201
|
Sun Y, Bao Y, Han W, Song F, Shen X, Zhao J, Zuo J, Saffen D, Chen W, Wang Z, You X, Wang Y. Autoregulation of RBM10 and cross-regulation of RBM10/RBM5 via alternative splicing-coupled nonsense-mediated decay. Nucleic Acids Res 2017; 45:8524-8540. [PMID: 28586478 PMCID: PMC5737846 DOI: 10.1093/nar/gkx508] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mutations in the spliceosomal RNA binding protein RBM10 cause TARP syndrome and are frequently observed in lung adenocarcinoma (LUAD). We have previously shown that RBM10 enhances exon skipping of its target genes, including its paralog RBM5. Here, we report that RBM10 negatively regulates its own mRNA and protein expression and that of RBM5 by promoting alternative splicing-coupled nonsense-mediated mRNA decay (AS-NMD). Through computational analysis and experimental validation, we identified RBM10-promoted skipping of exon 6 or 12 in RBM10 and exon 6 or 16 in RBM5 as the underlying AS-NMD events. Importantly, we showed that LUAD-associated mutations affecting splice sites of RBM10 exons 6 or 12 abolished exon inclusion and correlated with reduced expression of RBM10 RNA. Together, our investigations have revealed novel molecular mechanisms underlying RBM10 autoregulation and cross-regulation of RBM5, thereby providing insights concerning the functions of RBM10 under various physiological and pathological conditions. Our combined computational and experimental approach should be useful for elucidating the role of AS-NMD in auto- and cross-regulation by other splicing regulators.
Collapse
Affiliation(s)
- Yue Sun
- School of Life Sciences, Fudan University, Shanghai 200438, China.,Institutes of Brain Science, Fudan University, Shanghai 200032, China.,Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenjian Han
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Science, Shanghai 200031, China
| | - Fan Song
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xianfeng Shen
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jiawei Zhao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ji Zuo
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - David Saffen
- Institutes of Brain Science, Fudan University, Shanghai 200032, China.,Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zefeng Wang
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Science, Shanghai 200031, China
| | - Xintian You
- Zuse Institute Berlin, Takustrasse 7, Berlin 14195, Germany
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
202
|
Alternative splicing of hepatitis B virus: A novel virus/host interaction altering liver immunity. J Hepatol 2017; 67:687-699. [PMID: 28600137 PMCID: PMC6433284 DOI: 10.1016/j.jhep.2017.05.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) RNA can undergo alternative splicing, but the relevance of this post-transcriptional regulation remains elusive. The mechanism of HBV alternative splicing regulation and its impact on liver pathogenesis were investigated. METHODS HBV RNA-interacting proteins were identified by RNA pull-down, combined with mass spectrometry analysis. HBV splicing regulation was investigated in chemically and surgically induced liver damage, in whole HBV genome transgenic mice and in hepatoma cells. Viral and endogenous gene expression were quantified by quantitative reverse transcription polymerase chain reaction, Western blot and enzyme-linked immunosorbent assay. Resident liver immune cells were studied by fluorescence-activated cell sorting. RESULTS HBV pregenomic RNA-interacting proteins were identified and 15% were directly related to the splicing machinery. Expression of these splicing factors was modulated in HBV transgenic mice with liver injuries and contributed to an increase of the HBV spliced RNA encoding for HBV splicing-generated protein (HBSP). HBSP transgenic mice with chemically induced liver fibrosis exhibited attenuated hepatic damage. The protective effect of HBSP resulted from a decrease of inflammatory monocyte/macrophage recruitment through downregulation of C-C motif chemokine ligand 2 (CCL2) expression in hepatocytes. In human hepatoma cells, the ability of HBSP to control CCL2 expression was confirmed and maintained in a whole HBV context. Finally, viral spliced RNA detection related to a decrease of CCL2 expression in the livers of HBV chronic carriers underscored this mechanism. CONCLUSION The microenvironment, modified by liver injury, increased HBSP RNA expression through splicing factor regulation, which in turn controlled hepatocyte chemokine synthesis. This feedback mechanism provides a novel insight into liver immunopathogenesis during HBV infection. Lay summary: Hepatitis B virus persists for decades in the liver of chronically infected patients. Immune escape is one of the main mechanisms developed by this virus to survive. Our study highlights how the crosstalk between virus and liver infected cells may contribute to this immune escape.
Collapse
|
203
|
Lee N, Kim DK, Han SH, Ryu HG, Park SJ, Kim KT, Choi KY. Comparative Interactomes of VRK1 and VRK3 with Their Distinct Roles in the Cell Cycle of Liver Cancer. Mol Cells 2017; 40:621-631. [PMID: 28927264 PMCID: PMC5638770 DOI: 10.14348/molcells.2017.0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 01/16/2023] Open
Abstract
Vaccinia-related kinase 1 (VRK1) and VRK3 are members of the VRK family of serine/threonine kinases and are principally localized in the nucleus. Despite the crucial roles of VRK1/VRK3 in physiology and disease, the molecular and functional interactions of VRK1/VRK3 are poorly understood. Here, we identified over 200 unreported VRK1/VRK3-interacting candidate proteins by affinity purification and LC-MS/MS. The networks of VRK1 and VRK3 interactomes were found to be associated with important biological processes such as the cell cycle, DNA repair, chromatin assembly, and RNA processing. Interactions of interacting proteins with VRK1/VRK3 were confirmed by biochemical assays. We also found that phosphorylations of XRCC5 were regulated by both VRK1/VRK3, and that of CCNB1 was regulated by VRK3. In liver cancer cells and tissues, VRK1/VRK3 were highly upregulated and its depletion affected cell cycle progression in the different phases. VRK3 seemed to affect S phase progression and G2 or M phase entry and exit, whereas VRK1 affects G1/S transition in the liver cancer, which could be explained by different interacting candidate proteins. Thus, this study not only provides a resource for investigating the unidentified functions of VRK1/VRK3, but also an insight into the regulatory roles of VRK1/VRK3 in biological processes.
Collapse
Affiliation(s)
- Namgyu Lee
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Dae-Kyum Kim
- Donnelly Centre, Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto,
Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto,
Canada
| | - Seung Hyun Han
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Hye Guk Ryu
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Sung Jin Park
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Kyong-Tai Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Kwan Yong Choi
- Department of Life Science, Pohang University of Science and Technology, Pohang 37673,
Korea
- Department of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
204
|
Narayanaswamy PB, Baral TK, Haller H, Dumler I, Acharya K, Kiyan Y. Transcriptomic pathway analysis of urokinase receptor silenced breast cancer cells: a microarray study. Oncotarget 2017; 8:101572-101590. [PMID: 29254187 PMCID: PMC5731897 DOI: 10.18632/oncotarget.21351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023] Open
Abstract
Urokinase plasminogen activator receptor (PLAUR) has been implicated in a variety of physiological and pathological conditions. The multi-functionality of PLAUR is due to its capacity to interact with many co-receptors to regulate extracellular proteolysis and intracellular signaling. Recent reports are identifying novel functions of PLAUR which were not evident in the past; however, the molecular mechanisms of PLAUR signaling are not completely understood. Here, we have compared the transcriptomes of silencing control (sicon) and PLAUR silenced (PLAURsi) MDA-MB-231 breast cancer cells on treatment with radiation. We isolated RNA from the cells, synthesized cDNA and measured the gene expression changes by microarray. We identified 24 downregulated and 53 upregulated genes, which were significantly (P-value < 0.005) affected by PLAUR silencing. Our analysis revealed 415 canonical pathways and 743 causal disease networks affected on silencing PLAUR. Transcriptomic changes and predicted pathways supported and consolidated some of the earlier understanding in the context of PLAUR signaling; including our recent observations in DNA damage and repair process. In addition, we have identified several novel pathways where PLAUR is implicated.
Collapse
Affiliation(s)
| | - Tapan K Baral
- Shodhaka Life Sciences Private Limited, Bengaluru, India
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Inna Dumler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Kshitish Acharya
- Shodhaka Life Sciences Private Limited, Bengaluru, India.,Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Yulia Kiyan
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
205
|
The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochem J 2017; 474:2925-2935. [PMID: 28801479 PMCID: PMC5553131 DOI: 10.1042/bcj20170280] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as critical regulators of various biological processes and human diseases. The mechanisms of action involve their interactions with proteins, RNA and genomic DNA. Most lncRNAs display strong nuclear localization. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large family of RNA-binding proteins that are important for multiple aspects of nucleic acid metabolism. hnRNPs are also predominantly expressed in the nucleus. This review discusses the interactions of lncRNAs and hnRNPs in regulating gene expression at transcriptional and post-transcriptional levels or by changing genomic structure, highlighting their involvements in glucose and lipid metabolism, immune response, DNA damage response, and other cellular functions. Toward the end, several techniques that are used to identify lncRNA binding partners are summarized. There are still many questions that need to be answered in this relatively new research area, which might provide novel targets to control the biological outputs of cells in response to different stimuli.
Collapse
|
206
|
Kim C, Kang D, Lee EK, Lee JS. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2062384. [PMID: 28811863 PMCID: PMC5547732 DOI: 10.1155/2017/2062384] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related diseases. Long noncoding RNAs (lncRNAs) are >200 nucleotides long, poorly conserved, and transcribed in a manner similar to that of mRNAs. They are tightly regulated during various cellular and physiological processes. Although many lncRNAs and their functional roles are still undescribed, the importance of lncRNAs in a variety of biological processes is widely recognized. RNA-binding proteins (RBPs) have a pivotal role in posttranscriptional regulation as well as in mRNA transport, storage, turnover, and translation. RBPs interact with mRNAs, other RBPs, and noncoding RNAs (ncRNAs) including lncRNAs, and they are involved in the regulation of a broad spectrum of cellular processes. Like other cell fate regulators, lncRNAs and RBPs, separately or cooperatively, are implicated in initiation and maintenance of cellular senescence, aging, and age-related diseases. Here, we review the current understanding of both lncRNAs and RBPs and their association with oxidative stress, senescence, and age-related diseases.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| |
Collapse
|
207
|
Lo CS, Shi Y, Chenier I, Ghosh A, Wu CH, Cailhier JF, Ethier J, Lattouf JB, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Heterogeneous Nuclear Ribonucleoprotein F Stimulates Sirtuin-1 Gene Expression and Attenuates Nephropathy Progression in Diabetic Mice. Diabetes 2017; 66:1964-1978. [PMID: 28424160 PMCID: PMC5482081 DOI: 10.2337/db16-1588] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
We investigated the mechanism of heterogeneous nuclear ribonucleoprotein F (hnRNP F) renoprotective action in a type 2 diabetes (T2D) mouse model (db/db). Immortalized rat renal proximal tubular cells (IRPTCs) and kidneys from humans with T2D were also studied. The db/db mice developed hyperglycemia, oxidative stress, and nephropathy at age 20 weeks compared with their db/m littermates. These abnormalities, with the exception of hyperglycemia, were attenuated in db/dbhnRNP F-transgenic (Tg) mice specifically overexpressing hnRNP F in their RPTCs. Sirtuin-1, Foxo3α, and catalase expression were significantly decreased in RPTCs from db/db mice and normalized in db/dbhnRNP F-Tg mice. In vitro, hnRNP F overexpression stimulated Sirtuin-1 and Foxo3α with downregulation of acetylated p53 expression and prevented downregulation of Sirtuin-1 and Foxo3α expression in IRPTCs by high glucose plus palmitate. Transfection of Sirtuin-1 small interfering RNA prevented hnRNP F stimulation of Foxo3α and downregulation of acetylated p53 expression. hnRNP F stimulated Sirtuin-1 transcription via hnRNP F-responsive element in the Sirtuin-1 promoter. Human T2D kidneys exhibited more RPTC apoptosis and lower expression of hnRNP F, SIRTUIN-1, and FOXO3α than nondiabetic kidneys. Our results demonstrate that hnRNP F protects kidneys against oxidative stress and nephropathy via stimulation of Sirtuin-1 expression and signaling in diabetes.
Collapse
MESH Headings
- Acetylation
- Aged
- Animals
- Apoptosis
- Blotting, Western
- Case-Control Studies
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Disease Models, Animal
- Disease Progression
- Female
- Fibrosis
- Forkhead Box Protein O3
- Gene Expression Regulation/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group F-H/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group F-H/metabolism
- Humans
- Immunohistochemistry
- In Situ Nick-End Labeling
- In Vitro Techniques
- Kidney/metabolism
- Kidney/pathology
- Kidney Tubules, Proximal/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Middle Aged
- Oxidative Stress
- Rats
- Real-Time Polymerase Chain Reaction
- Receptors, Leptin/genetics
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Chao-Sheng Lo
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Yixuan Shi
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Chenier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Anindya Ghosh
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Chin-Han Wu
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Francois Cailhier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean Ethier
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Baptiste Lattouf
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Janos G Filep
- Centre de recherche, Hôpital Maisonneuve-Rosemont and Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Shao-Ling Zhang
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - John S D Chan
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
208
|
Gaytan-Cervantes J, Gonzalez-Torres C, Maldonado V, Zampedri C, Ceballos-Cancino G, Melendez-Zajgla J. Protein Sam68 regulates the alternative splicing of survivin DEx3. J Biol Chem 2017; 292:13745-13757. [PMID: 28655776 DOI: 10.1074/jbc.m117.800318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 01/31/2023] Open
Abstract
Messenger RNA alternative splicing (AS) regulates the expression of a variety of genes involved in both physiological and pathological processes. AS of the anti-apoptotic and proliferation-associated survivin (BIRC5) gene generates six isoforms, which regulate key aspects of cancer initiation and progression. One of the isoforms is survivin DEx3, in which the exclusion of exon 3 generates a unique carboxyl terminus with specific anti-apoptotic functions. This isoform is highly expressed in advanced stages of breast and cervical tumors. Therefore, understanding the mechanisms that regulate survivin DEx3 mRNA AS is clearly important. To this end, we designed a minigene (M), and in combination with a series of deletions and site-directed mutations, we determined that the first 22 bp of exon 3 contain cis-acting elements that enhance the exclusion of exon 3 to generate the survivin DEx3 mRNA isoform. Furthermore, using pulldown assays, we discovered that Sam68 is a possible trans-acting factor that binds to this region and regulates exon 3 splicing. This result was corroborated using a cell line in which the Sam68 binding site in the survivin gene was mutated with the CRISPR/Cas system. This work provides the first clues regarding the regulation of survivin DEx3 mRNA splicing.
Collapse
Affiliation(s)
| | | | - Vilma Maldonado
- Epigenetics, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | | | | | | |
Collapse
|
209
|
Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc Natl Acad Sci U S A 2017; 114:E5207-E5215. [PMID: 28611215 DOI: 10.1073/pnas.1617467114] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alternative RNA splicing plays an important role in cancer. To determine which factors involved in RNA processing are essential in prostate cancer, we performed a genome-wide CRISPR/Cas9 knockout screen to identify the genes that are required for prostate cancer growth. Functional annotation defined a set of essential spliceosome and RNA binding protein (RBP) genes, including most notably heterogeneous nuclear ribonucleoprotein L (HNRNPL). We defined the HNRNPL-bound RNA landscape by RNA immunoprecipitation coupled with next-generation sequencing and linked these RBP-RNA interactions to changes in RNA processing. HNRNPL directly regulates the alternative splicing of a set of RNAs, including those encoding the androgen receptor, the key lineage-specific prostate cancer oncogene. HNRNPL also regulates circular RNA formation via back splicing. Importantly, both HNRNPL and its RNA targets are aberrantly expressed in human prostate tumors, supporting their clinical relevance. Collectively, our data reveal HNRNPL and its RNA clients as players in prostate cancer growth and potential therapeutic targets.
Collapse
|
210
|
Jiang P, Li Z, Tian F, Li X, Yang J. Fyn/heterogeneous nuclear ribonucleoprotein E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. Int J Oncol 2017; 51:169-183. [PMID: 28560430 PMCID: PMC5467783 DOI: 10.3892/ijo.2017.4018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/18/2017] [Indexed: 01/29/2023] Open
Abstract
Pancreatic cancer is characterized by a dense desmoplastic reaction in which extracellular matrix proteins accumulate and surround tumor cells. Integrins and their related signaling molecules are associated with progression of pancreatic cancer. In the present study, the association between the metastasis of pancreatic cancer and the expression of hnRNP E1 and integrin β1 was evaluated. In vitro and in vivo experiments were designed to study the mechanism underlying the regulation of integrin β1 splicing by the Fyn/hnRNP E1 spliceosome. Expression of hnRNP E1 and integrin β1A were associated with metastasis of pancreatic cancer. Inhibition of Fyn activity upregulated the expression of P21-activated kinase 1 and promoted the phosphorylation and nuclear localization of hnRNP E1, leading to the construction of a spliceosome complex that affected the alterative splicing of integrin β1. In the hnRNP E1 spliceosome complex, hnRNP A1 and serine/arginine-rich splicing factor 1 were responsible for binding to the pre-mRNA of integrin β1. Suppression of Fyn activity and/or overexpression of hnRNP E1 decreased the metastasis of pancreatic cancer cells. In pancreatic cancer, the present study demonstrated a novel mechanism by which Fyn/hnRNP E1 signaling regulates pancreatic cancer metastasis by affecting the alternative splicing of integrin β1. hnRNP E1 and integrin β1A are associated with the metastasis of pancreatic cancer and may be novel molecular targets for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhonghu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Feng Tian
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaowu Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
211
|
Moujalled D, Grubman A, Acevedo K, Yang S, Ke YD, Moujalled DM, Duncan C, Caragounis A, Perera ND, Turner BJ, Prudencio M, Petrucelli L, Blair I, Ittner LM, Crouch PJ, Liddell JR, White AR. TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Hum Mol Genet 2017; 26:1732-1746. [PMID: 28334913 DOI: 10.1093/hmg/ddx093] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a major disease-associated protein involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Our previous studies found a direct association between TDP-43 and heterogeneous nuclear ribonucleoprotein K (hnRNP K). In this study, utilizing ALS patient fibroblasts harboring a TDP-43M337V mutation and NSC-34 motor neuronal cell line expressing TDP-43Q331K mutation, we show that hnRNP K expression is impaired in urea soluble extracts from mutant TDP-43 cell models. This was confirmed in vivo using TDP-43Q331K and inducible TDP-43A315T murine ALS models. We further investigated the potential pathological effects of mutant TDP-43-mediated changes to hnRNP K metabolism by RNA binding immunoprecipitation analysis. hnRNP K protein was bound to antioxidant NFE2L2 transcripts encoding Nrf2 antioxidant transcription factor, with greater enrichment in TDP-43M337V patient fibroblasts compared to healthy controls. Subsequent gene expression profiling revealed an increase in downstream antioxidant transcript expression of Nrf2 signaling in the spinal cord of TDP-43Q331K mice compared to control counterparts, yet the corresponding protein expression was not up-regulated in transgenic mice. Despite the elevated expression of antioxidant transcripts, we observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. Our findings indicate that further exploration of the interplay between hnRNP K (or other hnRNPs) and Nrf2-mediated antioxidant signaling is warranted and may be an important driver for motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Diane Moujalled
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Karla Acevedo
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Shu Yang
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | - Yazi D Ke
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Donia M Moujalled
- Australian Centre for Blood Diseases (ACBD), The Alfred Centre, Victoria 3004, Australia
| | - Clare Duncan
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | | | - Nirma D Perera
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | | | | | - Ian Blair
- The Australian School of Advanced Medicine, Macquarie University, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Unit, Department of Anatomy, Faculty of Medicine, School of Medical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Peter J Crouch
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
| | - Jeffrey R Liddell
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
| | - Anthony R White
- Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3010, Australia
- Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| |
Collapse
|
212
|
Hu Y, Sun Z, Deng J, Hu B, Yan W, Wei H, Jiang J. Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway. Tumour Biol 2017; 39:1010428317694318. [PMID: 28351333 DOI: 10.1177/1010428317694318] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence has indicated that the splicing factor hnRNPA2B1 plays a direct role in cancer development, progression, gene expression, and signal transduction. Previous studies have shown that knocking down hnRNPA2B1 in breast cancer cells induces apoptosis, but the mechanism and other functions of hnRNPA2B1 in breast cancer are unknown. The goal of this study was to investigate the biological function, clinical significance, and mechanism of hnRNPA2B1 in breast cancer. The expression of hnRNPA2B1 in 92 breast cancer and adjacent normal tissue pairs was analyzed by immunohistochemical staining. Stable clones exhibiting knockdown of hnRNPA2B1 via small hairpin RNA expression were generated using RNA interference technology in breast cancer cell lines. The effects of hnRNPA2B1 on cell proliferation were examined by MTT and EdU assay, and cellular apoptosis and the cell cycle were examined by flow cytometry. A nude mouse xenograft model was established to elucidate the function of hnRNPA2B1 in tumorigenesis in vivo. The role of hnRNPA2B1 in signaling pathways was investigated in vitro. Our data revealed that hnRNPA2B1 was overexpressed in breast cancer tissue specimens and cell lines. Knockdown of hnRNPA2B1 reduced breast cancer cell proliferation, induced apoptosis, and prolonged the S phase of the cell cycle in vitro. In addition, hnRNPA2B1 knockdown suppressed subcutaneous tumorigenicity in vivo. On a molecular level, hnRNPA2B1 knockdown decreased signal transducer and activator of transcription 3 and extracellular-signal-regulated kinase 1/2 phosphorylation. We concluded that hnRNPA2B1 promotes the tumorigenic potential of breast cancer cells, MCF-7 and MDA-MB-231, through the extracellular-signal-regulated kinase 1/2 or signal transducer and activator of transcription 3 pathway, which may serve as a target for future therapies.
Collapse
Affiliation(s)
- Ying Hu
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zihan Sun
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jinmu Deng
- 2 Department of Mammary Gland and Thyroid Gland, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Baoquan Hu
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenting Yan
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongyi Wei
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Jiang
- 1 Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
213
|
RNA-binding proteins with prion-like domains in health and disease. Biochem J 2017; 474:1417-1438. [PMID: 28389532 DOI: 10.1042/bcj20160499] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Collapse
|
214
|
Muddukrishna B, Jackson CA, Yu MC. Protein arginine methylation of Npl3 promotes splicing of the SUS1 intron harboring non-consensus 5' splice site and branch site. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:730-739. [PMID: 28392442 DOI: 10.1016/j.bbagrm.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022]
Abstract
Protein arginine methylation occurs on spliceosomal components and spliceosome-associated proteins, but how this modification contributes to their function in pre-mRNA splicing remains sparse. Here we provide evidence that protein arginine methylation of the yeast SR-/hnRNP-like protein Npl3 plays a role in facilitating efficient splicing of the SUS1 intron that harbors a non-consensus 5' splice site and branch site. In yeast cells lacking the major protein arginine methyltransferase HMT1, we observed a change in the co-transcriptional recruitment of the U1 snRNP subunit Snp1 and Npl3 to pre-mRNAs harboring both consensus (ECM33 and ASC1) and non-consensus (SUS1) 5' splice site and branch site. Using an Npl3 mutant that phenocopies wild-type Npl3 when expressed in Δhmt1 cells, we showed that the arginine methylation of Npl3 is responsible for this. Examination of pre-mRNA splicing efficiency in these mutants reveals the requirement of Npl3 methylation for the efficient splicing of SUS1 intron 1, but not of ECM33 or ASC1. Changing the 5' splice site and branch site in SUS1 intron 1 to the consensus form restored splicing efficiency in an Hmt1-independent manner. Results from biochemical studies show that methylation of Npl3 promotes its optimal association with the U1 snRNP through its association with the U1 snRNP subunit Mud1. Based on these data, we propose a model in which Hmt1, via arginine methylation of Npl3, facilitates U1 snRNP engagement with the pre-mRNA to promote usage of non-consensus splice sites by the splicing machinery.
Collapse
Affiliation(s)
- Bhavana Muddukrishna
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Christopher A Jackson
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
215
|
Espinoza-Lewis RA, Yang Q, Liu J, Huang ZP, Hu X, Chen D, Wang DZ. Poly(C)-binding protein 1 (Pcbp1) regulates skeletal muscle differentiation by modulating microRNA processing in myoblasts. J Biol Chem 2017; 292:9540-9550. [PMID: 28381556 DOI: 10.1074/jbc.m116.773671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Indexed: 11/06/2022] Open
Abstract
Regulation of gene expression during muscle development and disease remains incompletely understood. microRNAs are a class of small non-coding RNAs that regulate gene expression and function post-transcriptionally. The poly(C)-binding protein1 (Pcbp1, hnRNP-E1, or αCP-1) is an RNA-binding protein that has been reported to bind the 3'-UTRs of target genes to regulate mRNA stability and protein translation. However, Pcbp1's biological function and the general mechanism of action remain largely undetermined. Here, we report that Pcbp1 is a component of the miRNA-processing pathway that regulates miRNA biogenesis. siRNA-based inhibition of Pcbp1 in mouse skeletal muscle myoblasts led to dysregulated cellular proliferation and differentiation. We also found that Pcbp1 null mutant mice exhibit early embryonic lethality, indicating that Pcbp1 is indispensable for embryonic development. Interestingly, hypomorphic Pcbp1 mutant mice displayed defects in muscle growth due to defects in the proliferation and differentiation of myoblasts and muscle satellite cells, in addition to a slow to fast myofibril switch. Moreover, Pcbp1 modulated the processing of muscle-enriched miR-1, miR-133, and miR-206 by physically interacting with argonaute 2 (AGO2) and other miRNA pathway components. Our study, therefore, uncovers the important function of Pcbp1 in skeletal muscle and the microRNA pathway, signifying its potential as a therapeutic target for muscle disease.
Collapse
Affiliation(s)
- Ramón A Espinoza-Lewis
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Qiumei Yang
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 6111130, China
| | - Jianming Liu
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Zhan-Peng Huang
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Xiaoyun Hu
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 6111130, China
| | - Da-Zhi Wang
- From the Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
216
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
217
|
Mihailovic MK, Chen A, Gonzalez-Rivera JC, Contreras LM. Defective Ribonucleoproteins, Mistakes in RNA Processing, and Diseases. Biochemistry 2017; 56:1367-1382. [PMID: 28206738 DOI: 10.1021/acs.biochem.6b01134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ribonucleoproteins (RNPs) are vital to many cellular events. To this end, many neurodegenerative diseases and cancers have been linked to RNP malfunction, particularly as this relates to defective processing of cellular RNA. The connection of RNPs and diseases has also propagated a shift of focus onto RNA targeting from traditional protein targeting treatments. However, therapeutic development in this area has been limited by incomplete molecular insight into the specific contributions of RNPs to disease. This review outlines the role of several RNPs in diseases, focusing on molecular defects in processes that affect proper RNA handling in the cell. This work also evaluates the contributions of recently developed methods to understanding RNP association and function. We review progress in this area by focusing on molecular malfunctions of RNPs associated with the onset and progression of several neurodegenerative diseases and cancer and conclude with a brief discussion of RNA-based therapeutic efforts.
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Juan C Gonzalez-Rivera
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin , 200 East. Dean Keeton Street, Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
218
|
Capitanio JS, Montpetit B, Wozniak RW. Human Nup98 regulates the localization and activity of DExH/D-box helicase DHX9. eLife 2017; 6. [PMID: 28221134 PMCID: PMC5338925 DOI: 10.7554/elife.18825] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022] Open
Abstract
Beyond their role at nuclear pore complexes, some nucleoporins function in the nucleoplasm. One such nucleoporin, Nup98, binds chromatin and regulates gene expression. To gain insight into how Nup98 contributes to this process, we focused on identifying novel binding partners and understanding the significance of these interactions. Here we report on the identification of the DExH/D-box helicase DHX9 as an intranuclear Nup98 binding partner. Various results, including in vitro assays, show that the FG/GLFG region of Nup98 binds to N- and C-terminal regions of DHX9 in an RNA facilitated manner. Importantly, binding of Nup98 stimulates the ATPase activity of DHX9, and a transcriptional reporter assay suggests Nup98 supports DHX9-stimulated transcription. Consistent with these observations, our analysis revealed that Nup98 and DHX9 bind interdependently to similar gene loci and their transcripts. Based on our results, we propose that Nup98 functions as a co-factor that regulates DHX9 and, potentially, other RNA helicases.
Collapse
Affiliation(s)
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada.,Department of Viticulture and Enology, University of California, Davis, United states
| | | |
Collapse
|
219
|
Recent advances in the identification of the host factors involved in dengue virus replication. Virol Sin 2017; 32:23-31. [PMID: 28124222 PMCID: PMC6598876 DOI: 10.1007/s12250-016-3902-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022] Open
Abstract
Dengue virus (DENV) belongs to the genus Flavivirus of the family Flaviviridae and it is primarily transmitted via Aedes aegypti and Aedes albopictus mosquitoes. The life cycle of DENV includes attachment, endocytosis, protein translation, RNA synthesis, assembly, egress, and maturation. Recent researches have indicated that a variety of host factors, including cellular proteins and microRNAs, positively or negatively regulate the DENV replication process. This review summarizes the latest findings (from 2014 to 2016) in the identification of the host factors involved in the DENV life cycle and Dengue infection.
Collapse
|
220
|
Chen WY, Lin CL, Chuang JH, Chiu FY, Sun YY, Liang MC, Lin Y. Heterogeneous nuclear ribonucleoprotein M associates with mTORC2 and regulates muscle differentiation. Sci Rep 2017; 7:41159. [PMID: 28106162 PMCID: PMC5247691 DOI: 10.1038/srep41159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) plays a range of crucial roles in cell survival, growth, proliferation, metabolism, and morphology. However, mTOR forms two distinct complexes, mTOR complex 1 and mTOR complex 2 (mTORC1 and mTORC2), via association with a series of different components; this allows the complexes to execute their wide range of functions. This study explores further the composition of the mTORC2 complex. Utilizing Rictor knock-out cells, immunoprecipitation and mass spectrometry, a novel Rictor associated protein, heterogeneous nuclear ribonucleoprotein M (hnRNP M), was identified. The association between hnRNP M and Rictor was verified using recombinant and endogenous protein and the binding site was found to be within aa 1~532 of hnRNP M. The presence of hnRNP M significantly affects phosphorylation of SGK1 S422, but not of Akt S473, PKCα S657 and PKCζ T560. Furthermore, hnRNP M also plays a critical role in muscle differentiation because knock-down of either hnRNP M or Rictor in C2C12 myoblasts reduced differentiation. This decrease is able to be rescued by overexpression SGK S422D in hnRNP M knockdown C2C12 myoblasts. Taken together, we have identified a novel Rictor/mTOR binding molecule, hnRNP M, that allows mTORC2 signaling to phosphorylate SGK1 thus regulating muscle differentiation.
Collapse
Affiliation(s)
- Wei-Yen Chen
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chia-Lung Lin
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Jen-Hua Chuang
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Fu-Yu Chiu
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Yun-Ya Sun
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| | - Mei-Chih Liang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yenshou Lin
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|
221
|
Loh TJ, Moon H, Jang HN, Liu Y, Choi N, Shen S, Williams DR, Jung DW, Zheng X, Shen H. SR proteins regulate V6 exon splicing of CD44 pre-mRNA. BMB Rep 2017; 49:612-616. [PMID: 27530682 PMCID: PMC5346321 DOI: 10.5483/bmbrep.2016.49.11.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/26/2022] Open
Abstract
CD44 pre-mRNA includes 20 exons, of which exons 1–5 (C1–C5) and exons 16–20 (C6–C10) are constant exons, whereas exons 6–15 (V1–V10) are variant exons. V6-exon-containing isoforms have been known to be implicated in tumor cell invasion and metastasis. In the present study, we performed a SR protein screen for CD44 V6 splicing using overexpression and lentivirus-mediated shRNA treatment. Using a CD44 V6 minigene, we demonstrate that increased SRSF3 and SRSF4 expression do not affect V6 splicing, but increased expression of SRSF1, SRSF6 and SRSF9 significantly inhibit V6 splicing. In addition, using a constitutive exon-specific primer set, we could not detect alterations of CD44 splicing after SR protein-targeting shRNA treatment. However, using a V6 specific primer, we identified that reduced SRSF2 expression significantly reduced the V6 isoform, but increased V6–10 and V6,8–10 isoforms. Our results indicate that SR proteins are important regulatory proteins for CD44 V6 splicing.
Collapse
Affiliation(s)
- Tiing Jen Loh
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Heegyum Moon
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Ha Na Jang
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Yongchao Liu
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Namjeong Choi
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Shengfu Shen
- Willston Northampton School, Easthampton, MA 01027, USA
| | - Darren Reece Williams
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Da-Woon Jung
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Xuexiu Zheng
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Haihong Shen
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
222
|
Morin-Doré L, Blondin P, Vigneault C, Grand FX, Labrecque R, Sirard MA. Transcriptomic evaluation of bovine blastocysts obtained from peri-pubertal oocyte donors. Theriogenology 2017; 93:111-123. [PMID: 28257859 DOI: 10.1016/j.theriogenology.2017.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/09/2016] [Accepted: 01/03/2017] [Indexed: 12/18/2022]
Abstract
Assisted reproduction technologies (ART) and high selection pressure in the dairy industry are leading towards the use of younger females for reproduction, thereby reducing the interval between generations. This situation may have a negative impact on embryo quality, thus reducing the success rate of the procedures. This study aimed to document the effects of oocyte donor age on embryo quality, at the transcriptomic level, in order to characterize the effects of using young females for reproduction purpose. Young Holstein heifers (n = 10) were used at three different ages for ovarian stimulation protocols and oocyte collections (at 8, 11 and 14 months). All of the oocytes were fertilized in vitro with the semen of one adult bull, generating three lots of embryos per animal. Each animal was its own control for the evaluation of the effects of age. The EmbryoGENE platform was used for the assessment of gene expression patterns at the blastocyst stage. Embryos from animals at 8 vs 14 months and at 11 vs 14 months were used for microarray hybridization. Validation was done by performing RT-qPCR on seven candidate genes. Age-related contrast analysis (8 vs 14 mo and 11 vs 14 mo) identified 242 differentially expressed genes (DEGs) for the first contrast, and 296 for the second. The analysis of the molecular and biological functions of the DEGs suggests a metabolic cause to explain the differences that are observed between embryos from immature and adult subjects. The mTOR and PPAR signaling pathways, as well as the NRF2-mediated oxidative stress response pathways were among the gene expression pathways affected by donor age. In conclusion, the main differences between embryos produced at peri-pubertal ages are related to metabolic conditions resulting in a higher impact of in vitro conditions on blastocyts from younger heifers.
Collapse
Affiliation(s)
- Léonie Morin-Doré
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada
| | | | | | | | | | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, Canada.
| |
Collapse
|
223
|
Abstract
Although most people still associate actin mainly with the cytoskeleton, several lines of evidence, with the earliest studies dating back to decades ago, have emphasized the importance of actin also inside the cell nucleus. Actin has been linked to many gene expression processes from gene activation to chromatin remodeling, but also to maintenance of genomic integrity and intranuclear movement of chromosomes and chromosomal loci. Recent advances in visualizing different forms and dynamic properties of nuclear actin have clearly advanced our understanding of the basic concepts by which actin operates in the nucleus. In this chapter we address the different breakthroughs in nuclear actin studies, as well as discuss the regulation nuclear actin and the importance of nuclear actin dynamics in relation to its different nuclear functions. Our aim is to highlight the fact that actin should be considered as an essential component of the cell nucleus, and its nuclear actions should be taken into account also in experiments on cytoplasmic actin networks.
Collapse
Affiliation(s)
- Tiina Viita
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 56, Helsinki, Finland
| | - Maria K Vartiainen
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, 56, Helsinki, Finland.
| |
Collapse
|
224
|
Webster NJG. Alternative RNA Splicing in the Pathogenesis of Liver Disease. Front Endocrinol (Lausanne) 2017; 8:133. [PMID: 28680417 PMCID: PMC5478874 DOI: 10.3389/fendo.2017.00133] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent due to the worldwide obesity epidemic and currently affects one-third of adults or about one billion people worldwide. NAFLD is predicted to affect over 50% of the world's population by the end of the next decade. It is the most common form of liver disease and is associated with increased risk for progression to a more severe form non-alcoholic steatohepatitis, as well as insulin resistance, type 2 diabetes mellitus, cirrhosis, and eventually hepatocellular carcinoma. This review article will focus on the role of alternative splicing in normal liver physiology and dysregulation in liver disease.
Collapse
Affiliation(s)
- Nicholas J. G. Webster
- Medical Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, School of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
- *Correspondence: Nicholas J. G. Webster,
| |
Collapse
|
225
|
Suzuki H, Matsuoka M. hnRNPA1 autoregulates its own mRNA expression to remain non-cytotoxic. Mol Cell Biochem 2016; 427:123-131. [PMID: 28000042 DOI: 10.1007/s11010-016-2904-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/03/2016] [Indexed: 01/03/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP)A1, a member of the hnRNP family, is involved in a variety of RNA metabolisms. The hnRNPA1 expression is altered in some human diseases and mutations of the hnRNPA1 gene cause amyotrophic lateral sclerosis and multisystem proteinopathy. It has been therefore assumed that the dysregulation of hnRNPA1 is linked to the pathogenesis of the diseases. However, the mechanism underlying the regulation of the hnRNPA1 expression remains unknown. In this study, using cell-based models, we have found that hnRNPA1 negatively regulates its own mRNA expression by inhibiting the intron10 splicing of hnRNPA1 pre-mRNA. This mechanism likely serves as an autoregulation of the hnRNPA1 expression. We have also found that a low-grade excess of hnRNPA1 expression causes cytotoxicity by activating the mitochondrial apoptosis pathway. Collectively, these data suggest that the level of hnRNPA1 is strictly controlled to be within a certain range by the mRNA autoregulation in the physiological condition so that the cytotoxicity-causative alteration of hnRNPA1 expression does not take place.
Collapse
Affiliation(s)
- Hiroaki Suzuki
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan
| | - Masaaki Matsuoka
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan. .,Department of Dermatological Neuroscience, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
226
|
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNA characterized by a covalently closed-loop structure generated through a special type of alternative splicing termed backsplicing. CircRNAs are emerging as a heterogeneous class of molecules involved in modulating gene expression by regulation of transcription, protein and miRNA functions. CircRNA expression is cell type and tissue specific and can be largely independent of the expression level of the linear host gene, indicating that regulation of expression might be an important aspect with regard to control of circRNA function. In this review, a brief introduction to the characteristics that define a circRNA will be given followed by a discussion of putative biogenesis pathways and modulators of circRNA expression as well as of the stage at which circRNA formation takes place. A brief summary of circRNA functions will also be provided and lastly, an outlook with a focus on unanswered questions regarding circRNA biology will be included.
Collapse
Affiliation(s)
- Karoline K Ebbesen
- a Department of Molecular Biology and Genetics (MBG) and Aarhus University , Aarhus , Denmark.,b Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Aarhus , Denmark
| | - Thomas B Hansen
- a Department of Molecular Biology and Genetics (MBG) and Aarhus University , Aarhus , Denmark
| | - Jørgen Kjems
- a Department of Molecular Biology and Genetics (MBG) and Aarhus University , Aarhus , Denmark.,b Interdisciplinary Nanoscience Center (iNANO) , Aarhus University , Aarhus , Denmark
| |
Collapse
|
227
|
Interactomic analysis of REST/NRSF and implications of its functional links with the transcription suppressor TRIM28 during neuronal differentiation. Sci Rep 2016; 6:39049. [PMID: 27976729 PMCID: PMC5157023 DOI: 10.1038/srep39049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/17/2016] [Indexed: 01/06/2023] Open
Abstract
RE-1 silencing transcription factor (REST) is a transcriptional repressor that regulates gene expression by binding to repressor element 1. However, despite its critical function in physiology, little is known about its interaction proteins. Here we identified 204 REST-interacting proteins using affinity purification and mass spectrometry. The interactome included proteins associated with mRNA processing/splicing, chromatin organization, and transcription. The interactions of these REST-interacting proteins, which included TRIM28, were confirmed by co-immunoprecipitation and immunocytochemistry, respectively. Gene Ontology (GO) analysis revealed that neuronal differentiation-related GO terms were enriched among target genes that were co-regulated by REST and TRIM28, while the level of CTNND2 was increased by the knockdown of REST and TRIM28. Consistently, the level of CTNND2 increased while those of REST and TRIM28 decreased during neuronal differentiation in the primary neurons, suggesting that CTNND2 expression may be co-regulated by both. Furthermore, neurite outgrowth was increased by depletion of REST or TRIM28, implying that reduction of both REST and TRIM28 could promote neuronal differentiation via induction of CTNND2 expression. In conclusion, our study of REST reveals novel interacting proteins which could be a valuable resource for investigating unidentified functions of REST and also suggested functional links between REST and TRIM28 during neuronal development.
Collapse
|
228
|
Chen M, Xu R, Ji H, Greening DW, Rai A, Izumikawa K, Ishikawa H, Takahashi N, Simpson RJ. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep 2016; 6:38397. [PMID: 27917920 PMCID: PMC5137021 DOI: 10.1038/srep38397] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 12/24/2022] Open
Abstract
Previously we reported that LIM1863 colorectal cancer (CRC) cells secrete three distinct extracellular vesicle subtypes – two subpopulations of exosomes (apical EpCAM-Exos and basolateral A33-Exos) and shed microvesicles (sMVs) – with distinct protein and miRNA signatures. Here, we extend our omics approach to understand the fundamental role of LIM1863-derived EVs by performing a comprehensive analysis of their mRNAs and long non-coding RNAs (lncRNAs) using RNA-Seq. We show that 2,389 mRNAs, 317 pseudogene transcripts, 1,028 lncRNAs and 206 short non-coding RNAs selectively distributed to (i.e., are enriched in) LIM1863 EVs, relative to the parent cell. An Ensembl/UniProtKB analysis revealed 1,937 mRNAs encode canonical proteins, 348 isoforms (including splice-variant proteins), and 119 ‘missing proteins’ (i.e., annotated in Ensembl but not UniProtKB). Further dissection of our protein/RNA data revealed that 6/151 observed RNA binding proteins have the potential to interact with ~75% of EV-enriched RNAs. Intriguingly, the co-existence of U1 and U2 ribonucleoproteins and their cognate snRNAs in LIM1863 EVs suggests a possible association of CRC EVs with recipient cell splicing events. Our data reveal several potential lncRNA CRC biomarkers and novel splicing/fusion genes that, collectively, will advance our understanding of EV biology in CRC and accelerate the development of EV-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Maoshan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Hong Ji
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia
| | - Keiichi Izumikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Global Innovation Research Organisation, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hideaki Ishikawa
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Global Innovation Research Organisation, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Global Innovation Research Organisation, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria, Australia.,Global Innovation Research Organisation, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
229
|
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins. Biochem J 2016; 473:4271-4288. [DOI: 10.1042/bcj20160649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein–protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.
Collapse
|
230
|
Hwang CK, Wagley Y, Law PY, Wei LN, Loh HH. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP). Gene 2016; 598:113-130. [PMID: 27836661 DOI: 10.1016/j.gene.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022]
Abstract
Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3'-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3'-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yadav Wagley
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
231
|
Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. GENES BRAIN AND BEHAVIOR 2016; 15:169-86. [PMID: 26643147 DOI: 10.1111/gbb.12273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.
Collapse
Affiliation(s)
- C D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - N Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
232
|
Cellular Functions and Gene and Protein Expression Profiles in Endothelial Cells Derived from Moyamoya Disease-Specific iPS Cells. PLoS One 2016; 11:e0163561. [PMID: 27662211 PMCID: PMC5035048 DOI: 10.1371/journal.pone.0163561] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/11/2016] [Indexed: 01/16/2023] Open
Abstract
Background and purpose Moyamoya disease (MMD) is a slow, progressive steno-occlusive disease, arising in the terminal portions of the cerebral internal carotid artery. However, the functions and characteristics of the endothelial cells (ECs) in MMD are unknown. We analyzed these features using induced pluripotent stem cell (iPSC)-derived ECs. Methods iPSC lines were established from the peripheral blood of three patients with MMD carrying the variant RNF213 R4810K, and three healthy persons used as controls. After the endothelial differentiation of iPSCs, CD31+CD144+ cells were purified as ECs using a cell sorter. We analyzed their proliferation, angiogenesis, and responses to some angiogenic factors, namely VEGF, bFGF, TGF-β, and BMP4. The ECs were also analyzed using DNA microarray and proteomics to perform comprehensive gene and protein expression analysis. Results Angiogenesis was significantly impaired in MMD regardless of the presence of any angiogenic factor. On the contrary, endothelial proliferation was not significant between control- and MMD-derived cells. Regarding DNA microarray, pathway analysis illustrated that extracellular matrix (ECM) receptor-related genes, including integrin β3, were significantly downregulated in MMD. Proteomic analysis revealed that cytoskeleton-related proteins were downregulated and splicing regulation-related proteins were upregulated in MMD. Conclusions Downregulation of ECM receptor-related genes may be associated with impaired angiogenic activity in ECs derived from iPSCs from patients with MMD. Upregulation of splicing regulation-related proteins implied differences in splicing patterns between control and MMD ECs.
Collapse
|
233
|
Tobi M, Thomas P, Ezekwudo D. Avoiding hepatic metastasis naturally: Lessons from the cotton top tamarin (Saguinus oedipus). World J Gastroenterol 2016; 22:5479-94. [PMID: 27350726 PMCID: PMC4917608 DOI: 10.3748/wjg.v22.i24.5479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/26/2016] [Accepted: 05/21/2016] [Indexed: 02/06/2023] Open
Abstract
Much has been written about hepatic metastasis and animal models abound. In terms of the human experience, progress in treating this final common pathway, a terminal event of many human malignancies has been relatively slow. The current thinking is that primary prevention is best served by early detection of cancer and eradication of early stage cancers by screening. Some cancers spread early in their course and the role of screening may be limited. Until relatively recently there has not been a pathfinder model that makes the evasion of this unfortunate event a reality. This review discusses such an animal model and attempts to relate it to human disease in terms of intervention. Concrete proposals are also offered on how scientists may be able to intervene to prevent this deadly progression of the cancer process.
Collapse
|
234
|
Singh R, Gupta SC, Peng WX, Zhou N, Pochampally R, Atfi A, Watabe K, Lu Z, Mo YY. Regulation of alternative splicing of Bcl-x by BC200 contributes to breast cancer pathogenesis. Cell Death Dis 2016; 7:e2262. [PMID: 27277684 PMCID: PMC5143396 DOI: 10.1038/cddis.2016.168] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/29/2016] [Accepted: 05/12/2016] [Indexed: 01/06/2023]
Abstract
BC200 is a long non-coding RNA (lncRNA) that has been implicated in the regulation of protein synthesis, yet whether dysregulation of BC200 contributes to the pathogenesis of human diseases remains elusive. In this study, we show that BC200 is upregulated in breast cancer; among breast tumor specimens there is a higher level of BC200 in estrogen receptor (ER) positive than in ER-negative tumors. Further experiments show that activation of estrogen signaling induces expression of BC200. To determine the significance of ER-regulated BC200 expression, we knockout (KO) BC200 by CRISPR/Cas9. BC200 KO suppresses tumor cell growth in vitro and in vivo by expression of the pro-apoptotic Bcl-xS isoform. Mechanistically, BC200 contains a 17-nucleotide sequence complementary to Bcl-x pre-mRNA, which may facilitate its binding to Bcl-x pre-mRNA and recruitment of heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, a known splicing factor. Consequently, hnRNP A2/B1 interferes with association of Bcl-x pre-mRNA with the Bcl-xS-promoting factor Sam68, leading to a blockade of Bcl-xS expression. Together, these results suggest that BC200 plays an oncogenic role in breast cancer. Thus, BC200 may serve as a prognostic marker and possible target for attenuating deregulated cell proliferation in estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- R Singh
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - S C Gupta
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - W-X Peng
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - N Zhou
- System Biosciences, Mountain View, CA, USA
| | - R Pochampally
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - A Atfi
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - K Watabe
- Cancer Biology, Wake Forest School of Medicine, Bermuda Run, NC, USA
| | - Z Lu
- Department of Endocrinology, PLA General Hospital, Beijing, China
| | - Y-Y Mo
- Department of Pharmacology/Toxicology and Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
235
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 705] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
236
|
Pisano M, Palomba A, Tanca A, Pagnozzi D, Uzzau S, Addis MF, Dettori MA, Fabbri D, Palmieri G, Rozzo C. Protein expression changes induced in a malignant melanoma cell line by the curcumin analogue compound D6. BMC Cancer 2016; 16:317. [PMID: 27192978 PMCID: PMC4870815 DOI: 10.1186/s12885-016-2362-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/13/2016] [Indexed: 01/09/2023] Open
Abstract
Background We have previously demonstrated that the hydroxylated biphenyl compound D6 (3E,3′E)-4,4′-(5,5′,6,6′-tetramethoxy-[1,1′-biphenyl]-3,3′-diyl)bis(but-3-en-2-one), a structural analogue of curcumin, exerts a strong antitumor activity on melanoma cells both in vitro and in vivo. Although the mechanism of action of D6 is yet to be clarified, this compound is thought to inhibit cancer cell growth by arresting the cell cycle in G2/M phase, and to induce apoptosis through the mitochondrial intrinsic pathway. To investigate the changes in protein expression induced by exposure of melanoma cells to D6, a differential proteomic study was carried out on D6-treated and untreated primary melanoma LB24Dagi cells. Methods Proteins were fractionated by SDS-PAGE and subjected to in gel digestion. The peptide mixtures were analyzed by liquid chromatography coupled with tandem mass spectrometry. Proteins were identified and quantified using database search and spectral counting. Proteomic data were finally uploaded into the Ingenuity Pathway Analysis software to find significantly modulated networks and pathways. Results Analysis of the differentially expressed protein profiles revealed the activation of a strong cellular stress response, with overexpression of several HSPs and stimulation of ubiquitin-proteasome pathways. These were accompanied by a decrease of protein synthesis, evidenced by downregulation of proteins involved in mRNA processing and translation. These findings are consistent with our previous results on gene expression profiling in melanoma cells treated with D6. Conclusions Our findings confirm that the curcumin analogue D6 triggers a strong stress response in melanoma cells, turning down majority of cell functions and finally driving cells to apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2362-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Pisano
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy
| | - Antonio Palomba
- Proteomics Laboratory, Porto Conte Ricerche, Tramariglio, Alghero, Italy.,Biosistema Scrl, Sassari, Italy
| | - Alessandro Tanca
- Proteomics Laboratory, Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - Daniela Pagnozzi
- Proteomics Laboratory, Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - Sergio Uzzau
- Proteomics Laboratory, Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | | | - Maria Antonietta Dettori
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy
| | - Davide Fabbri
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy
| | - Carla Rozzo
- Institute of Biomolecular Chemistry, National Research Council of Italy, Traversa la Crucca, 3, 07100, Sassari, Italy.
| |
Collapse
|
237
|
Broering R, Trippler M, Werner M, Real CI, Megger DA, Bracht T, Schweinsberg V, Sitek B, Eisenacher M, Meyer HE, Baba HA, Weber F, Hoffmann AC, Gerken G, Schlaak JF. Hepatic expression of proteasome subunit alpha type-6 is upregulated during viral hepatitis and putatively regulates the expression of ISG15 ubiquitin-like modifier, a proviral host gene in hepatitis C virus infection. J Viral Hepat 2016; 23:375-86. [PMID: 26833585 DOI: 10.1111/jvh.12508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 12/19/2015] [Indexed: 12/12/2022]
Abstract
The interferon-stimulated gene 15 (ISG15) plays an important role in the pathogenesis of hepatitis C virus (HCV) infection. ISG15-regulated proteins have previously been identified that putatively affect this proviral interaction. The present observational study aimed to elucidate the relation between ISG15 and these host factors during HCV infection. Transcriptomic and proteomic analyses were performed using liver samples of HCV-infected (n = 54) and uninfected (n = 10) or HBV-infected controls (n = 23). Primary human hepatocytes (PHH) were treated with Toll-like receptor ligands, interferons and kinase inhibitors. Expression of ISG15 and proteasome subunit alpha type-6 (PSMA6) was suppressed in subgenomic HCV replicon cell lines using specific siRNAs. Comparison of hepatic expression patterns revealed significantly increased signals for ISG15, IFIT1, HNRNPK and PSMA6 on the protein level as well as ISG15, IFIT1 and PSMA6 on the mRNA level in HCV-infected patients. In contrast to interferon-stimulated genes, PSMA6 expression occurred independent of HCV load and genotype. In PHH, the expression of ISG15 and PSMA6 was distinctly induced by poly(I:C), depending on IRF3 activation or PI3K/AKT signalling, respectively. Suppression of PSMA6 in HCV replicon cells led to significant induction of ISG15 expression, thus combined knock-down of both genes abrogated the antiviral effect induced by the separate suppression of ISG15. These data indicate that hepatic expression of PSMA6, which is upregulated during viral hepatitis, likely depends on TLR3 activation. PSMA6 affects the expression of immunoregulatory ISG15, a proviral factor in the pathogenesis of HCV infection. Therefore, the proteasome might be involved in the enigmatic interaction between ISG15 and HCV.
Collapse
Affiliation(s)
- R Broering
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - M Trippler
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - M Werner
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - C I Real
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - D A Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - T Bracht
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - V Schweinsberg
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - B Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - M Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - H E Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany.,Leibniz Institute for Analytical Sciences - ISAS, Dortmund, Germany
| | - H A Baba
- Department of Pathology and Neuropathology, University Hospital of Essen, Essen, Germany
| | - F Weber
- Department of General, Visceral and Transplantation Surgery, University Hospital of Essen, Essen, Germany
| | - A-C Hoffmann
- Department of Medicine (Cancer Research), Molecular Oncology Risk-Profile Evaluation, University Hospital of Essen, Essen, Germany
| | - G Gerken
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - J F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
238
|
Wang X, Diao C, Yang X, Yang Z, Liu M, Li X, Tang H. ICP4-induced miR-101 attenuates HSV-1 replication. Sci Rep 2016; 6:23205. [PMID: 26984403 PMCID: PMC4794718 DOI: 10.1038/srep23205] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/25/2016] [Indexed: 11/09/2022] Open
Abstract
Hepes simplex Virus type 1 (HSV-1) is an enveloped DNA virus that can cause lytic and latent infection. miRNAs post-transcriptionally regulate gene expression, and our previous work has indicated that HSV-1 infection induces miR-101 expression in HeLa cells. The present study demonstrates that HSV-1-induced miR-101 is mainly derived from its precursor hsa-mir-101-2, and the HSV-1 immediate early gene ICP4 (infected-cell polypeptide 4) directly binds to the hsa-mir-101-2 promoter to activate its expression. RNA-binding protein G-rich sequence factor 1 (GRSF1) was identified as a new target of miR-101; GRSF1 binds to HSV-1 p40 mRNA and enhances its expression, facilitating viral proliferation. Together, ICP4 induces miR-101 expression, which downregulates GRSF1 expression and attenuates the replication of HSV-1. This allows host cells to maintain a permissive environment for viral replication by preventing lytic cell death. These findings indicate that HSV-1 early gene expression modulates host miRNAs to regulate molecular defense mechanisms. This study provides novel insight into host-virus interactions in HSV-1 infection and may contribute to the development of antiviral therapeutics.
Collapse
Affiliation(s)
- Xiangling Wang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Caifeng Diao
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Xi Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Zhen Yang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Min Liu
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Xin Li
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qi-Xiang-Tai Road, Tianjin 300070, China
| |
Collapse
|
239
|
Giono LE, Nieto Moreno N, Cambindo Botto AE, Dujardin G, Muñoz MJ, Kornblihtt AR. The RNA Response to DNA Damage. J Mol Biol 2016; 428:2636-2651. [PMID: 26979557 DOI: 10.1016/j.jmb.2016.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023]
Abstract
Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.
Collapse
Affiliation(s)
- Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Nicolás Nieto Moreno
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Adrián E Cambindo Botto
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Gwendal Dujardin
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Centre for Genomic Regulation, Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Manuel J Muñoz
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
240
|
Kim EZ, Wespiser AR, Caffrey DR. The domain structure and distribution of Alu elements in long noncoding RNAs and mRNAs. RNA (NEW YORK, N.Y.) 2016; 22:254-264. [PMID: 26654912 PMCID: PMC4712675 DOI: 10.1261/rna.048280.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
Approximately 75% of the human genome is transcribed and many of these spliced transcripts contain primate-specific Alu elements, the most abundant mobile element in the human genome. The majority of exonized Alu elements are located in long noncoding RNAs (lncRNAs) and the untranslated regions of mRNA, with some performing molecular functions. To further assess the potential for Alu elements to be repurposed as functional RNA domains, we investigated the distribution and evolution of Alu elements in spliced transcripts. Our analysis revealed that Alu elements are underrepresented in mRNAs and lncRNAs, suggesting that most exonized Alu elements arising in the population are rare or deleterious to RNA function. When mRNAs and lncRNAs retain exonized Alu elements, they have a clear preference for Alu dimers, left monomers, and right monomers. mRNAs often acquire Alu elements when their genes are duplicated within Alu-rich regions. In lncRNAs, reverse-oriented Alu elements are significantly enriched and are not restricted to the 3' and 5' ends. Both lncRNAs and mRNAs primarily contain the Alu J and S subfamilies that were amplified relatively early in primate evolution. Alu J subfamilies are typically overrepresented in lncRNAs, whereas the Alu S dimer is overrepresented in mRNAs. The sequences of Alu dimers tend to be constrained in both lncRNAs and mRNAs, whereas the left and right monomers are constrained within particular Alu subfamilies and classes of RNA. Collectively, these findings suggest that Alu-containing RNAs are capable of forming stable structures and that some of these Alu domains might have novel biological functions.
Collapse
Affiliation(s)
- Eugene Z Kim
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Adam R Wespiser
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Daniel R Caffrey
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
241
|
Chang X. RNA-binding protein hnRNPLL as a critical regulator of lymphocyte homeostasis and differentiation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:295-302. [PMID: 26821996 DOI: 10.1002/wrna.1335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
RNA-binding proteins orchestrate posttranscriptional regulation of gene expression, such as messenger RNA (mRNA) splicing, RNA stability regulation, and translation regulation. Heterogeneous nuclear RNA-binding proteins (hnRNPs) refer to a collection of unrelated RNA-binding proteins predominantly located in the nucleus (Han et al. Biochem J 2010, 430:379-392). Although canonical functions of hnRNPs are to promote pre-mRNA splicing, they are involved in all the processes of RNA metabolism through recognizing specific cis-elements on RNA (Dreyfuss et al. Annu Rev Biochem 1993, 62:289-321; Huelga et al. Cell Rep 2012, 1:167-178; Krecic and Swanson. Curr Opin Cell Biol 1999, 11:363-371). Heterogeneous nuclear RNA-binding protein L like (hnRNPLL) is a tissue-specific hnRNP, which was identified as a regulator of CD45RA to CD45RO switching during memory T-cell development (Oberdoerffer et al. Science 2008, 321:686-691; Topp et al. RNA 2008, 14:2038-2049; Wu et al. Immunity 2008, 29:863-875). Since then, hnRNPLL has emerged as a critical regulator of lymphocyte homeostasis and terminal differentiation, controlling alternative splicing or expression of critical genes for the lymphocytes development (Wu et al. Immunity 2008, 29:863-875; Chang et al. Proc Natl Acad Sci USA 2015, 112:E1888-E1897). This review will summarize recent advances in understanding the functions of hnRNPLL, focusing on its biochemical functions and physiological roles in lymphocyte differentiation and homeostasis. WIREs RNA 2016, 7:295-302. doi: 10.1002/wrna.1335 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Xing Chang
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
242
|
Abstract
Alternative splicing (AS) has emerged in the postgenomic era as one of the main drivers of proteome diversity, with ≥94% of multiexon genes alternatively spliced in humans. AS is therefore one of the main control mechanisms for cell phenotype, and is a process deregulated in disease. Numerous reports describe pathogenic mutations in splice factors, splice sites, or regulatory sequences. Additionally, compared with the physiologic state, disease often associates with an abnormal proportion of splice isoforms (or novel isoforms), without an apparent driver mutation. It is therefore essential to study how AS is regulated in physiology, how it contributes to pathogenesis, and whether we can manipulate faulty splicing for therapeutic advantage. Although the disease most commonly linked to deregulation of AS in several genes is cancer, many reports detail pathogenic splice variants in diseases ranging from neuromuscular disorders to diabetes or cardiomyopathies. A plethora of splice variants have been implicated in CKDs as well. In this review, we describe examples of these CKD-associated splice variants and ideas on how to manipulate them for therapeutic benefit.
Collapse
Affiliation(s)
- Megan Stevens
- School of Physiology and Pharmacology, Faculty of Biomedical Sciences, and Academic Renal Unit, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastian Oltean
- School of Physiology and Pharmacology, Faculty of Biomedical Sciences, and Academic Renal Unit, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
243
|
Uren PJ, Bahrami-Samani E, de Araujo PR, Vogel C, Qiao M, Burns SC, Smith AD, Penalva LOF. High-throughput analyses of hnRNP H1 dissects its multi-functional aspect. RNA Biol 2016; 13:400-11. [PMID: 26760575 PMCID: PMC4841607 DOI: 10.1080/15476286.2015.1138030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 12/06/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022] Open
Abstract
hnRNPs are polyvalent RNA binding proteins that have been implicated in a range of regulatory roles including splicing, mRNA decay, translation, and miRNA metabolism. A variety of genome wide studies have taken advantage of methods like CLIP and RIP to identify the targets and binding sites of RNA binding proteins. However, due to the complex nature of RNA-binding proteins, these studies are incomplete without assays that characterize the impact of RBP binding on mRNA target expression. Here we used a suite of high-throughput approaches (RIP-Seq, iCLIP, RNA-Seq and shotgun proteomics) to provide a comprehensive view of hnRNP H1s ensemble of targets and its role in splicing, mRNA decay, and translation. The combination of RIP-Seq and iCLIP allowed us to identify a set of 1,086 high confidence target transcripts. Binding site motif analysis of these targets suggests the TGGG tetramer as a prevalent component of hnRNP H1 binding motif, with particular enrichment around intronic hnRNP H1 sites. Our analysis of the target transcripts and binding sites indicates that hnRNP H1s involvement in splicing is 2-fold: it directly affects a substantial number of splicing events, but also regulates the expression of major components of the splicing machinery and other RBPs with known roles in splicing regulation. The identified mRNA targets displayed function enrichment in MAPK signaling and ubiquitin mediated proteolysis, which might be main routes by which hnRNP H1 promotes tumorigenesis.
Collapse
Affiliation(s)
- Philip J. Uren
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, CA, USA
| | - Emad Bahrami-Samani
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, CA, USA
| | - Patricia Rosa de Araujo
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, USA
| | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Mei Qiao
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, USA
| | - Suzanne C. Burns
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, USA
| | - Andrew D. Smith
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, CA, USA
| | - Luiz O. F. Penalva
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
244
|
Controlling the Editor: The Many Roles of RNA-Binding Proteins in Regulating A-to-I RNA Editing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:189-213. [PMID: 27256387 DOI: 10.1007/978-3-319-29073-7_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
RNA editing is a cellular process used to expand and diversify the RNA transcripts produced from a generally immutable genome. In animals, the most prevalent type of RNA editing is adenosine (A) to inosine (I) deamination catalyzed by the ADAR family. Throughout development, A-to-I editing levels increase while ADAR expression is constant, suggesting cellular mechanisms to regulate A-to-I editing exist. Furthermore, in several disease states, ADAR expression levels are similar to the normal state, but A-to-I editing levels are altered. Therefore, understanding how these enzymes are regulated in normal tissues and misregulated in disease states is of profound importance. This chapter will both discuss how to identify A-to-I editing sites across the transcriptome and explore the mechanisms that regulate ADAR editing activity, with particular focus on the diverse types of RNA-binding proteins implicated in regulating A-to-I editing in vivo.
Collapse
|
245
|
Karlsson E, Magić I, Bostner J, Dyrager C, Lysholm F, Hallbeck AL, Stål O, Lundström P. Revealing Different Roles of the mTOR-Targets S6K1 and S6K2 in Breast Cancer by Expression Profiling and Structural Analysis. PLoS One 2015; 10:e0145013. [PMID: 26698305 PMCID: PMC4689523 DOI: 10.1371/journal.pone.0145013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
Background The AKT/mTORC1/S6K pathway is frequently overstimulated in breast cancer, constituting a promising therapeutic target. The benefit from mTOR inhibitors varies, likely as a consequence of tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms. The mTORC1 downstream effectors S6K1, S6K2, and 4EBP1 are amplified and overexpressed in breast cancer, associated with a poor outcome and divergent endocrine treatment benefit. S6K1 and S6K2 share high sequence homology, but evidence of partly distinct biological functions is emerging. The aim of this work was to explore possible different roles and treatment target potentials of S6K1 and S6K2 in breast cancer. Materials and methods Whole-genome expression profiles were compared for breast tumours expressing high levels of S6K1, S6K2 or 4EBP1, using public datasets, as well as after in vitro siRNA downregulation of S6K1 and/or S6K2 in ZR751 breast cancer cells. In silico homology modelling of the S6K2 kinase domain was used to evaluate its possible structural divergences to S6K1. Results Genome expression profiles were highly different in S6K1 and S6K2 high tumours, whereas S6K2 and 4EBP1 profiles showed significant overlaps, both correlated to genes involved in cell cycle progression, among these the master regulator E2F1. S6K2 and 4EBP1 were inversely associated with IGF1 levels, and their prognostic value was shown to be restricted to tumours positive for IGFR and/or HER2. In vitro, S6K1 and S6K2 silencing resulted in upregulation of genes in the mTORC1 and mTORC2 complexes. Isoform-specific silencing also showed distinct patterns, e.g. S6K2 downregulation lead to upregulation of several cell cycle associated genes. Structural analyses of the S6K2 kinase domain showed unique structure patterns, deviating from those of S6K1, facilitating the development of isoform-specific inhibitors. Our data support emerging proposals of distinct biological features of S6K1 and S6K2, suggesting their importance as separate oncogenes and clinical markers, where specific targeting in different breast cancer subtypes could facilitate further individualised therapies.
Collapse
Affiliation(s)
- Elin Karlsson
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
| | - Ivana Magić
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Josefine Bostner
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
| | - Christine Dyrager
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| | - Fredrik Lysholm
- Division of Bioinformatics and SeRC (Swedish e-Science Research Centre), Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Anna-Lotta Hallbeck
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
| | - Olle Stål
- Department of Clinical and Experimental Medicine, and Department of Oncology, Linköping University, SE-58185, Linköping, Sweden
- * E-mail: (OS); (PL)
| | - Patrik Lundström
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
- * E-mail: (OS); (PL)
| |
Collapse
|
246
|
Shim BS, Wu W, Kyriakis CS, Bakre A, Jorquera PA, Perwitasari O, Tripp RA. MicroRNA-555 has potent antiviral properties against poliovirus. J Gen Virol 2015; 97:659-668. [PMID: 26683768 DOI: 10.1099/jgv.0.000372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vaccination with live-attenuated polio vaccine has been the primary reason for the drastic reduction of poliomyelitis worldwide. However, reversion of this attenuated poliovirus vaccine occasionally results in the emergence of vaccine-derived polioviruses that may cause poliomyelitis. Thus, the development of anti-poliovirus agents remains a priority for control and eradication of the disease. MicroRNAs (miRNAs) have been shown to regulate viral infection through targeting the viral genome or reducing host factors required for virus replication. However, the roles of miRNAs in poliovirus (PV) replication have not been fully elucidated. In this study, a library of 1200 miRNA mimics was used to identify miRNAs that govern PV replication. High-throughput screening revealed 29 miRNAs with antiviral properties against Sabin-2, which is one of the oral polio vaccine strains. In particular, miR-555 was found to have the most potent antiviral activity against three different oral polio attenuated vaccine strains tested. The results show that miR-555 reduced the level of heterogeneous nuclear ribonucleoprotein C1/C2 (hnRNP C) required for PV replication in the infected cells, which in turn resulted in reduction of PV positive-strand RNA synthesis and production of infectious progeny. These findings provide the first evidence for the role of miR-555 in PV replication and reveal that miR-555 could contribute to the development of antiviral therapeutic strategies against PV.
Collapse
Affiliation(s)
- Byoung-Shik Shim
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Weilin Wu
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Constantinos S Kyriakis
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Abhijeet Bakre
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Patricia A Jorquera
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Olivia Perwitasari
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, 30602 University of Georgia, Athens, GA, USA
| |
Collapse
|
247
|
Li XW, Shi BY, Yang QL, Wu J, Wu HM, Wang YF, Wu ZJ, Fan YM, Wang YP. Epigenetic regulation of CDH1 exon 8 alternative splicing in gastric cancer. BMC Cancer 2015; 15:954. [PMID: 26674321 PMCID: PMC4682244 DOI: 10.1186/s12885-015-1983-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
Abstract
Background The tumor suppressor gene CDH1 is critical for intercellular adhesion. In our previous work, we reported a nonfunctional CDH1 transcript that lacks the final 83 base pairs of exon 8 (1054del83). In this work, we probed the role of histone epigenetic modifications as well as DNA methylation in selection of this isoform. Methods RT-qPCR was used to detect CDH1 RNA expression. Methylation of CDH1 was analyzed by bisulphite sequencing PCR. ChIP assay was performed to show histones level. Cell lines were treated with DNA methyltransferase inhibitor AZA, HDAC inhibitor TSA, or siRNA oligonucleotides to test regulation of CDH1 splicing. Results Greater CDH1 1054del83 transcripts were observed in gastric cancer (GC) cell lines than human gastric mucosal epithelial cell line GES-1. All the cell lines showed significant methylation pattern at the CpG sites of CDH1 exon 8. AZA treatment did not influence selection of 1054del83 transcripts. A significant decrease in acetylation for histones H3 and H4K16Ac in an internal region of the CDH1 gene surrounding the alternative exon 8 were detected in GC cell lines. Treatment with TSA preferentially expressed the correctly spliced transcript and not the exon 8 skipped aberrant transcripts, showing that histone acetylation was involved in the splicing regulation. SiRNA-mediated knockdown of SETD2 (The specific methyltransferase of H3K36) decreased exclusion of exon 8, suggesting that the presence of this mark correlates with increased skipping of the final 83 base pairs of CDH1 exon 8. However, CDH1 splicing was not affected by SRSF2 knockdown. Conclusions H3K36me3 correlates with increased skipping of the final 83 base pairs of CDH1 exon 8. Histone acetylation was involved in the splicing regulation as well. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1983-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Wei Li
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| | - Bing-Yu Shi
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| | - Qing-Lan Yang
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| | - Jie Wu
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| | - Hui-Min Wu
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| | - Yu-Feng Wang
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| | - Zhi-Jiao Wu
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| | - Yi-Mei Fan
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| | - Ya-Ping Wang
- Department of Medical Genetics, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Hankou Road 22, Nanjing, 210093, China.
| |
Collapse
|
248
|
Hnrnph1 Is A Quantitative Trait Gene for Methamphetamine Sensitivity. PLoS Genet 2015; 11:e1005713. [PMID: 26658939 PMCID: PMC4675533 DOI: 10.1371/journal.pgen.1005713] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022] Open
Abstract
Psychostimulant addiction is a heritable substance use disorder; however its genetic basis is almost entirely unknown. Quantitative trait locus (QTL) mapping in mice offers a complementary approach to human genome-wide association studies and can facilitate environment control, statistical power, novel gene discovery, and neurobiological mechanisms. We used interval-specific congenic mouse lines carrying various segments of chromosome 11 from the DBA/2J strain on an isogenic C57BL/6J background to positionally clone a 206 kb QTL (50,185,512–50,391,845 bp) that was causally associated with a reduction in the locomotor stimulant response to methamphetamine (2 mg/kg, i.p.; DBA/2J < C57BL/6J)—a non-contingent, drug-induced behavior that is associated with stimulation of the dopaminergic reward circuitry. This chromosomal region contained only two protein coding genes—heterogeneous nuclear ribonucleoprotein, H1 (Hnrnph1) and RUN and FYVE domain-containing 1 (Rufy1). Transcriptome analysis via mRNA sequencing in the striatum implicated a neurobiological mechanism involving a reduction in mesolimbic innervation and striatal neurotransmission. For instance, Nr4a2 (nuclear receptor subfamily 4, group A, member 2), a transcription factor crucial for midbrain dopaminergic neuron development, exhibited a 2.1-fold decrease in expression (DBA/2J < C57BL/6J; p 4.2 x 10−15). Transcription activator-like effector nucleases (TALENs)-mediated introduction of frameshift deletions in the first coding exon of Hnrnph1, but not Rufy1, recapitulated the reduced methamphetamine behavioral response, thus identifying Hnrnph1 as a quantitative trait gene for methamphetamine sensitivity. These results define a novel contribution of Hnrnph1 to neurobehavioral dysfunction associated with dopaminergic neurotransmission. These findings could have implications for understanding the genetic basis of methamphetamine addiction in humans and the development of novel therapeutics for prevention and treatment of substance abuse and possibly other psychiatric disorders. Both genetic and environmental factors can powerfully modulate susceptibility to substance use disorders. Quantitative trait locus (QTL) mapping is an unbiased discovery-based approach that is used to identify novel genetic factors and provide new mechanistic insight into phenotypic variation associated with disease. In this study, we focused on the genetic basis of variation in sensitivity to the acute locomotor stimulant response to methamphetamine which is a behavioral phenotype in rodents that is associated with stimulated dopamine release and activation of the brain reward circuitry involved in addiction. Using brute force monitoring of recombination events associated with changes in behavior, we fortuitously narrowed the genotype-phenotype association down to just two genes that we subsequently targeted using a contemporary genome editing approach. The gene that we validated–Hnrnph1 –is an RNA binding protein that did not have any previously known function in psychostimulant behavior or psychostimulant addiction. Our behavioral data combined with our gene expression results provide a compelling rationale for a new line of investigation regarding Hnrnph1 and its role in neural development and plasticity associated with the addictions and perhaps other dopamine-dependent psychiatric disorders.
Collapse
|
249
|
Huang J, Zhang A, Ho TT, Zhang Z, Zhou N, Ding X, Zhang X, Xu M, Mo YY. Linc-RoR promotes c-Myc expression through hnRNP I and AUF1. Nucleic Acids Res 2015; 44:3059-69. [PMID: 26656491 PMCID: PMC4838338 DOI: 10.1093/nar/gkv1353] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023] Open
Abstract
Linc-RoR was originally identified to be a regulator for induced pluripotent stem cells in humans and it has also been implicated in tumorigenesis. However, the underlying mechanism of Linc-RoR-mediated gene expression in cancer is poorly understood. The present study demonstrates that Linc-RoR plays an oncogenic role in part through regulation of c-Myc expression. Linc-RoR knockout (KO) suppresses cell proliferation and tumor growth. In particular, Linc-RoR KO causes a significant decrease in c-Myc whereas re-expression of Linc-RoR in the KO cells restores the level of c-Myc. Mechanistically, Linc-RoR interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) I and AU-rich element RNA-binding protein 1 (AUF1), respectively, with an opposite consequence to their interaction with c-Myc mRNA. While Linc-RoR is required for hnRNP I to bind to c-Myc mRNA, interaction of Linc-RoR with AUF1 inhibits AUF1 to bind to c-Myc mRNA. As a result, Linc-RoR may contribute to the increased stability of c-Myc mRNA. Although hnRNP I and AUF1 can interact with many RNA species and regulate their functions, with involvement of Linc-RoR they would be able to selectively regulate mRNA stability of specific genes such as c-Myc. Together, these results support a role for Linc-RoR in c-Myc expression in part by specifically enhancing its mRNA stability, leading to cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Jianguo Huang
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ali Zhang
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tsui-Ting Ho
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA Department of Pharmacology/Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ziqiang Zhang
- Department of Respiration, Tongji Hospital affiliated to Tongji University, Shanghai, China
| | - Nanjiang Zhou
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Xianfeng Ding
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xu Zhang
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA Department of Pharmacology/Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
250
|
Gu H, Ren JM, Jia X, Levy T, Rikova K, Yang V, Lee KA, Stokes MP, Silva JC. Quantitative Profiling of Post-translational Modifications by Immunoaffinity Enrichment and LC-MS/MS in Cancer Serum without Immunodepletion. Mol Cell Proteomics 2015; 15:692-702. [PMID: 26635363 DOI: 10.1074/mcp.o115.052266] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 12/24/2022] Open
Abstract
A robust method was developed and optimized for enrichment and quantitative analysis of posttranslational modifications (PTMs) in serum/plasma samples by combining immunoaffinity purification and LC-MS/MS without depletion of abundant proteins. The method was used to survey serum samples of patients with acute myeloid leukemia (AML), breast cancer (BC), and nonsmall cell lung cancer (NSCLC). Peptides were identified from serum samples containing phosphorylation, acetylation, lysine methylation, and arginine methylation. Of the PTMs identified, lysine acetylation (AcK) and arginine mono-methylation (Rme) were more prevalent than other PTMs. Label-free quantitative analysis of AcK and Rme peptides was performed for sera from AML, BC, and NSCLC patients. Several AcK and Rme sites showed distinct abundance distribution patterns across the three cancer types. The identification and quantification of posttranslationally modified peptides in serum samples reported here can be used for patient profiling and biomarker discovery research.
Collapse
Affiliation(s)
- Hongbo Gu
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Jian Min Ren
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Xiaoying Jia
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Tyler Levy
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Klarisa Rikova
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Vicky Yang
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Kimberly A Lee
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Matthew P Stokes
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| | - Jeffrey C Silva
- From the § Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923
| |
Collapse
|