201
|
Al-Halhouli A, Albagdady A, Al-Faqheri W, Kottmeier J, Meinen S, Frey LJ, Krull R, Dietzel A. Enhanced inertial focusing of microparticles and cells by integrating trapezoidal microchambers in spiral microfluidic channels. RSC Adv 2019; 9:19197-19204. [PMID: 35516901 PMCID: PMC9064905 DOI: 10.1039/c9ra03587g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/12/2019] [Indexed: 11/21/2022] Open
Abstract
In this work, manipulating width and equilibrium position of fluorescent microparticles in spiral microchannel fractionation devices by embedding microchambers along the last turn of a spiral is reported. Microchambers with different shapes and sizes were tested at Reynolds numbers between 15.7 and 156.6 (100-1000 μL min-1) to observe focusing of 2, 5 and 10 μm fluorescent microparticles. This paper also discusses the fabrication process of the microfluidic chips with femtosecond laser ablation on glass wafers, as well as a particle imaging velocimetry (μPIV) study of microparticle trajectories inside a microchamber. It could be demonstrated with an improved final design with inclined microchamber side walls, that the 2 μm particle equilibrium position is shifted towards the inner wall by ∼27 μm and the focusing line's width is reduced by ∼18 μm. Finally, Saccharomyces cerevisiae yeast cells were tested in the final chip and a cell focusing efficiency of 99.1% is achieved.
Collapse
Affiliation(s)
| | - Ahmed Albagdady
- NanoLab, School of Applied Technical Sciences, German Jordanian University Amman Jordan
| | - Wisam Al-Faqheri
- MicroNano Mechatronic Lab, Mechanical, Automotive & Materials Engineering, University of Windsor Windsor ON Canada
| | - Jonathan Kottmeier
- Institut für Mikrotechnik, Technische Universität Braunschweig Braunschweig Germany
| | - Sven Meinen
- Institut für Mikrotechnik, Technische Universität Braunschweig Braunschweig Germany
| | - Lasse Jannis Frey
- Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig Braunschweig Germany
| | - Rainer Krull
- Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig Braunschweig Germany
| | - Andreas Dietzel
- Institut für Mikrotechnik, Technische Universität Braunschweig Braunschweig Germany
| |
Collapse
|
202
|
Raoufi MA, Mashhadian A, Niazmand H, Asadnia M, Razmjou A, Warkiani ME. Experimental and numerical study of elasto-inertial focusing in straight channels. BIOMICROFLUIDICS 2019; 13:034103. [PMID: 31123535 PMCID: PMC6509046 DOI: 10.1063/1.5093345] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/22/2019] [Indexed: 05/06/2023]
Abstract
Elasto-inertial microfluidics has drawn significant attention in recent years due to its enhanced capabilities compared to pure inertial systems in control of small microparticles. Previous investigations have focused mainly on the applications of elasto-inertial sorting, rather than studying its fundamentals. This is because of the complexity of simulation and analysis, due to the presence of viscoelastic force. There have been some investigative efforts on the mechanisms of elasto-inertial focusing in straight channels; however, these studies were limited to simple rectangular channels and neglected the effects of geometry and flow rates on focusing positions. Herein, for the first time, we experimentally and numerically explore the effects of elasticity accompanying channel cross-sectional geometry and sample flow rates on the focusing phenomenon in elasto-inertial systems. The results reveal that increasing the aspect ratio weakens the elastic force more than inertial force, causing a transition from one focusing position to two. In addition, they show that increasing the angle of a channel corner causes the elastic force to push the particles more efficiently toward the center over a larger area of the channel cross section. Following on from this, we proposed a new complex straight channel which demonstrates a tighter focusing band compared to other channel geometries. Finally, we focused Saccharomyces cerevisiae cells (3-5 μm) in the complex channel to showcase its capability in focusing small-size particles. We believe that this research work improves the understanding of focusing mechanisms in viscoelastic solutions and provides useful insights into the design of elasto-inertial microfluidic devices.
Collapse
Affiliation(s)
| | - Ali Mashhadian
- Department of Mechanical Engineering, Sharif University, Tehran, Iran
| | - Hamid Niazmand
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney 2109, NSW, Australia
| | - Amir Razmjou
- UNESCO Center for Membrane Science and Technology, School of Chemical Science and Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | | |
Collapse
|
203
|
Moloudi R, Oh S, Yang C, Teo KL, Lam ATL, Ebrahimi Warkiani M, Win Naing M. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures. Biotechnol J 2019; 14:e1800674. [PMID: 30791214 DOI: 10.1002/biot.201800674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/23/2018] [Indexed: 01/09/2023]
Abstract
Recently, particle concentration and filtration using inertial microfluidics have drawn attention as an alternative to membrane and centrifugal technologies for industrial applications, where the target particle size varies between 1 µm and 500 µm. Inevitably, the bigger particle size (>50 µm) mandates scaling up the channel cross-section or hydraulic diameter (DH > 0.5 mm). The Dean-coupled inertial focusing dynamics in spiral microchannels is studied broadly; however, the impacts of secondary flow on particle migration in a scaled-up spiral channel is not fully elucidated. The mechanism of particle focusing inside scaled-up rectangular and trapezoidal spiral channels (i.e., 5-10× bigger than conventional microchannels) with an aim to develop a continuous and clog-free microfiltration system for bioprocessing is studied in detail. Herein, a unique focusing based on inflection point without the aid of sheath flow is reported. This new focusing mechanism, observed in the scaled-up channels, out-performs the conventional focusing scenarios in the previously reported trapezoidal and rectangular channels. Finally, as a proof-of-concept, the utility of this device is showcased for the first time as a retention system for a cell-microcarrier (MC) suspension culture.
Collapse
Affiliation(s)
- Reza Moloudi
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798.,Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634
| | - Steve Oh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798
| | - Kim Leng Teo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668
| | - Alan Tin-Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore, 138668
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, Center for Health Technologies, University of Technology Sydney, Ultimo, Sydney, NSW, 2007, Australia.,Institute of Molecular Medicine, Sechenov University, Moscow, Russia, 119146
| | - May Win Naing
- Bio-Manufacturing Programme, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Innovis, Singapore, 138634
| |
Collapse
|
204
|
Howard MP, Truskett TM, Nikoubashman A. Cross-stream migration of a Brownian droplet in a polymer solution under Poiseuille flow. SOFT MATTER 2019; 15:3168-3178. [PMID: 30883631 DOI: 10.1039/c8sm02552e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The migration of a Brownian fluid droplet in a parallel-plate microchannel was investigated using dissipative particle dynamics computer simulations. In a Newtonian solvent, the droplet migrated toward the channel walls due to inertial effects at the studied flow conditions, in agreement with theoretical predictions and recent simulations. However, the droplet focused onto the channel centerline when polymer chains were added to the solvent. Focusing was typically enhanced for longer polymers and higher polymer concentrations with a nontrivial flow-rate dependence due to droplet and polymer deformability. Brownian motion caused the droplet position to fluctuate with a distribution that primarily depended on the balance between inertial lift forces pushing the droplet outward and elastic forces from the polymers driving it inward. The droplet shape was controlled by the local shear rate, and so its average shape depended on the droplet distribution.
Collapse
Affiliation(s)
- Michael P Howard
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, USA.
| | | | | |
Collapse
|
205
|
High-Throughput, Time-Resolved Mechanical Phenotyping of Prostate Cancer Cells. Sci Rep 2019; 9:5742. [PMID: 30952895 PMCID: PMC6450875 DOI: 10.1038/s41598-019-42008-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/08/2019] [Indexed: 11/09/2022] Open
Abstract
Worldwide, prostate cancer sits only behind lung cancer as the most commonly diagnosed form of the disease in men. Even the best diagnostic standards lack precision, presenting issues with false positives and unneeded surgical intervention for patients. This lack of clear cut early diagnostic tools is a significant problem. We present a microfluidic platform, the Time-Resolved Hydrodynamic Stretcher (TR-HS), which allows the investigation of the dynamic mechanical response of thousands of cells per second to a non-destructive stress. The TR-HS integrates high-speed imaging and computer vision to automatically detect and track single cells suspended in a fluid and enables cell classification based on their mechanical properties. We demonstrate the discrimination of healthy and cancerous prostate cell lines based on the whole-cell, time-resolved mechanical response to a hydrodynamic load. Additionally, we implement a finite element method (FEM) model to characterise the forces responsible for the cell deformation in our device. Finally, we report the classification of the two different cell groups based on their time-resolved roundness using a decision tree classifier. This approach introduces a modality for high-throughput assessments of cellular suspensions and may represent a viable application for the development of innovative diagnostic devices.
Collapse
|
206
|
Laumann M, Schmidt W, Farutin A, Kienle D, Förster S, Misbah C, Zimmermann W. Emerging Attractor in Wavy Poiseuille Flows Triggers Sorting of Biological Cells. PHYSICAL REVIEW LETTERS 2019; 122:128002. [PMID: 30978078 DOI: 10.1103/physrevlett.122.128002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Microflows constitute an important instrument to control particle dynamics. A prominent example is the sorting of biological cells, which relies on the ability of deformable cells to move transversely to flow lines. A classic result is that soft microparticles migrate in flows through straight microchannels to an attractor at their center. Here, we show that flows through wavy channels fundamentally change the overall picture. They lead to the emergence of a second, coexisting attractor for soft particles. Its emergence and off-center location depends on the boundary modulation and the particle properties. The related cross-stream migration of soft particles is explained by analytical considerations, Stokesian dynamics simulations in unbounded flows, and Lattice-Boltzmann simulations in bounded flows. The novel off-center attractor can be used, for instance, in diagnostics, for separating cells of different size and elasticity, which is often an indicator of their health status.
Collapse
Affiliation(s)
- Matthias Laumann
- Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany
- Universite Grenoble Alpes/CNRS UMR 5588, LIPhy, 38041 Grenoble, France
| | - Winfried Schmidt
- Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Alexander Farutin
- Universite Grenoble Alpes/CNRS UMR 5588, LIPhy, 38041 Grenoble, France
| | - Diego Kienle
- Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Stephan Förster
- JNCS-1/ICS-1, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Chaouqi Misbah
- Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany
- Universite Grenoble Alpes/CNRS UMR 5588, LIPhy, 38041 Grenoble, France
| | - Walter Zimmermann
- Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
207
|
Xiang N, Zhang R, Han Y, Ni Z. A Multilayer Polymer-Film Inertial Microfluidic Device for High-Throughput Cell Concentration. Anal Chem 2019; 91:5461-5468. [DOI: 10.1021/acs.analchem.9b01116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People’s Republic of China
| | - Rui Zhang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People’s Republic of China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People’s Republic of China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, People’s Republic of China
| |
Collapse
|
208
|
Cruz J, Graells T, Walldén M, Hjort K. Inertial focusing with sub-micron resolution for separation of bacteria. LAB ON A CHIP 2019; 19:1257-1266. [PMID: 30821308 DOI: 10.1039/c9lc00080a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this paper, we study inertial focusing in curved channels and demonstrate the alignment of particles with diameters between 0.5 and 2.0 μm, a range of biological relevance since it comprises a multitude of bacteria and organelles of eukaryotic cells. The devices offer very sensitive control over the equilibrium positions and allow two modes of operation. In the first, particles having a large variation in size are focused and concentrated together. In the second, the distribution spreads in a range of sizes achieving separation with sub-micron resolution. These systems were validated with three bacteria species (Escherichia coli, Salmonella typhimurium and Klebsiella pneumoniae) showing good alignment while maintaining the viability in all cases. The experiments also revealed that the particles follow a helicoidal trajectory to reach the equilibrium positions, similar to the fluid streamlines simulated in COMSOL, implying that these positions occupy different heights in the cross section. When the equilibrium positions move to the inner wall as the flow rate increases, they are at a similar distance from the centre than in straight channels (∼0.6R), but when the equilibrium positions move to the outer wall as the flow rate increases, they are closer to the centre and the particles pass close to the inner wall to elevate their position before reaching them. These observations were used along with COMSOL simulations to explain the mechanism behind the local force balance and the migration of particles, which we believe contributes to further understanding of the phenomenon. Hopefully, this will make designing more intuitive and reduce the high pressure demands, enabling manipulation of particles much smaller than a micrometer.
Collapse
Affiliation(s)
- Javier Cruz
- Engineering Sciences, Uppsala University, Ångström Laboratoriet, Uppsala, Sweden.
| | | | | | | |
Collapse
|
209
|
Solsona M, Westerbeek EY, Bomer JG, Olthuis W, van den Berg A. Gradient in the electric field for particle position detection in microfluidic channels. LAB ON A CHIP 2019; 19:1054-1059. [PMID: 30768116 DOI: 10.1039/c8lc01333k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, a new method to track particles in microfluidic channels is presented. Particle position tracking in microfluidic systems is crucial to characterize sorting systems or to improve the analysis of cells in impedance flow cytometry studies. By developing an electric field gradient in a two parallel electrode array the position of the particles can be tracked in one axis by impedance analysis. This method can track the particle's position at lower frequencies and measure the conductivity of the system at higher frequencies. A 3-D simulation was performed showing particle position detection and conductivity analysis. To experimentally validate the technique, a microfluidic chip that develops a gradient in the electric field was fabricated and used to detect the position of polystyrene particles in one axis and measure their conductivity at low and high frequencies, respectively.
Collapse
Affiliation(s)
- Miguel Solsona
- BIOS Lab on a Chip Group, MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
210
|
Chung AJ. A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3110-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
211
|
Donath A, Kantzas A, Bryant S. Opportunities for Particles and Particle Suspensions to Experience Enhanced Transport in Porous Media: A Review. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01256-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
212
|
Ozbey A, Karimzadehkhouei M, Kocaturk NM, Bilir SE, Kutlu O, Gozuacik D, Kosar A. Inertial focusing of cancer cell lines in curvilinear microchannels. MICRO AND NANO ENGINEERING 2019. [DOI: 10.1016/j.mne.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
213
|
Schaaf C, Rühle F, Stark H. A flowing pair of particles in inertial microfluidics. SOFT MATTER 2019; 15:1988-1998. [PMID: 30714602 DOI: 10.1039/c8sm02476f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A flowing pair of particles in inertial microfluidics gives important insights into understanding and controlling the collective dynamics of particles like cells or droplets in microfluidic devices. They are applied in medical cell analysis and engineering. We study the dynamics of a pair of solid particles flowing through a rectangular microchannel using lattice Boltzmann simulations. We determine the inertial lift force profiles as a function of the two particle positions, their axial distance, and the Reynolds number. Generally, the profiles strongly differ between particles leading and lagging in flow and the lift forces are enhanced due to the presence of a second particle. At small axial distances, they are determined by viscous forces, while inertial forces dominate at large separations. We identify cross-streamline pairs as stable fixed points in the lift force profiles and argue that same-streamline configurations are only one-sided stable. Depending on the initial conditions, the two-particle lift forces in combination with the Poiseuille flow give rise to three types of unbound particle trajectories, called moving-apart, passing, and swapping, and one type of bound trajectory, where the particles perform damped oscillations towards the cross-stream line configuration. The damping rate scales with Reynolds number squared, since inertial forces are responsible for driving the particles to their steady-state positions.
Collapse
Affiliation(s)
- Christian Schaaf
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | | | | |
Collapse
|
214
|
Lee J, Mena SE, Burns MA. Micro-Particle Operations Using Asymmetric Traps. Sci Rep 2019; 9:1278. [PMID: 30718531 PMCID: PMC6362267 DOI: 10.1038/s41598-018-37454-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
Micro-particle operations in many lab-on-a-chip devices require active-type techniques that are accompanied by complex fabrication and operation. The present study describes an alternative method using a passive microfluidic scheme that allows for simpler operation and, therefore, potentially less expensive devices. We present three practical micro-particle operations using our previously developed passive mechanical trap, the asymmetric trap, in a non-acoustic oscillatory flow field. First, we demonstrate size-based segregation of both binary and ternary micro-particle mixtures using size-dependent trap-particle interactions to induce different transport speeds for each particle type. The degree of segregation, yield, and purity of the binary segregations are 0.97 ± 0.02, 0.96 ± 0.06, and 0.95 ± 0.05, respectively. Next, we perform a solution exchange by displacing particles from one solution into another in a trap array. Lastly, we focus and split groups of micro-particles by exploiting the transport polarity of asymmetric traps. These operations can be implemented in any closed fluidic circuit containing asymmetric traps using non-acoustic oscillatory flow, and they open new opportunities to flexibly control micro-particles in integrated lab-on-a-chip platforms with minimal external equipment.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, USA
| | - Sarah E Mena
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, USA
| | - Mark A Burns
- Department of Chemical Engineering, University of Michigan, Ann Arbor, 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, 48109, USA.
| |
Collapse
|
215
|
Zhang X, Xia K, Ji A, Xiang N. A smart and portable micropump for stable liquid delivery. Electrophoresis 2019; 40:865-872. [DOI: 10.1002/elps.201800494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Xinjie Zhang
- College of Mechanical and Electrical Engineering; Hohai University; Changzhou P. R. China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| | - Kang Xia
- College of Mechanical and Electrical Engineering; Hohai University; Changzhou P. R. China
| | - Aimin Ji
- College of Mechanical and Electrical Engineering; Hohai University; Changzhou P. R. China
| | - Nan Xiang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| |
Collapse
|
216
|
Liu N, Petchakup C, Tay HM, Li KHH, Hou HW. Spiral Inertial Microfluidics for Cell Separation and Biomedical Applications. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
217
|
Slanina F. Movement of spherical colloid particles carried by flow in tubes of periodically varying diameter. Phys Rev E 2019; 99:012604. [PMID: 30780301 DOI: 10.1103/physreve.99.012604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 06/09/2023]
Abstract
We provide analytical formulas for the movement of spherical particles in a corrugated tube, in the approximation of small amplitude of the tube diameter variation. We calculate how the particle is pushed toward the wall at some places and pulled off the wall at others. We show that this effect causes rectification of the particle movement, when the direction of the fluid flow is alternated, thus leading to the hydrodynamic ratchet effect. We propose such scheme as a particle-separation device.
Collapse
Affiliation(s)
- František Slanina
- Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha, Czech Republic
| |
Collapse
|
218
|
Shi X, Liu L, Cao W, Zhu G, Tan W. A Dean-flow-coupled interfacial viscoelastic fluid for microparticle separation applied in a cell smear method. Analyst 2019; 144:5934-5946. [DOI: 10.1039/c9an01070j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interfacial microfluidic device realizing cell separation and washing simultaneously and efficiently.
Collapse
Affiliation(s)
- Xin Shi
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Liyan Liu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Wenfeng Cao
- Tianjin Tumor Hospital
- Tianjin Medical University
- Tianjin 300070
- China
| | - Guorui Zhu
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Wei Tan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
219
|
Mukherjee P, Wang X, Zhou J, Papautsky I. Single stream inertial focusing in low aspect-ratio triangular microchannels. LAB ON A CHIP 2018; 19:147-157. [PMID: 30488049 DOI: 10.1039/c8lc00973b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A wide range of microfluidic devices for single stream focusing of cells and particles has emerged in recent years, based on both passive and active methods. Inertial microfluidics offers an attractive alternative to these methods, providing efficient and sheathless passive focusing of cells and beads. Nevertheless, in rectangular microchannels, the presence of multiple equilibrium positions necessitates complicated solutions involving manipulation of the 3D structure in order to achieve single stream flows. Here, we present a new approach to single-stream inertial focusing based on a triangular microchannel geometry. Changing the channel cross-sectional shape leads to asymmetry in the velocity profile, resulting in a size-dependent single stable equilibrium position near the channel apex. We demonstrate that soft lithography masters for such microchannels can be fabricated using PMMA through micromilling, and 15 μm diameter beads can be efficiently focused into a single stream. Confocal microscopy was used to confirm the focusing positions in the microchannel cross-section. We further integrated this device with a laser counting system to form a sheathless flow cytometer and demonstrated the counting of beads with an ∼326 s -1 throughput. The use of a triangular cross-section offers a number of benefits, including simplicity of the fundamental principle and geometry, control of design, a small footprint, and ease of integration, as well as high-precision single position focusing.
Collapse
Affiliation(s)
- Prithviraj Mukherjee
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, 218 SEO, Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
220
|
|
221
|
Fan L, Zhu X, Yan Q, Zhe J, Zhao L. A passive microfluidic device for continuous microparticle enrichment. Electrophoresis 2018; 40:1000-1009. [DOI: 10.1002/elps.201800454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Liang‐Liang Fan
- School of Food Equipment Engineering and Science Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiao‐Liang Zhu
- Department of Mechanical Engineering University of Akron Akron OH USA
| | - Qing Yan
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Jiang Zhe
- Department of Mechanical Engineering University of Akron Akron OH USA
| | - Liang Zhao
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| |
Collapse
|
222
|
Affiliation(s)
- Daniel Stoecklein
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
223
|
Tian F, Cai L, Chang J, Li S, Liu C, Li T, Sun J. Label-free isolation of rare tumor cells from untreated whole blood by interfacial viscoelastic microfluidics. LAB ON A CHIP 2018; 18:3436-3445. [PMID: 30328446 DOI: 10.1039/c8lc00700d] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Label-free, high-throughput, and efficient separation and enrichment of rare tumor cells, such as circulating tumor cells (CTCs), from untreated whole blood is a challenging task, owing to extremely rare events of CTCs and an enormous amount of blood cells. Current strategies for CTC separation always require pre-processing steps including lysis of blood or labeling of CTCs, leading to loss or damage of CTCs. Here, we report an interfacial viscoelastic microfluidic system for size-selective separation of tumor cells directly from whole blood, without the need of cell labeling and other treatments. The sharp flow interfaces between the sample flow and viscoelastic flow (0.05% PEO solutions) in the straight microchannel allow for the penetration of large tumor cells while blocking small blood cells, through exploiting the competition between the inertial lift forces and interfacial elastic lift forces. The microfluidic paradigm does not involve external force fields or complicated fabrication procedures, while achieving 95.1% separation efficiency and 77.5% recovery rate for isolating as few as 50 tumor cells in 1 mL whole blood. The viability of tumor cells after separation is ∼100%, and normal proliferation of separated tumor cells is observed. The interfacial viscoelastic microfluidics holds great promise to facilitate the fundamental and clinical studies of CTCs.
Collapse
Affiliation(s)
- Fei Tian
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | | | | | | | | | | | | |
Collapse
|
224
|
Pawłowska S, Kowalewski TA, Pierini F. Fibrous polymer nanomaterials for biomedical applications and their transport by fluids: an overview. SOFT MATTER 2018; 14:8421-8444. [PMID: 30339174 DOI: 10.1039/c8sm01269e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Over the past few decades, there has been strong interest in the development of new micro- and nanomaterials for biomedical applications. Their use in the form of capsules, particles or filaments suspended in body fluids is associated with conformational changes and hydrodynamic interactions responsible for their transport. The dynamics of fibres or other long objects in Poiseuille flow is one of the fundamental problems in a variety of biomedical contexts, such as mobility of proteins, dynamics of DNA or other biological polymers, cell movement, tissue engineering, and drug delivery. In this review, we discuss several important applications of micro and nanoobjects in this field and try to understand the problems of their transport in flow resulting from material-environment interactions in typical, crowded, and complex biological fluids. Our aim is to elucidate the relationship between the nano- and microscopic structures of elongated polymer particles and their flow properties, thus opening the possibility to design nanoobjects that can be efficiently transported by body fluids for targeted drug release or local tissue regeneration.
Collapse
Affiliation(s)
- S Pawłowska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
225
|
Abstract
Traditional fabrication techniques for microfluidic devices utilize a planar chip format that possesses limited control over the geometry of and materials placement around microchannel cross-sections. This imposes restrictions on the design of flow fields and external forces (electric, magnetic, piezoelectric, etc.) that can be imposed onto fluids and particles. Here we report a method of fabricating microfluidic channels with complex cross-sections. A scaled-up version of a microchannel is dimensionally reduced through a thermal drawing process, enabling the fabrication of meters-long microfluidic fibers with nonrectangular cross-sectional shapes, such as crosses, five-pointed stars, and crescents. In addition, by codrawing compatible materials, conductive domains can be integrated at arbitrary locations along channel walls. We validate this technology by studying unexplored regimes in hydrodynamic flow and by designing a high-throughput cell separation device. By enabling these degrees of freedom in microfluidic device design, fiber microfluidics provides a method to create microchannel designs that are inaccessible using planar techniques.
Collapse
|
226
|
Huang Y, Marson RL, Larson RG. Inertial migration of a rigid sphere in plane Poiseuille flow as a test of dissipative particle dynamics simulations. J Chem Phys 2018; 149:164912. [DOI: 10.1063/1.5047923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuanding Huang
- School of Mechatronics Engineering, Harbin Institute of Technology, Heilongjiang 150001, People’s Republic of China
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ryan L. Marson
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
- The Dow Chemical Company, Core R & D, Midland, Michigan 48674, USA
| | - Ronald G. Larson
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
227
|
Pasitka L, van Noort D, Lim W, Park S, Mandenius CF. A Microbore Tubing Based Spiral for Multistep Cell Fractionation. Anal Chem 2018; 90:12909-12916. [DOI: 10.1021/acs.analchem.8b03532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Pasitka
- Division of Biotechnology, IFM, Linköping University, Linköping 58183, Sweden
| | - Danny van Noort
- Division of Biotechnology, IFM, Linköping University, Linköping 58183, Sweden
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungsu Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | |
Collapse
|
228
|
Kwon T, Yao R, Hamel JFP, Han J. Continuous removal of small nonviable suspended mammalian cells and debris from bioreactors using inertial microfluidics. LAB ON A CHIP 2018; 18:2826-2837. [PMID: 30079919 DOI: 10.1039/c8lc00250a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Removing nonviable cells from a cell suspension is crucial in biotechnology and biomanufacturing. Label-free microfluidic cell separation devices based on dielectrophoresis, acoustophoresis, and deterministic lateral displacement are used to remove nonviable cells. However, their volumetric throughputs and test cell concentrations are generally too low to be useful in typical bioreactors in biomanufacturing. In this study, we demonstrate the efficient removal of small (<10 μm) nonviable cells from bioreactors while maintaining viable cells using inertial microfluidic cell sorting devices and characterize their performance. Despite the size overlap between viable and nonviable cell populations, the devices demonstrated 3.5-28.0% dead cell removal efficiency with 88.3-83.6% removal purity as well as 97.8-99.8% live cell retention efficiency at 4 million cells per mL with 80% viability. Cascaded and parallel configurations increased the cell concentration capacity (10 million cells per mL) and volumetric throughput (6-8 mL min-1). The system can be used for the removal of small nonviable cells from a cell suspension during continuous perfusion cell culture operations.
Collapse
Affiliation(s)
- Taehong Kwon
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA.
| | | | | | | |
Collapse
|
229
|
Lee DJ, Mai J, Huang TJ. Microfluidic approaches for cell-based molecular diagnosis. BIOMICROFLUIDICS 2018; 12:051501. [PMID: 30271515 PMCID: PMC6138474 DOI: 10.1063/1.5030891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
The search for next-generation biomarkers has enabled cell-based diagnostics in a number of disciplines ranging from oncology to pharmacogenetics. However, cell-based diagnostics are still far from clinical reality due to the complex assays and associated protocols which typically require cell isolation, lysis, DNA extraction, amplification, and detection steps. Leveraging recent advances in microfluidics, many biochemical assays have been translated onto microfluidic platforms. We have compared and summarized recent advances in modular approaches toward the realization of fully-integrated, cell-based molecular diagnostics for clinical and point-of-care applications.
Collapse
Affiliation(s)
- Dong Jun Lee
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | | |
Collapse
|
230
|
Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics. MICROMACHINES 2018; 9:mi9090433. [PMID: 30424366 PMCID: PMC6187282 DOI: 10.3390/mi9090433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 01/22/2023]
Abstract
Inertial microfluidics is a promising tool for a label-free particle manipulation for microfluidics technology. It can be utilized for particle separation based on size and shape, as well as focusing of particles. Prediction of particles’ trajectories is essential for the design of inertial microfluidic devices. At this point, numerical modeling is an important tool to understand the underlying physics and assess the performance of devices. A Monte Carlo-type computational model based on a Lagrangian discrete phase model is developed to simulate the particle trajectories in a spiral microchannel for inertial microfluidics. The continuous phase (flow field) is solved without the presence of a discrete phase (particles) using COMSOL Multi-physics. Once the flow field is obtained, the trajectory of particles is determined in the post-processing step via the COMSOL-MATLAB interface. To resemble the operation condition of the device, the random inlet position of the particles, many particles are simulated with random initial locations from the inlet of the microchannel. The applicability of different models for the inertial forces is discussed. The computational model is verified with experimental results from the literature. Different cases in a spiral channel with aspect ratios of 2.0 and 9.0 are simulated. The simulation results for the spiral channel with an aspect ratio of 9.0 are compared against the experimental data. The results reveal that despite certain limitations of our model, the current computational model satisfactorily predicts the location and the width of the focusing streams.
Collapse
|
231
|
Li M, van Zee M, Goda K, Di Carlo D. Size-based sorting of hydrogel droplets using inertial microfluidics. LAB ON A CHIP 2018; 18:2575-2582. [PMID: 30046787 DOI: 10.1039/c8lc00568k] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hydrogel droplets encapsulating cells and molecules provide a unique platform in biochemistry, biology, and medicine, including single-cell and single-molecule analysis, directed molecular evolution, and detection of cellular secretions. The ability to prepare hydrogel droplets with high monodispersity can lead to synchronization of populations, more controlled biomaterials, and more quantitative assays. Here, we present an inertial microfluidic device for passive, continuous, and high-throughput sorting of hydrogel droplets by size. The sorting is achieved due to size-dependent lateral inertial equilibrium positions: hydrogel droplets of different sizes have different equilibrium positions under the combined effects of shear-gradient lift and wall-effect lift forces. We apply this separation technique to isolate smaller hydrogel droplets containing microalgal colonies from larger empty droplets. We found that hydrogel droplets containing microalga Euglena gracilis (E. gracilis) shrink as cells grow and divide, while empty hydrogel droplets retain their size. Cell-laden hydrogel droplets were collected with up to 93.6% purity, and enrichment factor up to 5.51. After sorting, we were able to recover cells from hydrogel droplets without significantly affecting cell viability.
Collapse
Affiliation(s)
- Ming Li
- Department of Bioengineering, University of California, Los Angeles, USA.
| | | | | | | |
Collapse
|
232
|
Abstract
Inertial Microfluidics offer a high throughput, label-free, easy to design, and cost-effective solutions, and are a promising technique based on hydrodynamic forces (passive techniques) instead of external ones, which can be employed in the lab-on-a-chip and micro-total-analysis-systems for the focusing, manipulation, and separation of microparticles in chemical and biomedical applications. The current study focuses on the focusing behavior of the microparticles in an asymmetric curvilinear microchannel with curvature angle of 280°. For this purpose, the focusing behavior of the microparticles with three different diameters, representing cells with different sizes in the microchannel, was experimentally studied at flow rates from 400 to 2700 µL/min. In this regard, the width and position of the focusing band are carefully recorded for all of the particles in all of the flow rates. Moreover, the distance between the binary combinations of the microparticles is reported for each flow rate, along with the Reynolds number corresponding to the largest distances. Furthermore, the results of this study are compared with those of the microchannel with the same curvature angle but having a symmetric geometry. The microchannel proposed in this study can be used or further modified for cell separation applications.
Collapse
|
233
|
Vörös E, Piety NZ, Strachan BC, Lu M, Shevkoplyas SS. Centrifugation-free washing: A novel approach for removing immunoglobulin A from stored red blood cells. Am J Hematol 2018; 93:518-526. [PMID: 29285804 DOI: 10.1002/ajh.25026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 01/28/2023]
Abstract
Washed red blood cells (RBCs) are indicated for immunoglobulin A (IgA) deficient recipients. Centrifugation-based cell processors commonly used by hospital blood banks cannot consistently reduce IgA below the recommended levels, hence double washing is frequently required. Here, we describe a prototype of a simple, portable, disposable system capable of washing stored RBCs without centrifugation, while reducing IgA below 0.05 mg/dL in a single run. Samples from RBC units (n = 8, leukoreduced, 4-6 weeks storage duration) were diluted with normal saline to a hematocrit of 10%, and then washed using either the prototype washing system, or via conventional centrifugation. The efficiency of the two washing methods was quantified and compared by measuring several key in vitro quality metrics. The prototype of the washing system was able to process stored RBCs at a rate of 300 mL/hour, producing a suspension of washed RBCs with 43 ± 3% hematocrit and 86 ± 7% cell recovery. Overall, the two washing methods performed similarly for most measured parameters, lowering the concentration of free hemoglobin by >4-fold and total free protein by >10-fold. Importantly, the new washing system reduced the IgA level to 0.02 ± 0.01 mg/mL, a concentration 5-fold lower than that produced by conventional centrifugation. This proof-of-concept study showed that centrifugation may be unnecessary for washing stored RBCs. A simple, disposable, centrifugation-free washing system could be particularly useful in smaller medical facilities and resource limited settings that may lack access to centrifugation-based cell processors.
Collapse
Affiliation(s)
- Eszter Vörös
- Department of Biomedical Engineering; University of Houston; Houston Texas 77204
| | - Nathaniel Z. Piety
- Department of Biomedical Engineering; University of Houston; Houston Texas 77204
| | - Briony C. Strachan
- Department of Biomedical Engineering; University of Houston; Houston Texas 77204
| | - Madeleine Lu
- Department of Biomedical Engineering; University of Houston; Houston Texas 77204
| | | |
Collapse
|
234
|
Liu Z, Li D, Saffarian M, Tzeng T, Song Y, Pan X, Xuan X. Revisit of wall‐induced lateral migration in particle electrophoresis through a straight rectangular microchannel: Effects of particle zeta potential. Electrophoresis 2018; 40:955-960. [DOI: 10.1002/elps.201800198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Zhijian Liu
- College of Marine Engineering Dalian Maritime University Dalian P. R. China
- Department of Mechanical Engineering Clemson University Clemson SC USA
| | - Di Li
- Department of Mechanical Engineering Clemson University Clemson SC USA
| | - Maryam Saffarian
- Department of Biological Sciences Clemson University Clemson SC USA
| | - Tzuen‐Rong Tzeng
- Department of Biological Sciences Clemson University Clemson SC USA
| | - Yongxin Song
- College of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Xinxiang Pan
- College of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Xiangchun Xuan
- Department of Mechanical Engineering Clemson University Clemson SC USA
| |
Collapse
|
235
|
Xiang N, Shi X, Han Y, Shi Z, Jiang F, Ni Z. Inertial Microfluidic Syringe Cell Concentrator. Anal Chem 2018; 90:9515-9522. [DOI: 10.1021/acs.analchem.8b02201] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Xin Shi
- Department of General Surgery, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Yu Han
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhiguo Shi
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Fengtao Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China
| |
Collapse
|
236
|
Abstract
Inertial microfluidics is a widely used technology which enables label-free manipulation of particles in microchannels. However, this technology has been limited to bioparticles larger than RBCs, due to the strong correlation between the inertial lift forces and the particle size. This paper presents a method to extend the capabilities of inertial microfluidics to smaller bioparticles, of which a plethora of clinically relevant types exist in the human body. Therefore, this method can be integrated with microfluidic devices for inertial manipulation of bioparticles that have defied all prior attempts, enabling a variety of applications in clinical diagnosis including cytometry of micron-scale bioparticles, isolation and characterization of pathogens and extracellular microvesicles, or phenotyping of cancer or stem cells at physiological shear stresses. Inertial microfluidics (i.e., migration and focusing of particles in finite Reynolds number microchannel flows) is a passive, precise, and high-throughput method for microparticle manipulation and sorting. Therefore, it has been utilized in numerous biomedical applications including phenotypic cell screening, blood fractionation, and rare-cell isolation. Nonetheless, the applications of this technology have been limited to larger bioparticles such as blood cells, circulating tumor cells, and stem cells, because smaller particles require drastically longer channels for inertial focusing, which increases the pressure requirement and the footprint of the device to the extent that the system becomes unfeasible. Inertial manipulation of smaller bioparticles such as fungi, bacteria, viruses, and other pathogens or blood components such as platelets and exosomes is of significant interest. Here, we show that using oscillatory microfluidics, inertial focusing in practically “infinite channels” can be achieved, allowing for focusing of micron-scale (i.e. hundreds of nanometers) particles. This method enables manipulation of particles at extremely low particle Reynolds number (Rep < 0.005) flows that are otherwise unattainable by steady-flow inertial microfluidics (which has been limited to Rep > ∼10−1). Using this technique, we demonstrated that synthetic particles as small as 500 nm and a submicron bacterium, Staphylococcus aureus, can be inertially focused. Furthermore, we characterized the physics of inertial microfluidics in this newly enabled particle size and Rep range using a Peclet-like dimensionless number (α). We experimentally observed that α >> 1 is required to overcome diffusion and be able to inertially manipulate particles.
Collapse
|
237
|
Lei C, Kobayashi H, Wu Y, Li M, Isozaki A, Yasumoto A, Mikami H, Ito T, Nitta N, Sugimura T, Yamada M, Yatomi Y, Di Carlo D, Ozeki Y, Goda K. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc 2018; 13:1603-1631. [DOI: 10.1038/s41596-018-0008-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
238
|
Holloway PM, Butement J, Hegde M, West J. Serial integration of Dean-structured sample cores with linear inertial focussing for enhanced particle and cell sorting. BIOMICROFLUIDICS 2018; 12:044104. [PMID: 30034567 PMCID: PMC6037536 DOI: 10.1063/1.5038965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/24/2018] [Indexed: 06/02/2023]
Abstract
In this contribution, a channel aspect ratio of >2 was used to access high velocity regimes to provide confined sample cores by Dean focussing in advance of linear inertial focussing. This produces a singular separation origin with a mirrored transport path for efficient particle and blood cell sorting, while also increasing the spatial resolution for multiscale sorting.
Collapse
Affiliation(s)
- Paul M. Holloway
- Centre for Hybrid Biodevices and Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Jonathan Butement
- Centre for Hybrid Biodevices and Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | - Jonathan West
- Centre for Hybrid Biodevices and Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
239
|
|
240
|
Gou Y, Jia Y, Wang P, Sun C. Progress of Inertial Microfluidics in Principle and Application. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1762. [PMID: 29857563 PMCID: PMC6021949 DOI: 10.3390/s18061762] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
Abstract
Inertial microfluidics has become a popular topic in microfluidics research for its good performance in particle manipulation and its advantages of simple structure, high throughput, and freedom from an external field. Compared with traditional microfluidic devices, the flow field in inertial microfluidics is between Stokes state and turbulence, whereas the flow is still regarded as laminar. However, many mechanical effects induced by the inertial effect are difficult to observe in traditional microfluidics, making particle motion analysis in inertial microfluidics more complicated. In recent years, the inertial migration effect in straight and curved channels has been explored theoretically and experimentally to realize on-chip manipulation with extensive applications from the ordinary manipulation of particles to biochemical analysis. In this review, the latest theoretical achievements and force analyses of inertial microfluidics and its development process are introduced, and its applications in circulating tumor cells, exosomes, DNA, and other biological particles are summarized. Finally, the future development of inertial microfluidics is discussed. Owing to its special advantages in particle manipulation, inertial microfluidics will play a more important role in integrated biochips and biomolecule analysis.
Collapse
Affiliation(s)
- Yixing Gou
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Yixuan Jia
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China.
| | - Peng Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Changku Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
241
|
Jung BJ, Kim J, Kim JA, Jang H, Seo S, Lee W. PDMS-Parylene Hybrid, Flexible Microfluidics for Real-Time Modulation of 3D Helical Inertial Microfluidics. MICROMACHINES 2018; 9:E255. [PMID: 30424188 PMCID: PMC6187561 DOI: 10.3390/mi9060255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/25/2022]
Abstract
Inertial microfluidics has drawn much attention for its applications for circulating tumor cell separations from blood. The fluid flows and the inertial particle focusing in inertial microfluidic systems are highly dependent on the channel geometry and structure. Flexible microfluidic systems can have adjustable 3D channel geometries by curving planar 2D channels into 3D structures, which will enable tunable inertial separation. We present a poly(dimethylsiloxane) (PDMS)-parylene hybrid thin-film microfluidic system that can provide high flexibility for 3D channel shaping while maintaining the channel cross-sectional shape. The PDMS-parylene hybrid microfluidic channels were fabricated by a molding and bonding technique using initiated chemical vapor deposition (iCVD) bonding. We constructed 3D helical inertial microfluidic channels by coiling a straight 2D channel and studied the inertial focusing while varying radius of curvature and Reynolds number. This thin film structure allows for high channel curvature and high Dean numbers which leads to faster inertial particle focusing and shorter channel lengths than 2D spiral channels. Most importantly, the focusing positions of particles and cells in the microchannel can be tuned in real time by simply modulating the channel curvature. The simple mechanical modulation of these 3D structure microfluidic systems is expected to provide unique advantages of convenient tuning of cell separation thresholds with a single device.
Collapse
Affiliation(s)
- Bum-Joon Jung
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Jihye Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Jeong-Ah Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Hansol Jang
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Sumin Seo
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Wonhee Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
242
|
Raj M K, Chakraborty J, DasGupta S, Chakraborty S. Flow-induced deformation in a microchannel with a non-Newtonian fluid. BIOMICROFLUIDICS 2018; 12:034116. [PMID: 30018695 PMCID: PMC6019333 DOI: 10.1063/1.5036632] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/11/2018] [Indexed: 05/09/2023]
Abstract
In this work, we have fabricated physiologically relevant polydimethylsiloxane microfluidic phantoms to investigate the fluid-structure interaction that arises from the interaction between a non-Newtonian fluid and the deformable wall. A shear thinning fluid (Xanthan gum solution) is used as the blood analog fluid. We have systematically analyzed the steady flow characteristics of the microfluidic phantom using pressure drop, deformation, and flow visualization using micro-PIV (Particle Image Velocimetry) to identify the intricate aspects of the pressure as well as the velocity field. A simple mathematical formulation is introduced to evaluate the flow induced deformation. These results will aid in the design and development of deformable microfluidic systems and provide a deeper understanding of the fluid-structure interaction in microchannels with special emphasis on biomimetic in-vitro models for lab-on-a-chip applications.
Collapse
Affiliation(s)
- Kiran Raj M
- Advanced Technology Development Center, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Jeevanjyoti Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | |
Collapse
|
243
|
Tsai CHD, Takayama T, Shimozyo Y, Akai T, Kaneko M. Virtual vortex gear: Unique flow patterns driven by microfluidic inertia leading to pinpoint injection. BIOMICROFLUIDICS 2018; 12:034114. [PMID: 29983839 PMCID: PMC6010358 DOI: 10.1063/1.5031082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 05/02/2023]
Abstract
An interesting phenomenon that vortices are sequentially generated on a microfluidic chip is investigated in this paper. The direction of every two adjacent vortices is opposite to each other, like a set of gears, and thus is named virtual vortex gear (VVG). Both experiments and computational simulations were conducted in order to make clear the mechanism of VVG. The experimental results show that only the flow from a particular point would form vortices and enter the target chamber. A technique of inverse mapping is proposed based on the phenomenon and it demonstrates that only a pinpoint injection is sufficient to control the contents of a microfluidic chamber. VVG can significantly reduce the volume of chemical usage in biological research and has potential for other on-chip applications, such as mixing and valving.
Collapse
Affiliation(s)
- Chia-Hung Dylan Tsai
- Department of Mechanical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Author whom correspondence should be addressed:
| | - Toshio Takayama
- Department of Mechanical Engineering, Osaka University, Suita 565-0871, Japan
| | - Yuta Shimozyo
- Department of Mechanical Engineering, Osaka University, Suita 565-0871, Japan
| | - Takayuki Akai
- Department of Mechanical Engineering, Osaka University, Suita 565-0871, Japan
| | - Makoto Kaneko
- Department of Mechanical Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
244
|
Kellman M, Rivest F, Pechacek A, Sohn L, Lustig M. Node-Pore Coded Coincidence Correction: Coulter Counters, Code Design, and Sparse Deconvolution. IEEE SENSORS JOURNAL 2018; 18:3068-3079. [PMID: 29988953 PMCID: PMC6034687 DOI: 10.1109/jsen.2018.2805865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a novel method to perform individual particle (e.g. cells or viruses) coincidence correction through joint channel design and algorithmic methods. Inspired by multiple-user communication theory, we modulate the channel response, with Node-Pore Sensing, to give each particle a binary Barker code signature. When processed with our modified successive interference cancellation method, this signature enables both the separation of coincidence particles and a high sensitivity to small particles. We identify several sources of modeling error and mitigate most effects using a data-driven self-calibration step and robust regression. Additionally, we provide simulation analysis to highlight our robustness, as well as our limitations, to these sources of stochastic system model error. Finally, we conduct experimental validation of our techniques using several encoded devices to screen a heterogeneous sample of several size particles.
Collapse
Affiliation(s)
- Michael Kellman
- Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley
| | - Francois Rivest
- Dept. of Mechanical Engineering, University of California, Berkeley
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Switzerland
| | - Alina Pechacek
- Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley
| | - Lydia Sohn
- Dept. of Mechanical Engineering, University of California, Berkeley
- Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Michael Lustig
- Dept. of Electrical Engineering and Computer Sciences, University of California, Berkeley
- Graduate Program in Bioengineering, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
245
|
Vatankhah P, Shamloo A. Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection. Anal Chim Acta 2018; 1022:96-105. [PMID: 29729743 DOI: 10.1016/j.aca.2018.03.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 11/25/2022]
Abstract
Recent advances in the field of microfabrication have made the application of high-throughput microfluidics feasible. Mixing which is an essential part of any miniaturized standalone system remains the key challenge. This paper proposes a geometrically simple micromixer for efficient mixing for high-throughput microfluidic devices. The proposed micromixer utilizes a curved microchannel (spiral microchannel) to induce chaotic advection and enhance the mixing process. It is shown that the spiral microchannel is more efficient in comparison to a straight microchannel, mixing wise. The pressure drop in the spiral microchannel is only slightly higher than that in the straight microchannel. It is found that the mixing process in the spiral microchannel enhances with increasing the inlet velocity, unlike what happens in the straight microchannel. It is also realized that the initial radius of the spiral microchannel plays a prominent role in enhancing the mixing process. Studying different cross sections, it is gathered that the square cross section yields a higher mixing quality.
Collapse
Affiliation(s)
- Parham Vatankhah
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran
| | - Amir Shamloo
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran.
| |
Collapse
|
246
|
Hadikhani P, Hashemi SMH, Balestra G, Zhu L, Modestino MA, Gallaire F, Psaltis D. Inertial manipulation of bubbles in rectangular microfluidic channels. LAB ON A CHIP 2018; 18:1035-1046. [PMID: 29512658 DOI: 10.1039/c7lc01283g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inertial microfluidics is an active field of research that deals with crossflow positioning of the suspended entities in microflows. Until now, the majority of the studies have focused on the behavior of rigid particles in order to provide guidelines for microfluidic applications such as sorting and filtering. Deformable entities such as bubbles and droplets are considered in fewer studies despite their importance in multiphase microflows. In this paper, we show that the trajectory of bubbles flowing in rectangular and square microchannels can be controlled by tuning the balance of forces acting on them. A T-junction geometry is employed to introduce bubbles into a microchannel and analyze their lateral equilibrium position in a range of Reynolds (1 < Re < 40) and capillary numbers (0.1 < Ca < 1). We find that the Reynolds number (Re), the capillary number (Ca), the diameter of the bubble (D[combining macron]), and the aspect ratio of the channel are the influential parameters in this phenomenon. For instance, at high Re, the flow pushes the bubble towards the wall while large Ca or D[combining macron] moves the bubble towards the center. Moreover, in the shallow channels, having aspect ratios higher than one, the bubble moves towards the narrower sidewalls. One important outcome of this study is that the equilibrium position of bubbles in rectangular channels is different from that of solid particles. The experimental observations are in good agreement with the performed numerical simulations and provide insights into the dynamics of bubbles in laminar flows which can be utilized in the design of flow based multiphase flow reactors.
Collapse
Affiliation(s)
- Pooria Hadikhani
- Optics Laboratory, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
247
|
Ye H, Shen Z, Yu L, Wei M, Li Y. Manipulating nanoparticle transport within blood flow through external forces: an exemplar of mechanics in nanomedicine. Proc Math Phys Eng Sci 2018; 474:20170845. [PMID: 29662344 DOI: 10.1098/rspa.2017.0845] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/16/2018] [Indexed: 02/05/2023] Open
Abstract
A large number of nanoparticles (NPs) have been raised for diverse biomedical applications and some of them have shown great potential in treatment and imaging of diseases. Design of NPs is essential for delivery efficacy due to a number of biophysical barriers, which prevents the circulation of NPs in vascular flow and their accumulation at tumour sites. The physiochemical properties of NPs, so-called '4S' parameters, such as size, shape, stiffness and surface functionalization, play crucial roles in their life journey to be delivered to tumour sites. NPs can be modified in various ways to extend their blood circulation time and avoid their clearance by phagocytosis, and efficiently diffuse into tumour cells. However, it is difficult to overcome these barriers simultaneously by a simple combination of '4S' parameters for NPs. At this moment, external triggerings are necessary to guide the movement of NPs, which include light, ultrasound, magnetic field, electrical field and chemical interaction. The delivery system can be constructed to be sensitive to these external stimuli which can reduce the non-specific toxicity and improve the efficacy of the drug-delivery system. From a mechanics point of view, we discuss how different forces play their roles in the margination of NPs in blood flow and tumour microvasculature.
Collapse
Affiliation(s)
- Huilin Ye
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269, USA
| | - Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269, USA
| | - Le Yu
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA
| | - Mei Wei
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, CT 06269, USA.,Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA
| |
Collapse
|
248
|
Lee J, Burns MA. One-Way Particle Transport Using Oscillatory Flow in Asymmetric Traps. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:10.1002/smll.201702724. [PMID: 29377529 PMCID: PMC6324199 DOI: 10.1002/smll.201702724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/03/2017] [Indexed: 06/07/2023]
Abstract
One challenge of integrating of passive, microparticles manipulation techniques into multifunctional microfluidic devices is coupling the continuous-flow format of most systems with the often batch-type operation of particle separation systems. Here, a passive fluidic technique-one-way particle transport-that can conduct microparticle operations in a closed fluidic circuit is presented. Exploiting pass/capture interactions between microparticles and asymmetric traps, this technique accomplishes a net displacement of particles in an oscillatory flow field. One-way particle transport is achieved through four kinds of trap-particle interactions: mechanical capture of the particle, asymmetric interactions between the trap and the particle, physical collision of the particle with an obstacle, and lateral shift of the particle into a particle-trapping stream. The critical dimensions for those four conditions are found by numerically solving analytical mass balance equations formulated using the characteristics of the flow field in periodic obstacle arrays. Visual observation of experimental trap-particle dynamics in low Reynolds number flow (<0.01) confirms the validity of the theoretical predictions. This technique can transport hundreds of microparticles across trap rows in only a few fluid oscillations (<500 ms per oscillation) and separate particles by their size differences.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Chemical Engineering, University of Michigan at Ann Arbor, 3074 H. H. Dow, 2300 Hayward St, Ann Arbor, MI, 48109, USA
| | - Mark A Burns
- Department of Chemical Engineering, University of Michigan at Ann Arbor, 3074 H. H. Dow, 2300 Hayward St, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 1107 Carl A. Gerstacker, 2200 Bonisteel Blvd, Ann Arbor, MI, 48109, USA
| |
Collapse
|
249
|
Vu CHT, Lee HG, Chang YK, Oh HM. Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnol Adv 2018; 36:380-396. [DOI: 10.1016/j.biotechadv.2017.12.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
|
250
|
|