas some bacteria appear to have only cytokinin binding domain proteins. The CKXs play important role in the various aspects of plant life including control of plant development, response to biotic and abiotic stress, influence nutrition. Results of our study suggested that CKX originates from the FAD-linked C-terminal oxidase and has a defence-oriented function. The obtained results significantly extend the current understanding of the cytokinin dehydrogenases structure-function from the relationship to homologues from other taxa and provide a starting point baseline for their future functional characterization.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], Dovatora str. 7/11, 21002, Vitebsk, Belarus
| | - Stanislav V Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China.
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, NAS of Ukraine, Osipovskogo str., 2a, Kyiv-123, Kyiv, 04123, Ukraine.
| |
Collapse
|
244
|
Sookpongthai P, Utayopas K, Sitthiyotha T, Pengsakul T, Kaewthamasorn M, Wangkanont K, Harnyuttanakorn P, Chunsrivirot S, Pattaradilokrat S. Global diversity of the gene encoding the Pfs25 protein-a Plasmodium falciparum transmission-blocking vaccine candidate. Parasit Vectors 2021; 14:571. [PMID: 34749796 PMCID: PMC8574928 DOI: 10.1186/s13071-021-05078-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Background Vaccines against the sexual stages of the malarial parasite Plasmodium falciparum are indispensable for controlling malaria and abrogating the spread of drug-resistant parasites. Pfs25, a surface antigen of the sexual stage of P. falciparum, is a leading candidate for transmission-blocking vaccine development. While clinical trials have reported that Pfs25-based vaccines are safe and effective in inducing transmission-blocking antibodies, the extent of the genetic diversity of Pfs25 in malaria endemic populations has rarely been studied. Thus, this study aimed to investigate the global diversity of Pfs25 in P. falciparum populations. Methods A database of 307 Pfs25 sequences of P. falciparum was established. Population genetic analyses were performed to evaluate haplotype and nucleotide diversity, analyze haplotypic distribution patterns of Pfs25 in different geographical populations, and construct a haplotype network. Neutrality tests were conducted to determine evidence of natural selection. Homology models of the Pfs25 haplotypes were constructed, subjected to molecular dynamics (MD), and analyzed in terms of flexibility and percentages of secondary structures. Results The Pfs25 gene of P. falciparum was found to have 11 unique haplotypes. Of these, haplotype 1 (H1) and H2, the major haplotypes, represented 70% and 22% of the population, respectively, and were dominant in Asia, whereas only H1 was dominant in Africa, Central America, and South America. Other haplotypes were rare and region-specific, resulting in unique distribution patterns in different geographical populations. The diversity in Pfs25 originated from ten single-nucleotide polymorphism (SNP) loci located in the epidermal growth factor (EGF)-like domains and anchor domain. Of these, an SNP at position 392 (GGA/GCA), resulting in amino acid substitution 131 (Gly/Ala), defined the two major haplotypes. The MD results showed that the structures of H1 and H2 variants were relatively similar. Limited polymorphism in Pfs25 could likely be due to negative selection. Conclusions The study successfully established a Pfs25 sequence database that can become an essential tool for monitoring vaccine efficacy, designing assays for detecting malaria carriers, and conducting epidemiological studies of P. falciparum. The discovery of the two major haplotypes, H1 and H2, and their conserved structures suggests that the current Pfs25-based vaccines could be used globally for malaria control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05078-6.
Collapse
Affiliation(s)
- Pornpawee Sookpongthai
- M.Sc. program in Zoology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Korawich Utayopas
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thassanai Sitthiyotha
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Theerakamol Pengsakul
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kittikhun Wangkanont
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Surasak Chunsrivirot
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | |
Collapse
|
245
|
Torres PHM, Rossi AD, Blundell TL. ProtCHOIR: a tool for proteome-scale generation of homo-oligomers. Brief Bioinform 2021; 22:bbab182. [PMID: 34015821 PMCID: PMC8574958 DOI: 10.1093/bib/bbab182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/04/2021] [Accepted: 04/20/2021] [Indexed: 01/10/2023] Open
Abstract
The rapid developments in gene sequencing technologies achieved in the recent decades, along with the expansion of knowledge on the three-dimensional structures of proteins, have enabled the construction of proteome-scale databases of protein models such as the Genome3D and ModBase. Nevertheless, although gene products are usually expressed as individual polypeptide chains, most biological processes are associated with either transient or stable oligomerisation. In the PDB databank, for example, ~40% of the deposited structures contain at least one homo-oligomeric interface. Unfortunately, databases of protein models are generally devoid of multimeric structures. To tackle this particular issue, we have developed ProtCHOIR, a tool that is able to generate homo-oligomeric structures in an automated fashion, providing detailed information for the input protein and output complex. ProtCHOIR requires input of either a sequence or a protomeric structure that is queried against a pre-constructed local database of homo-oligomeric structures, then extensively analyzed using well-established tools such as PSI-Blast, MAFFT, PISA and Molprobity. Finally, MODELLER is employed to achieve the construction of the homo-oligomers. The output complex is thoroughly analyzed taking into account its stereochemical quality, interfacial stabilities, hydrophobicity and conservation profile. All these data are then summarized in a user-friendly HTML report that can be saved or printed as a PDF file. The software is easily parallelizable and also outputs a comma-separated file with summary statistics that can straightforwardly be concatenated as a spreadsheet-like document for large-scale data analyses. As a proof-of-concept, we built oligomeric models for the Mabellini Mycobacterium abscessus structural proteome database. ProtCHOIR can be run as a web-service and the code can be obtained free-of-charge at http://lmdm.biof.ufrj.br/protchoir.
Collapse
|
246
|
Modulating Glycoside Hydrolase Activity between Hydrolysis and Transfer Reactions Using an Evolutionary Approach. Molecules 2021; 26:molecules26216586. [PMID: 34770995 PMCID: PMC8587830 DOI: 10.3390/molecules26216586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/02/2023] Open
Abstract
The proteins within the CAZy glycoside hydrolase family GH13 catalyze the hydrolysis of polysaccharides such as glycogen and starch. Many of these enzymes also perform transglycosylation in various degrees, ranging from secondary to predominant reactions. Identifying structural determinants associated with GH13 family reaction specificity is key to modifying and designing enzymes with increased specificity towards individual reactions for further applications in industrial, chemical, or biomedical fields. This work proposes a computational approach for decoding the determinant structural composition defining the reaction specificity. This method is based on the conservation of coevolving residues in spatial contacts associated with reaction specificity. To evaluate the algorithm, mutants of α-amylase (TmAmyA) and glucanotransferase (TmGTase) from Thermotoga maritima were constructed to modify the reaction specificity. The K98P/D99A/H222Q variant from TmAmyA doubled the transglycosydation/hydrolysis (T/H) ratio while the M279N variant from TmGTase increased the hydrolysis/transglycosidation ratio five-fold. Molecular dynamic simulations of the variants indicated changes in flexibility that can account for the modified T/H ratio. An essential contribution of the presented computational approach is its capacity to identify residues outside of the active center that affect the reaction specificity.
Collapse
|
247
|
Rodriguez Galvan J, Donner B, Veseley CH, Reardon P, Forsythe HM, Howe J, Fujimura G, Barbar E. Human Parainfluenza Virus 3 Phosphoprotein Is a Tetramer and Shares Structural and Interaction Features with Ebola Phosphoprotein VP35. Biomolecules 2021; 11:1603. [PMID: 34827601 PMCID: PMC8615749 DOI: 10.3390/biom11111603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The human parainfluenza virus 3 (HPIV3) poses a risk for pneumonia development in young children and immunocompromised patients. To investigate mechanisms of HPIV3 pathogenesis, we characterized the association state and host protein interactions of HPIV3 phosphoprotein (HPIV3 P), an indispensable viral polymerase cofactor. Sequence analysis and homology modeling predict that HPIV3 P possesses a long, disordered N-terminal tail (PTAIL) a coiled-coil multimerization domain (PMD), similar to the well-characterized paramyxovirus phosphoproteins from measles and Sendai viruses. Using a recombinantly expressed and purified construct of PMD and PTAIL, we show that HPIV3 P in solution is primarily an alpha-helical tetramer that is stable up to 60 °C. Pulldown and isothermal titration calorimetry experiments revealed that HPIV3 P binds the host hub protein LC8, and turbidity experiments demonstrated a new role for LC8 in increasing the solubility of HPIV3 P in the presence of crowding agents such as RNA. For comparison, we show that the multimerization domain of the Zaire Ebola virus phosphoprotein VP35 is also a tetramer and binds LC8 but with significantly higher affinity. Comparative analysis of the domain architecture of various virus phosphoproteins in the order Mononegavirales show multiple predicted and verified LC8 binding motifs, suggesting its prevalence and importance in regulating viral phosphoprotein structures. Our work provides evidence for LC8 binding to phosphoproteins with multiple association states, either tetrameric, as in the HPIV3 and Ebola phosphoproteins shown here, or dimeric as in rabies virus phosphoprotein. Taken together the data suggest that the association states of a virus-specific phosphoprotein and the complex formed by binding of the phosphoprotein to host LC8 are important regulators of viral function.
Collapse
Affiliation(s)
- Joaquin Rodriguez Galvan
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Brianna Donner
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Cat Hoang Veseley
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Patrick Reardon
- NMR Facility, Oregon State University, Corvallis, OR 97331, USA;
| | - Heather M. Forsythe
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Jesse Howe
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Gretchen Fujimura
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| | - Elisar Barbar
- Department of Biochemistry & Biophysics, College of Science, Corvallis, OR 97331, USA; (J.R.G.); (B.D.); (C.H.V.); (H.M.F.); (J.H.); (G.F.)
| |
Collapse
|
248
|
Fuchs T, Melcher F, Rerop ZS, Lorenzen J, Shaigani P, Awad D, Haack M, Prem SA, Masri M, Mehlmer N, Brueck TB. Identifying carbohydrate-active enzymes of Cutaneotrichosporon oleaginosus using systems biology. Microb Cell Fact 2021; 20:205. [PMID: 34711240 PMCID: PMC8555327 DOI: 10.1186/s12934-021-01692-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background The oleaginous yeast Cutaneotrichosporon oleaginosus represents one of the most promising microbial platforms for resource-efficient and scalable lipid production, with the capacity to accept a wide range of carbohydrates encapsulated in complex biomass waste or lignocellulosic hydrolysates. Currently, data related to molecular aspects of the metabolic utilisation of oligomeric carbohydrates are sparse. In addition, comprehensive proteomic information for C. oleaginosus focusing on carbohydrate metabolism is not available. Results In this study, we conducted a systematic analysis of carbohydrate intake and utilisation by C. oleaginosus and investigated the influence of different di- and trisaccharide as carbon sources. Changes in the cellular growth and morphology could be observed, depending on the selected carbon source. The greatest changes in morphology were observed in media containing trehalose. A comprehensive proteomic analysis of secreted, cell wall-associated, and cytoplasmatic proteins was performed, which highlighted differences in the composition and quantity of secreted proteins, when grown on different disaccharides. Based on the proteomic data, we performed a relative quantitative analysis of the identified proteins (using glucose as the reference carbon source) and observed carbohydrate-specific protein distributions. When using cellobiose or lactose as the carbon source, we detected three- and five-fold higher diversity in terms of the respective hydrolases released. Furthermore, the analysis of the secreted enzymes enabled identification of the motif with the consensus sequence LALL[LA]L[LA][LA]AAAAAAA as a potential signal peptide. Conclusions Relative quantification of spectral intensities from crude proteomic datasets enabled the identification of new enzymes and provided new insights into protein secretion, as well as the molecular mechanisms of carbo-hydrolases involved in the cleavage of the selected carbon oligomers. These insights can help unlock new substrate sources for C. oleaginosus, such as low-cost by-products containing difficult to utilize carbohydrates. In addition, information regarding the carbo-hydrolytic potential of C. oleaginosus facilitates a more precise engineering approach when using targeted genetic approaches. This information could be used to find new and more cost-effective carbon sources for microbial lipid production by the oleaginous yeast C. oleaginosus. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01692-2.
Collapse
Affiliation(s)
- Tobias Fuchs
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Felix Melcher
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Zora Selina Rerop
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Jan Lorenzen
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Pariya Shaigani
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Dania Awad
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Martina Haack
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Sophia Alice Prem
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Mahmoud Masri
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Thomas B Brueck
- Werner Siemens-Chair of Synthetic Biotechnology (WSSB), Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
249
|
Perera DDBD, Perera KML, Peiris DC. A Novel In Silico Benchmarked Pipeline Capable of Complete Protein Analysis: A Possible Tool for Potential Drug Discovery. BIOLOGY 2021; 10:biology10111113. [PMID: 34827106 PMCID: PMC8615085 DOI: 10.3390/biology10111113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023]
Abstract
Simple Summary Protein interactions govern the majority of an organism’s biological processes. Therefore, to fully understand the functionality of an organism, we must know how proteins work at a molecular level. This study assembled a protocol that enables scientists to construct a protein’s tertiary structure easily and subsequently to investigate its mechanism and function. Each step involved in prediction, validation, and functional analysis of a protein is crucial to obtain an accurate result. We have dubbed this the trifecta analysis. It was clear early in our research that no single study in the literature had previously encompassed the complete trifecta analysis. In particular, studies that recommend free, open-source tools that have been benchmarked for each step are lacking. The present study ensures that predictions are accurate and validated and will greatly benefit new and experienced scientists alike in obtaining a strong understanding of the trifecta analysis, resulting in a domino effect that could lead to drug development. Abstract Current in silico proteomics require the trifecta analysis, namely, prediction, validation, and functional assessment of a modeled protein. The main drawback of this endeavor is the lack of a single protocol that utilizes a proper set of benchmarked open-source tools to predict a protein’s structure and function accurately. The present study rectifies this drawback through the design and development of such a protocol. The protocol begins with the characterization of a novel coding sequence to identify the expressed protein. It then recognizes and isolates evolutionarily conserved sequence motifs through phylogenetics. The next step is to predict the protein’s secondary structure, followed by the prediction, refinement, and validation of its three-dimensional tertiary structure. These steps enable the functional analysis of the macromolecule through protein docking, which facilitates the identification of the protein’s active site. Each of these steps is crucial for the complete characterization of the protein under study. We have dubbed this process the trifecta analysis. In this study, we have proven the effectiveness of our protocol using the cystatin C and AChE proteins. Beginning with just their sequences, we have characterized both proteins’ structures and functions, including identifying the cystatin C protein’s seven-residue active site and the AChE protein’s active-site gorge via protein–protein and protein–ligand docking, respectively. This process will greatly benefit new and experienced scientists alike in obtaining a strong understanding of the trifecta analysis, resulting in a domino effect that could expand drug development.
Collapse
Affiliation(s)
- D. D. B. D. Perera
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
- Correspondence: (D.D.B.D.P.); (D.C.P.); Tel.: +94-714-018-537 (D.C.P.)
| | - K. Minoli L. Perera
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
| | - Dinithi C. Peiris
- Genetics & Molecular Biology Unit (Center for Biotechnology), Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Correspondence: (D.D.B.D.P.); (D.C.P.); Tel.: +94-714-018-537 (D.C.P.)
| |
Collapse
|
250
|
Pathanraj D, Choowongkomon K, Roytrakul S, Yokthongwattana C. Structural Distinctive 26SK, a Ribosome-Inactivating Protein from Jatropha curcas and Its Biological Activities. Appl Biochem Biotechnol 2021; 193:3877-3897. [PMID: 34669111 DOI: 10.1007/s12010-021-03714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are a group of proteins exhibiting N-glycosidase activity leading to an inactivation of protein synthesis. Thirteen predicted Jatropha curcas RIP sequences could be grouped into RIP types 1 or 2. The expression of the RIP genes was detected in seed kernels, seed coats, and leaves. The full-length cDNA of two RIP genes (26SK and 34.7(A)SK) were cloned and studied. The 34.7(A)SK protein was successfully expressed in the host cells while it was difficult to produce even only a small amount of the 26SK protein. Therefore, the crude proteins were used from E. coli expressing 26SK and 34.7(A)SK constructs and they showed RIP activity. Only the cell lysate from 26SK could inhibit the growth of E. coli. In addition, the crude protein extracted from 26SK expressing cells displayed the effect on the growth of MDA-MB-231, a human breast cancer cell line. Based on in silico analysis, all 13 J. curcas RIPs contained RNA and ribosomal P2 stalk protein binding sites; however, the C-terminal region of the P2 stalk binding site was lacking in the 26SK structure. In addition, an amphipathic distribution between positive and negative potential was observed only in the 26SK protein, similar to that found in the anti-microbial peptide. These findings suggested that this 26SK protein structure might have contributed to its toxicity, suggesting potential uses against pathogenic bacteria in the future.
Collapse
Affiliation(s)
- Danulada Pathanraj
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, 12120, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand.
| |
Collapse
|