201
|
Lv SS, Liu G, Wang JP, Wang WW, Cheng J, Sun AL, Liu HY, Nie HB, Su MR, Guan GJ. Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration. Int Immunopharmacol 2013; 17:275-82. [PMID: 23791972 DOI: 10.1016/j.intimp.2013.05.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/13/2013] [Accepted: 05/27/2013] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells (MSCs) treatment has been shown to be effective in diabetic nephropathy (DN). However, the mechanisms involved in the renoprotective effects of MSCs have not been clearly demonstrated. Especially, there was no study on the relationship of MSCs and macrophages in diabetic kidney. To explore the effect of MSCs on macrophages in DN, streptozotocin-induced diabetes animals received no treatment or treatment with MSCs (2×10(6), via tail vein) for two continuous weeks. Eight weeks after treatment, physical, biochemical and morphological parameters were measured. Immunohistochemistry for fibronectin (FN), CollagenI, ED-1, monocyte chemoattractant protein-1 (MCP-1) was performed. Expressions of pro-inflammatory cytokines and hepatocyte growth factor (HGF) at gene level and protein level were determined by real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Blood glucose, urinary albumin excretion, creatinine clearance were significantly reduced after MSCs treatment. The glomerulosclerosis as revealed by periodic acid Schiff stain and expression of FN and CollagenI was also dramatically attenuated. Most importantly, the expression of MCP-1 and the number of infiltrated macrophages in kidney were effectively suppressed by MSCs treatment. The expression of HGF in MSCs group was up-regulated. Meanwhile, the expressions of IL-1β, IL-6 and TNFα were significantly down-regulated by MSCs treatment. Our study suggest that MSCs treatment ameliorates DN via inhibition of MCP-1 expression by secreting HGF, thus reducing macrophages infiltration, down-regulating IL-1β, IL-6, TNFα expression in renal tissue in diabetic rats.
Collapse
Affiliation(s)
- Sha-Sha Lv
- Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Kidney-targeted transplantation of mesenchymal stem cells by ultrasound-targeted microbubble destruction promotes kidney repair in diabetic nephropathy rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:526367. [PMID: 23762850 PMCID: PMC3677660 DOI: 10.1155/2013/526367] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 01/02/2023]
Abstract
We test the hypothesis that ultrasound-targeted microbubble destruction (UTMD) technique increases the renoprotective effect of kidney-targeted transplantation of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in diabetic nephropathy (DN) rats. Diabetes was induced by streptozotocin injection (60 mg/Kg, intraperitoneally) in Sprague-Dawley rats. MSCs were administered alone or in combination with UTMD to DN rats at 4 weeks after diabetes onset. Random blood glucose concentrations were measured at 1, 2, 4, and 8 weeks, and plasma insulin levels, urinary albumin excretion rate (UAER) values, the structures of pancreas and kidney, the expressions of TGF- β 1, synaptopodin, and IL-10 were assessed at 8 weeks after MSCs transplantation. MSCs transplantation decreased blood glucose concentrations and attenuated pancreatic islets/ β cells damage. The permeability of renal interstitial capillaries and VCAM-1 expression increased after UTMD, which enhanced homing and retention of MSCs to kidneys. MSCs transplantation together with UTMD prevented renal damage and decreased UAER values by inhibiting TGF- β 1 expression and upregulating synaptopodin and IL-10 expression. We conclude that MSCs transplantation reverts hyperglycemia; UTMD technique noninvasively increases the homing of MSCs to kidneys and promotes renal repair in DN rats. This noninvasive cell delivery method may be feasible and efficient as a novel approach for personal MSCs therapy to diabetic nephropathy.
Collapse
|
203
|
Mima A, Qi W, King GL. Implications of treatment that target protective mechanisms against diabetic nephropathy. Semin Nephrol 2013; 32:471-8. [PMID: 23062988 DOI: 10.1016/j.semnephrol.2012.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetes results in vascular changes and dysfunction, and vascular complications are the leading cause of morbidity and mortality in diabetic patients. There has been a continual increase in the number of diabetic nephropathy patients and epidemic increases in the number of patients progressing to end-stage renal diseases. To identify targets for therapeutic intervention, most studies have focused on understanding how abnormal levels of glucose metabolites cause diabetic nephropathy, which is of paramount importance in devising strategies to combat the development and progression of diabetic nephropathy. However, less studied than the systemic toxic mechanisms, hyperglycemia and dyslipidemia might inhibit the endogenous vascular protective factors such as insulin, vascular endothelial growth factor, and platelet-derived growth factor. In this review, we highlight the importance of enhancing endogenous protective factors to prevent or delay diabetic nephropathy.
Collapse
Affiliation(s)
- Akira Mima
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
204
|
Abstract
The glomerulus has been at the center of attention as the primary site of injury in diabetic nephropathy (DN). Although there is no question that there are changes seen in the glomerulus, it is also well known that tubulointerstitial changes are a prominent component of the disease, especially in patients with type 2 diabetes. The level of albuminuria and DN disease progression best correlate with tubular degeneration and interstitial fibrosis. Nephrotoxicity studies in animals reveal that albuminuria is a highly sensitive marker of early tubular toxicity even in the absence of glomerular pathology. Urinary biomarker data in human beings support the view that proximal tubule injury contributes in a primary way, rather than in a secondary manner, to the development of early DN. I present a model in which very specific injury to the proximal tubule in vivo in the mouse results in severe inflammation, loss of blood vessels, interstitial fibrosis, and glomerulosclerosis. Increased glucose levels, free glycation adducts, reactive oxygen species, and oxidized lipids result in toxicity to tubule epithelia. This results in loss of cells with a stimulus to repair the epithelium. However, because of sublethal injury there is cell-cycle arrest in epithelial cells attempting to replace damaged cells. This leads to epithelial secretion of both profibrogenic growth factors, collagens, and factors that cause pericytes to proliferate and differentiate into myofibroblasts, leading to endothelial destabilization and capillary rarefaction. Local ischemia ensues with further injury to the tubules, more profibrogenic mediators, matrix protein deposition, fibrosis, and glomerulosclerosis.
Collapse
|
205
|
Shaker O, Sadik N. Transforming growth factor beta 1 and monocyte chemoattractant protein-1 as prognostic markers of diabetic nephropathy. Hum Exp Toxicol 2013; 32:1089-96. [DOI: 10.1177/0960327112470274] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We aimed to find the relationship between serum transforming growth factor beta 1(TGF-β1) and urinary monocyte chemoattractant protein-1 (MCP-1) throughout the course of diabetic nephropathy (DN) and to assess the relationship between both levels and other parameters of renal injury such as albumin/creatinine ratio and estimated glomerular filtration rate (eGFR). Serum TGF-β1, urinary MCP-1, eGFR, and glycosylated hemoglobin (HbA1c) were measured in 60 patients with type II diabetes mellitus with different degrees of nephropathy (20 patients with normoalbuminuria, 20 patients with microalbuminuria, and 20 patients with macroalbuminuria) and compared with 20 matched healthy control subjects. Both the levels of serum TGF-β1 and urinary MCP-1 were significantly higher in patients with micro- and macroalbuminuria (137.8 ± 69.5 and 329.25 ± 41.46 ng/dl, respectively, for TGF-β1 and 167.41 ± 50.23 and 630.87 ± 318.10 ng/g creatinine, respectively, for MCP-1) compared with normoalbuminuric patients and healthy controls (33.25 ± 17.5 and 29.64 ± 10.57 ng/dl, respectively, for TGF-β1 and 63.85 ± 21.15 and 61.50 ± 24.81 ng/g creatinine, respectively, for MCP-1; p < 0.001). There was a positive significant correlation between the levels of serum TGF-β1 and those of urinary MCP-1 ( r = 0.73, p < 0.001). Also, serum TGF-β1 and urinary MCP-1 correlated positively with HbA1c ( r = 0.49 and 0.55, respectively, p < 0.05 for both) and inversely with eGFR ( r = −0.69 and −0.60, respectively, p < 0.001 for both). We can conclude that serum TGF-β1 and urinary MCP-1 can be used as the markers for detection of progression of DN. Antagonizing TGF-β1 and MCP-1 might be helpful in attenuating the progression of nephropathy in diabetic patients.
Collapse
Affiliation(s)
- O.G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - N.A.H. Sadik
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
206
|
Cytokines in chronic kidney disease: potential link of MCP-1 and dyslipidemia in glomerular diseases. Pediatr Nephrol 2013; 28:463-9. [PMID: 23161207 DOI: 10.1007/s00467-012-2363-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Many studies have indicated a role for cytokines in chronic kidney disease (CKD). The aim of this study was to evaluate plasma and urinary levels of monocyte chemoattractant protein-1 (MCP-1/CCL2), transforming growth factor-beta1 (TGF-β1), and interleukin-8 (IL-8/CXCL8) in pediatric patients with CKD stages 2-4. METHODS Cytokines were measured in 37 healthy controls and in 42 CKD patients by enzyme-linked immunoassay. Patients were divided into groups according to CKD etiology: glomerular disease (group 1, n = 11) and congenital anomalies of the kidney and urinary tract (group 2, n = 31). Urinary cytokine measurements were standardized for creatinine. RESULTS Plasma and urinary levels of MCP-1/CCL2 were significantly higher in both CKD groups compared to the control group. Between the two CKD groups, only urinary MCP-1/CCL2 levels were significantly different, with MCP-1/CCL2 levels higher in group 1 patients. Plasma and urinary levels of IL-8/CXCL8 and TGF-β1 were undetectable in the control group but comparable between the two CKD groups. In group 1 patients, urinary MCP-1/CCL2 levels were negatively correlated to serum albumin levels and positively correlated to the levels of total cholesterol and triglycerides. In group 2 patients, urinary levels of IL-8/CXCL8 were negatively correlated with the estimated glomerular filtration rate and positively correlated with body mass index. CONCLUSIONS Differences in cytokine profiles may be related to CKD etiology and other disease-associated alterations.
Collapse
|
207
|
Carraretto AR, Vianna Filho PTG, Castiglia YMM, Golim MDA, Souza AVGD, Carvalho LRD, Deffune E, Vianna PTG. Does propofol and isoflurane protect the kidney against ischemia/reperfusion injury during transient hyperglycemia? Acta Cir Bras 2013; 28:161-6. [DOI: 10.1590/s0102-86502013000300001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/21/2013] [Indexed: 01/04/2023] Open
|
208
|
Abstract
It is increasingly apparent that not only is a cure for the current worldwide diabetes epidemic required, but also for its major complications, affecting both small and large blood vessels. These complications occur in the majority of individuals with both type 1 and type 2 diabetes. Among the most prevalent microvascular complications are kidney disease, blindness, and amputations, with current therapies only slowing disease progression. Impaired kidney function, exhibited as a reduced glomerular filtration rate, is also a major risk factor for macrovascular complications, such as heart attacks and strokes. There have been a large number of new therapies tested in clinical trials for diabetic complications, with, in general, rather disappointing results. Indeed, it remains to be fully defined as to which pathways in diabetic complications are essentially protective rather than pathological, in terms of their effects on the underlying disease process. Furthermore, seemingly independent pathways are also showing significant interactions with each other to exacerbate pathology. Interestingly, some of these pathways may not only play key roles in complications but also in the development of diabetes per se. This review aims to comprehensively discuss the well validated, as well as putative mechanisms involved in the development of diabetic complications. In addition, new fields of research, which warrant further investigation as potential therapeutic targets of the future, will be highlighted.
Collapse
Affiliation(s)
- Josephine M Forbes
- Diabetes Division, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | | |
Collapse
|
209
|
Gui D, Huang J, Guo Y, Chen J, Chen Y, Xiao W, Liu X, Wang N. Astragaloside IV ameliorates renal injury in streptozotocin-induced diabetic rats through inhibiting NF-κB-mediated inflammatory genes expression. Cytokine 2013; 61:970-7. [PMID: 23434274 DOI: 10.1016/j.cyto.2013.01.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/23/2012] [Accepted: 01/04/2013] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that inflammatory processes are involved in the development of diabetic nephropathy (DN). However, there are no effective interventions for inflammation in the diabetic kidneys. Here, we tested the hypothesis that Astragaloside IV(AS-IV), a novel saponin purified from Astragalus membranaceus (Fisch) Bge, ameliorates DN in streptozotocin (STZ)-induced diabetic rats through anti-inflammatory mechanisms. Diabetes was induced with STZ (65 mg/kg) by intraperitoneal injection in rats. Two weeks after STZ injection, rats were divided into three groups (n=8/each group), namely, diabetic rats, diabetic rats treated with AS-IV at 5 and 10 mgkg(-1)d(-1), p.o., for 8 weeks. The normal rats were chosen as nondiabetic control group (n=8). The rats were sacrificed 10 weeks after induction of diabetes. AS-IV ameliorated albuminuria, renal histopathology and podocyte foot process effacement in diabetic rats. Renal NF-κB activity, as wells as protein and mRNA expression were increased in diabetic kidneys, accompanied by an increase in mRNA expression and protein content of TNF-α, MCP-1 and ICAM-1 in kidney tissues. The α1-chain type IV collagen mRNA was elevated in the kidneys of diabetic rats. All of these abnormalities were partially restored by AS-IV. AS-IV also decreased the serum levels of TNF-α, MCP-1 and ICAM-1 in diabetic rats. These findings suggest that AS-IV, a novel anti-inflammatory agent, attenuated DN in rats through inhibiting NF-κB mediated inflammatory genes expression.
Collapse
Affiliation(s)
- Dingkun Gui
- Department of Nephrology and Rheumatology, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Meek RL, LeBoeuf RC, Saha SA, Alpers CE, Hudkins KL, Cooney SK, Anderberg RJ, Tuttle KR. Glomerular cell death and inflammation with high-protein diet and diabetes. Nephrol Dial Transplant 2013; 28:1711-20. [PMID: 23314315 DOI: 10.1093/ndt/gfs579] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Overfeeding amino acids (AAs) increases cellular exposure to advanced glycation end-products (AGEs), a mechanism for protein intake to worsen diabetic kidney disease (DKD). This study assessed receptor for AGE (RAGE)-mediated apoptosis and inflammation in glomerular cells exposed to metabolic stressors characteristic of high-protein diets and/or diabetes in vitro with proof-of-concept appraisal in vivo. METHODS Mouse podocytes and mesangial cells were cultured under control and metabolic stressor conditions: (i) no addition; (ii) increased AAs (4-6-fold>control); (iii) high glucose (HG, 30.5 mM); (iv) AA/HG combination; (v) AGE-bovine serum albumin (AGE-BSA, 300 µg/mL); (vi) BSA (300 µg/mL). RAGE was inhibited by blocking antibody. Diabetic (streptozotocin) and nondiabetic mice (C57BL/6J) consumed diets with protein calories of 20 or 40% (high) for 20 weeks. People with DKD and controls provided 24-h urine samples. RESULTS In podocytes and mesangial cells, apoptosis (caspase 3/7 activity and TUNEL) increased in all metabolic stressor conditions. Both inflammatory mediator expression (real-time reverse transcriptase-polymerase chain reaction: serum amyloid A, caspase-4, inducible nitric oxide synthase, and monocyte chemotactic protein-1) and RAGE (immunostaining) also increased. RAGE inhibition prevented apoptosis and inflammation in podocytes. Among mice fed high protein, podocyte number (WT-1 immunostaining) decreased in the diabetic group, and only these diabetic mice developed albuminuria. Protein intake (urea nitrogen) correlated with AGE excretion (carboxymethyllysine) in people with DKD and controls. CONCLUSIONS High-protein diet and/or diabetes-like conditions increased glomerular cell death and inflammation, responses mediated by RAGEs in podocytes. The concept that high-protein diets exacerbate early indicators of DKD is supported by data from mice and people.
Collapse
Affiliation(s)
- Rick L Meek
- Providence Medical Research Center, Providence Sacred Heart Medical Center, Spokane, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Kiss E, Kränzlin B, Wagenblaβ K, Bonrouhi M, Thiery J, Gröne E, Nordström V, Teupser D, Gretz N, Malle E, Gröne HJ. Lipid droplet accumulation is associated with an increase in hyperglycemia-induced renal damage: prevention by liver X receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:727-41. [PMID: 23318573 DOI: 10.1016/j.ajpath.2012.11.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/17/2012] [Accepted: 11/19/2012] [Indexed: 12/24/2022]
Abstract
Dyslipidemia is a frequent component of the metabolic disorder of diabetic patients contributing to organ damage. Herein, in low-density lipoprotein receptor-deficient hyperlipidemic and streptozotozin-induced diabetic mice, hyperglycemia and hyperlipidemia acted reciprocally, accentuating renal injury and altering renal function. In hyperglycemic-hyperlipidemic kidneys, the accumulation of Tip47-positive lipid droplets in glomeruli, tubular epithelia, and macrophages was accompanied by the concomitant presence of the oxidative stress markers xanthine oxidoreductase and nitrotyrosine, findings that could also be evidenced in renal biopsy samples of diabetic patients. As liver X receptors (LXRα,β) regulate genes linked to lipid and carbohydrate homeostasis and inhibit inflammatory gene expression in macrophages, the effects of systemic and macrophage-specific LXR activation were analyzed on renal damage in hyperlipidemic-hyperglycemic mice. LXR stimulation by GW3965 up-regulated genes involved in cholesterol efflux and down-regulated proinflammatory/profibrotic cytokines, inhibiting the pathomorphology of diabetic nephropathy, renal lipid accumulation, and improving renal function. Xanthine oxidoreductase and nitrotyrosine levels were reduced. In macrophages, GW3965 or LXRα overexpression significantly suppressed glycated or acetylated low-density lipoprotein-induced cytokines and reactive oxygen species. Specifically, in mice, transgenic expression of LXRα in macrophages significantly ameliorated hyperlipidemic-hyperglycemic nephropathy. The results demonstrate the presence of lipid droplet-induced oxidative mechanisms and the pathophysiologic role of macrophages in diabetic kidneys and indicate the potent regulatory role of LXRs in preventing renal damage in diabetes.
Collapse
Affiliation(s)
- Eva Kiss
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Joven J, Rull A, Rodriguez-Gallego E, Camps J, Riera-Borrull M, Hernández-Aguilera A, Martin-Paredero V, Segura-Carretero A, Micol V, Alonso-Villaverde C, Menéndez J. Multifunctional targets of dietary polyphenols in disease: A case for the chemokine network and energy metabolism. Food Chem Toxicol 2013; 51:267-79. [DOI: 10.1016/j.fct.2012.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/26/2012] [Accepted: 10/03/2012] [Indexed: 12/26/2022]
|
213
|
Mima A. Inflammation and oxidative stress in diabetic nephropathy: new insights on its inhibition as new therapeutic targets. J Diabetes Res 2013; 2013:248563. [PMID: 23862164 PMCID: PMC3686081 DOI: 10.1155/2013/248563] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/15/2013] [Indexed: 12/16/2022] Open
Abstract
Diabetes and insulin resistance can greatly increase microvascular complications of diabetes including diabetic nephropathy (DN). Hyperglycemic control in diabetes is key to preventing the development and progression of DN. However, it is clinically very difficult to achieve normal glucose control in individual diabetic patients. Many factors are known to contribute to the development of DN. These include diet, age, lifestyle, or obesity. Further, inflammatory- or oxidative-stress-induced basis for DN has been gaining interest. Although anti-inflammatory or antioxidant drugs can show benefits in rodent models of DN, negative evidence from large clinical studies indicates that more effective anti-inflammatory and antioxidant drugs need to be studied to clear this question. In addition, our recent report showed that potential endogenous protective factors could decrease inflammation and oxidative stress, showing great promise for the treatment of DN.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Graduate School of Medicine, Institute of Health Biosciences, University of Tokushima, Tokushima 770-8503, Japan.
| |
Collapse
|
214
|
Wang N, Zhou Y, Jiang L, Li D, Yang J, Zhang CY, Zen K. Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS One 2012; 7:e51140. [PMID: 23272089 PMCID: PMC3521774 DOI: 10.1371/journal.pone.0051140] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/29/2012] [Indexed: 12/31/2022] Open
Abstract
The steadily increasing incidence of kidney injury is a significant threat to human health. The current tools available for the early detection of kidney injury, however, have limited sensitivity or specificity. Thus, the development of novel biomarkers to detect early kidney injury is of high importance. Employing mouse renal ischemia-reperfusion and streptozotocin (STZ)-induced renal injury as acute and chronic kidney injury model, respectively, we assessed the alteration of microRNA (miRNA) in mouse urine, serum and kidney tissue by TaqMan probe-based qRT-PCR assay. Our results demonstrated that kidney-enriched microRNA-10a (miR-10a) and microRNA-30d (miR-30d) were readily detected in mouse urine and the levels of urinary miR-10a and miR-30d were positively correlated with the degree of kidney injury induced by renal ischemia-reperfusion or STZ diabetes. In contrast, no such alteration of miR-10a and miR-30d levels was observed in mouse serum after kidney injury. Compared with the blood urea nitrogen (BUN) assay, the test for urinary miR-10a and miR-30d levels was more sensitive for the detection of acute kidney injury. Furthermore, the substantial elevation of the urinary miR-10a and miR-30d levels was also observed in focal segmental glomerulosclerosis (FSGS) patients compared to healthy donors. In conclusion, the present study collectively demonstrates that urinary miR-10a and miR-30d represent a novel noninvasive, sensitive, specific and potentially high-throughput method for detecting renal injury.
Collapse
Affiliation(s)
- Nan Wang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Jiangsu, China
| | - Yang Zhou
- Research Center of Nephrology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Jiang
- Research Center of Nephrology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Donghai Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Jiangsu, China
| | - Junwei Yang
- Research Center of Nephrology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (JWY); (CYZ); (KZ)
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Jiangsu, China
- * E-mail: (JWY); (CYZ); (KZ)
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, Nanjing University, Jiangsu, China
- * E-mail: (JWY); (CYZ); (KZ)
| |
Collapse
|
215
|
Lee SJ, Borsting E, Declèves AE, Singh P, Cunard R. Podocytes express IL-6 and lipocalin 2/ neutrophil gelatinase-associated lipocalin in lipopolysaccharide-induced acute glomerular injury. Nephron Clin Pract 2012; 121:e86-96. [PMID: 23234871 PMCID: PMC4012854 DOI: 10.1159/000345151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/04/2012] [Indexed: 12/22/2022] Open
Abstract
Background/Aims Acute kidney injury (AKI) contributes to significant morbidity and mortality in the intensive care unit (ICU). Plasma levels of interleukin (IL)-6 predict the development of AKI and are associated with higher mortality in ICU patients with AKI. Most studies in AKI have focused on the tubulo-interstitium, despite evidence of glomerular involvement. In the following study, our goals were to investigate the expression of IL-6 and its downstream mediators in septic-induced AKI. Methods Podocytes were treated in vitro with lipopolysaccharide (LPS) and mice were treated with LPS, and we evaluated IL-6 expression by real-time PCR, ELISA and in situ RNA hybridization. Results Following LPS stimulation, IL-6 is rapidly and highly induced in cultured podocytes and in vivo in glomeruli and infiltrating leukocytes. Surprisingly, in direct response to exogenous IL-6, podocytes produce lipocalin-2/neutrophil gelatinase-associated lipocalin (Lcn2/Ngal). LPS also potently induces Lcn2/Ngal expression in podocytes in culture and in glomeruli in vivo. Intense Lcn2/Ngal expression is also observed in IL-6 knockout mice, suggesting that while IL-6 may be sufficient to induce glomerular Lcn2/Ngal expression, it is not essential. Conclusions The glomerulus is involved in septic AKI, and we demonstrate that podocytes secrete key mediators of AKI including IL-6 and Lcn2/Ngal.
Collapse
Affiliation(s)
- Sarah J Lee
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA 92161, USA
| | | | | | | | | |
Collapse
|
216
|
Lee SH, Kang HY, Kim KS, Nam BY, Paeng J, Kim S, Li JJ, Park JT, Kim DK, Han SH, Yoo TH, Kang SW. The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells. J Transl Med 2012; 92:1698-711. [PMID: 23007133 DOI: 10.1038/labinvest.2012.132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) has a role in the process of peritoneal fibrosis (PF), a serious complication in peritoneal dialysis (PD) patients. Even though monocyte chemoattractant protein-1 (MCP-1) was demonstrated to directly increase extracellular matrix (ECM) synthesis, the role of the MCP-1/CCR2 system in PD-related EMT and ECM synthesis in cultured human PMCs (HPMCs) and in an animal model of PD has never been elucidated. In vitro, HPMCs were exposed to 5.6 mM glucose (NG), NG+MCP-1 (10 ng/ml) (NG+MCP-1), or 100 mM glucose (HG) with or without CCR2 inhibitor (RS102895) (CCR2i) or a dominant-negative mutant MCP-1-expressing lentivirus (LV-mMCP-1). In vivo, PD catheters were inserted into 60 Sprague-Dawley rats, and saline (Control, C) (N=30) or 4.25% PD solution (PD) (N=30) was infused for 4 weeks. Twenty rats from each group were treated with empty LV or LV-mMCP-1 intraperitoneally. Snail, E-cadherin, α-smooth muscle actin (α-SMA), and fibronectin protein expression in HPMCs and the peritoneum was evaluated by western blot analysis. Compared with NG cells, Snail, α-SMA, and fibronectin expression was significantly increased, while E-cadherin expression was significantly decreased in HPMCs exposed to HG and NG+MCP-1, and these changes were significantly abrogated by CCR2i (P<0.05). In addition, MCP-1-induced EMT was significantly attenuated by anti-TGF-β1 antibody. In PD rats, Snail and fibronectin expression was significantly increased in the peritoneum, whereas the ratios of E-cadherin/α-SMA protein expression were significantly decreased (P<0.05). The thickness of the peritoneum and the intensity of Masson's trichrome staining in the peritoneum were also significantly higher in PD rats than in C rats (P<0.05). These changes in PD rats were significantly abrogated by LV-mMCP-1. These findings suggest that the MCP-1/CCR2 system is directly involved in PD-related EMT and ECM synthesis and that this is mediated, at least in part, via TGF-β1.
Collapse
Affiliation(s)
- Sun Ha Lee
- Department of Internal Medicine, College of Medicine, Brain Korea 21, Severance Biomedical Science Institute, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Murea M, Register TC, Divers J, Bowden DW, Carr JJ, Hightower CR, Xu J, Smith SC, Hruska KA, Langefeld CD, Freedman BI. Relationships between serum MCP-1 and subclinical kidney disease: African American-Diabetes Heart Study. BMC Nephrol 2012; 13:148. [PMID: 23151275 PMCID: PMC3534523 DOI: 10.1186/1471-2369-13-148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022] Open
Abstract
Background Monocyte chemoattractant protein-1 (MCP-1) plays important roles in kidney disease susceptibility and atherogenesis in experimental models. Relationships between serum MCP-1 concentration and early nephropathy and subclinical cardiovascular disease (CVD) were assessed in African Americans (AAs) with type 2 diabetes (T2D). Methods Serum MCP-1 concentration, urine albumin:creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), and atherosclerotic calcified plaque (CP) in the coronary and carotid arteries and infrarenal aorta were measured in 479 unrelated AAs with T2D. Generalized linear models were fitted to test for associations between MCP-1 and urine ACR, eGFR, and CP. Results Participants were 57% female, with mean ± SD (median) age 55.6±9.5 (55.0) years, diabetes duration 10.3±8.2 (8.0) years, urine ACR 149.7±566.7 (14.0) mg/g, CKD-EPI eGFR 92.4±23.3 (92.0) ml/min/1.73m2, MCP-1 262.9±239.1 (224.4) pg/ml, coronary artery CP 280.1±633.8 (13.5), carotid artery CP 47.1±132.9 (0), and aorta CP 1616.0±2864.0 (319.0). Adjusting for age, sex, smoking, HbA1c, BMI, and LDL, serum MCP-1 was positively associated with albuminuria (parameter estimate 0.0021, P=0.04) and negatively associated with eGFR (parameter estimate −0.0003, P=0.001). MCP-1 remained associated with eGFR after adjustment for urine ACR. MCP-1 levels did not correlate with the extent of CP in any vascular bed, HbA1c or diabetes duration, but were positively associated with BMI. No interaction between BMI and MCP-1 was detected on nephropathy outcomes. Conclusions Serum MCP-1 levels are associated with eGFR and albuminuria in AAs with T2D. MCP-1 was not associated with subclinical CVD in this population. Inflammation appears to play important roles in development and/or progression of kidney disease in AAs.
Collapse
Affiliation(s)
- Mariana Murea
- Department of Internal Medicine/Nephrology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1053, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Wang K, Wu YG, Su J, Zhang JJ, Zhang P, Qi XM. Total glucosides of paeony regulates JAK2/STAT3 activation and macrophage proliferation in diabetic rat kidneys. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:521-36. [PMID: 22745068 DOI: 10.1142/s0192415x12500401] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Total glucosides of paeony (TGP) is the major active constituent of Paeonia lactiflora Pall., which has shown renoprotection in experimental diabetic nephropathy. Activation of Janus kinase/signal transducers and activators of transcription (JAK/STAT) is an important mechanism by which hyperglycemia contributes to renal damage. Macrophages also play an essential role in the pathogenesis of diabetic nephropathy. Herein, we investigated the ability of TGP to modulate JAK2/STAT3 activation and macrophage proliferation in rats with streptozotocin (STZ)-induced diabetes. TGP (50, 100, and 200 mg/kg) was administered orally once a day for eight weeks. Levels of p-JAK2 and p-STAT3 were determined by Western blot analysis. Immunohistochemistry and double immunohistochemistry were used to identify p-STAT3, ED-1, PCNA/ED-1, and p-STAT3/ED-1-positive (+) cells. The elevated 24-h urinary albumin excretion rate was markedly attenuated by treatment with 50, 100, and 200 mg/kg TGP. Western blot analysis showed that the significantly increased levels of p-JAK2, p-STAT3 proteins in the kidneys of diabetic rats were significantly inhibited by 50, 100, and 200 mg/kg TGP treatment. The marked accumulation and proliferation of macrophages in diabetic kidneys were significantly inhibited by TGP treatment. ED-1+/p-STAT3+ cells were significantly increased in the kidneys from the model group but were significantly inhibited by TGP treatment. These results show that TGP significantly inhibited diabetic nephropathy progression and suggest that these protective effects are associated with the ability of TGP to inhibit the JAK2/STAT3 pathway and macrophage proliferation and action.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nephrology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | | | | | | | | | | |
Collapse
|
219
|
Börgeson E, Godson C. Resolution of inflammation: therapeutic potential of pro-resolving lipids in type 2 diabetes mellitus and associated renal complications. Front Immunol 2012; 3:318. [PMID: 23087692 PMCID: PMC3474937 DOI: 10.3389/fimmu.2012.00318] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/29/2012] [Indexed: 01/04/2023] Open
Abstract
The role of inflammation in the pathogenesis of type 2 diabetes mellitus (T2DM) and its associated complications is increasingly recognized. The resolution of inflammation is actively regulated by endogenously produced lipid mediators such as lipoxins, resolvins, protectins, and maresins. Here we review the potential role of these lipid mediators in diabetes-associated pathologies, specifically focusing on adipose inflammation and diabetic kidney disease, i.e., diabetic nephropathy (DN). DN is one of the major complications of T2DM and we propose that pro-resolving lipid mediators may have therapeutic potential in this context. Adipose inflammation is also an important component of T2DM-associated insulin resistance and altered adipokine secretion. Promoting the resolution of adipose inflammation would therefore likely be a beneficial therapeutic approach in T2DM.
Collapse
Affiliation(s)
- Emma Börgeson
- UCD Diabetes Research Centre, UCD Conway Institute, School of Medicine and Medical Sciences, University College Dublin Dublin, Ireland
| | | |
Collapse
|
220
|
Tachibana H, Ogawa D, Matsushita Y, Bruemmer D, Wada J, Teshigawara S, Eguchi J, Sato-Horiguchi C, Uchida HA, Shikata K, Makino H. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J Am Soc Nephrol 2012; 23:1835-46. [PMID: 23085633 DOI: 10.1681/asn.2012010022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteopontin is a proinflammatory cytokine and monocyte chemoattractant implicated in the pathogenesis of diabetic nephropathy. Synthetic agonists for liver X receptors (LXRs) suppress the expression of proinflammatory genes, including osteopontin, but whether LXR activation modulates diabetic nephropathy is unknown. We administered the LXR agonist T0901317 to mice with streptozotocin-induced diabetes and evaluated its effects on diabetic nephropathy. The LXR agonist decreased urinary albumin excretion without altering blood glucose levels and substantially attenuated macrophage infiltration, mesangial matrix accumulation, and interstitial fibrosis. LXR activation suppressed the gene expression of inflammatory mediators, including osteopontin, in the kidney cortex. In vitro, LXR activation suppressed osteopontin expression in proximal tubular epithelial cells by inhibiting AP-1-dependent transcriptional activation of the osteopontin promoter. Taken together, these results suggest that inhibition of renal osteopontin by LXR agonists may have therapeutic potential for diabetic nephropathy.
Collapse
Affiliation(s)
- Hiromi Tachibana
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
221
|
Pan Y, Wang Y, Cai L, Cai Y, Hu J, Yu C, Li J, Feng Z, Yang S, Li X, Liang G. Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. Br J Pharmacol 2012; 166:1169-82. [PMID: 22242942 DOI: 10.1111/j.1476-5381.2012.01854.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Inflammation is involved in the development and/or progression of many diseases including diabetic complications. Investigations on novel anti-inflammatory agents may offer new approaches for the prevention of diabetic nephropathy. Our previous bioscreening of synthetic analogues of curcumin revealed C66 as a novel anti-inflammatory compound against LPS challenge in macrophages. In this study, we hypothesized that C66 affects high glucose (HG)-induced inflammation profiles in vitro and in vivo and then prevents renal injury in diabetic rats via its anti-inflammatory actions. EXPERIMENTAL APPROACH Primary peritoneal macrophages (MPM), prepared from C57BL/6 mice, were treated with HG in the presence or absence of C66. Diabetes was induced in Sprague-Dawley rats with streptozotocin, and the effects of C66 (0.2, 1.0 or 5.0 mg·kg(-1) ), administered daily for 6 weeks, on plasma TNF-α levels and expression of inflammatory genes in the kidney were assessed. KEY RESULTS Pretreatment of MPMs with C66 reduced HG-stimulated production of TNF-α and NO, inhibited HG-induced IL-1β, TNF-α, IL-6, IL-12, COX-2 and iNOS mRNA transcription, and the activation of JNK/NF-kB signalling. In vivo, C66 inhibited the increased plasma TNF-α levels and renal inflammatory gene expression, improved histological abnormalities and fibrosis of diabetic kidney, but did not affect the hyperglycaemia in these diabetic rats. CONCLUSIONS AND IMPLICATIONS The anti-inflammatory effects of C66 are mediated by inhibiting HG-induced activation of the JNK/NF-κB pathway, rather than by reducing blood glucose in diabetic rats. This novel compound is a potential anti-inflammatory agent and might be beneficial for the prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Yong Pan
- Bioorganic and Medicinal Chemistry Research Center, School of Pharmaceutical Science, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Advanced glycation endproducts stimulate renal epithelial cells to release chemokines that recruit macrophages, leading to renal fibrosis. Biosci Biotechnol Biochem 2012; 76:1741-5. [PMID: 22972340 DOI: 10.1271/bbb.120347] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Diabetic nephropathy is a major complication of diabetes and tubulointerstitial fibrosis is one of its manifestations. This study aimed to clarify the pathogenicity of advanced glycation endproducts (AGEs) toward NRK-52E, a tubular epithelial cell line. The AGE-exposed cells significantly increased gene expression of transforming growth factor beta, plasminogen activator inhibitor-1, and tissue transglutaminase, and a medium conditioned by them showed strong potential to recruit macrophages, partly through a chemokine, monocyte chemoattractant protein-1. Albumin denatured by maintenance at 37 °C for 120 d exhibited similar activities, but they were lower than those of the AGEs. Thus, AGEs generated in diabetic patients might exacerbate fibrosis in the kidneys directly through renal epithelial cell stimulation, and indirectly by recruitment of macrophages.
Collapse
|
223
|
Abstract
Diabetic nephropathy is the leading cause of end-stage kidney disease worldwide but current treatments remain suboptimal. This review examines the evidence for inflammation in the development and progression of diabetic nephropathy in both experimental and human diabetes, and provides an update on recent novel experimental approaches targeting inflammation and the lessons we have learned from these approaches. We highlight the important role of inflammatory cells in the kidney, particularly infiltrating macrophages, T-lymphocytes and the subpopulation of regulatory T cells. The possible link between immune deposition and diabetic nephropathy is explored, along with the recently described immune complexes of anti-oxidized low-density lipoproteins. We also briefly discuss some of the major inflammatory cytokines involved in the pathogenesis of diabetic nephropathy, including the role of adipokines. Lastly, we present the latest data on the pathogenic role of the stress-activated protein kinases in diabetic nephropathy, from studies on the p38 mitogen activated protein kinase and the c-Jun amino terminal kinase cell signalling pathways. The genetic and pharmacological approaches which reduce inflammation in diabetic nephropathy have not only enhanced our understanding of the pathophysiology of the disease but shown promise as potential therapeutic strategies.
Collapse
|
224
|
Lopez-Parra V, Mallavia B, Lopez-Franco O, Ortiz-Muñoz G, Oguiza A, Recio C, Blanco J, Nimmerjahn F, Egido J, Gomez-Guerrero C. Fcγ receptor deficiency attenuates diabetic nephropathy. J Am Soc Nephrol 2012; 23:1518-27. [PMID: 22859852 DOI: 10.1681/asn.2011080822] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among patients with diabetes, increased production of immunoglobulins against proteins modified by diabetes is associated with proteinuria and cardiovascular risk, suggesting that immune mechanisms may contribute to the development of diabetes complications, such as nephropathy. We investigated the contribution of IgG Fcγ receptors to diabetic renal injury in hyperglycemic, hypercholesterolemic mice. We used streptozotocin to induce diabetes in apolipoprotein E-deficient mice and in mice deficient in both apolipoprotein E and γ-chain, the common subunit of activating Fcγ receptors. After 15 weeks, the mice lacking Fcγ receptors had significantly less albuminuria and renal hypertrophy, despite similar degrees of hyperglycemia and hypercholesterolemia, immunoglobulin production, and glomerular immune deposits. Moreover, diabetic Fcγ receptor-deficient mice had less mesangial matrix expansion, inflammatory cell infiltration, and collagen and α-smooth muscle actin content in their kidneys. Accordingly, expression of genes involved in leukocyte infiltration, fibrosis, and oxidative stress was significantly reduced in diabetic kidneys and in mesangial cells cultured from Fcγ receptor-deficient mice. In summary, preventing the activation of Fcγ receptors alleviates renal hypertrophy, inflammation, and fibrosis in hypercholesterolemic mice with diabetes, suggesting that modulating Fcγ receptor signaling may be renoprotective in diabetic nephropathy.
Collapse
Affiliation(s)
- Virginia Lopez-Parra
- Renal and Vascular Inflammation Laboratory, IIS-Fundacion Jimenez Diaz, Autonoma University, Avda Reyes Catolicos, 2 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
225
|
Watson AMD, Gray SP, Jiaze L, Soro-Paavonen A, Wong B, Cooper ME, Bierhaus A, Pickering R, Tikellis C, Tsorotes D, Thomas MC, Jandeleit-Dahm KAM. Alagebrium reduces glomerular fibrogenesis and inflammation beyond preventing RAGE activation in diabetic apolipoprotein E knockout mice. Diabetes 2012; 61:2105-13. [PMID: 22698914 PMCID: PMC3402321 DOI: 10.2337/db11-1546] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Advanced glycation end products (AGEs) are important mediators of diabetic nephropathy that act through the receptor for AGEs (RAGE), as well as other mechanisms, to promote renal inflammation and glomerulosclerosis. The relative contribution of RAGE-dependent and RAGE-independent signaling pathways has not been previously studied in vivo. In this study, diabetic RAGE apoE double-knockout (KO) mice with streptozotocin-induced diabetes were treated with the AGE inhibitor, alagebrium (1 mg/kg/day), or the ACE inhibitor, quinapril (30 mg/kg/day), for 20 weeks, and renal parameters were assessed. RAGE deletion attenuated mesangial expansion, glomerular matrix accumulation, and renal oxidative stress associated with 20 weeks of diabetes. By contrast, inflammation and AGE accumulation associated with diabetes was not prevented. However, treatment with alagebrium in diabetic RAGE apoE KO mice reduced renal AGE levels and further reduced glomerular matrix accumulation. In addition, even in the absence of RAGE expression, alagebrium attenuated cortical inflammation, as denoted by the reduced expression of monocyte chemoattractant protein-1, intracellular adhesion molecule-1, and the macrophage marker cluster of differentiation molecule 11b. These novel findings confirm the presence of important RAGE-independent as well as RAGE-dependent signaling pathways that may be activated in the kidney by AGEs. This has important implications for the design of optimal therapeutic strategies for the prevention of diabetic nephropathy.
Collapse
Affiliation(s)
- Anna M D Watson
- Diabetes Complications Division, Diabetes and Kidney Disease, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Kuwabara T, Mori K, Mukoyama M, Kasahara M, Yokoi H, Saito Y, Ogawa Y, Imamaki H, Kawanishi T, Ishii A, Koga K, Mori KP, Kato Y, Sugawara A, Nakao K. Exacerbation of diabetic nephropathy by hyperlipidaemia is mediated by Toll-like receptor 4 in mice. Diabetologia 2012; 55:2256-66. [PMID: 22610400 DOI: 10.1007/s00125-012-2578-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/04/2012] [Indexed: 12/24/2022]
Abstract
AIMS/HYPOTHESIS Hyperlipidaemia is an independent risk factor for the progression of diabetic nephropathy, but its molecular mechanism remains elusive. We investigated in mice how diabetes and hyperlipidaemia cause renal lesions separately and in combination, and the involvement of Toll-like receptor 4 (TLR4) in the process. METHODS Diabetes was induced in wild-type (WT) and Tlr4 knockout (KO) mice by intraperitoneal injection of streptozotocin (STZ). At 2 weeks after STZ injection, normal diet was substituted with a high-fat diet (HFD). Functional and histological analyses were carried out 6 weeks later. RESULTS Compared with treatment with STZ or HFD alone, treatment of WT mice with both STZ and HFD markedly aggravated nephropathy, as indicated by an increase in albuminuria, mesangial expansion, infiltration of macrophages and upregulation of pro-inflammatory and extracellular-matrix-associated gene expression in glomeruli. In Tlr4 KO mice, the addition of an HFD to STZ had almost no effects on the variables measured. Production of protein S100 calcium binding protein A8 (calgranulin A; S100A8), a potent ligand for TLR4, was observed in abundance in macrophages infiltrating STZ-HFD WT glomeruli and in glomeruli of diabetic nephropathy patients. High-glucose and fatty acid treatment synergistically upregulated S100a8 gene expression in macrophages from WT mice, but not from KO mice. As putative downstream targets of TLR4, phosphorylation of interferon regulatory factor 3 (IRF3) was enhanced in kidneys of WT mice co-treated with STZ and HFD. CONCLUSIONS/INTERPRETATION Activation of S100A8/TLR4 signalling was elucidated in an animal model of diabetic glomerular injury accompanied with hyperlipidaemia, which may provide novel therapeutic targets in progressive diabetic nephropathy.
Collapse
Affiliation(s)
- T Kuwabara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Panee J. Monocyte Chemoattractant Protein 1 (MCP-1) in obesity and diabetes. Cytokine 2012; 60:1-12. [PMID: 22766373 DOI: 10.1016/j.cyto.2012.06.018] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/30/2012] [Accepted: 06/04/2012] [Indexed: 12/23/2022]
Abstract
Monocyte Chemoattractant Protein-1 (MCP-1) is the first discovered and most extensively studied CC chemokine, and the amount of studies on its role in the etiologies of obesity- and diabetes-related diseases have increased exponentially during the past two decades. This review attempted to provide a panoramic perspective of the history, regulatory mechanisms, functions, and therapeutic strategies of this chemokine. The highlights of this review include the roles of MCP-1 in the development of obesity, diabetes, cardiovascular diseases, insulitis, diabetic nephropathy, and diabetic retinopathy. Therapies that specifically or non-specifically inhibit MCP-1 overproduction have been summarized.
Collapse
Affiliation(s)
- Jun Panee
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street BSB 222, Honolulu, HI 96813, USA.
| |
Collapse
|
228
|
HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice. Acta Biomater 2012; 8:2688-96. [PMID: 22487929 DOI: 10.1016/j.actbio.2012.03.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 01/12/2023]
Abstract
Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for the biosynthesis and secretion of collagen and is expressed in the fibrotic peritoneum. In the present study, we evaluated the efficacy of HSP47 small interfering RNA (siRNA) to suppress the development of peritoneal fibrosis induced by chlorhexidine gluconate in mice. We initially confirmed that biodegradable cationized gelatin microspheres (CGMs) containing HSP47 siRNA could continuously release siRNA over 21 days as a result of microsphere degradation. We then determined that a single injection of CGMs incorporating HSP47 siRNA suppressed collagen expression and macrophage infiltration, thereby preventing peritoneal fibrosis. Therefore, we suggest that this controlled-release technology using HSP47 siRNA is a potential treatment for peritoneal fibrosis. Additionally, RNA interference combined with CGMs as a drug-delivery system may lead to new strategies for knocking down specific genes in vivo.
Collapse
|
229
|
Ishibashi Y, Matsui T, Ojima A, Nishino Y, Nakashima S, Maeda S, Yamagishi SI. Glucagon-like peptide-1 inhibits angiotensin II-induced mesangial cell damage via protein kinase A. Microvasc Res 2012; 84:395-8. [PMID: 22750392 DOI: 10.1016/j.mvr.2012.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/04/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
There is a growing body of evidence that renin-angiotensin system plays a role in diabetic nephropathy. Recently, we have found that glucagon-like peptide-1 (GLP-1), one of the incretins, a gut hormone secreted from L cells in the intestine in response to food intake, inhibits advanced glycation end product-induced monocyte chemoattractant protein-1 gene expression in mesangial cells thorugh the interaction with the receptor of GLP-1. However, effects of GLP-1 on angiotensin II-exposed mesangial cells are unknown. This study investigated whether and how GLP-1 blocked the angiotensin II-induced mesangial cell damage in vitro. GLP-1 completely blocked the angiotensin II-induced superoxide generation, NF-κB activation, up-regulation of mRNA levels of intercellular adhesion molecule-1 and plasminogen activator inhibitor-1 in mesangial cells, all of which were prevented by the treatments with H-89, an inhibitor of protein kinase A. The present results demonstrated for the first time that GLP-1 blocked the angiotensin II-induced mesangial cell injury by inhibiting superoxide-mediated NF-κB activation via protein kinase C pathway. Our present study suggests that strategies to enhance the biological actions of GLP-1 may be a promising strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Yuji Ishibashi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | | | | |
Collapse
|
230
|
Tang SCW, Lai KN. The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant 2012; 27:3049-56. [PMID: 22734110 DOI: 10.1093/ndt/gfs260] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A growing body of evidence indicates that the renal proximal tubular epithelial cell (PTEC) plays an important role in the pathogenesis of diabetic nephropathy (DN). Microalbuminuria that intensifies over time to overt proteinuria, a hallmark of DN, is already known to activate the PTEC to induce tubulointerstitial inflammation. In addition to proteins, a number of diabetic substrates including high glucose per se, advanced glycation end-products and their carbonyl intermediates, angiotensin II, and ultrafiltered growth factors activate a number of signaling pathways including nuclear factor kappa B, protein kinase C, extracellular signal-regulated kinase 1/2, p38, signal transducer and activator of transcription-1 and the generation of reactive oxygen species, to culminate in tubular cell hypertrophy and the accumulation in the interstitium of a repertoire of chemokines, cytokines, growth factors and adhesion molecules capable of orchestrating further inflammation and fibrosis. More recently, the kallikrein-kinin system (KKS) and toll-like receptors (TLRs) in PTECs have been implicated in this process. While in vitro data suggest that the KKS contributes to the progression of DN, there are conflicting in vivo results on its precise role, which may in part be strain-dependent. On the other hand, there are both in vitro and in vivo data to suggest a role for both TLR2 and TLR4 in DN. In this review, we offer a critical appraisal of the events linking the participation of the PTEC to the pathogenesis of DN, which we believe may be collectively termed diabetic tubulopathy.
Collapse
Affiliation(s)
- Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | | |
Collapse
|
231
|
Vallon V, Thomson SC. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 2012; 74:351-75. [PMID: 22335797 DOI: 10.1146/annurev-physiol-020911-153333] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus affects the kidney in stages. At the onset of diabetes mellitus, in a subset of diabetic patients the kidneys grow large, and glomerular filtration rate (GFR) becomes supranormal, which are risk factors for developing diabetic nephropathy later in life. This review outlines a pathophysiological concept that focuses on the tubular system to explain these changes. The concept includes the tubular hypothesis of glomerular filtration, which states that early tubular growth and sodium-glucose cotransport enhance proximal tubule reabsorption and make the GFR supranormal through the physiology of tubuloglomerular feedback. The diabetic milieu triggers early tubular cell proliferation, but the induction of TGF-β and cyclin-dependent kinase inhibitors causes a cell cycle arrest and a switch to tubular hypertrophy and a senescence-like phenotype. Although this growth phenotype explains unusual responses like the salt paradox of the early diabetic kidney, the activated molecular pathways may set the stage for tubulointerstitial injury and diabetic nephropathy.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
232
|
YU WEIMIN, WANG HUAN, REN XIAOJUN, LIU JUNPING, WANG JIANYING. Experimental study of leflunomide on renal protective effect and on inflammatory response of streptozotocin induced diabetic rats. Nephrology (Carlton) 2012; 17:380-9. [DOI: 10.1111/j.1440-1797.2012.01563.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
233
|
Gil-Bernabe P, D'Alessandro-Gabazza CN, Toda M, Boveda Ruiz D, Miyake Y, Suzuki T, Onishi Y, Morser J, Gabazza EC, Takei Y, Yano Y. Exogenous activated protein C inhibits the progression of diabetic nephropathy. J Thromb Haemost 2012; 10:337-46. [PMID: 22236035 DOI: 10.1111/j.1538-7836.2012.04621.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Activated protein C (APC) can regulate immune and inflammatory responses and apoptosis. Protein C transgenic mice develop less diabetic nephropathy but whether exogenous administration of APC suppresses established diabetic nephropathy is unknown. OBJECTIVES We investigated the therapeutic potential of APC in mice with streptozotocin-induced diabetic nephropathy. METHODS Diabetes was induced in unilaterally nephrectomized C57/Bl6 mice using intraperitoneal (i.p.) injection of streptozotocin. Four weeks later, the mice were treated with i.p. exogenous APC every other day for 1 month. RESULTS APC-treated mice had a significantly improved blood nitrogen urea-to-creatinine ratio, urine total protein to creatinine ratio and proteinuria, and had significantly less renal fibrosis as measured by the levels of collagen and hydroxyproline. The renal tissue concentration of monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF) and the RNA expression of platelet-derived growth factor (PDGF), transforming growth factor-β1 and connective tissue growth factor (CTGF) were significantly lower in APC-treated mice than in untreated animals. The percentage of apoptotic cells was reduced and the expression of podocin, nephrin and WT-1 in the glomeruli was significantly improved in mice treated with APC compared with untreated mice. The levels of coagulation markers were not affected by APC treatment. CONCLUSION Exogenous APC improves renal function and mitigates pathological changes in mice with diabetic nephropathy by suppressing the expression of fibrogenic cytokines, growth factors and apoptosis, suggesting its potential usefulness for the therapy of this disease.
Collapse
Affiliation(s)
- P Gil-Bernabe
- Department of Diabetes and Metabolism, Mie University Graduate School of Medicine, Tsu City, Mie Prefecture, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Induction of hemeoxygenase-1 reduces renal oxidative stress and inflammation in diabetic spontaneously hypertensive rats. Int J Hypertens 2012; 2012:957235. [PMID: 22518298 PMCID: PMC3299363 DOI: 10.1155/2012/957235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/11/2011] [Accepted: 11/15/2011] [Indexed: 11/21/2022] Open
Abstract
The renoprotective mechanisms of hemeoxygenase-1 (HO-1) in diabetic nephropathy remain to be investigated. We hypothesize that HO-1 protects the kidney from diabetic insult via lowering renal oxidative stress and inflammation. We used control and diabetic SHR with or without HO-1 inducer cobalt protoporphyrin (CoPP) treatment for 6 weeks. Urinary albumin excretion levels were significantly elevated in diabetic SHR compared to control and CoPP significantly attenuated albumin excretion. Immuno-histochemical analysis revealed an elevation in TGF-β staining together with increased urinary collagen excretion in diabetic versus control SHR, both of which were reduced with CoPP treatment. Renal oxidative stress markers were greater in diabetic SHR and reduced with CoPP treatment. The increase in renal oxidative stress was associated with an elevation in renal inflammation in diabetic SHR. CoPP treatment also significantly attenuated the markers of renal inflammation in diabetic SHR. In vitro inhibition of HO with stannous mesoporphyrin (SnMP) increased glomerular NADPH oxidase activity and inflammation and blocked the anti-oxidant and anti-inflammatory effects of CoPP. These data suggest that the reduction of renal injury in diabetic SHR upon induction of HO-1 are associated with decreased renal oxidative stress and inflammation, implicating the role of HO-1 induction as a future treatment of diabetic nephropathy.
Collapse
|
235
|
Wang W, Wang Y, Long J, Wang J, Haudek SB, Overbeek P, Chang BH, Schumacker PT, Danesh FR. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 2012; 15:186-200. [PMID: 22326220 PMCID: PMC3278719 DOI: 10.1016/j.cmet.2012.01.009] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/16/2011] [Accepted: 01/10/2012] [Indexed: 11/18/2022]
Abstract
Several lines of evidence suggest that mitochondrial dysfunction plays a critical role in the pathogenesis of microvascular complications of diabetes, including diabetic nephropathy. However, the signaling pathways by which hyperglycemia leads to mitochondrial dysfunction are not fully understood. Here we examined the role of Rho-associated coiled coil-containing protein kinase 1 (ROCK1) on mitochondrial dynamics by generating two diabetic mouse models with targeted deletions of ROCK1 and an inducible podocyte-specific knockin mouse expressing a constitutively active (cA) mutant of ROCK1. Our findings suggest that ROCK1 mediates hyperglycemia-induced mitochondrial fission by promoting dynamin-related protein-1 (Drp1) recruitment to the mitochondria. Deletion of ROCK1 in diabetic mice prevented mitochondrial fission, whereas podocyte-specific cA-ROCK1 mice exhibited increased mitochondrial fission. Importantly, we found that ROCK1 triggers mitochondrial fission by phosphorylating Drp1 at serine 600 residue. These findings provide insights into the unexpected role of ROCK1 in a signaling cascade that regulates mitochondrial dynamics.
Collapse
Affiliation(s)
- Wenjian Wang
- Department of Medicine-Nephrology, Baylor College of Medicine, Houston, TX
| | - Yin Wang
- Department of Medicine-Nephrology, Baylor College of Medicine, Houston, TX
| | - Jianyin Long
- Department of Medicine-Nephrology, Baylor College of Medicine, Houston, TX
| | - Jinrong Wang
- Department of Medicine-Nephrology, Baylor College of Medicine, Houston, TX
| | - Sandra B. Haudek
- Department of Medicine-Division of Cardiovascular Sciences, Baylor College of Medicine, Houston, TX
| | - Paul Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Benny H.J. Chang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Paul T. Schumacker
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Farhad R. Danesh
- Department of Medicine-Nephrology, Baylor College of Medicine, Houston, TX
- Department of Pharmacology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
236
|
Celec P, Hodosy J, Gardlík R, Behuliak M, Pálffy R, Pribula M, Jáni P, Turňa J, Sebeková K. The effects of anti-inflammatory and anti-angiogenic DNA vaccination on diabetic nephropathy in rats. Hum Gene Ther 2012; 23:158-66. [PMID: 21939398 DOI: 10.1089/hum.2011.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation and angiogenesis play a crucial role in the pathomechanism of diabetic nephropathy. Monocyte chemoattractant protein 1 (MCP) is a key regulator of the immune system in kidneys, and its inhibition with a dominant-negative mutant lacking the N-terminal amino acids 2-8 (7ND) reduces renal fibrosis. Angiomotin (Amot) is a novel angiogenesis modulator. We studied the effects of inhibition of Amot and MCP using DNA vaccination on incipient diabetic nephropathy in rats. Plasmid DNA (with either 7ND or human Amot) was electroporated twice into hind-limb muscles of rats with streptozotocin-induced diabetes mellitus. Sham-electroporated diabetic rats and healthy animals served as controls. After 4 months, renal histology and biochemical analyses were performed. In sham-electroporated diabetic rats, glomerular histology revealed pathological changes. 7ND and Amot treatments reduced glomerular hypertrophy and periodic acid-Schiff positivity. In both treated groups, the expression of profibrotic (transforming growth factor-β, collagen 1), proinflammatory (interleukin-6, tumor necrosis factor-α), and proangiogenic (vascular endothelial growth factor) genes in the renal cortex was lower than in the diabetic group without treatment. The mentioned renoprotective effects could be mediated via higher total antioxidant capacity and improved glycemic control. Anti-angiogenic and anti-inflammatory DNA vaccination ameliorates the progression of glomerular pathology in an animal model of diabetic nephropathy.
Collapse
Affiliation(s)
- Peter Celec
- Institute of Molecular Biomedicine, Comenius University , 811 08 Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Luis-Rodríguez D, Martínez-Castelao A, Górriz JL, De-Álvaro F, Navarro-González JF. Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World J Diabetes 2012; 3:7-18. [PMID: 22253941 PMCID: PMC3258536 DOI: 10.4239/wjd.v3.i1.7] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus and its complications are becoming one of the most important health problems in the world. Diabetic nephropathy is now the main cause of end-stage renal disease. The mechanisms leading to the development and progression of renal injury are not well known. Therefore, it is very important to find new pathogenic pathways to provide opportunities for early diagnosis and targets for novel treatments. At the present time, we know that activation of innate immunity with development of a chronic low grade inflammatory response is a recognized factor in the pathogenesis of diabetic nephropathy. Numerous experimental and clinical studies have shown the participation of different inflammatory molecules and pathways in the pathophysiology of this complication.
Collapse
Affiliation(s)
- Desirée Luis-Rodríguez
- Desirée Luis-Rodríguez, Alberto Martínez-Castelao, José Luis Górriz, Fernando de Álvaro, Juan F Navarro-González, Grupo Español para el Estudio de la Nefropatía Diabética (GEENDIAB), Spain
| | | | | | | | | |
Collapse
|
238
|
Okamoto M, Fuchigami M, Suzuki T, Watanabe N. A Novel C–C Chemokine Receptor 2 Antagonist Prevents Progression of Albuminuria and Atherosclerosis in Mouse Models. Biol Pharm Bull 2012; 35:2069-74. [DOI: 10.1248/bpb.b12-00528] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
239
|
Elmarakby AA, Faulkner J, Baban B, Saleh MA, Sullivan JC. Induction of hemeoxygenase-1 reduces glomerular injury and apoptosis in diabetic spontaneously hypertensive rats. Am J Physiol Renal Physiol 2011; 302:F791-800. [PMID: 22205229 DOI: 10.1152/ajprenal.00472.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of hemeoxygenase-1 (HO-1) lowers blood pressure and reduces organ damage in hypertensive animal models; however, a potential protective role for HO-1 induction against diabetic-induced glomerular injury remains unclear. We hypothesize that HO-1 induction will protect against diabetes-induced glomerular injury by maintaining glomerular integrity and inhibiting renal apoptosis, inflammation, and oxidative stress. Diabetes was induced with streptozotocin in spontaneously hypertensive rats (SHR) as a model where the coexistence of hypertension and diabetes aggravates the progression of diabetic renal injury. Control and diabetic SHR were randomized to receive vehicle or the HO-1 inducer cobalt protoporphyrin (CoPP). Glomerular albumin permeability was significantly greater in diabetic SHR compared with control, consistent with an increase in apoptosis and decreased glomerular nephrin and α(3)β(1)-integrin protein expression in diabetic SHR. CoPP significantly reduced albumin permeability and apoptosis and restored nephrin and α(3)β(1)-integrin protein expression levels in diabetic SHR. Glomerular injury in diabetic SHR was also associated with increases in NF-κB-induced inflammation and oxidative stress relative to vehicle-treated SHR, and CoPP significantly blunted diabetes-induced increases in glomerular inflammation and oxidative stress in diabetic SHR. These effects were specific to exogenous stimulation of HO-1, since incubation with the HO inhibitor stannous mesoporphyrin alone did not alter glomerular inflammatory markers or oxidative stress yet was able to prevent CoPP-mediated decreases in these parameters. These data suggest that induction of HO-1 reduces diabetic induced-glomerular injury and apoptosis and these effects are associated with decreased NF-κB-induced inflammation and oxidative stress.
Collapse
|
240
|
Lin M, Yiu WH, Wu HJ, Chan LYY, Leung JCK, Au WS, Chan KW, Lai KN, Tang SCW. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 2011; 23:86-102. [PMID: 22021706 DOI: 10.1681/asn.2010111210] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammation contributes to the tubulointerstitial lesions of diabetic nephropathy. Toll-like receptors (TLRs) modulate immune responses and inflammatory diseases, but their role in diabetic nephropathy is not well understood. In this study, we found increased expression of TLR4 but not of TLR2 in the renal tubules of human kidneys with diabetic nephropathy compared with expression of TLR4 and TLR2 in normal kidney and in kidney disease from other causes. The intensity of tubular TLR4 expression correlated directly with interstitial macrophage infiltration and hemoglobin A1c level and inversely with estimated glomerular filtration rate. The tubules also upregulated the endogenous TLR4 ligand high-mobility group box 1 in diabetic nephropathy. In vitro, high glucose induced TLR4 expression via protein kinase C activation in a time- and dose-dependent manner, resulting in upregulation of IL-6 and chemokine (C-C motif) ligand 2 (CCL-2) expression via IκB/NF-κB activation in human proximal tubular epithelial cells. Silencing of TLR4 with small interfering RNA attenuated high glucose-induced IκB/NF-κB activation, inhibited the downstream synthesis of IL-6 and CCL-2, and impaired the ability of conditioned media from high glucose-treated proximal tubule cells to induce transmigration of mononuclear cells. We observed similar effects using a TLR4-neutralizing antibody. Finally, streptozotocin-induced diabetic and uninephrectomized TLR4-deficient mice had significantly less albuminuria, renal dysfunction, renal cortical NF-κB activation, tubular CCL-2 expression, and interstitial macrophage infiltration than wild-type animals. Taken together, these data suggest that a TLR4-mediated pathway may promote tubulointerstitial inflammation in diabetic nephropathy.
Collapse
Affiliation(s)
- Miao Lin
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Role of T cells in type 2 diabetic nephropathy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:514738. [PMID: 22028700 PMCID: PMC3199084 DOI: 10.1155/2011/514738] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 08/15/2011] [Indexed: 02/06/2023]
Abstract
Type 2 diabetic nephropathy (DN) is the most common cause of end-stage renal disease and is increasingly considered as an inflammatory disease characterized by leukocyte infiltration at every stage of renal involvement. Inflammation and activation of the immune system are closely involved in the pathogenesis of diabetes and its microvascular complications. Macrophage has been well recognized to play an important role in type 2 DN, leukocyte infiltration, and participated in process of DN, as was proposed recently. Th1, Th2, Th17, T reg, and cytotoxic T cells are involved in the development and progression of DN. The purpose of this review is to assemble current information concerning the role of T cells in the development and progression of type 2 DN. Specific emphasis is placed on the potential interaction and contribution of the T cells to renal damage. The therapeutic strategies involving T cells in the treatment of type 2 DN are also reviewed. Improving knowledge of the recognition of T cells as significant pathogenic mediators in DN reinforces the possibility of new potential therapeutic targets translated into future clinical treatments.
Collapse
|
242
|
Nam BY, Paeng J, Kim SH, Lee SH, Kim DH, Kang HY, Li JJ, Kwak SJ, Park JT, Yoo TH, Han SH, Kim DK, Kang SW. The MCP-1/CCR2 axis in podocytes is involved in apoptosis induced by diabetic conditions. Apoptosis 2011; 17:1-13. [DOI: 10.1007/s10495-011-0661-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
243
|
Inhibition of inflammation by pentosan polysulfate impedes the development and progression of severe diabetic nephropathy in aging C57B6 mice. J Transl Med 2011; 91:1459-71. [PMID: 21808238 DOI: 10.1038/labinvest.2011.93] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation has a key role in diabetic nephropathy (DN) progression. Pentosan polysulfate (PPS) has been shown to decreases interstitial inflammation and glomerulosclerosis in 5/6 nephrectomized rats. Since PPS has an excellent long-term safety profile in interstitial cystitis treatment, and we recently found that old diabetic C57B6 mice develop DN characterized by extensive tubulointerstitial inflammatory lesions that mimics human DN, we examined the effect of PPS on old diabetic mice. We also examined the anti-inflammatory properties of PPS in renal cells in vitro. Diabetes was induced with streptozotocin in 18 months female (early aging) C57B6 mice. Mice were then randomized to receive oral PPS (25 mg/kg/day) or water for 4 months. The effect of PPS on NF-κB activation and on TNFα, high glucose or advanced glycation end products (AGEs) stimulated proinflammatory gene expression in renal cells was examined. We found that PPS treatment preserved renal function, significantly reduced albuminuria, and markedly decreased the severity of renal lesions, including tubulointerstitial inflammation. PPS also reduced upregulation of TNFα and proinflammatory genes in aging diabetic kidneys. Furthermore, PPS suppressed NF-κB, decreased the proinflammatory actions of TNFα, and decreased high glucose and AGEs stimulated MCP-1 production in vitro. Finally, PPS decreased TNFα-induced increase in albumin permeability in podocyte monolayers. In conclusion, PPS treatment largely prevents the development/progression of nephropathy in aging diabetic mice. As this may be mediated by suppression of TNFα, high glucose, and AGE-stimulated NF-κB activation and inflammation in vitro, the in vivo blockade of DN may be due to the anti-inflammatory properties of PPS.
Collapse
|
244
|
Barutta F, Piscitelli F, Pinach S, Bruno G, Gambino R, Rastaldi MP, Salvidio G, Di Marzo V, Cavallo Perin P, Gruden G. Protective role of cannabinoid receptor type 2 in a mouse model of diabetic nephropathy. Diabetes 2011; 60:2386-96. [PMID: 21810593 PMCID: PMC3161308 DOI: 10.2337/db10-1809] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The cannabinoid receptor type 2 (CB2) has protective effects in chronic degenerative diseases. Our aim was to assess the potential relevance of the CB2 receptor in both human and experimental diabetic nephropathy (DN). RESEARCH DESIGN AND METHODS CB2 expression was studied in kidney biopsies from patients with advanced DN, in early experimental diabetes, and in cultured podocytes. Levels of endocannabinoids and related enzymes were measured in the renal cortex from diabetic mice. To assess the functional role of CB2, streptozotocin-induced diabetic mice were treated for 14 weeks with AM1241, a selective CB2 agonist. In these animals, we studied albuminuria, renal function, expression of podocyte proteins (nephrin and zonula occludens-1), and markers of both fibrosis (fibronectin and transforming growth factor-β1) and inflammation (monocyte chemoattractant protein-1 [MCP-1], CC chemokine receptor 2 [CCR2], and monocyte markers). CB2 signaling was assessed in cultured podocytes. RESULTS Podocytes express the CB2 receptor both in vitro and in vivo. CB2 was downregulated in kidney biopsies from patients with advanced DN, and renal levels of the CB2 ligand 2-arachidonoylglycerol were reduced in diabetic mice, suggesting impaired CB2 regulation. In experimental diabetes, AM1241 ameliorated albuminuria, podocyte protein downregulation, and glomerular monocyte infiltration, without affecting early markers of fibrosis. In addition, AM1241 reduced CCR2 expression in both renal cortex and cultured podocytes, suggesting that CB2 activation may interfere with the deleterious effects of MCP-1 signaling. CONCLUSIONS The CB2 receptor is expressed by podocytes, and in experimental diabetes, CB2 activation ameliorates both albuminuria and podocyte protein loss, suggesting a protective effect of signaling through CB2 in DN.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Silvia Pinach
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Graziella Bruno
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Roberto Gambino
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Maria Pia Rastaldi
- Renal Research Laboratory, Fondazione IRCCS, Ospedale Maggiore Policlinico and Fondazione D’Amico per la Ricerca sulle Malattie Renali, Milan, Italy
| | - Gennaro Salvidio
- Department of Cardionephrology, University of Genoa, Genoa, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Paolo Cavallo Perin
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Internal Medicine, University of Turin, Turin, Italy
- Corresponding author: Gabriella Gruden,
| |
Collapse
|
245
|
Ishibashi Y, Nishino Y, Matsui T, Takeuchi M, Yamagishi SI. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism 2011; 60:1271-7. [PMID: 21388644 DOI: 10.1016/j.metabol.2011.01.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 11/25/2022]
Abstract
Advanced glycation end products (AGE) and receptor for AGE (RAGE) interaction elicits reactive oxygen species (ROS) generation and inflammatory reactions, thereby being involved in the development and progression of diabetic nephropathy. Recently, we, along with others, found that glucagon-like peptide-1 (GLP-1), one of the incretins and a gut hormone secreted from L cells in the intestine in response to food intake, could have anti-inflammatory and antithrombogenic properties in cultured endothelial cells. However, the effects of GLP-1 on renal mesangial cells are largely unknown. Therefore, to elucidate the role of GLP-1 in diabetic nephropathy, this study investigated whether and how GLP-1 blocked AGE-induced monocyte chemoattractant protein-1 expression in human cultured mesangial cells. Gene and protein expression was analyzed by quantitative real-time reverse transcription polymerase chain reactions, Western blots, and enzyme-linked immunosorbent assay. The ROS generation was measured with dihydroethidium staining. Glucagon-like peptide-1 receptor (GLP-1R) was expressed in mesangial cells. Glucagon-like peptide-1 inhibited RAGE gene expression in mesangial cells, which was blocked by small interfering RNAs raised against GLP-1R. Furthermore, GLP-1 decreased ROS generation and subsequently reduced monocyte chemoattractant protein-1 gene and protein expression in AGE-exposed mesangial cells. An analogue of cyclic adenosine monophosphate mimicked the effects of GLP-1 on mesangial cells. Our present study suggests that GLP-1 may directly act on mesangial cells via GLP-1R and that it could work as an anti-inflammatory agent against AGE by reducing RAGE expression via activation of cyclic adenosine monophosphate pathway.
Collapse
Affiliation(s)
- Yuji Ishibashi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | | | | | | |
Collapse
|
246
|
Awad AS, Kinsey GR, Khutsishvili K, Gao T, Bolton WK, Okusa MD. Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury. Am J Physiol Renal Physiol 2011; 301:F1358-66. [PMID: 21880831 DOI: 10.1152/ajprenal.00332.2011] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Monocyte/macrophage recruitment correlates strongly with the progression of renal impairment in diabetic nephropathy (DN). C-C chemokine receptor (CCR)2 regulates monocyte/macrophage migration into injured tissues. However, the direct role of CCR2-mediated monocyte/macrophage recruitment in diabetic kidney disease remains unclear. We report that pharmacological blockade or genetic deficiency of CCR2 confers kidney protection in Ins2(Akita) and streptozotocin (STZ)-induced diabetic kidney disease. Blocking CCR2 using the selective CCR2 antagonist RS504393 for 12 wk in Ins2(Akita) mice significantly attenuated albuminuria, the increase in blood urea nitrogen and plasma creatinine, histological changes, and glomerular macrophage recruitment compared with vehicle. Furthermore, mice lacking CCR2 (CCR2(-/-)) mimicked CCR2 blockade by reducing albuminuria and displaying less fibronectin mRNA expression and inflammatory cytokine production compared with CCR2(+/+) mice, despite comparable blood glucose levels. Bone marrow-derived monocytes from CCR2(+/+) or CCR2(-/-) mice adoptively transferred into CCR2(-/-) mice reversed the renal tissue-protective effect in diabetic CCR2(-/-) mice as evaluated by increased urinary albumin excretion and kidney macrophage recruitment, indicating that CCR2 is not required for monocyte migration from the circulation into diabetic kidneys. These findings provide evidence that CCR2 is necessary for monocyte/macrophage-induced diabetic renal injury and suggest that blocking CCR2 could be a novel therapeutic approach in the treatment of DN.
Collapse
Affiliation(s)
- Alaa S Awad
- College of Medicine, Division of Nephrology, Penn State University Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | | | |
Collapse
|
247
|
Ble A, Mosca M, Di Loreto G, Guglielmotti A, Biondi G, Bombardieri S, Remuzzi G, Ruggenenti P. Antiproteinuric effect of chemokine C-C motif ligand 2 inhibition in subjects with acute proliferative lupus nephritis. Am J Nephrol 2011; 34:367-72. [PMID: 21876349 DOI: 10.1159/000330685] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 07/08/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS To test the role of chemokine C-C motif ligand 2 (CCL2) in the pathogenesis of lupus nephritis (LN), we evaluated the effects of CCL2 inhibition by bindarit therapy in patients with systemic lupus and active renal disease. METHODS In this proof-of-concept, prospective, randomized, double-blind clinical study, 22 subjects with acute LN were assigned on a 1:1 ratio to 24-week treatment with bindarit (1,200 mg/day) or matching placebo. All subjects were on the same standardized steroid background therapy. Urinary CCL2, urinary albumin excretion (UAE), estimated glomerular filtration rate, time to remission and time to relapse of LN were compared between groups. RESULTS Urinary CCL2 significantly decreased during bindarit therapy (p = 0.008 vs. baseline) with a reduction that approximated 50% at study end. CCL2 reduction was paralleled by a persistent reduction in UAE that averaged 80% vs. baseline and approximated 90% at study end. Renal function recovery was similar and no difference was found in terms of time to remission and time to relapse of LN between treatment arms. Treatment was safe and well tolerated in all patients. CONCLUSION In lupus subjects with active nephritis, bindarit significantly reduced albuminuria and urinary CCL2 levels. This study provides the background for longer trials to test renoprotective effect of CCL2 inhibition in LN.
Collapse
Affiliation(s)
- Alessandro Ble
- Angelini Research Center, Piazzale della Stazione, S. Palomba, Pomezia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
248
|
Tang SCW, Chan LYY, Leung JCK, Cheng AS, Lin M, Lan HY, Lai KN. Differential effects of advanced glycation end-products on renal tubular cell inflammation. Nephrology (Carlton) 2011; 16:417-25. [PMID: 21143336 DOI: 10.1111/j.1440-1797.2010.01437.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The authors recently showed that advanced glycation end-products (AGE) in the form of glycated albumin (GA) upregulated renal tubular expression of interleukin (IL)-8 and soluble intercellular adhesion molecule-1 (sICAM-1), but not other important cytokines known to mediate diabetic nephropathy. This implies that other molecules such as the carbonyl intermediates of AGE or other modified protein lysine-albumin may participate in diabetic tubular injury. METHODS Human proximal tubular epithelial cells (PTEC) were growth-arrested and exposed to methylglyoxal (MG), MG-bovine serum albumin (BSA)-AGE, carboxymethyllysine (CML)-BSA, AGE-BSA or BSA with or without prior addition of rosiglitazone that was previously shown to attenuate the pro-inflammatory effect of GA alone. RESULTS MG-BSA-AGE and AGE-BSA upregulated tubular expression of connective tissue growth factor (CTGF), transforming growth factor (TGF)-β, and vascular endothelial growth factor (VEGF), whereas CML-BSA stimulated expression of IL-6, CCL-2, CTGF, TGF-β and VEGF. These AGE compounds also activated nuclear factor (NF)-κB and their effects were attenuated by pre-incubation with anti-RAGE antibody. MG and BSA did not affect the expression of any of these molecules. Rosiglitazone did not affect the in vitro biological effects of MG, MG-BSA-AGE, AGE-BSA or CML-BSA on PTEC. CONCLUSION AGE exhibit differential inflammatory and fibrotic effects on PTEC via RAGE activation and NF-κB signal transduction. Rosiglitazone had no effect on these responses. Further investigations on compounds that nullify the downstream effects of these AGE are warranted.
Collapse
Affiliation(s)
- Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
249
|
Kim MJ, Tam FWK. Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta 2011; 412:2022-30. [PMID: 21851811 DOI: 10.1016/j.cca.2011.07.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 01/17/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2) has a critical role in the development of various renal diseases. Data from disease specific experimental animal models and clinical studies confirm that MCP-1 plays an important part in the pathogenesis of renal diseases. The action of MCP-1 in these studies has been shown to be more complex than the traditional concept of monocyte/macrophage recruitment to the inflammatory site. MCP-1 is expressed in renal tissues and it is detectable in urine of patients with a variety of renal diseases. Measurement of urinary levels of MCP-1 can provide valuable information not only for the diagnosis of active renal disease, but also for monitoring of response to therapy. Urinary MCP-1 measurement can provide help with evaluation of the prognosis in various renal diseases. Furthermore, selective targeting of MCP-1 could be an effective treatment in suppressing a number of renal diseases as blocking MCP-1 has already been shown to ameliorate renal diseases in experimental animal models. The advantage of measuring urinary MCP-1 rather than the conventional markers must now be validated using a larger cohort of patients in different renal diseases. Also the therapeutic potential of MCP-1 targeting agents needs to be investigated in clinical studies.
Collapse
Affiliation(s)
- Min Jeong Kim
- Imperial College Kidney and Transplant Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | | |
Collapse
|
250
|
Soetikno V, Sari FR, Veeraveedu PT, Thandavarayan RA, Harima M, Sukumaran V, Lakshmanan AP, Suzuki K, Kawachi H, Watanabe K. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr Metab (Lond) 2011; 8:35. [PMID: 21663638 PMCID: PMC3123175 DOI: 10.1186/1743-7075-8-35] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/10/2011] [Indexed: 12/28/2022] Open
Abstract
Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN) and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ)-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg) by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52%) as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Vivian Soetikno
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|