201
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
202
|
Song M. The CRISPR/Cas9 system: Their delivery, in vivo and ex vivo applications and clinical development by startups. Biotechnol Prog 2017; 33:1035-1045. [PMID: 28440027 DOI: 10.1002/btpr.2484] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/09/2017] [Indexed: 12/23/2022]
Abstract
The CRISPR/Cas9 gene editing system was originally derived from the prokaryotic adaptive immune system mediated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated proteins (Cas). The system has been successfully applied to genome editing in eukaryotes and has contributed to remarkable advances in the life sciences, in areas ranging from agriculture to genetic disease therapies. For efficient editing and extending the influence of this system, proper delivery of its components is crucial. Both viral and nonviral delivery methods are reviewed here, along with the advantages and disadvantages of each. In addition, we review ex vivo and in vivo CRISPR/Cas9 applications for disease therapies. Related remarkable studies are highlighted and relevant startup companies and their drug development pipelines are described. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1035-1045, 2017.
Collapse
Affiliation(s)
- Minjung Song
- Dept. of Food Biotechnology, Silla University, Baekyangdaero 700, Sasang-ku, Busan, Korea
| |
Collapse
|
203
|
He ZY, Men K, Qin Z, Yang Y, Xu T, Wei YQ. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field. SCIENCE CHINA. LIFE SCIENCES 2017; 60:458-467. [PMID: 28527117 DOI: 10.1007/s11427-017-9033-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/16/2017] [Indexed: 02/08/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system provides a novel genome editing technology that can precisely target a genomic site to disrupt or repair a specific gene. Some CRISPR-Cas9 systems from different bacteria or artificial variants have been discovered or constructed by biologists, and Cas9 nucleases and single guide RNAs (sgRNA) are the major components of the CRISPR-Cas9 system. These Cas9 systems have been extensively applied for identifying therapeutic targets, identifying gene functions, generating animal models, and developing gene therapies. Moreover, CRISPR-Cas9 systems have been used to partially or completely alleviate disease symptoms by mutating or correcting related genes. However, the efficient transfer of CRISPR-Cas9 system into cells and target organs remains a challenge that affects the robust and precise genome editing activity. The current review focuses on delivery systems for Cas9 mRNA, Cas9 protein, or vectors encoding the Cas9 gene and corresponding sgRNA. Non-viral delivery of Cas9 appears to help Cas9 maintain its on-target effect and reduce off-target effects, and viral vectors for sgRNA and donor template can improve the efficacy of genome editing and homology-directed repair. Safe, efficient, and producible delivery systems will promote the application of CRISPR-Cas9 technology in human gene therapy.
Collapse
Affiliation(s)
- Zhi-Yao He
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhou Qin
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Ting Xu
- Department of Pharmacy, and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| |
Collapse
|
204
|
Ren J, Zhao Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 2017; 8:634-643. [PMID: 28434148 PMCID: PMC5563282 DOI: 10.1007/s13238-017-0410-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (CRISPR/Cas9) system, an RNA-guided DNA targeting technology, is triggering a revolution in the field of biology. CRISPR/Cas9 has demonstrated great potential for genetic manipulation. In this review, we discuss the current development of CRISPR/Cas9 technologies for therapeutic applications, especially chimeric antigen receptor (CAR) T cell-based adoptive immunotherapy. Different methods used to facilitate efficient CRISPR delivery and gene editing in T cells are compared. The potential of genetic manipulation using CRISPR/Cas9 system to generate universal CAR T cells and potent T cells that are resistant to exhaustion and inhibition is explored. We also address the safety concerns associated with the use of CRISPR/Cas9 gene editing and provide potential solutions and future directions of CRISPR application in the field of CAR T cell immunotherapy. As an integration-free gene insertion method, CRISPR/Cas9 holds great promise as an efficient gene knock-in platform. Given the tremendous progress that has been made in the past few years, we believe that the CRISPR/Cas9 technology holds immense promise for advancing immunotherapy.
Collapse
Affiliation(s)
- Jiangtao Ren
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-5156, USA
| | - Yangbing Zhao
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-5156, USA.
| |
Collapse
|
205
|
Abstract
PURPOSE OF REVIEW Alternative approaches to conventional drug-based cancer treatments have seen T cell therapies deployed more widely over the last decade. This is largely due to their ability to target and kill specific cell types based on receptor recognition. Introduction of recombinant T cell receptors (TCRs) using viral vectors and HLA-independent T cell therapies using chimeric antigen receptors (CARs) are discussed. This article reviews the tools used for genome editing, with particular emphasis on the applications of site-specific DNA nuclease mediated editing for T cell therapies. RECENT FINDINGS Genetic engineering of T cells using TCRs and CARs with redirected antigen-targeting specificity has resulted in clinical success of several immunotherapies. In conjunction, the application of genome editing technologies has resulted in the generation of HLA-independent universal T cells for allogeneic transplantation, improved T cell sustainability through knockout of the checkpoint inhibitor, programmed cell death protein-1 (PD-1), and has shown efficacy as an antiviral therapy through direct targeting of viral genomic sequences and entry receptors. SUMMARY The combined use of engineered antigen-targeting moieties and innovative genome editing technologies have recently shown success in a small number of clinical trials targeting HIV and hematological malignancies and are now being incorporated into existing strategies for other immunotherapies.
Collapse
Affiliation(s)
- Juliette M. K. M. Delhove
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London (UCL), 30 Guilford Street, London, WC1N 1EH UK
| | - Waseem Qasim
- Molecular Immunology Unit, UCL Great Ormond Street Institute of Child Health, University College London (UCL), 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
206
|
Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I. CRISPR/Cas9: Transcending the Reality of Genome Editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624197 PMCID: PMC5415201 DOI: 10.1016/j.omtn.2017.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
With the expansion of the microbiology field of research, a new genome editing tool arises from the biology of bacteria that holds the promise of achieving precise modifications in the genome with a simplicity and versatility that surpasses previous genome editing methods. This new technique, commonly named CRISPR/Cas9, led to a rapid expansion of the biomedical field; more specifically, cancer characterization and modeling have benefitted greatly from the genome editing capabilities of CRISPR/Cas9. In this paper, we briefly summarize recent improvements in CRISPR/Cas9 design meant to overcome the limitations that have arisen from the nuclease activity of Cas9 and the influence of this technology in cancer research. In addition, we present challenges that might impede the clinical applicability of CRISPR/Cas9 for cancer therapy and highlight future directions for designing CRISPR/Cas9 delivery systems that might prove useful for cancer therapeutics.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania
| | - Amin Hajitou
- Cancer Phage Therapy Group, Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alina-Andreea Zimta
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania
| | - Pierre Cordelier
- Cancer Research Center of Toulouse, Université Fédérale Toulouse Midi-Pyrénéées, Université Toulouse III Paul Sabatier, INSERM, 31100 Toulouse, France.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine, and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania; MedFuture Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Cluj 400377, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta," Cluj-Napoca, Cluj 400015, Romania
| |
Collapse
|
207
|
Zhang L, Li R, Chen H, Wei J, Qian H, Su S, Shao J, Wang L, Qian X, Liu B. Human cytotoxic T-lymphocyte membrane-camouflaged nanoparticles combined with low-dose irradiation: a new approach to enhance drug targeting in gastric cancer. Int J Nanomedicine 2017; 12:2129-2142. [PMID: 28360520 PMCID: PMC5364008 DOI: 10.2147/ijn.s126016] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell membrane-derived nanoparticles are becoming more attractive because of their ability to mimic many features of their source cells. This study reports on a biomimetic delivery platform based on human cytotoxic T-lymphocyte membranes. In this system, the surface of poly-lactic-co-glycolic acid nanoparticles was camouflaged using T-lymphocyte membranes, and local low-dose irradiation (LDI) was used as a chemoattractant for nanoparticle targeting. The T-lymphocyte membrane coating was verified using dynamic light scattering, transmission electron microscopy, and confocal laser scanning microscopy. This new platform reduced nanoparticle phagocytosis by macrophages to 23.99% (P=0.002). Systemic administration of paclitaxel-loaded T-lymphocyte membrane-coated nanoparticles inhibited the growth of human gastric cancer by 56.68% in Balb/c nude mice. Application of LDI at the tumor site significantly increased the tumor growth inhibition rate to 88.50%, and two mice achieved complete remission. Furthermore, LDI could upregulate the expression of adhesion molecules in tumor vessels, which is important in the process of leukocyte adhesion and might contribute to the localization of T-lymphocyte membrane-encapsulated nanoparticles in tumors. Therefore, this new drug-delivery platform retained both the long circulation time and tumor site accumulation ability of human cytotoxic T lymphocytes, while local LDI could significantly enhance tumor localization.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Rutian Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Hong Chen
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Shu Su
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Lifeng Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Xiaoping Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
208
|
Gong H, Liu M, Klomp J, Merrill BJ, Rehman J, Malik AB. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Sci Rep 2017; 7:42127. [PMID: 28198371 PMCID: PMC5309830 DOI: 10.1038/srep42127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Human endothelial cells (ECs) are widely used to study mechanisms of angiogenesis, inflammation, and endothelial permeability. Targeted gene disruption induced by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-Associated Protein 9 (Cas9) nuclease gene editing is potentially an important tool for definitively establishing the functional roles of individual genes in ECs. We showed that co-delivery of adenovirus encoding EGFP-tagged Cas9 and lentivirus encoding a single guide RNA (sgRNA) in primary human lung microvascular ECs (HLMVECs) disrupted the expression of the Tie2 gene and protein. Tie2 disruption increased basal endothelial permeability and prevented permeability recovery following injury induced by the inflammatory stimulus thrombin. Thus, gene deletion via viral co-delivery of CRISPR-Cas9 in primary human ECs provides a novel platform to investigate signaling mechanisms of normal and perturbed EC function without the need for clonal expansion.
Collapse
Affiliation(s)
- Haixia Gong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Menglin Liu
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jeff Klomp
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bradley J. Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Genome Editing Core, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Asrar B. Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
- The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
209
|
Haas SA, Dettmer V, Cathomen T. Therapeutic genome editing with engineered nucleases. Hamostaseologie 2017; 37:45-52. [PMID: 28070592 DOI: 10.5482/hamo-16-09-0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/20/2016] [Indexed: 01/17/2023] Open
Abstract
Targeted genome editing with designer nucleases, such as zinc finger nucleases, TALE nucleases, and CRISPR-Cas nucleases, has heralded a new era in gene therapy. Genetic disorders, which have not been amenable to conventional gene-addition-type gene therapy approaches, such as disorders with dominant inheritance or diseases caused by mutations in tightly regulated genes, can now be treated by precise genome surgery. Moreover, engineered nucleases enable novel genetic interventions to fight infectious diseases or to improve cancer immunotherapies. Here, we review the development of the different classes of programmable nucleases, discuss the challenges and improvements in translating gene editing into clinical use, and give an outlook on what applications can expect to enter the clinic in the near future.
Collapse
Affiliation(s)
| | | | - Toni Cathomen
- Toni Cathomen, Ph.D., Institute for Cell and Gene Therapy, Medical Center - University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany, Phone: +49 761 270 34800, Fax: + 49 761 270 37900, E-Mail:
| |
Collapse
|
210
|
Liu X, Zhang Y, Cheng C, Cheng AW, Zhang X, Li N, Xia C, Wei X, Liu X, Wang H. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Res 2017; 27:154-157. [PMID: 27910851 PMCID: PMC5223227 DOI: 10.1038/cr.2016.142] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xiaojuan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, China
| | - Yongping Zhang
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, China
- Graduate School, University of Science and Technology of China, Hefei, China
| | - Albert W Cheng
- The Jackson Laboratory for Genome Medicine, Farmington, CN, USA
| | - Xingying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences
| | - Na Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, China
| | - Changqing Xia
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, FL, USA
| | | | - Xiang Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, China
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, The Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences
- The Jackson Laboratory, Bar Harbor, ME, USA
| |
Collapse
|
211
|
Hough SH, Ajetunmobi A. The Future of CRISPR Applications in the Lab, the Clinic and Society. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:157-178. [PMID: 29130159 DOI: 10.1007/978-3-319-63904-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) has emerged as one of the premiere biological tools of the century. Even more so than older genome editing techniques such as TALENs and ZFNs, CRISPR provides speed and ease-of-use heretofore unheard of in agriculture, the environment and human health. The ability to map the function of virtually every component of the genome in a scalable, multiplexed manner is unprecedented. Once those regions have been explored, CRISPR also presents an opportunity to take advantage of endogenous cellular repair pathways to change and precisely edit the genome [1-3]. In the case of human health, CRISPR operates as both a tool of discovery and a solution to fundamental problems behind disease and undesirable mutations.
Collapse
Affiliation(s)
- Soren H Hough
- Department of Microbiology, University of Massachusetts Amherst, 418 Morrill Science Center IVN, 649 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Ayokunmi Ajetunmobi
- Department of Clinical Medicine, St. James' Hospital, Dublin, Ireland, James's Street, Dublin 8, Dublin, Leinster, D08 NHY1, Ireland
| |
Collapse
|
212
|
Martinez E, Sanchez L, Vazquez N, Marks R, Cedillo R, Respondek C, Holguin M, Persans MW, Keniry M. A CRISPR View of Biological Mechanisms. Discoveries (Craiova) 2016; 4:e69. [PMID: 32309588 PMCID: PMC7159838 DOI: 10.15190/d.2016.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022] Open
Abstract
A decade ago, only six manuscripts would be found on a PubMed search for "CRISPR," compared to 2,011 manuscripts in 2016. The purpose of this review is to discuss this emergent technology that has revolutionized molecular biological research in just a few years. Endogenous CRISPR mechanisms are harbored by bacteria and archaea as an adaptive defense system that targets foreign DNA from viruses and plasmids. CRISPR has been adapted as a genome editing tool in a plethora of organisms ranging from yeast to humans. This tool has been employed to create loss of function mutations, gain of function mutations, and tagged alleles in a wide range of settings. CRISPR is now extensively employed for genetic screens. CRISPR has also been adapted to study transcriptional regulation. This versatile and relatively facile technique has, and will be, tremendously impactful in research areas such as biomedical sciences, agriculture, and the basic sciences.
Collapse
Affiliation(s)
- Eduardo Martinez
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Lilia Sanchez
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Neftali Vazquez
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Rebecca Marks
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Raechel Cedillo
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Christa Respondek
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Martin Holguin
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Michael W. Persans
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| | - Megan Keniry
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr., Edinburg, TX 78539, USA
| |
Collapse
|
213
|
|
214
|
Orlowski RJ, Porter DL, Frey NV. The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol 2016; 177:13-26. [PMID: 27977050 DOI: 10.1111/bjh.14475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The success of genetically engineered T cells that express chimeric antigen receptors (CARTs) has been a momentous step forward in harnessing the potent cancer fighting abilities of the immune system. The efficacy seen in relapsed/refractory (r/r) acute lymphoblastic leukaemia (ALL), not only by inducing remission, but also in maintaining long-term disease control, has been unprecedented. While the foundation for this approach has been firmly set in place, continued development will improve the efficacy, toxicity and applicability to other malignancies of this new class of 'living drugs'. In this review, we provide a comprehensive overview of the most current clinical trial data in both acute and chronic leukaemias, and discuss some of the potential ways to enhance the activity and safety of CART therapy going forward.
Collapse
Affiliation(s)
- Robert J Orlowski
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Noelle V Frey
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
215
|
Su S, Zou Z, Chen F, Ding N, Du J, Shao J, Li L, Fu Y, Hu B, Yang Y, Sha H, Meng F, Wei J, Huang X, Liu B. CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology 2016; 6:e1249558. [PMID: 28197365 DOI: 10.1080/2162402x.2016.1249558] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/01/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
The successful use of immune cell checkpoint inhibitors PD-1 and PD-L1, over the past 5 y has raised the concern of using immunotherapy to treat various cancers. Epstein-Barr virus-associated gastric cancer (EBVaGC) exhibits high infiltration of lymphocytes and high amplification of immune-related genes including PD-L1 as distinguished from Epstein-Barr virus-non-associated gastric cancer (EBVnGC). Here, we presume that this PD-1/PD-L1 pathway may hinder the efficacy of adoptive T cell therapy toward EBVaGC. These studies reveal possibility of generating PD-1-disrupted CTL by CRISPR-Cas9 system and demonstrate enhanced immune response of these PD-1-disrupted CTLs to the EBV-LMP2A antigen and superior cytotoxicity to the EBV-positive gastric cancer cell. In addition, when combined with low-dose radiotherapy, these PD-1-disrupted CTLs mediated an impressive antitumor effect in a xenograft mouse model of EBVaGC. Taken together, these studies illustrate PD-1/PD-L1-mediated immune tolerance of EBVaGC and provide a new strategy for targeting immune checkpoints to break the tolerance for the T cell-based adoptive therapy.
Collapse
Affiliation(s)
- Shu Su
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Zhengyun Zou
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Fangjun Chen
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Naiqing Ding
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Juan Du
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Jie Shao
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Lin Li
- Department of Pathology of Drum Tower Hospital, Medical School of Nanjing University , Nanjing, China
| | - Yao Fu
- Department of Pathology of Drum Tower Hospital, Medical School of Nanjing University , Nanjing, China
| | - Bian Hu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice , Nanjing, China
| | - Yang Yang
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Huizi Sha
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University , Nanjing, China
| |
Collapse
|
216
|
Choi H, Song J, Park G, Kim J. Modeling of Autism Using Organoid Technology. Mol Neurobiol 2016; 54:7789-7795. [DOI: 10.1007/s12035-016-0274-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/30/2016] [Indexed: 01/01/2023]
|
217
|
Yang Y, Qiu JG, Li Y, Di JM, Zhang WJ, Jiang QW, Zheng DW, Chen Y, Wei MN, Huang JR, Wang K, Shi Z. Targeting ABCB1-mediated tumor multidrug resistance by CRISPR/Cas9-based genome editing. Am J Transl Res 2016; 8:3986-3994. [PMID: 27725879 PMCID: PMC5040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
The RNA-guided clustered regularly interspaced short palindromic (CRISPR) in combination with a CRISPR-associated nuclease 9 (Cas9) nuclease system is a new rapid and precise technology for genome editing. In the present study, we applied the CRISPR/Cas9 system to target ABCB1 (also named MDR1) gene which encodes a 170 kDa transmembrane glycoprotein (P-glycoprotein/P-gp) transporting multiple types of chemotherapeutic drugs including taxanes, epipodophyllotoxins, vinca alkaloids and anthracyclines out of cells to contribute multidrug resistance (MDR) in cancer cells. Our data showed that knockout of ABCB1 by CRISPR/Cas9 system was succesfully archieved with two target sgRNAs in two MDR cancer cells due to the alteration of genome sequences. Knockout of ABCB1 by CRISPR/Cas9 system significantly enhances the sensitivity of ABCB1 substrate chemotherapeutic agents and the intracellular accumulation of rhodamine 123 and doxorubicin in MDR cancer cells. Although now there are lots of limitations to the application of CRISPR/Cas9 for editing cancer genes in human patients, our study provides valuable clues for the use of the CRISPR/Cas9 technology in the investigation and conquest of cancer MDR.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Jian-Ge Qiu
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Yong Li
- Department of Gastrointertinal Surgery & General Surgery, Guangdong General Hospital, Guangdong Academy of Medical SciencesGuangzhou 510080, Guangdong, China
| | - Jin-Ming Di
- Department of Urology, The 3rd Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510630, Guangdong, China
| | - Wen-Ji Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Qi-Wei Jiang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Di-Wei Zheng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Yao Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Meng-Ning Wei
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Jia-Rong Huang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Kun Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering MedicineGuangzhou 510632, Guangdong, China
| |
Collapse
|
218
|
Yi L, Li J. CRISPR-Cas9 therapeutics in cancer: promising strategies and present challenges. Biochim Biophys Acta Rev Cancer 2016; 1866:197-207. [PMID: 27641687 DOI: 10.1016/j.bbcan.2016.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023]
Abstract
Cancer is characterized by multiple genetic and epigenetic alterations that drive malignant cell proliferation and confer chemoresistance. The ability to correct or ablate such mutations holds immense promise for combating cancer. Recently, because of its high efficiency and accuracy, the CRISPR-Cas9 genome editing technique has been widely used in cancer therapeutic explorations. Several studies used CRISPR-Cas9 to directly target cancer cell genomic DNA in cellular and animal cancer models which have shown therapeutic potential in expanding our anticancer protocols. Moreover, CRISPR-Cas9 can also be employed to fight oncogenic infections, explore anticancer drugs, and engineer immune cells and oncolytic viruses for cancer immunotherapeutic applications. Here, we summarize these preclinical CRISPR-Cas9-based therapeutic strategies against cancer, and discuss the challenges and improvements in translating therapeutic CRISPR-Cas9 into clinical use, which will facilitate better application of this technique in cancer research. Further, we propose potential directions of the CRISPR-Cas9 system in cancer therapy.
Collapse
Affiliation(s)
- Lang Yi
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
219
|
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system, a versatile RNA-guided DNA targeting platform, has been revolutionizing our ability to modify, manipulate, and visualize the human genome, which greatly advances both biological research and therapeutics development. Here, we review the current development of CRISPR/Cas9 technologies for gene editing, transcription regulation, genome imaging, and epigenetic modification. We discuss the broad application of this system to the study of functional genomics, especially genome-wide genetic screening, and to therapeutics development, including establishing disease models, correcting defective genetic mutations, and treating diseases.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158; ,
| | - Meng Chen
- Department of Bioengineering, Stanford University, Stanford, California 94305; ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- ChEM-H, Stanford University, Stanford, California 94305
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158;
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158; ,
| | - Dehua Zhao
- Department of Bioengineering, Stanford University, Stanford, California 94305; ,
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305; ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- ChEM-H, Stanford University, Stanford, California 94305
| |
Collapse
|
220
|
CRISPR-Cas9 gene editing: Delivery aspects and therapeutic potential. J Control Release 2016; 244:139-148. [PMID: 27498021 DOI: 10.1016/j.jconrel.2016.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022]
Abstract
The CRISPR-Cas9 gene editing system has taken the biomedical science field by storm, initiating rumors about future Nobel Prizes and heating up a fierce patent war, but also making significant scientific impact. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with CRISPR-associated proteins (Cas) are a part of the prokaryotic adaptive immune system and have successfully been repurposed for genome editing in mammalian cells. The CRISPR-Cas9 system has been used to correct genetic mutations and for replacing entire genes, opening up a world of possibilities for the treatment of genetic diseases. In addition, recently some new CRISPR-Cas systems have been discovered with interesting mechanistic variations. Despite these promising developments, many challenges have to be overcome before the system can be applied therapeutically in human patients and enabling delivery technology is one of the key challenges. Furthermore, the relatively high off-target effect of the system in its current form prevents it from being safely applied directly in the human body. In this review, the transformation of the CRISPR-Cas gene editing systems into a therapeutic modality will be discussed and the currently most realistic in vivo applications will be highlighted.
Collapse
|
221
|
Finnigan GC, Thorner J. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence. G3 (BETHESDA, MD.) 2016; 6:2147-56. [PMID: 27185399 PMCID: PMC4938667 DOI: 10.1534/g3.116.029801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Genome editing exploiting CRISPR/Cas9 has been adopted widely in academia and in the biotechnology industry to manipulate DNA sequences in diverse organisms. Molecular engineering of Cas9 itself and its guide RNA, and the strategies for using them, have increased efficiency, optimized specificity, reduced inappropriate off-target effects, and introduced modifications for performing other functions (transcriptional regulation, high-resolution imaging, protein recruitment, and high-throughput screening). Moreover, Cas9 has the ability to multiplex, i.e., to act at different genomic targets within the same nucleus. Currently, however, introducing concurrent changes at multiple loci involves: (i) identification of appropriate genomic sites, especially the availability of suitable PAM sequences; (ii) the design, construction, and expression of multiple sgRNA directed against those sites; (iii) potential difficulties in altering essential genes; and (iv) lingering concerns about "off-target" effects. We have devised a new approach that circumvents these drawbacks, as we demonstrate here using the yeast Saccharomyces cerevisiae First, any gene(s) of interest are flanked upstream and downstream with a single unique target sequence that does not normally exist in the genome. Thereafter, expression of one sgRNA and cotransformation with appropriate PCR fragments permits concomitant Cas9-mediated alteration of multiple genes (both essential and nonessential). The system we developed also allows for maintenance of the integrated, inducible Cas9-expression cassette or its simultaneous scarless excision. Our scheme-dubbed mCAL for " M: ultiplexing of C: as9 at A: rtificial L: oci"-can be applied to any organism in which the CRISPR/Cas9 methodology is currently being utilized. In principle, it can be applied to install synthetic sequences into the genome, to generate genomic libraries, and to program strains or cell lines so that they can be conveniently (and repeatedly) manipulated at multiple loci with extremely high efficiency.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
222
|
DeRenzo C, Gottschalk S. Genetically Modified T-cell Therapy for the Treatment of Osteosarcoma: An Update. ACTA ACUST UNITED AC 2016; 7. [PMID: 27313973 PMCID: PMC4904842 DOI: 10.4172/2155-9899.1000417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Christopher DeRenzo
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pediatrics Baylor College of Medicine, Houston, Texas 77030, USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pediatrics Baylor College of Medicine, Houston, Texas 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
223
|
Peterson A. CRISPR: express delivery to any DNA address. Oral Dis 2016; 23:5-11. [PMID: 27040868 DOI: 10.1111/odi.12487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/26/2022]
Abstract
The sudden emergence and worldwide adoption of CRISPR gene-editing technology confronts humanity with unprecedented opportunities and choices. CRISPR's transformative impact on our future understanding of biology, along with its potential to unleash control over the most fundamental of biological processes, is predictable by already achieved applications. Although its origin, composition, and function were revealed only recently, close to 3000 CRISPR-based publications have appeared including insightful and diversely focused reviews referenced here. Adding further to scientific and public awareness, a recent symposium addressed the ethical implications of interfacing CRISPR technology and human biology. However, the magnitude of CRISPR's rapidly emerging power mandates its broadest assessment. Only with the participation of a diverse and informed community can the most effective and humanity-positive CRISPR applications be defined. This brief review is aimed at those with little previous exposure to the CRISPR revolution. The molecules that constitute CRISPR's core components and their functional organization are described along with how the mechanism has been harnessed to edit genome structure and modulate gene function. Additionally, a glimpse into CRISPR's potential to unleash genetic changes with far-reaching consequences is presented.
Collapse
Affiliation(s)
- A Peterson
- Laboratory of Developmental Biology, Departments of Oncology, Human Genetics, Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|