201
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
202
|
Desai S, Guddati AK. Bimodal Age Distribution in Cancer Incidence. World J Oncol 2022; 13:329-336. [PMID: 36660209 PMCID: PMC9822681 DOI: 10.14740/wjon1424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/05/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer is caused by accumulation of genetic changes which include activation of protooncogenes and loss of tumor suppressor genes. The age-specific incidence of cancer in general increases with advancing age. However, some cancers exhibit a bimodal distribution. Commonly recognized cancers with bimodal age distribution include acute lymphoblastic leukemia, osteosarcoma, Hodgkin's lymphoma, germ cell tumors and breast cancer. Delayed infection hypothesis has been used to provide explanation for the early childhood peak in leukemias and lymphomas, whereas the peak at an older age is associated with accumulation of protooncogenes and weakened immune system. Further genetic analysis and histopathological variations point to distinctly different cancers, varying genetically and histologically, which are often combined under a single category of cancers. Tumor characteristics and age distribution of these cancers varies also by population groups and has further implications on cancer screening methods. Although significant advances have been made to explain the bimodal nature of such cancers, the specific genetic mechanisms for each age distribution remain to be elucidated. Further distinction among the different cancer subtypes may lead to improvements in individual risk assessments, prevention and enhancement of treatment strategies.
Collapse
Affiliation(s)
- Shreya Desai
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Achuta K. Guddati
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA,Corresponding Author: Achuta Kumar Guddati, Division of Hematology/Oncology, Georgia Cancer Center, Augusta University, Augusta, GA 30909, USA.
| |
Collapse
|
203
|
Wu B, Shen L, Peng G, Li Y, Zhou Z, Li J, Huang X, Zhou Q, Jiang H, Huang J, Ding Q, Zhang Z, Qin Y, Hong X, Shi L, Zou Z, Yao J, Zhang J, Liu D, Wan C, Wu G, Song L, Chen S, Yi J, Yang K. Molecular characteristics of pediatric nasopharyngeal carcinoma using whole-exome sequencing. Oral Oncol 2022; 135:106218. [DOI: 10.1016/j.oraloncology.2022.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022]
|
204
|
Thompson C, Ariagno S, Kohorst MA. Pediatric Germline Predisposition to Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:266-274. [PMID: 36117229 DOI: 10.1007/s11899-022-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Advances in the understanding of germline predisposition to pediatric cancers, particularly myeloid neoplasms, have increased rapidly over the last 20 years. Here, we highlight the most up-to-date knowledge regarding known pathogenic germline variants that contribute to the development of myeloid neoplasms in children. RECENT FINDINGS This discussion enumerates the most notable myeloid neoplasm-causing germline mutations. These mutations may be organized based on their molecular underpinnings-transcriptional control, splicing and signal transduction control, and a group of heterogeneous bone marrow failure syndromes. We review recent findings related to the biochemical mechanisms that predispose to malignant transformation in each condition. Key genetic discoveries such as novel mutations, degrees of penetrance, principles of the two-hit hypothesis, and co-occurrence of multiple mutations are shared. Clinical pearls, such as information regarding epidemiology, natural history, or prognosis, are also discussed. Germline mutations predisposing to pediatric myeloid neoplasms are frequent, but underrecognized. They hold major clinical implications regarding prognosis, treatment strategies, and screening for other malignancies. Further research is warranted to better characterize each of these conditions, as well as identify additional novel germline pathogenic variants of interest.
Collapse
Affiliation(s)
- Christineil Thompson
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Sydney Ariagno
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA
| | - Mira A Kohorst
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
205
|
Ripperger T. [Genetic tumor risk syndromes : Human genetic aspects for radiologists]. RADIOLOGIE (HEIDELBERG, GERMANY) 2022; 62:1012-1016. [PMID: 36416927 DOI: 10.1007/s00117-022-01088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Most malignant diseases develop sporadically. However, a significant proportion of cancers are based on genetic predispositions. In this case, cancer develops as a result of causal germline variants. In general, the associated diseases are called genetic tumor risk syndromes or cancer predisposition syndromes. Recognition of these syndromes is in the interest of those affected, as well as of their relatives, as this may have influence on immediate therapy or aftercare. In the course, risk-adapted surveillance or risk-reducing operations may be indicated. CLINICAL IMPACT Taking into account four signs (i.e., past medical history, characteristic tumors or suspicious age of onset, somatic alterations of the tumors, and family history), radiologists can contribute to the identification of patients with cancer predisposition. Besides appraisal of screening images, the expertise of radiologists is especially needed to develop and reevaluate risk-adapted surveillance programs.
Collapse
Affiliation(s)
- Tim Ripperger
- Institut für Humangenetik, Medizinische Hochschule Hannover (MHH), Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| |
Collapse
|
206
|
Baranwal A, Hahn CN, Shah MV, Hiwase DK. Role of Germline Predisposition to Therapy-Related Myeloid Neoplasms. Curr Hematol Malig Rep 2022; 17:254-265. [PMID: 35986863 DOI: 10.1007/s11899-022-00676-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Therapy-related myeloid neoplasms (t-MNs) are aggressive leukemias that develop following exposure to DNA-damaging agents. A subset of patients developing t-MN may have an inherited susceptibility to develop myeloid neoplasia. Herein, we review studies reporting t-MN and their association with a germline or inherited predisposition. RECENT FINDINGS Emerging evidence suggests that development of t-MN is the result of complex interactions including generation of somatic variants in hematopoietic stem cells and/or clonal selection pressure exerted by the DNA-damaging agents, and immune evasion on top of any inherited genetic susceptibility. Conventionally, alkylating agents, topoisomerase inhibitors, and radiation have been associated with t-MN. Recently, newer modalities including poly (ADP-ribose) polymerase inhibitors (PARPi) and peptide receptor radionucleotide therapy (PRRT) are associated with t-MN. At the same time, the role of pathogenic germline variants (PGVs) in genes such as BRCA1/2, BARD1, or TP53 on the risk of t-MN is being explored. Moreover, studies have shown that while cytotoxic therapy increases the risk of developing myeloid neoplasia, it may be exposing the vulnerability of an underlying germline predisposition. t-MN remains a disease with poor prognosis. Studies are needed to better define an individual's inherited neoplastic susceptibility which will help predict the risk of myeloid neoplasia in the future. Understanding the genes driving the inherited neoplastic susceptibility will lead to better patient- and cancer-specific management including choice of therapeutic regimen to prevent, or at least delay, development of myeloid neoplasia after treatment of a prior malignancy.
Collapse
Affiliation(s)
- Anmol Baranwal
- Division of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55906, USA
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Mithun Vinod Shah
- Division of Hematology, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55906, USA.
| | - Devendra K Hiwase
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
207
|
Pachajoa H, Giraldo-Ocampo S. A Patient with Bone Fragility, Multiple Fractures, Osteosarcoma, and the Variant c.143A>G in the IFITM5 Gene: A Case Report. Orthop Res Rev 2022; 14:453-458. [PMID: 36467431 PMCID: PMC9717602 DOI: 10.2147/orr.s385146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a group of genetic skeletal disorders, with a prevalence of 1 in 15,000-20,000 births. OI type V has been described in approximately 150 cases and all patients carry the variant (c.-14C> T) in the IFITM5 gene. However, two other variants, p.S40L and p.N48S have been reported in this gene, leading to clinical phenotypes different from OI type V. Here we described a patient with multiple bone fractures, scoliosis, skull alteration (plagiocephaly), bone deformation, bone rickets, and intramedullary epithelioid osteosarcoma that bears the recently reported heterozygous variant c.143A>G (p.N48S) in the IFITM5 gene. This case supports the pathogenicity of this new variant in the IFITM5 gene and adds information regarding its clinical phenotype.
Collapse
Affiliation(s)
- Harry Pachajoa
- Genetics Division, Fundación Valle del Lili, Cali, Colombia
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | | |
Collapse
|
208
|
Daley JD, Olson AC, Bailey KM. Harnessing immunomodulation during DNA damage in Ewing sarcoma. Front Oncol 2022; 12:1048705. [PMID: 36483025 PMCID: PMC9722957 DOI: 10.3389/fonc.2022.1048705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Ewing sarcoma is a fusion-oncoprotein-driven primary bone tumor most commonly diagnosed in adolescents. Given the continued poor outcomes for patients with metastatic and relapsed Ewing sarcoma, testing innovative therapeutic approaches is essential. Ewing sarcoma has been categorized as a 'BRCAness' tumor with emerging data characterizing a spectrum of DNA damage repair defects within individual Ewing tumors, including the presence of EWSR1::FLI1 itself, recurrent somatic mutations, and rare germline-based defects. It is critical to understand the cumulative impact of various DNA damage repair defects on an individual Ewing tumor's response to therapy. Further, in addition to DNA-damage-directed therapies, subsets of Ewing tumors may be more susceptible to DNA-damage/immunotherapy combinations given the significant cross-talk between DNA damage and inflammatory pathways in the tumor microenvironment. Here we review potential approaches utilizing DNA-damaging agents as modulators of the Ewing tumor immune microenvironment, with a focus on radiation and opportunities during disease metastasis and relapse.
Collapse
Affiliation(s)
- Jessica D. Daley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adam C. Olson
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
209
|
Muñoz-Barrera A, Rubio-Rodríguez LA, Díaz-de Usera A, Jáspez D, Lorenzo-Salazar JM, González-Montelongo R, García-Olivares V, Flores C. From Samples to Germline and Somatic Sequence Variation: A Focus on Next-Generation Sequencing in Melanoma Research. Life (Basel) 2022; 12:1939. [PMID: 36431075 PMCID: PMC9695713 DOI: 10.3390/life12111939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Next-generation sequencing (NGS) applications have flourished in the last decade, permitting the identification of cancer driver genes and profoundly expanding the possibilities of genomic studies of cancer, including melanoma. Here we aimed to present a technical review across many of the methodological approaches brought by the use of NGS applications with a focus on assessing germline and somatic sequence variation. We provide cautionary notes and discuss key technical details involved in library preparation, the most common problems with the samples, and guidance to circumvent them. We also provide an overview of the sequence-based methods for cancer genomics, exposing the pros and cons of targeted sequencing vs. exome or whole-genome sequencing (WGS), the fundamentals of the most common commercial platforms, and a comparison of throughputs and key applications. Details of the steps and the main software involved in the bioinformatics processing of the sequencing results, from preprocessing to variant prioritization and filtering, are also provided in the context of the full spectrum of genetic variation (SNVs, indels, CNVs, structural variation, and gene fusions). Finally, we put the emphasis on selected bioinformatic pipelines behind (a) short-read WGS identification of small germline and somatic variants, (b) detection of gene fusions from transcriptomes, and (c) de novo assembly of genomes from long-read WGS data. Overall, we provide comprehensive guidance across the main methodological procedures involved in obtaining sequencing results for the most common short- and long-read NGS platforms, highlighting key applications in melanoma research.
Collapse
Affiliation(s)
- Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
210
|
Kratz CP, Smirnov D, Autry R, Jäger N, Waszak SM, Großhennig A, Berutti R, Wendorff M, Hainaut P, Pfister SM, Prokisch H, Ripperger T, Malkin D. Heterozygous BRCA1 and BRCA2 and Mismatch Repair Gene Pathogenic Variants in Children and Adolescents With Cancer. J Natl Cancer Inst 2022; 114:1523-1532. [PMID: 35980168 DOI: 10.1093/jnci/djac151] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/21/2022] [Accepted: 07/20/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Genetic predisposition is has been identified as a cause of cancer, yet little is known about the role of adult cancer predisposition syndromes in childhood cancer. We examined the extent to which heterozygous pathogenic germline variants in BRCA1, BRCA2, PALB2, ATM, CHEK2, MSH2, MSH6, MLH1, and PMS2 contribute to cancer risk in children and adolescents. METHODS We conducted a meta-analysis of 11 studies that incorporated comprehensive germline testing for children and adolescents with cancer. ClinVar pathogenic or likely pathogenic variants (PVs) in genes of interest were compared with 2 control groups. Results were validated in a cohort of mainly European patients and controls. We employed the Proxy External Controls Association Test to account for different pipelines. RESULTS Among 3975 children and adolescents with cancer, statistically significant associations with cancer risk were observed for PVs in BRCA1 and 2 (26 PVs vs 63 PVs among 27 501 controls, odds ratio = 2.78, 95% confidence interval = 1.69 to 4.45; P < .001) and mismatch repair genes (19 PVs vs 14 PVs among 27 501 controls, odds ratio = 7.33, 95% confidence interval = 3.64 to 14.82; P <.001). Associations were seen in brain and other solid tumors but not in hematologic neoplasms. We confirmed similar findings in 1664 pediatric cancer patients primarily of European descent. CONCLUSION These data suggest that heterozygous PVs in BRCA1 and 2 and mismatch repair genes contribute with reduced penetrance to cancer risk in children and adolescents. No changes to predictive genetic testing and surveillance recommendations are required.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Dmitrii Smirnov
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert Autry
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic European Molecular Biology Laboratory (EMBL) Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway.,Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Anika Großhennig
- Institute of Biostatistics, Hannover Medical School, Hannover, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Pierre Hainaut
- Univ. Grenoble Alpes, Inserm 1209, CNRS 5309, Institute for Advanced Biosciences, F38000, Grenoble, France
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technische Universität München, München, Germany.,Institute of Neurogenomics, Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - David Malkin
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
211
|
Wu KS, Sung SY, Huang MH, Lin YL, Chang CC, Fang CL, Wong TT, Chen HH, Tsai ML. Clinical and Molecular Features in Medulloblastomas Subtypes in Children in a Cohort in Taiwan. Cancers (Basel) 2022; 14:cancers14215419. [PMID: 36358838 PMCID: PMC9657873 DOI: 10.3390/cancers14215419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Medulloblastoma (MB) was classified into four subgroups: WNT, SHH, group 3, and group 4. In 2017, 12 subtypes within 4 subgroups and 8 subtypes within non-WNT/non-SHH subgroups according to the heterogenous features were announced. In this study, we aimed to identify the heterogeneity of molecular features for discovering subtype specific factors linked to diagnosis and prognosis. We retrieved 70 MBs to perform RNA sequencing and a DNA methylation array. Integrated with clinical annotations, we classified 12 subtypes of pediatric MBs. We found that M2 macrophages were enriched in SHH β, which correlated with good outcomes of SHH MBs. The high infiltration of M2 macrophages may be an indicator of a favorable prognosis and therapeutic target for SHH MBs. Furthermore, C11orf95-RELA fusion was observed to be associated with recurrence and a poor prognosis. These results will contribute to the establishment of a molecular diagnosis linked to prognostic factors of relevance for MBs. Abstract Medulloblastoma (MB) was classified into four molecular subgroups: WNT, SHH, group 3, and group 4. In 2017, 12 subtypes within 4 subgroups and 8 subtypes within non-WNT/non-SHH subgroups according to the differences of clinical features and biology were announced. In this study, we aimed to identify the heterogeneity of molecular features for discovering subtype specific factors linked to diagnosis and prognosis. We retrieved 70 MBs in children to perform RNA sequencing and a DNA methylation array in Taiwan. Integrated with clinical annotations, we achieved classification of 12 subtypes of pediatric MBs in our cohort series with reference to the other reported series. We analyzed the correlation of cell type enrichment in SHH MBs and found that M2 macrophages were enriched in SHH β, which related to good outcomes of SHH MBs. The high infiltration of M2 macrophages may be an indicator of a favorable prognosis and therapeutic target for SHH MBs. Furthermore, C11orf95-RELA fusion was observed to be associated with recurrence and a poor prognosis. These results will contribute to the establishment of a molecular diagnosis linked to prognostic indicators of relevance and help to promote molecular-based risk stratified treatment for MBs in children.
Collapse
Affiliation(s)
- Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, Taipei Medical University, Taipei 110, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Man-Hsu Huang
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Che-Chang Chang
- International Ph.D. Program for Translational Science, Taipei Medical University, Taipei 110, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Lang Fang
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Hsin-Hung Chen
- Division of Pediatric Neurosurgery, The Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (H.-H.C.); (M.-L.T.)
| | - Min-Lan Tsai
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pediatrics, College of Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (H.-H.C.); (M.-L.T.)
| |
Collapse
|
212
|
Genetic predisposition to central nervous system tumors in children - what the neurosurgeon should know. Acta Neurochir (Wien) 2022; 164:3025-3034. [PMID: 35660974 DOI: 10.1007/s00701-022-05258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Historically, few pediatric central nervous system (CNS) tumors were thought to result from genetic predisposition. However, within the last decade, new DNA sequencing methods have led to an increased recognition of high-risk cancer predisposition syndromes in children with CNS tumors. Thus, genetic predisposition is increasingly impacting clinical pediatric neuro-oncology. METHODS In this narrative review, we discuss the current understanding of genetic predisposition to childhood CNS tumors and provide a general overview of involved research methodologies and terminology. Moreover, we consider how germline genetics may influence neurosurgical practice. RESULTS Introduction of next-generation DNA sequencing has greatly increased our understanding of genetic predisposition to pediatric CNS tumors by enabling whole-exome/-genome sequencing of large cohorts. To date, the scientific literature has reported germline sequencing findings for more than 2000 children with CNS tumors. Although varying between tumor types, at least 10% of childhood CNS tumors can currently be explained by rare pathogenic germline variants in known cancer-related genes. Novel methodologies continue to uncover new mechanisms, suggesting that a much higher proportion of children with CNS tumors have underlying genetic causes. Understanding how genetic predisposition influences tumor biology and the clinical course in a given patient may mandate adjustments to neurosurgical treatment. CONCLUSION Germline genetics is becoming increasingly important to clinicians, including neurosurgeons. This review provides an updated overview of genetic predisposition to childhood CNS tumors with focus on aspects relevant to pediatric neurosurgeons.
Collapse
|
213
|
Lønning PE, Nikolaienko O, Pan K, Kurian AW, Eikesdal HP, Pettinger M, Anderson GL, Prentice RL, Chlebowski RT, Knappskog S. Constitutional BRCA1 Methylation and Risk of Incident Triple-Negative Breast Cancer and High-grade Serous Ovarian Cancer. JAMA Oncol 2022; 8:1579-1587. [PMID: 36074460 PMCID: PMC9459895 DOI: 10.1001/jamaoncol.2022.3846] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/08/2022] [Indexed: 11/14/2022]
Abstract
Importance About 25% of all triple-negative breast cancers (TNBCs) and 10% to 20% of high-grade serous ovarian cancers (HGSOCs) harbor BRCA1 promoter methylation. While constitutional BRCA1 promoter methylation has been observed in normal tissues of some individuals, the potential role of normal tissue methylation as a risk factor for incident TNBC or HGSOC is unknown. Objective To assess the potential association between white blood cell BRCA1 promoter methylation and subsequent risk of incident TNBC and HGSOC. Design, Setting, and Participants This case-control study included women who were participating in the Women's Health Initiative study who had not received a diagnosis of either breast or ovarian cancer before study entrance. A total of 637 women developing incident TNBC and 511 women developing incident HGSOC were matched with cancer-free controls (1841 and 2982, respectively) in a nested case-control design. Cancers were confirmed after central medical record review. Blood samples, which were collected at entry, were analyzed for BRCA1 promoter methylation by massive parallel sequencing. The study was performed in the Mohn Cancer Research Laboratory (Bergen, Norway) between 2019 and 2022. Main Outcomes and Measures Associations between BRCA1 methylation and incident TNBC and incident HGSOC were analyzed by Cox proportional hazards regression. Results Of 2478 cases and controls in the TNBC group and 3493 cases and controls in the HGSOC group, respectively, 7 (0.3%) and 3 (0.1%) were American Indian or Alaska Native, 46 (1.9%) and 30 (0.9%) were Asian, 1 (0.04%) and 1 (0.03%) was Native Hawaiian or Pacific Islander, 326 (13.2%) and 125 (3.6%) were Black or African, 56 (2.3%) and 116 (3.3%) were Hispanic, 2046 (82.6%) and 3257 (93.2%) were White, and 35 (1.4%) and 35 (1.0%) were multiracial. Median (range) age at entry was 62 (50-79) years, with a median interval to diagnosis of 9 (TNBC) and 10 (HGSOC) years. Methylated BRCA1 alleles were present in 194 controls (5.5%). Methylation was associated with risk of incident TNBC (12.4% methylated; HR, 2.35; 95% CI, 1.70-3.23; P < .001) and incident HGSOC (9.4% methylated; HR, 1.93; 95% CI, 1.36-2.73; P < .001). Restricting analyses to individuals with more than 5 years between sampling and cancer diagnosis yielded similar results (TNBC: HR, 2.52; 95% CI, 1.75-3.63; P < .001; HGSOC: HR, 1.82; 95% CI, 1.22-2.72; P = .003). Across individuals, methylation was not haplotype-specific, arguing against an underlying cis-acting factor. Within individuals, BRCA1 methylation was observed on the same allele, indicating clonal expansion from a single methylation event. There was no association found between BRCA1 methylation and germline pathogenic variant status. Conclusions and Relevance The results of this case-control suggest that constitutional normal tissue BRCA1 promoter methylation is significantly associated with risk of incident TNBC and HGSOC, with potential implications for prediction of these cancers. These findings warrant further research to determine if constitutional methylation of tumor suppressor genes are pancancer risk factors.
Collapse
Affiliation(s)
- Per E. Lønning
- K.G. Jebsen Centre for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Oleksii Nikolaienko
- K.G. Jebsen Centre for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Kathy Pan
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Allison W. Kurian
- Departments of Medicine and of Epidemiology and Population Health, Stanford University, Stanford, California
| | - Hans P. Eikesdal
- K.G. Jebsen Centre for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Mary Pettinger
- Division of Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Garnet L. Anderson
- Division of Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ross L. Prentice
- Division of Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Rowan T. Chlebowski
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Stian Knappskog
- K.G. Jebsen Centre for Genome-Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
214
|
Huang X, Hansen J, Lee PC, Wu CK, Federman N, Arah OA, Li CY, Olsen J, Ritz B, Heck JE. Maternal diabetes and childhood cancer risks in offspring: two population-based studies. Br J Cancer 2022; 127:1837-1842. [PMID: 36088507 PMCID: PMC9643384 DOI: 10.1038/s41416-022-01961-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The effect of maternal diabetes on childhood cancer has not been widely studied. METHODS We examined this in two population-based studies in Denmark (N = 6420 cancer cases, 160,484 controls) and Taiwan (N = 2160 cancer cases, 2,076,877 non-cases) using logistic regression and Cox proportional hazard regression adjusted for birth year, child's sex, maternal age and birth order. RESULTS Gestational diabetes in Denmark [odds ratio (OR) = 0.98, 95% confidence interval (CI): 0.71-1.35] or type II and gestational diabetes in Taiwan (type II: hazard ratio (HR) = 0.81, 95% CI: 0.63-1.05; gestational diabetes: HR = 1.06, 95% CI: 0.92-1.22) were not associated with cancer (all types combined). In Denmark, maternal type I diabetes was associated with the risk of glioma (OR = 2.33, 95% CI: 1.04-5.22), while in Taiwan, the risks of glioma (HR = 1.59, 95% CI: 1.01-2.50) were elevated among children whose mothers had gestational diabetes. There was a twofold increased risk for hepatoblastoma with maternal type II diabetes (HR = 2.02, 95% CI: 1.02-4.00). CONCLUSIONS Our results suggest that maternal diabetes is an important risk factor for certain types of childhood cancers, emphasising the need for effective interventions targeting maternal diabetes to prevent serious health effects in offspring.
Collapse
Affiliation(s)
- Xiwen Huang
- Department of Epidemiology, Fielding School of Public Health, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-1772, USA
| | - Johnni Hansen
- Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Pei-Chen Lee
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, 89 Nei-Chiang St, Wan-Hua Dist, Taipei, 10845, Taiwan.
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm U1018, Team "Exposome, heredity, cancer and health", CESP, 94807, Villejuif, France.
- Department of Public Health, National Cheng Kung University, #1, University Road, Tainan, 70101, Taiwan.
| | - Chia-Kai Wu
- Université Paris-Saclay, UVSQ, Univ. Paris-Sud, Inserm U1018, Team "Exposome, heredity, cancer and health", CESP, 94807, Villejuif, France
| | - Noah Federman
- Department of Pediatrics, Geffen School of Medicine, UCLA, Los Angeles, CA, 90095-1752, USA
| | - Onyebuchi A Arah
- Department of Epidemiology, Fielding School of Public Health, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-1772, USA
- Department of Statistics, UCLA College of Letters and Science, Los Angeles, CA, USA
- Section for Epidemiology, Department of Public Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Chung-Yi Li
- Department of Public Health, National Cheng Kung University, #1, University Road, Tainan, 70101, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Jorn Olsen
- Department of Clinical Epidemiology, Aarhus University, Olof Palmes Allé 43-45 8200 Aarhus N, Aarhus, Denmark
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-1772, USA
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095-1772, USA.
- College of Health and Public Service, University of North Texas, 1155 Union Circle #305250, Denton, TX, 76203-5017, USA.
| |
Collapse
|
215
|
Langenberg KP, Meister MT, Bakhuizen JJ, Boer JM, van Eijkelenburg NK, Hulleman E, Ilan U, Looze EJ, Dierselhuis MP, van der Lugt J, Breunis W, Schild LG, Ober K, van Hooff SR, Scheijde-Vermeulen MA, Hiemcke-Jiwa LS, Flucke UE, Kranendonk ME, Wesseling P, Sonneveld E, Punt S, Boltjes A, van Dijk F, Verwiel ET, Volckmann R, Hehir-Kwa JY, Kester LA, Koudijs MM, Waanders E, Holstege FC, Vormoor HJ, Hoving EW, van Noesel MM, Pieters R, Kool M, Stumpf M, Blattner-Johnson M, Balasubramanian GP, Van Tilburg CM, Jones BC, Jones DT, Witt O, Pfister SM, Jongmans MC, Kuiper RP, de Krijger RR, Wijnen MH, den Boer ML, Zwaan CM, Kemmeren P, Koster J, Tops BB, Goemans BF, Molenaar JJ. Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’. Eur J Cancer 2022; 175:311-325. [PMID: 36182817 PMCID: PMC9586161 DOI: 10.1016/j.ejca.2022.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022]
Abstract
iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival. Implementing comprehensive molecular profiling into standard of care is feasible. Temporal heterogeneity is observed, indicating the value of sequential analyses. Molecularly matched treatments are applied in a minority of patients despite clinical benefit. Poor performance status & limited access to drugs within trial hamper targeted treatment. The multidisciplinary tumour board is crucial in translating findings into clinical decision making.
Collapse
|
216
|
Celik B, Cicek K, Leal AF, Tomatsu S. Regulation of Molecular Targets in Osteosarcoma Treatment. Int J Mol Sci 2022; 23:12583. [PMID: 36293439 PMCID: PMC9604206 DOI: 10.3390/ijms232012583] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
The most prevalent malignant bone tumor, osteosarcoma, affects the growth plates of long bones in adolescents and young adults. Standard chemotherapeutic methods showed poor response rates in patients with recurrent and metastatic phases. Therefore, it is critical to develop novel and efficient targeted therapies to address relapse cases. In this regard, RNA interference technologies are encouraging options in cancer treatment, in which small interfering RNAs regulate the gene expression following RNA interference pathways. The determination of target tissue is as important as the selection of tissue-specific promoters. Moreover, small interfering RNAs should be delivered effectively into the cytoplasm. Lentiviral vectors could encapsulate and deliver the desired gene into the cell and integrate it into the genome, providing long-term regulation of targeted genes. Silencing overexpressed genes promote the tumor cells to lose invasiveness, prevents their proliferation, and triggers their apoptosis. The uniqueness of cancer cells among patients requires novel therapeutic methods that treat patients based on their unique mutations. Several studies showed the effectiveness of different approaches such as microRNA, drug- or chemotherapy-related methods in treating the disease; however, identifying various targets was challenging to understanding disease progression. In this regard, the patient-specific abnormal gene might be targeted using genomics and molecular advancements such as RNA interference approaches. Here, we review potential therapeutic targets for the RNA interference approach, which is applicable as a therapeutic option for osteosarcoma patients, and we point out how the small interfering RNA method becomes a promising approach for the unmet challenge.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kader Cicek
- Department of Biological Science, University of Delaware, Newark, DE 19716, USA
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Andrés Felipe Leal
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
217
|
Brackmann LK, Foraita R, Schwarz H, Galetzka D, Zahnreich S, Hankeln T, Löbrich M, Poplawski A, Grabow D, Blettner M, Schmidberger H, Marron M. Late health effects and changes in lifestyle factors after cancer in childhood with and without subsequent second primary cancers – the KiKme case-control study. Front Oncol 2022; 12:1037276. [PMID: 36324589 PMCID: PMC9618813 DOI: 10.3389/fonc.2022.1037276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background Improved treatments for childhood cancer result in a growing number of long-term childhood cancer survivors (CCS). The diagnosis and the prevalence of comorbidities may, however, influence their lifestyle later in life. Nonetheless, little is known about differences in late effects between CCS of a first primary neoplasm (FPN) in childhood and subsequent second primary neoplasms (SPN) and their impact on lifestyle. Therefore, we aim to investigate associations between the occurrence of FPN or SPN and various diseases and lifestyle in the later life of CCS. Methods CCS of SPN (n=101) or FPN (n=340) and cancer-free controls (n=150) were matched by age and sex, and CCS additionally by year and entity of FPN. All participants completed a self-administered questionnaire on anthropometric and socio-economic factors, medical history, health status, and lifestyle. Mean time between FPN diagnosis and interview was 27.3 years for SPN and 26.2 years for FPN CCS. To confirm results from others and to generate new hypotheses on late effects of childhood cancer as well as CCS´ lifestyles, generalized linear mixed models were applied. Results CCS were found to suffer more likely from diseases compared to cancer-free controls. In detail, associations with cancer status were observed for hypercholesterinemia and thyroid diseases. Moreover, CCS were more likely to take regular medication compared to controls. A similar association was observed for CCS of SPN compared to CCS of FPN. In contrast to controls, CCS rarely exercise more than 5 hours per week, consumed fewer soft and alcoholic drinks, and were less likely to be current, former, or passive smokers. Additionally, they were less likely overweight or obese. All other exploratory analyses performed on cardiovascular, chronic lung, inflammatory bone, allergic, and infectious diseases, as well as on a calculated health-score revealed no association with tumor status. Conclusion CCS were more affected by pathologic conditions and may consequently take more medication, particularly among CCS of SPN. The observed higher disease burden is likely related to the received cancer therapy. To reduce the burden of long-term adverse health effects in CCS, improving cancer therapies should therefore be in focus of research in this area.
Collapse
Affiliation(s)
- Lara Kim Brackmann
- Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
- Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| | - Ronja Foraita
- Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Heike Schwarz
- Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Markus Löbrich
- Radiation Biology and deoxyribonucleic acid (DNA) Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Desiree Grabow
- German Childhood Cancer Registry, Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Manuela Marron
- Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology – BIPS, Bremen, Germany
- *Correspondence: Manuela Marron,
| |
Collapse
|
218
|
Wang C, Dai J, Qin N, Fan J, Ma H, Chen C, An M, Zhang J, Yan C, Gu Y, Xie Y, He Y, Jiang Y, Zhu M, Song C, Jiang T, Liu J, Zhou J, Wang N, Hua T, Liang S, Wang L, Xu J, Yin R, Chen L, Xu L, Jin G, Lin D, Hu Z, Shen H. Analyses of rare predisposing variants of lung cancer in 6,004 whole genomes in Chinese. Cancer Cell 2022; 40:1223-1239.e6. [PMID: 36113475 DOI: 10.1016/j.ccell.2022.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
We present the largest whole-genome sequencing (WGS) study of non-small cell lung cancer (NSCLC) to date among 6,004 individuals of Chinese ancestry, coupled with 23,049 individuals genotyped by SNP array. We construct a high-quality haplotype reference panel for imputation and identify 20 common and low-frequency loci (minor allele frequency [MAF] ≥ 0.5%), including five loci that have never been reported before. For rare loss-of-function (LoF) variants (MAF < 0.5%), we identify BRCA2 and 18 other cancer predisposition genes that affect 5.29% of individuals with NSCLC, and 98.91% (181 of 183) of LoF variants have not been linked previously to NSCLC risk. Promoter variants of BRCA2 also have a substantial effect on NSCLC risk, and their prevalence is comparable with BRCA2 LoF variants. The associations are validated in an independent case-control study including 4,410 individuals and a prospective cohort study including 23,826 individuals. Our findings not only provide a high-quality reference panel for future array-based association studies but depict the whole picture of rare pathogenic variants for NSCLC.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Juncheng Dai
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Na Qin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jingyi Fan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Congcong Chen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingxing An
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jing Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Caiwang Yan
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yayun Gu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yuanlin He
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yue Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meng Zhu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Ci Song
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tao Jiang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jia Liu
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jun Zhou
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Nanxi Wang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Tingting Hua
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuang Liang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Lu Wang
- Department of Health Promotion & Chronic Non-Communicable Disease Control, Wuxi Center for Disease Control and Prevention, Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214145, Jiangsu, China
| | - Jing Xu
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rong Yin
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Liang Chen
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lin Xu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Department of Thoracic Surgery Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210029, Jiangsu, China
| | - Guangfu Jin
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China.
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), Gusu School, Nanjing Medical University, Suzhou 215002, Jiangsu, China; Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
219
|
How Genetics and Genomics Advances Are Rewriting Pediatric Cancer Research and Clinical Care. Medicina (B Aires) 2022; 58:medicina58101386. [PMID: 36295546 PMCID: PMC9610804 DOI: 10.3390/medicina58101386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
In the last two decades, thanks to the data that have been obtained from the Human Genome Project and the development of next-generation sequencing (NGS) technologies, research in oncology has produced extremely important results in understanding the genomic landscape of pediatric cancers, which are the main cause of death during childhood. NGS has provided significant advances in medicine by detecting germline and somatic driver variants that determine the development and progression of many types of cancers, allowing a distinction between hereditary and non-hereditary cancers, characterizing resistance mechanisms that are also related to alterations of the epigenetic apparatus, and quantifying the mutational burden of tumor cells. A combined approach of next-generation technologies allows us to investigate the numerous molecular features of the cancer cell and the effects of the environment on it, discovering and following the path of personalized therapy to defeat an "ancient" disease that has had victories and defeats. In this paper, we provide an overview of the results that have been obtained in the last decade from genomic studies that were carried out on pediatric cancer and their contribution to the more accurate and faster diagnosis in the stratification of patients and the development of new precision therapies.
Collapse
|
220
|
Patil P, Pencheva BB, Patil VM, Fangusaro J. Nervous system (NS) Tumors in Cancer Predisposition Syndromes. Neurotherapeutics 2022; 19:1752-1771. [PMID: 36056180 PMCID: PMC9723057 DOI: 10.1007/s13311-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progression, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7-10% of all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identification of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. The treatment paradigm of specific NS tumors may also vary based on the patient's cancer predisposition syndrome and may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaffected and affected patients. Genetic counselors are uniquely trained master's level healthcare providers with a focus on the identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, defined as "the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease" plays a vital role in the adaptation to a genetic diagnosis and the overall management of these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include classic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other cancer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recommended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic counseling in these patients and their families.
Collapse
Affiliation(s)
- Prabhumallikarjun Patil
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Bojana Borislavova Pencheva
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Vinayak Mahesh Patil
- Intensive Care Unit Medical Officer, District Hospital Vijayapura, Karnataka, India
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
221
|
Kan Y, Si Y, Wang W, Yang J. Simultaneous Detection of 2 Types of Malignancies in a Pediatric Patient on FDG PET/CT Led to Diagnosis of Li-Fraumeni Syndrome. Clin Nucl Med 2022; 47:912-913. [PMID: 35543639 DOI: 10.1097/rlu.0000000000004266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT A 17-month-old girl underwent FDG PET/CT to evaluate a right adrenal lesion, which showed abnormal 18 F-FDG avidity. In addition, an unexpected lesion with mild 18 F-FDG uptake was noted in the right anterior thoracic wall. Pathology demonstrated adrenocortical carcinoma in the right adrenal and rhabdosarcoma in both the left forearm and right anterior thoracic wall. Gene analysis confirmed the diagnosis of Li-Fraumeni syndrome. The present case emphasized FDG PET/CT value of showing simultaneously multiple lesions in Li-Fraumeni syndrome, especially in the early stage without the gene analysis result.
Collapse
Affiliation(s)
- Ying Kan
- From the Department of Nuclear Medicine, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
222
|
Liu APY, Dhanda SK, Lin T, Sioson E, Vasilyeva A, Gudenas B, Tatevossian RG, Jia S, Neale G, Bowers DC, Hassall T, Partap S, Crawford JR, Chintagumpala M, Bouffet E, McCowage G, Broniscer A, Qaddoumi I, Armstrong G, Wright KD, Upadhyaya SA, Vinitsky A, Tinkle CL, Lucas J, Chiang J, Indelicato DJ, Sanders R, Klimo P, Boop FA, Merchant TE, Ellison DW, Northcott PA, Orr BA, Zhou X, Onar-Thomas A, Gajjar A, Robinson GW. Molecular classification and outcome of children with rare CNS embryonal tumors: results from St. Jude Children's Research Hospital including the multi-center SJYC07 and SJMB03 clinical trials. Acta Neuropathol 2022; 144:733-746. [PMID: 35982322 PMCID: PMC10482085 DOI: 10.1007/s00401-022-02484-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/28/2023]
Abstract
Methylation profiling has radically transformed our understanding of tumors previously called central nervous system primitive neuro-ectodermal tumors (CNS-PNET). While this marks a momentous step toward defining key differences, reclassification has thrown treatment into disarray. To shed light on response to therapy and guide clinical decision-making, we report outcomes and molecular features of children with CNS-PNETs from two multi-center risk-adapted studies (SJMB03 for patients ≥ 3 years; SJYC07 for patients < 3 years) complemented by a non-protocol institutional cohort. Seventy patients who had a histological diagnosis of CNS-PNET or CNS embryonal tumor from one of the new categories that has supplanted CNS-PNET were included. This cohort was molecularly characterized by DNA methylation profiling (n = 70), whole-exome sequencing (n = 53), RNA sequencing (n = 20), and germline sequencing (n = 28). Clinical characteristics were detailed, and treatment was divided into craniospinal irradiation (CSI)-containing (SJMB03 and SJMB03-like) and CSI-sparing therapy (SJYC07 and SJYC07-like). When the cohort was analyzed in its entirety, no differences were observed in the 5-year survival rates even when CSI-containing therapy was compared to CSI-sparing therapy. However, when analyzed by DNA methylation molecular grouping, significant survival differences were observed, and treatment particulars provided suggestions of therapeutic response. Patients with CNS neuroblastoma with FOXR2 activation (CNS-NB-FOXR2) had a 5-year event-free survival (EFS)/overall survival (OS) of 66.7% ± 19.2%/83.3% ± 15.2%, and CIC rearranged sarcoma (CNS-SARC-CIC) had a 5-year EFS/OS both of 57.1% ± 18.7% with most receiving regimens that contained radiation (focal or CSI) and multidrug chemotherapy. Patients with high-grade neuroepithelial tumor with BCOR alteration (HGNET-BCOR) had abysmal responses to upfront chemotherapy-only regimens (5-year EFS = 0%), but survival extended with salvage radiation after progression [5-year OS = 53.6% ± 20.1%]. Patients with embryonal tumor with multilayered rosettes (ETMR) or high-grade glioma/glioblastoma multiforme (HGG/GBM) did not respond favorably to any modality (5-year EFS/OS = 10.7 ± 5.8%/17.9 ± 7.2%, and 10% ± 9.0%/10% ± 9.0%, respectively). As an accompaniment, we have assembled this data onto an interactive website to allow users to probe and query the cases. By reporting on a carefully matched clinical and molecular cohort, we provide the needed insight for future clinical management.
Collapse
Affiliation(s)
- Anthony P Y Liu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sandeep K Dhanda
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Tong Lin
- Department of Biostatistics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Aksana Vasilyeva
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Brian Gudenas
- Department of Developmental Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Ruth G Tatevossian
- Cancer Biomarkers Laboratory, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Sujuan Jia
- Cancer Biomarkers Laboratory, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Geoffrey Neale
- The Hartwell Center, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Daniel C Bowers
- Division of Pediatric Hematology-Oncology, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Tim Hassall
- Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - John R Crawford
- Department of Child Neurology, Co-Institute of Neurosciences at Children's Hospital Orange County, Orange, CA, USA
| | - Murali Chintagumpala
- Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric Bouffet
- Division of Hematology-Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Geoff McCowage
- Children's Cancer Centre, The Children's Hospital at Westmead and University of Sydney, Sydney, Australia
| | - Alberto Broniscer
- Division of Hematology-Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Ibrahim Qaddoumi
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Greg Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Karen D Wright
- Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Santhosh A Upadhyaya
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Anna Vinitsky
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Christopher L Tinkle
- Department of Radiation Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - John Lucas
- Department of Radiation Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Jason Chiang
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, USA
| | - Robert Sanders
- Division of Complex Care, CommuniCare Health Centers, San Antonio, TX, USA
| | - Paul Klimo
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health and Science Center, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Frederick A Boop
- Department of Surgery, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health and Science Center, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Giles W Robinson
- Department of Oncology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA.
| |
Collapse
|
223
|
Lucari B, Tallis E, Sutton VR, Porea T. Dual enzyme therapy improves adherence to chemotherapy in a patient with gaucher disease and Ewing sarcoma. Pediatr Hematol Oncol 2022; 40:422-428. [PMID: 36125320 DOI: 10.1080/08880018.2022.2124006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This case reports concomitant use of enzyme and substrate reduction therapy to improve chemotherapy adherence in a pediatric patient diagnosed with Ewing sarcoma (ES) and type 1 Gaucher disease (GD). The 17-year-old female presented with 5 months of right knee pain with associated mass on exam. She was diagnosed with ES with pulmonary metastasis. The patient was treated with 17 alternating cycles of vincristine-doxorubicin-cyclophosphamide and ifosfamide and etoposide chemotherapy followed by tumor resection and radiation per standard protocol. As part of her staging work-up, bone marrow biopsy was performed, significant for Gaucher cells. After the second cycle of chemotherapy the patient began to experience severe delays averaging 30 days between cycles compared to 17.29 days observed in Children's Oncology Group data. Given her bone marrow biopsy findings and chemotherapy delays GD screening was obtained and the patient was diagnosed with GD following genetic confirmation. Due to delays in chemotherapy decreasing chance of remission, the patient was referred to Genetics for aggressive management with imiglucerase and eliglustat. After initiation of therapy the period between chemotherapy cycles decreased to 23 days on average, with a 21% increase in platelet count during therapy. The patient was able to complete ES therapy achieving remission. GD is associated with an increased risk of malignancy, as seen in our patient with ES. GD patients experience prolonged hematologic cytopenia during cancer treatment. Combining Enzyme and Substrate Reduction Therapies should be investigated as an option to improve chemotherapy adherence in GD patients.
Collapse
Affiliation(s)
- Brandon Lucari
- Department of Pediatrics at Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Eran Tallis
- Department of Molecular and Human Genetics at Baylor College of Medicine, Houston, Texas, USA
| | - Vernon Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Timothy Porea
- Department of Pediatrics Division of Hematology Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
224
|
Shulman DS, Whittle SB, Surdez D, Bailey KM, de Álava E, Yustein JT, Shlien A, Hayashi M, Bishop AJR, Crompton BD, DuBois SG, Shukla N, Leavey PJ, Lessnick SL, Kovar H, Delattre O, Grünewald TGP, Antonescu CR, Roberts RD, Toretsky JA, Tirode F, Gorlick R, Janeway KA, Reed D, Lawlor ER, Grohar PJ. An international working group consensus report for the prioritization of molecular biomarkers for Ewing sarcoma. NPJ Precis Oncol 2022; 6:65. [PMID: 36115869 PMCID: PMC9482616 DOI: 10.1038/s41698-022-00307-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
The advent of dose intensified interval compressed therapy has improved event-free survival for patients with localized Ewing sarcoma (EwS) to 78% at 5 years. However, nearly a quarter of patients with localized tumors and 60-80% of patients with metastatic tumors suffer relapse and die of disease. In addition, those who survive are often left with debilitating late effects. Clinical features aside from stage have proven inadequate to meaningfully classify patients for risk-stratified therapy. Therefore, there is a critical need to develop approaches to risk stratify patients with EwS based on molecular features. Over the past decade, new technology has enabled the study of multiple molecular biomarkers in EwS. Preliminary evidence requiring validation supports copy number changes, and loss of function mutations in tumor suppressor genes as biomarkers of outcome in EwS. Initial studies of circulating tumor DNA demonstrated that diagnostic ctDNA burden and ctDNA clearance during induction are also associated with outcome. In addition, fusion partner should be a pre-requisite for enrollment on EwS clinical trials, and the fusion type and structure require further study to determine prognostic impact. These emerging biomarkers represent a new horizon in our understanding of disease risk and will enable future efforts to develop risk-adapted treatment.
Collapse
Affiliation(s)
- David S Shulman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah B Whittle
- Texas Children's Cancer and Hematology Centers, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Didier Surdez
- Bone Sarcoma Research Laboratory, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Kelly M Bailey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IBiS), Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC/Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Adam Shlien
- Department of Laboratory Medicine and Pathobiology/Department of Paediatric Laboratory Medicine/Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Masanori Hayashi
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Institute and Department of Cell Systems and Anatomy, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Brian D Crompton
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Patrick J Leavey
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephen L Lessnick
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, and the Division of Pediatric Heme/Onc/BMT, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Heinrich Kovar
- St. Anna Children´s Cancer Research Institute (CCRI) and Department Pediatrics Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Thomas G P Grünewald
- Hopp-Children's Cancer Center (KiTZ), Heidelberg/Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK)/Institut of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan D Roberts
- Center for Childhood Cancer and Blood Disease, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Jeffrey A Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC, USA
| | - Franck Tirode
- Univ Lyon, Universite Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Leon Berard, F-69008, Lyon, France
| | - Richard Gorlick
- Division of Pediatrics, MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Damon Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Elizabeth R Lawlor
- Seattle Children's Research Institute, University of Washington Medical School, Seattle, WA, USA
| | - Patrick J Grohar
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
225
|
Nie D, Guo T, Yue M, Li W, Zong X, Zhu Y, Huang J, Lin M. Research Progress on Nanoparticles-Based CRISPR/Cas9 System for Targeted Therapy of Tumors. Biomolecules 2022; 12:biom12091239. [PMID: 36139078 PMCID: PMC9496048 DOI: 10.3390/biom12091239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a genetic mutation disease that seriously endangers the health and life of all human beings. As one of the most amazing academic achievements in the past decade, CRISPR/Cas9 technology has been sought after by many researchers due to its powerful gene editing capability. CRISPR/Cas9 technology shows great potential in oncology, and has become one of the most promising technologies for cancer genome-editing therapeutics. However, its efficiency and the safety issues of in vivo gene editing severely limit its widespread application. Therefore, developing a suitable delivery method for the CRISPR/Cas9 system is an urgent problem to be solved at present. Rapid advances in nanomedicine suggest nanoparticles could be a viable option. In this review, we summarize the latest research on the potential use of nanoparticle-based CRISPR/Cas9 systems in cancer therapeutics, in order to further their clinical application. We hope that this review will provide a novel insight into the CRISPR/Cas9 system and offer guidance for nanocarrier designs that will enable its use in cancer clinical applications.
Collapse
|
226
|
Wenger D, Kurumety S, Aydi ZB. A case report: invasive ductal carcinoma in mosaic Li-Fraumeni syndrome. J Surg Case Rep 2022; 2022:rjac408. [PMID: 36168441 PMCID: PMC9509207 DOI: 10.1093/jscr/rjac408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Li-Fraumeni syndrome (LFS) is a rare autosomal dominant condition caused by pathogenic variants in the TP53 tumor suppressor gene and characterized by a high lifetime risk of various cancers with a very early age of onset. We are presenting a 41-year-old woman with right invasive ductal cancer and no family history of cancers, diagnosed with mosaic LFS confirmed with blood and skin punch biopsy samples. She was treated with neoadjuvant chemotherapy, mastectomy and sentinel node biopsy with completion axillary dissection. Adjuvant radiation was not recommended due to increased risk of secondary cancers. She also elected to undergo risk reducing contralateral mastectomy. Further research is warranted to determine the appropriate clinical management and surveillance strategies in patients with mosaic LFS as whether individuals with mosaic LFS have differing cancer risks in comparison to classic germline LFS is unknown.
Collapse
Affiliation(s)
- Danielle Wenger
- University of Arizona College of Medicine – Phoenix , Phoenix, AZ 85006 , USA
| | - Sasha Kurumety
- Department of Radiology, Houston Methodist Hospital , Houston, TX 77030 , USA
| | - Zeynep B Aydi
- Department of Surgery, University of Arizona College of Medicine – Phoenix , Phoenix, AZ 85006 , USA
- Department of Surgical Oncology, Banner MD Anderson Cancer Center , Phoenix, AZ 85006 , USA
| |
Collapse
|
227
|
McReynolds LJ, Rafati M, Wang Y, Ballew BJ, Kim J, Williams VV, Zhou W, Hendricks RM, Dagnall C, Freedman ND, Carter B, Strollo S, Hicks B, Zhu B, Jones K, Paczesny S, Marsh SGE, Spellman SR, He M, Wang T, Lee SJ, Savage SA, Gadalla SM. Genetic testing in severe aplastic anemia is required for optimal hematopoietic cell transplant outcomes. Blood 2022; 140:909-921. [PMID: 35776903 PMCID: PMC9412004 DOI: 10.1182/blood.2022016508] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with severe aplastic anemia (SAA) can have an unrecognized inherited bone marrow failure syndrome (IBMFS) because of phenotypic heterogeneity. We curated germline genetic variants in 104 IBMFS-associated genes from exome sequencing performed on 732 patients who underwent hematopoietic cell transplant (HCT) between 1989 and 2015 for acquired SAA. Patients with pathogenic or likely pathogenic (P/LP) variants fitting known disease zygosity patterns were deemed unrecognized IBMFS. Carriers were defined as patients with a single P/LP variant in an autosomal recessive gene or females with an X-linked recessive P/LP variant. Cox proportional hazard models were used for survival analysis with follow-up until 2017. We identified 113 P/LP single-nucleotide variants or small insertions/deletions and 10 copy number variants across 42 genes in 121 patients. Ninety-one patients had 105 in silico predicted deleterious variants of uncertain significance (dVUS). Forty-eight patients (6.6%) had an unrecognized IBMFS (33% adults), and 73 (10%) were carriers. No survival difference between dVUS and acquired SAA was noted. Compared with acquired SAA (no P/LP variants), patients with unrecognized IBMFS, but not carriers, had worse survival after HCT (IBMFS hazard ratio [HR], 2.13; 95% confidence interval[CI], 1.40-3.24; P = .0004; carriers HR, 0.96; 95% CI, 0.62-1.50; P = .86). Results were similar in analyses restricted to patients receiving reduced-intensity conditioning (n = 448; HR IBMFS = 2.39; P = .01). The excess mortality risk in unrecognized IBMFS attributed to death from organ failure (HR = 4.88; P < .0001). Genetic testing should be part of the diagnostic evaluation for all patients with SAA to tailor therapeutic regimens. Carriers of a pathogenic variant in an IBMFS gene can follow HCT regimens for acquired SAA.
Collapse
Affiliation(s)
| | | | | | - Bari J Ballew
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Weiyin Zhou
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | - Casey Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Neal D Freedman
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Brian Carter
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Sara Strollo
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Steven G E Marsh
- Anthony Nolan Research Institute and University College London Cancer Institute, London, United Kingdom
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN
| | - Meilun He
- Center for International Blood and Marrow Transplant Research, National Marrow Donor Program, Minneapolis, MN
| | - Tao Wang
- Center for International Blood and Marrow Transplant Research and
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI; and
| | - Stephanie J Lee
- Center for International Blood and Marrow Transplant Research and
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | |
Collapse
|
228
|
Foss-Skiftesvik J, Stoltze UK, van Overeem Hansen T, Ahlborn LB, Sørensen E, Ostrowski SR, Kullegaard SMA, Laspiur AO, Melchior LC, Scheie D, Kristensen BW, Skjøth-Rasmussen J, Schmiegelow K, Wadt K, Mathiasen R. Redefining germline predisposition in children with molecularly characterized ependymoma: a population-based 20-year cohort. Acta Neuropathol Commun 2022; 10:123. [PMID: 36008825 PMCID: PMC9404601 DOI: 10.1186/s40478-022-01429-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
Ependymoma is the second most common malignant brain tumor in children. The etiology is largely unknown and germline DNA sequencing studies focusing on childhood ependymoma are limited. We therefore performed germline whole-genome sequencing on a population-based cohort of children diagnosed with ependymoma in Denmark over the past 20 years (n = 43). Single nucleotide and structural germline variants in 457 cancer related genes and 2986 highly evolutionarily constrained genes were assessed in 37 children with normal tissue available for sequencing. Molecular ependymoma classification was performed using DNA methylation profiling for 39 children with available tumor tissue. Pathogenic germline variants in known cancer predisposition genes were detected in 11% (4/37; NF2, LZTR1, NF1 & TP53). However, DNA methylation profiling resulted in revision of the histopathological ependymoma diagnosis to non-ependymoma tumor types in 8% (3/39). This included the two children with pathogenic germline variants in TP53 and NF1 whose tumors were reclassified to a diffuse midline glioma and a rosette-forming glioneuronal tumor, respectively. Consequently, 50% (2/4) of children with pathogenic germline variants in fact had other tumor types. A meta-analysis combining our findings with pediatric pan-cancer germline sequencing studies showed an overall frequency of pathogenic germline variants of 3.4% (7/207) in children with ependymoma. In summary, less than 4% of childhood ependymoma is explained by genetic predisposition, virtually restricted to pathogenic variants in NF2 and NF1. For children with other cancer predisposition syndromes, diagnostic reconsideration is recommended for ependymomas without molecular classification. Additionally, LZTR1 is suggested as a novel putative ependymoma predisposition gene.
Collapse
Affiliation(s)
- Jon Foss-Skiftesvik
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark. .,Department of Neurosurgery, Rigshospitalet University Hospital, Copenhagen, Denmark. .,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Neurosurgery, Section 6031, Rigshospitalet University Hospital, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark. .,The Pediatric Oncology Research Laboratory, Section 5704, Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Henrik Harpestrengs Vej 6A, 2100, Copenhagen, Denmark.
| | - Ulrik Kristoffer Stoltze
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas van Overeem Hansen
- Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Department of Genomic Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Immunology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | - Adrian Otamendi Laspiur
- Department of Health Technology, Cancer Systems Biology and Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | | | - David Scheie
- Department of Pathology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet University Hospital, Copenhagen, Denmark.,Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kjeld Schmiegelow
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, University of Copenhagen, Copenhagen, Denmark
| | - René Mathiasen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet University Hospital, Copenhagen, Denmark
| |
Collapse
|
229
|
Lu D, Sapkota Y, Valdimarsdóttir UA, Koenen KC, Li N, Leisenring WM, Gibson T, Wilson CL, Robison LL, Hudson MM, Armstrong GT, Krull KR, Yasui Y, Bhatia S, Recklitis CJ. Genome-wide association study of posttraumatic stress disorder among childhood cancer survivors: results from the Childhood Cancer Survivor Study and the St. Jude Lifetime Cohort. Transl Psychiatry 2022; 12:342. [PMID: 35999196 PMCID: PMC9399128 DOI: 10.1038/s41398-022-02110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Genetic influence shapes who develops posttraumatic stress disorder (PTSD) after traumatic events. However, the genetic variants identified for PTSD may in fact be associated with traumatic exposures (e.g., interpersonal violence), which appear heritable as well. Childhood cancer survivors (CCS) are at risk for PTSD, but genetic influences affecting cancer are unlikely to overlap with those affecting PTSD. This offers a unique opportunity to identify variants specific to PTSD risk. In a genome-wide association study (GWAS), 3984 5-year survivors of childhood cancer of European-ancestry from the Childhood Cancer Survivor Study (CCSS) were evaluated for discovery and 1467 survivors from the St. Jude Lifetime (SJLIFE) cohort for replication. Childhood cancer-related PTSD symptoms were assessed using the Posttraumatic Stress Diagnostic Scale in CCSS. GWAS was performed in CCSS using logistic regression and lead markers were replicated/meta-analyzed using SJLIFE. Cross-associations of identified loci were examined between CCS and the general population. PTSD criteria were met for 671 participants in CCSS and 161 in SJLIFE. Locus 10q26.3 was significantly associated with PTSD (rs34713356, functionally mapped to ECHS1, P = 1.36 × 10-8, OR 1.57), and was replicated in SJLIFE (P = 0.047, OR 1.37). Variants in locus 6q24.3-q25.1 reached marginal significance (rs9390543, SASH1, P = 3.56 × 10-6, OR 0.75) in CCSS and significance when meta-analyzing with SJLIFE (P = 2.02 × 10-8, OR 0.75). Both loci were exclusively associated with PTSD in CCS rather than PTSD/stress-related disorders in general population (P-for-heterogeneity < 5 × 10-6). Our CCS findings support the role of genetic variation in PTSD development and may provide implications for understanding PTSD heterogeneity.
Collapse
Affiliation(s)
- Donghao Lu
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden. .,Perini Family Survivors' Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, 02115, US.
| | - Yadav Sapkota
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Unnur A. Valdimarsdóttir
- grid.4714.60000 0004 1937 0626Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115 US ,grid.14013.370000 0004 0640 0021Center of Public Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - Karestan C. Koenen
- grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115 US ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Psychiatric and Neurodevelopmental Genetics Research Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Nan Li
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Wendy M. Leisenring
- grid.270240.30000 0001 2180 1622Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Todd Gibson
- grid.94365.3d0000 0001 2297 5165Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892 MD US
| | - Carmen L. Wilson
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Leslie L. Robison
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Melissa M. Hudson
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA ,grid.240871.80000 0001 0224 711XDepartment of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Gregory T. Armstrong
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Kevin R. Krull
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA ,grid.240871.80000 0001 0224 711XDepartment of Psychology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Yutaka Yasui
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Smita Bhatia
- grid.265892.20000000106344187Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Christopher J. Recklitis
- grid.38142.3c000000041936754XPerini Family Survivors’ Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| |
Collapse
|
230
|
Hunter JD, Robertson EG, Hetherington K, Ziegler DS, Marshall GM, Kirk J, Marron JM, Denburg AE, Barlow-Stewart K, Warby M, Tucker KM, Lee BM, O’Brien TA, Wakefield CE. What’s in a Name? Parents’ and Healthcare Professionals’ Preferred Terminology for Pathogenic Variants in Childhood Cancer Predisposition Genes. J Pers Med 2022; 12:jpm12081327. [PMID: 36013276 PMCID: PMC9410181 DOI: 10.3390/jpm12081327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Current literature/guidelines regarding the most appropriate term to communicate a cancer-related disease-causing germline variant in childhood cancer lack consensus. Guidelines also rarely address preferences of patients/families. We aimed to assess preferences of parents of children with cancer, genetics professionals, and pediatric oncologists towards terminology to describe a disease-causing germline variant in childhood cancer. Using semi-structured interviews we asked participants their most/least preferred terms from; ‘faulty gene,’ ‘altered gene,’ ‘gene change,’ and ‘genetic variant,’ analyzing responses with directed content analysis. Twenty-five parents, 6 genetics professionals, and 29 oncologists participated. An equal number of parents most preferred ‘gene change,’ ‘altered gene,’ or ‘genetic variant’ (n = 8/25). Parents least preferred ‘faulty gene’ (n = 18/25). Half the genetics professionals most preferred ‘faulty gene’ (n = 3/6); however this was least preferred by the remaining genetics professionals (n = 3/6). Many oncologists most preferred ‘genetic variant’ (n = 11/29) and least preferred ‘faulty gene’ (n = 19/29). Participants across all groups perceived ‘faulty gene’ as having negative connotations, potentially placing blame/guilt on parents/children. Health professionals described challenges selecting a term that was scientifically accurate, easily understood and not distressing to families. Lack of consensus highlights the need to be guided by families’ preferred terminology, while providing accurate explanations regarding implications of genetic findings.
Collapse
Affiliation(s)
- Jacqueline D. Hunter
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
- Correspondence: ; Tel.: +61-4-39-110-680
| | - Eden G. Robertson
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Kate Hetherington
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - David S. Ziegler
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, UNSW Sydney, Kensington, NSW 2750, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Glenn M. Marshall
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, UNSW Sydney, Kensington, NSW 2750, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Judy Kirk
- The Westmead Institute for Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW 2052, Australia
- Familial Cancer Service, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Jonathan M. Marron
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02215, USA
- Center for Bioethics, Harvard Medical School, Boston, MA 02115, USA
| | - Avram E. Denburg
- Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Kristine Barlow-Stewart
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Children’s Cancer Institute, UNSW Sydney, Kensington, NSW 2750, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2052, Australia
| | - Meera Warby
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Katherine M. Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Brittany M. Lee
- Seattle Children’s Hospital and Research Institute, Seattle, WA 98101, USA
- Division of Hematology/Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tracey A. O’Brien
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| | - Claire E. Wakefield
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Sydney, NSW 2052, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW 2031, Australia
| |
Collapse
|
231
|
Li P, Brown S, Williams M, White T, Xie W, Cui W, Peker D, Lei L, Kunder CA, Wang HY, Murray SS, Vagher J, Kovacsovics T, Patel JL. The genetic landscape of germline DDX41 variants predisposing to myeloid neoplasms. Blood 2022; 140:716-755. [PMID: 35671390 PMCID: PMC9389629 DOI: 10.1182/blood.2021015135] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
Germline DDX41 variants are the most common mutations predisposing to acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) in adults, but the causal variant (CV) landscape and clinical spectrum of hematologic malignancies (HMs) remain unexplored. Here, we analyzed the genomic profiles of 176 patients with HM carrying 82 distinct presumably germline DDX41 variants among a group of 9821 unrelated patients. Using our proposed DDX41-specific variant classification, we identified features distinguishing 116 patients with HM with CV from 60 patients with HM with variant of uncertain significance (VUS): an older age (median 69 years), male predominance (74% in CV vs 60% in VUS, P = .03), frequent concurrent somatic DDX41 variants (79% in CV vs 5% in VUS, P < .0001), a lower somatic mutation burden (1.4 ± 0.1 in CV vs 2.9 ± 0.04 in VUS, P = .012), near exclusion of canonical recurrent genetic abnormalities including mutations in NPM1, CEBPA, and FLT3 in AML, and favorable overall survival (OS) in patients with AML/MDS. This superior OS was determined independent of blast count, abnormal karyotypes, and concurrent variants, including TP53 in patients with AML/MDS, regardless of patient's sex, age, or specific germline CV, suggesting that germline DDX41 variants define a distinct clinical entity. Furthermore, unrelated patients with myeloproliferative neoplasm and B-cell lymphoma were linked by DDX41 CV, thus expanding the known disease spectrum. This study outlines the CV landscape, expands the phenotypic spectrum in unrelated DDX41-mutated patients, and underscores the urgent need for gene-specific diagnostic and clinical management guidelines.
Collapse
Affiliation(s)
- Peng Li
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Sara Brown
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Margaret Williams
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Thomas White
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| | - Wei Xie
- Department of Pathology, School of Medicine, Oregon Health and Science University, Portland, OR
| | - Wei Cui
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Deniz Peker
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA
| | - Li Lei
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA
| | - Christian A Kunder
- Department of Pathology, Stanford University, School of Medicine, Stanford, CA
| | - Huan-You Wang
- Department of Pathology & Immunology, University of California San Diego Health System, La Jolla, CA
| | - Sarah S Murray
- Department of Pathology & Immunology, University of California San Diego Health System, La Jolla, CA
| | - Jennie Vagher
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT; and
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Tibor Kovacsovics
- Department of Internal Medicine, University of Utah Health, Salt Lake City, UT; and
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Jay L Patel
- Division of Hematopathology, Department of Pathology, University of Utah Health, Salt Lake City, UT
- Genomics Laboratory, ARUP Laboratories, Salt Lake City, UT
| |
Collapse
|
232
|
Comprehensive cancer predisposition testing within the prospective MASTER trial identifies hereditary cancer patients and supports treatment decisions for rare cancers. Ann Oncol 2022; 33:1186-1199. [PMID: 35988656 DOI: 10.1016/j.annonc.2022.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Germline variant evaluation in precision oncology opens new paths towards the identification of patients with genetic tumor risk syndromes and the exploration of therapeutic relevance. Here, we present the results of germline variant analysis and their clinical implications in a precision oncology study for patients with predominantly rare cancers. PATIENTS AND METHODS Matched tumor and control genome/exome and RNA sequencing was performed for 1,485 patients with rare cancers (79%) and/or young adults (77% younger than 51 years) in the NCT/DKTK MASTER trial, a German multicenter, prospective observational precision oncology study. Clinical and therapeutic relevance of prospective pathogenic germline variant (PGV) evaluation was analyzed and compared to other precision oncology studies. RESULTS Ten percent of patients (n=157) harbored PGVs in 35 genes associated with autosomal dominant cancer predisposition, whereof up to 75% were unknown before study participation. Another five percent of patients (n=75) were heterozygous carriers for recessive genetic tumor risk syndromes. Particularly high PGV yields were found in patients with gastrointestinal stromal tumors (GISTs) (28%, 11/40), and more specific in wild-type GISTS (50%, n=10/20), leiomyosarcomas (21%, n=19/89), and hepatopancreaticobiliary cancers (16%, n=16/97). Forty-five percent of PGVs (n=100/221) supported treatment recommendations, and its implementation led to a clinical benefit in 40% of patients (n=10/25). A comparison of different precision oncology studies revealed variable PGV yields and considerable differences in germline variant analysis workflows. We therefore propose a detailed workflow for germline variant evaluation. CONCLUSIONS Genetic germline testing in patients with rare cancers can identify the very first patient in a hereditary cancer family and can lead to clinical benefit in a broad range of entities. Its routine implementation in precision oncology accompanied by the harmonization of germline variant evaluation workflows will increase clinical benefit and boost research.
Collapse
|
233
|
Ceyhan-Birsoy O, Jayakumaran G, Kemel Y, Misyura M, Aypar U, Jairam S, Yang C, Li Y, Mehta N, Maio A, Arnold A, Salo-Mullen E, Sheehan M, Syed A, Walsh M, Carlo M, Robson M, Offit K, Ladanyi M, Reis-Filho JS, Stadler ZK, Zhang L, Latham A, Zehir A, Mandelker D. Diagnostic yield and clinical relevance of expanded genetic testing for cancer patients. Genome Med 2022; 14:92. [PMID: 35971132 PMCID: PMC9377129 DOI: 10.1186/s13073-022-01101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic testing (GT) for hereditary cancer predisposition is traditionally performed on selected genes based on established guidelines for each cancer type. Recently, expanded GT (eGT) using large hereditary cancer gene panels uncovered hereditary predisposition in a greater proportion of patients than previously anticipated. We sought to define the diagnostic yield of eGT and its clinical relevance in a broad cancer patient population over a 5-year period. METHODS A total of 17,523 cancer patients with a broad range of solid tumors, who received eGT at Memorial Sloan Kettering Cancer Center between July 2015 to April 2020, were included in the study. The patients were unselected for current GT criteria such as cancer type, age of onset, and/or family history of disease. The diagnostic yield of eGT was determined for each cancer type. For 9187 patients with five common cancer types frequently interrogated for hereditary predisposition (breast, colorectal, ovarian, pancreatic, and prostate cancer), the rate of pathogenic/likely pathogenic (P/LP) variants in genes that have been associated with each cancer type was analyzed. The clinical implications of additional findings in genes not known to be associated with a patients' cancer type were investigated. RESULTS 16.7% of patients in a broad cancer cohort had P/LP variants in hereditary cancer predisposition genes identified by eGT. The diagnostic yield of eGT in patients with breast, colorectal, ovarian, pancreatic, and prostate cancer was 17.5%, 15.3%, 24.2%, 19.4%, and 15.9%, respectively. Additionally, 8% of the patients with five common cancers had P/LP variants in genes not known to be associated with the patient's current cancer type, with 0.8% of them having such a variant that confers a high risk for another cancer type. Analysis of clinical and family histories revealed that 74% of patients with variants in genes not associated with their current cancer type but which conferred a high risk for another cancer did not meet the current GT criteria for the genes harboring these variants. One or more variants of uncertain significance were identified in 57% of the patients. CONCLUSIONS Compared to targeted testing approaches, eGT can increase the yield of detection of hereditary cancer predisposition in patients with a range of tumors, allowing opportunities for enhanced surveillance and intervention. The benefits of performing eGT should be weighed against the added number of VUSs identified with this approach.
Collapse
Affiliation(s)
- Ozge Ceyhan-Birsoy
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gowtham Jayakumaran
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umut Aypar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sowmya Jairam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ciyu Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yirong Li
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikita Mehta
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anna Maio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Angela Arnold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erin Salo-Mullen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Margaret Sheehan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aijazuddin Syed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Walsh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark Robson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present Address: Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Alicia Latham
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Zehir
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Present Address: Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, New York, NY, USA.
| | - Diana Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
234
|
Upadhyay R, Yadav D, Venkatesulu BP, Singh R, Baliga S, Raval RR, Lazow MA, Salloum R, Fouladi M, Mardis ER, Zaorsky NG, Trifiletti DM, Paulino AC, Palmer JD. Risk of secondary malignant neoplasms in children following proton therapy vs. photon therapy for primary CNS tumors: A systematic review and meta-analysis. Front Oncol 2022; 12:893855. [PMID: 36033525 PMCID: PMC9413159 DOI: 10.3389/fonc.2022.893855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Background Central nervous system tumors are now the most common primary neoplasms seen in children, and radiation therapy is a key component in management. Secondary malignant neoplasms (SMNs) are rare, but dreaded complications. Proton beam therapy (PBT) can potentially minimize the risk of SMNs compared to conventional photon radiation therapy (RT), and multiple recent studies with mature data have reported the risk of SMNs after PBT. We performed this systematic review and meta-analysis to characterize and compare the incidence of SMNs after proton and photon-based radiation for pediatric CNS tumors. Methods A systematic search of literature on electronic (PubMed, Cochrane Central, and Embase) databases was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. We included studies reporting the incidence and nature of SMNs in pediatric patients with primary CNS tumors. The crude incidence of SMNs and all secondary neoplasms were separately extracted, and the random-effects model was used for pooled analysis and subgroup comparison was performed between studies using photons vs. protons. Results Twenty-four studies were included for analysis. A total of 418 SMNs were seen in 38,163 patients. The most common SMN were gliomas (40.6%) followed by meningiomas (38.7%), sarcomas (4.8%), and thyroid cancers (4.2%). The median follow-up was 8.8 years [3.3–23.2].The median latency to SMN for photons and protons were 11.9 years [5-23] and 5.9 years [5-6.7], respectively. The pooled incidence of SMNs was 1.8% (95% CI: 1.1%–2.6%, I2 = 94%) with photons and 1.5% (95% CI: 0%–4.5%, I2 = 81%) with protons. The pooled incidence of all SNs was not different [photons: 3.6% (95% CI: 2.5%–4.8%, I2 = 96%) vs. protons: 1.5% (95% CI: 0–4.5%, I2 = 80%); p = 0.21]. Conclusion We observed similar rates of SMN with PBT at 1.5% compared to 1.8% with photon-based RT for pediatric CNS tumors. We observed a shorter latency to SMN with PBT compared to RT. With increasing use of pencil beam scanning PBT and VMAT, further studies are warranted to evaluate the risk of secondary cancers in patients treated with these newer modalities.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Divya Yadav
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Raj Singh
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Sujith Baliga
- Department of Radiation Oncology, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Raju R. Raval
- Department of Radiation Oncology, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
| | - Margot A. Lazow
- Department of Radiation Oncology, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ralph Salloum
- Department of Radiation Oncology, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Maryam Fouladi
- Department of Radiation Oncology, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Elaine R. Mardis
- Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Nicholas G. Zaorsky
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve School of Medicine, Cleveland, OH, United States
| | | | - Arnold C. Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua D. Palmer
- Department of Radiation Oncology, The James Comprehensive Cancer Center, Ohio State University, Columbus, OH, United States
- *Correspondence: Joshua D. Palmer,
| |
Collapse
|
235
|
Church AJ, Corson LB, Kao PC, Imamovic-Tuco A, Reidy D, Doan D, Kang W, Pinto N, Maese L, Laetsch TW, Kim A, Colace SI, Macy ME, Applebaum MA, Bagatell R, Sabnis AJ, Weiser DA, Glade-Bender JL, Homans AC, Hipps J, Harris H, Manning D, Al-Ibraheemi A, Li Y, Gupta H, Cherniack AD, Lo YC, Strand GR, Lee LA, Pinches RS, Lazo De La Vega L, Harden MV, Lennon NJ, Choi S, Comeau H, Harris MH, Forrest SJ, Clinton CM, Crompton BD, Kamihara J, MacConaill LE, Volchenboum SL, Lindeman NI, Van Allen E, DuBois SG, London WB, Janeway KA. Molecular profiling identifies targeted therapy opportunities in pediatric solid cancer. Nat Med 2022; 28:1581-1589. [PMID: 35739269 PMCID: PMC10953704 DOI: 10.1038/s41591-022-01856-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022]
Abstract
To evaluate the clinical impact of molecular tumor profiling (MTP) with targeted sequencing panel tests, pediatric patients with extracranial solid tumors were enrolled in a prospective observational cohort study at 12 institutions. In the 345-patient analytical population, median age at diagnosis was 12 years (range 0-27.5); 298 patients (86%) had 1 or more alterations with potential for impact on care. Genomic alterations with diagnostic, prognostic or therapeutic significance were present in 61, 16 and 65% of patients, respectively. After return of the results, impact on care included 17 patients with a clarified diagnostic classification and 240 patients with an MTP result that could be used to select molecularly targeted therapy matched to identified alterations (MTT). Of the 29 patients who received MTT, 24% had an objective response or experienced durable clinical benefit; all but 1 of these patients received targeted therapy matched to a gene fusion. Of the diagnostic variants identified in 209 patients, 77% were gene fusions. MTP with targeted panel tests that includes fusion detection has a substantial clinical impact for young patients with solid tumors.
Collapse
Affiliation(s)
- Alanna J Church
- Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Laura B Corson
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Sema4, Stamford, CT, USA
| | | | - Alma Imamovic-Tuco
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deirdre Reidy
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Duong Doan
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Navin Pinto
- Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Luke Maese
- Primary Children's Hospital, Salt Lake City, UT, USA
- University of Utah Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Theodore W Laetsch
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - AeRang Kim
- Children's National Hospital, Washington, DC, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Susan I Colace
- Nationwide Children's Hospital, Columbus, OH, USA
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Margaret E Macy
- Children's Hospital of Colorado, Aurora, CO, USA
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark A Applebaum
- University of Chicago, Chicago, IL, USA
- Comer Children's Hospital, Chicago, IL, USA
| | - Rochelle Bagatell
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Amit J Sabnis
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | - Daniel A Weiser
- Children's Hospital at Montefiore, New York, NY, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Julia L Glade-Bender
- Columbia University Irving Medical Center, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alan C Homans
- University of Vermont Medical Center, Burlington, VT, USA
- University of Vermont, Burlington, VT, USA
| | - John Hipps
- University of North Carolina Medical Center, Chapel Hill, NC, USA
- University of North Carolina-Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | | | | | - Alyaa Al-Ibraheemi
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yvonne Li
- Harvard Medical School, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hersh Gupta
- Harvard Medical School, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew D Cherniack
- Harvard Medical School, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ying-Chun Lo
- Boston Children's Hospital, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Mayo Clinic, Rochester, MN, USA
| | - Gianna R Strand
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Loyola University, Chicago, IL, USA
| | - Lobin A Lee
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - R Seth Pinches
- Boston Children's Hospital, Boston, MA, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | | | | | | | | | - Hannah Comeau
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Marian H Harris
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Suzanne J Forrest
- Harvard Medical School, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Catherine M Clinton
- Boston Children's Hospital, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Brian D Crompton
- Harvard Medical School, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Junne Kamihara
- Harvard Medical School, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Laura E MacConaill
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | | | - Neal I Lindeman
- Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
| | - Eliezer Van Allen
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Steven G DuBois
- Harvard Medical School, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Wendy B London
- Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine A Janeway
- Harvard Medical School, Boston, MA, USA
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| |
Collapse
|
236
|
Poyer F, Dieckmann K, Dworzak M, Tamesberger M, Haas O, Jones N, Nebral K, Köhrer S, Moser R, Kropshofer G, Peters C, Urban C, Mann G, Pötschger U, Attarbaschi A. Second malignant neoplasms after treatment of 1487 children and adolescents with acute lymphoblastic leukemia-A population-based analysis of the Austrian ALL-BFM Study Group. EJHAEM 2022; 3:940-948. [PMID: 36051012 PMCID: PMC9421960 DOI: 10.1002/jha2.488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Second malignant neoplasms (SMN) after primary childhood acute lymphoblastic leukemia (ALL) are rare. Among 1487 ALL patients diagnosed between 1981 and 2010 in Austria, the 10-year cumulative incidence of an SMN was 1.1% ± 0.3%. There was no difference in the 10-year incidence of SMNs with regard to diagnostic-, response- and therapy-related ALL characteristics except for a significantly higher incidence in patients with leukocytes ≥50.0 G/L at ALL diagnosis (2.1% ± 1.0% vs. 0% for 20.0-50.0 G/L, and 1.0% ± 0.3% for < 20.0 G/L; p = 0.033). Notably, there was no significant difference in the incidence of SMNs between patients with or without cranial radiotherapy (1.2% ± 0.5% vs. 0.8% ± 0.3%; p = 0.295). Future strategies must decrease the incidence of SMNs, as this event still leads to death in one-third (7/19) of the patients.
Collapse
Affiliation(s)
- Fiona Poyer
- Department of Pediatric Hematology and Oncology, St. Anna Children's HospitalMedical University of ViennaViennaAustria
| | - Karin Dieckmann
- Department of RadiotherapyMedical University of ViennaViennaAustria
| | - Michael Dworzak
- Department of Pediatric Hematology and Oncology, St. Anna Children's HospitalMedical University of ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Melanie Tamesberger
- Department of Pediatrics and Adolescent MedicineKepler University Hospital LinzLinzAustria
| | - Oskar Haas
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
- Labdia DiagnosticsViennaAustria
| | - Neil Jones
- Department of Pediatrics and Adolescent MedicineUniversity Clinics SalzburgSalzburgAustria
| | | | - Stefan Köhrer
- Department of Pediatric Hematology and Oncology, St. Anna Children's HospitalMedical University of ViennaViennaAustria
- Labdia DiagnosticsViennaAustria
| | - Reinhard Moser
- Department of Pediatrics and Adolescent MedicineState Hospital LeobenLeobenAustria
| | - Gabriele Kropshofer
- Division of Pediatric Hematology and Oncology and Stem Cell Transplantation, Department of Pediatrics and Adolescent MedicineMedical University of InnsbruckInnsbruckAustria
| | - Christina Peters
- Department of Pediatric Hematology and Oncology, St. Anna Children's HospitalMedical University of ViennaViennaAustria
| | - Christian Urban
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent MedicineMedical University of GrazGrazAustria
| | - Georg Mann
- Department of Pediatric Hematology and Oncology, St. Anna Children's HospitalMedical University of ViennaViennaAustria
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Ulrike Pötschger
- St. Anna Children's Cancer Research Institute (CCRI)ViennaAustria
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's HospitalMedical University of ViennaViennaAustria
| | | |
Collapse
|
237
|
Ceyhan-Birsoy O. Germline Testing for the Evaluation of Hereditary Cancer Predisposition. Clin Lab Med 2022; 42:497-506. [DOI: 10.1016/j.cll.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
238
|
Rossini L, Durante C, Bresolin S, Opocher E, Marzollo A, Biffi A. Diagnostic Strategies and Algorithms for Investigating Cancer Predisposition Syndromes in Children Presenting with Malignancy. Cancers (Basel) 2022; 14:cancers14153741. [PMID: 35954404 PMCID: PMC9367486 DOI: 10.3390/cancers14153741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Here we provide an overview of several genetically determined conditions that predispose to the development of solid and hematologic malignancies in children. Diagnosing these conditions, whose prevalence is estimated around 10% in children with cancer, is useful to warrant personalized oncologic treatment and follow-up, as well as psychological and genetic counseling to these children and their families. We reviewed the most recent studies focusing on the prevalence of cancer predisposition syndromes in cancer-bearing children and the most-used clinical screening tools. Our work highlighted the value of clinical screening tools in the management of young cancer patients, especially in settings where genetic testing is not promptly accessible. Abstract In the past recent years, the expanding use of next-generation sequencing has led to the discovery of new cancer predisposition syndromes (CPSs), which are now known to be responsible for up to 10% of childhood cancers. As knowledge in the field is in constant evolution, except for a few “classic” CPSs, there is no consensus about when and how to perform germline genetic diagnostic studies in cancer-bearing children. Several clinical screening tools have been proposed to help identify the patients who carry higher risk, with heterogeneous strategies and results. After introducing the main clinical and molecular features of several CPSs predisposing to solid and hematological malignancies, we compare the available clinical evidence on CPS prevalence in pediatric cancer patients and on the most used decision-support tools in identifying the patients who could benefit from genetic counseling and/or direct genetic testing. This analysis highlighted that a personalized stepwise approach employing clinical screening tools followed by sequencing in high-risk patients might be a reasonable and cost-effective strategy in the care of children with cancer.
Collapse
Affiliation(s)
- Linda Rossini
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
| | - Caterina Durante
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, 35128 Padua, Italy
| | - Enrico Opocher
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
- Correspondence: (A.M.); (A.B.)
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Via Giustiniani 3, 35128 Padua, Italy; (L.R.); (C.D.); (S.B.); (E.O.)
- Maternal and Child Health Department, Padua University, Via Giustiniani, 3, 35128 Padua, Italy
- Correspondence: (A.M.); (A.B.)
| |
Collapse
|
239
|
Dogan I, Iribas A, Ahmed MA, Basaran M. Efficacy of the VIT (vincristine, irinotecan and temozolomide) regimen in adults with metastatic Ewing sarcoma. J Chemother 2022:1-5. [PMID: 35894948 DOI: 10.1080/1120009x.2022.2104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The goal of the research was to investigate if a combination of vincristine, irinotecan and temozolomide (VIT) could benefit adult patients with metastatic Ewing sarcoma who had already been heavily pretreated. Metastatic Ewing sarcoma patients had their data retrospectively analyzed. The patients' clinical, radiological and therapeutic data were recorded. Survival analyzes were performed with these data. The study enlisted the participation of sixteen patients. The average age was 25 years old (range: 20-42). The lung was the most prevalent metastatic location (81.3%). Patients had received at least two distinct chemotherapy combinations (87.5%) and palliative radiotherapy (37.5%) before receiving the (VIT) combination. The Median progression-free survival time was found as 3.4 (95% CI, 1.8-4.9) months. Five patients (31.3%) experienced a partial response, while the remaining patients (68.7%) had progressing disease. Thirteen individuals (81.3%) had grade 1-2 adverse events, whereas five (31.3%) had grade 3-4 adverse events. Hematological complications were the most common side effects (87.5%). Median overall survival was calculated as 5.6 (95% CI, 3.6-7.5) months in the patients after the beginning of VIT regimen. We demonstrated the efficacy of the VIT regimen in adult patients with metastatic Ewing sarcoma in this research. In these extensively pretreated patients, toxicities were a concern. Metastatic Ewing sarcoma patients have few treatment choices. In patients who have had a good performance status, VIT regimen may be considered for disease control.
Collapse
Affiliation(s)
- Izzet Dogan
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Ayca Iribas
- Department of Radiation Oncology, Istanbul University of Institute of Oncology, Istanbul, Turkey
| | - Melin Aydan Ahmed
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| | - Mert Basaran
- Department of Medical Oncology, Istanbul University Institute of Oncology, Istanbul, Turkey
| |
Collapse
|
240
|
Derpoorter C, Van Paemel R, Vandemeulebroecke K, Vanhooren J, De Wilde B, Laureys G, Lammens T. Whole genome sequencing and inheritance-based variant filtering as a tool for unraveling missing heritability in pediatric cancer. Pediatr Hematol Oncol 2022; 40:326-340. [PMID: 35876323 DOI: 10.1080/08880018.2022.2101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Survival rates for pediatric cancer have significantly increased the past decades, now exceeding 70-80% for most cancer types. The cause of cancer in children and adolescents remains largely unknown and a genetic susceptibility is considered in up to 10% of the cases, but most likely this is an underestimation. Families with multiple pediatric cancer patients are rare and strongly suggestive for an underlying predisposition to cancer. The absence of identifiable mutations in known cancer predisposing genes in such families could indicate undiscovered heritability. To discover candidate susceptibility variants, whole genome sequencing was performed on germline DNA of a family with two children affected by Burkitt lymphoma. Using an inheritance-based filtering approach, 18 correctly segregating coding variants were prioritized without a biased focus on specific genes or variants. Two variants in FAT4 and DCHS2 were highlighted, both involved in the Hippo signaling pathway, which controls tissue growth and stem cell activity. Similarly, a set of nine non-coding variants was prioritized, which might contribute, in differing degrees, to the increased cancer risk within this family. In conclusion, inheritance-based whole genome sequencing in selected families or cases is a valuable approach to prioritize variants and, thus, to further unravel genetic predisposition in childhood cancer.
Collapse
Affiliation(s)
- Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Ruben Van Paemel
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Katrien Vandemeulebroecke
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Jolien Vanhooren
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Bram De Wilde
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Geneviève Laureys
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
241
|
Genetic Disorders with Predisposition to Paediatric Haematopoietic Malignancies—A Review. Cancers (Basel) 2022; 14:cancers14153569. [PMID: 35892827 PMCID: PMC9329786 DOI: 10.3390/cancers14153569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
The view of paediatric cancer as a genetic disease arises as genetic research develops. Germline mutations in cancer predisposition genes have been identified in about 10% of children. Paediatric cancers are characterized by heterogeneity in the types of genetic alterations that drive tumourigenesis. Interactions between germline and somatic mutations are a key determinant of cancer development. In 40% of patients, the family history does not predict the presence of inherited cancer predisposition syndromes and many cases go undetected. Paediatricians should be aware of specific symptoms, which highlight the need of evaluation for cancer syndromes. The quickest possible identification of such syndromes is of key importance, due to the possibility of early detection of neoplasms, followed by presymptomatic genetic testing of relatives, implementation of appropriate clinical procedures (e.g., avoiding radiotherapy), prophylactic surgical resection of organs at risk, or searching for donors of hematopoietic stem cells. Targetable driver mutations and corresponding signalling pathways provide a novel precision medicine strategy.Therefore, there is a need for multi-disciplinary cooperation between a paediatrician, an oncologist, a geneticist, and a psychologist during the surveillance of families with an increased cancer risk. This review aimed to emphasize the role of cancer-predisposition gene diagnostics in the genetic surveillance and medical care in paediatric oncology.
Collapse
|
242
|
Chang Y, Chao D, Chung C, Chou Y, Chang C, Lin C, Chu H, Chen H, Liu T, Juan Y, Chang S, Chang J. Cancer carrier screening in the general population using whole-genome sequencing. Cancer Med 2022; 12:1972-1983. [PMID: 35861108 PMCID: PMC9883534 DOI: 10.1002/cam4.5034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Cancer is a major cause of death, and its early identification and intervention have potential for clinical actionability and benefits for human health. The studies using whole-genome sequencing (WGS) and large samples analysis of cancer-related genes have been rarely done. METHODS We performed WGS to explore germline mutations in coding and non-coding areas of cancer-related genes and non-coding driver genes and regulatory areas. Structural variants (SVs) was also analyzed. We used several tools and a subgrouping method to analyze the variants in 1491 healthy participants. Moreover, 275 cancer-related genes sequencing was carried out in 125 cancer patients. RESULTS The incidence of familial cancer in the Taiwanese general population is 8.79% (131/1491). Cancer carrier rate of cancer-related genes is about 7.04% (105/1491) for pathogenic/likely pathogenic variants (P/LP) on ClinVar database only, and 28.24% (421/1491) for P/LP and loss of function variants. The carrier frequencies of cancer-related genes P/LP on ClinVar database were as follows: 8.40% (11/131), 7.11% (28/394), and 6.83% (66/966) in FC, 1MC, and nMC, respectively. The SVs and non-coding driver gene variants are uncommon. There are 1.54% (23/1491) of actionable cancer genes in American College of Medical Genetics and Genomics (ACMG), and the germline mutation rate of 275 cancer-related genes is 7.2% (9/125) in cancer patients including 4.0% (5/125) of actionable cancer genes in ACMG. After analyzing the frequencies of P/LP variants on GJB2 and SLC25A13 genes, we suggest that these two genes may not be cancer-related genes and need be re-evaluated. CONCLUSIONS WGS analysis can completely detect germline mutations in cancer carriers. This study use subgrouping approach for samples provides a strategy to study whether a gene or variant is a cancer-related gene or variant in the future studies.
Collapse
Affiliation(s)
- Ya‐Sian Chang
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
- School of MedicineChina Medical UniversityTaichungTaiwan
| | - Dy‐San Chao
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| | - Chin‐Chun Chung
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
| | - Yu‐Pao Chou
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| | - Chieh‐Min Chang
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| | - Chia‐Li Lin
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
| | - Hou‐Wei Chu
- Institute of Biomedical Sciences|Academia SinicaTaipeiTaiwan
| | - Hon‐Da Chen
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
| | - Ting‐Yuan Liu
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
| | - Yu‐Hsuan Juan
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
| | - Shun‐Jen Chang
- Department of Kinesiology, Health and Leisure StudiesNational University of KaohsiungKaohsiungTaiwan
| | - Jan‐Gowth Chang
- Center for Precision MedicineChina Medical University HospitalTaichungTaiwan
- Epigenome Research CenterChina Medical University HospitalTaichungTaiwan
- Department of Laboratory MedicineChina Medical University HospitalTaichungTaiwan
- School of MedicineChina Medical UniversityTaichungTaiwan
- Department of Bioinformatics and Medical EngineeringAsia UniversityTaichungTaiwan
| |
Collapse
|
243
|
Miller KE, Wheeler G, LaHaye S, Schieffer KM, Cearlock S, Venkata LPR, Bravo AO, Grischow OE, Kelly BJ, White P, Pierson CR, Boué DR, Koo SC, Klawinski D, Ranalli MA, Shaikhouni A, Salloum R, Shatara M, Leonard JR, Wilson RK, Cottrell CE, Mardis ER, Koboldt DC. Molecular Heterogeneity in Pediatric Malignant Rhabdoid Tumors in Patients With Multi-Organ Involvement. Front Oncol 2022; 12:932337. [PMID: 35912263 PMCID: PMC9326117 DOI: 10.3389/fonc.2022.932337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Rhabdoid tumors (RTs) of the brain (atypical teratoid/rhabdoid tumor; AT/RT) and extracranial sites (most often the kidney; RTK) are malignant tumors predominantly occurring in children, frequently those with SMARCB1 germline alterations. Here we present data from seven RTs from three pediatric patients who all had multi-organ involvement. The tumors were analyzed using a multimodal molecular approach, which included exome sequencing of tumor and germline comparator and RNA sequencing and DNA array-based methylation profiling of tumors. SMARCB1 germline alterations were identified in all patients and in all tumors. We observed a second hit in SMARCB1 via chr22 loss of heterozygosity. By methylation profiling, all tumors were classified as rhabdoid tumors with a corresponding subclassification within the MYC, TYR, or SHH AT/RT subgroups. Using RNA-seq gene expression clustering, we recapitulated the classification of known AT/RT subgroups. Synchronous brain and kidney tumors from the same patient showed different patterns of either copy number variants, single-nucleotide variants, and/or genome-wide DNA methylation, suggestive of non-clonal origin. Furthermore, we demonstrated that a lung and abdominal metastasis from two patients shared overlapping molecular features with the patient’s primary kidney tumor, indicating the likely origin of the metastasis. In addition to the SMARCB1 events, we identified other whole-chromosome events and single-nucleotide variants in tumors, but none were found to be prognostic, diagnostic, or offer therapeutic potential for rhabdoid tumors. While our findings are of biological interest, there may also be clinical value in comprehensive molecular profiling in patients with multiple rhabdoid tumors, particularly given the potential prognostic and therapeutic implications for different rhabdoid tumor subgroups demonstrated in recent clinical trials and other large cohort studies.
Collapse
Affiliation(s)
- Katherine E. Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Katherine E. Miller, ; Daniel C. Koboldt,
| | - Gregory Wheeler
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Kathleen M. Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Sydney Cearlock
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lakshmi Prakruthi Rao Venkata
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Alejandro Otero Bravo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Olivia E. Grischow
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Benjamin J. Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Christopher R. Pierson
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Biomedical Education and Anatomy, Division of Anatomy, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Daniel R. Boué
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Selene C. Koo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Darren Klawinski
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, OH, United States
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mark A. Ranalli
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Ralph Salloum
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children’s Hospital, Columbus, OH, United States
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Margaret Shatara
- The Division of Hematology and Oncology, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, United States
| | - Jeffrey R. Leonard
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Richard K. Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Catherine E. Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Elaine R. Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Daniel C. Koboldt
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- *Correspondence: Katherine E. Miller, ; Daniel C. Koboldt,
| |
Collapse
|
244
|
Hettmer S, Linardic CM, Kelsey A, Rudzinski ER, Vokuhl C, Selfe J, Ruhen O, Shern JF, Khan J, Kovach AR, Lupo PJ, Gatz SA, Schäfer BW, Volchenboum S, Minard-Colin V, Koscielniak E, Hawkins DS, Bisogno G, Sparber-Sauer M, Venkatramani R, Merks JHM, Shipley J. Molecular testing of rhabdomyosarcoma in clinical trials to improve risk stratification and outcome: A consensus view from European paediatric Soft tissue sarcoma Study Group, Children's Oncology Group and Cooperative Weichteilsarkom-Studiengruppe. Eur J Cancer 2022; 172:367-386. [PMID: 35839732 DOI: 10.1016/j.ejca.2022.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Rhabdomyosarcomas (RMSs) are the most common soft tissue sarcomas in children/adolescents less than 18 years of age with an annual incidence of 1-2/million. Inter/intra-tumour heterogeneity raise challenges in clinical, pathological and biological research studies. Risk stratification in European and North American clinical trials previously relied on clinico-pathological features, but now, incorporates PAX3/7-FOXO1-fusion gene status in the place of alveolar histology. International working groups propose a coordinated approach through the INternational Soft Tissue SaRcoma ConsorTium to evaluate the specific genetic abnormalities and generate and integrate molecular and clinical data related to patients with RMS across different trial settings. We review relevant data and present a consensus view on what molecular features should be assessed. In particular, we recommend the assessment of the MYOD1-LR122R mutation for risk escalation, as it has been associated with poor outcomes in spindle/sclerosing RMS and rare RMS with classic embryonal histopathology. The prospective analyses of rare fusion genes beyond PAX3/7-FOXO1 will generate new data linked to outcomes and assessment of TP53 mutations and CDK4 amplification may confirm their prognostic value. Pathogenic/likely pathogenic germline variants in TP53 and other cancer predisposition genes should also be assessed. DNA/RNA profiling of tumours at diagnosis/relapse and serial analyses of plasma samples is recommended where possible to validate potential molecular biomarkers, identify new biomarkers and assess how liquid biopsy analyses can have the greatest benefit. Together with the development of new molecularly-derived therapeutic strategies that we review, a synchronised international approach is expected to enhance progress towards improved treatment assignment, management and outcomes for patients with RMS.
Collapse
Affiliation(s)
- Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Germany
| | - Corinne M Linardic
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology; Duke University of Medicine, Durham, NC, USA
| | - Anna Kelsey
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester Foundation Trust, Manchester, UK
| | - Erin R Rudzinski
- Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Germany
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Olivia Ruhen
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jack F Shern
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA; Pediatric Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Javed Khan
- Genetics Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Alexander R Kovach
- Department of Pharmacology and Cancer Biology; Duke University of Medicine, Durham, NC, USA
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susanne A Gatz
- Institute of Cancer and Genomic Sciences, Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, UK
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Ewa Koscielniak
- Klinikum der Landeshauptstadt Stuttgart GKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; Medizinische Fakultät, University of Tübingen, Germany
| | - Douglas S Hawkins
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Gianni Bisogno
- Hematology Oncology Division, Department of Women's and Children's Health, University of Padova, Padua, Italy
| | - Monika Sparber-Sauer
- Klinikum der Landeshauptstadt Stuttgart GKAöR, Olgahospital, Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin, Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Stuttgart, Germany; Medizinische Fakultät, University of Tübingen, Germany
| | - Rajkumar Venkatramani
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | | | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK.
| |
Collapse
|
245
|
Rashed WM, Marcotte EL, Spector LG. Germline De Novo Mutations as a Cause of Childhood Cancer. JCO Precis Oncol 2022; 6:e2100505. [PMID: 35820085 DOI: 10.1200/po.21.00505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Germline de novo mutations (DNMs) represent one of the important topics that need extensive attention from epidemiologists, geneticists, and other relevant stakeholders. Advances in next-generation sequencing technologies allowed examination of parent-offspring trios to ascertain the frequency of germline DNMs. Many epidemiological risk factors for childhood cancer are indicative of DNMs as a mechanism. The aim of this review was to give an overview of germline DNMs, their causes in general, and to discuss their relation to childhood cancer risk. In addition, we highlighted existing gaps in knowledge in many topics of germline DNMs in childhood cancer that need exploration and collaborative efforts.
Collapse
Affiliation(s)
- Wafaa M Rashed
- Research Department, Children's Cancer Hospital-Egypt 57357 (CCHE-57357), Cairo, Egypt
| | - Erin L Marcotte
- Division of Epidemiology/Clinical, Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Logan G Spector
- Division of Epidemiology/Clinical, Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
246
|
Trotman J, Armstrong R, Firth H, Trayers C, Watkins J, Allinson K, Jacques TS, Nicholson JC, Burke GAA, Behjati S, Murray MJ, Hook CE, Tarpey P. The NHS England 100,000 Genomes Project: feasibility and utility of centralised genome sequencing for children with cancer. Br J Cancer 2022; 127:137-144. [PMID: 35449451 PMCID: PMC9276782 DOI: 10.1038/s41416-022-01788-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Whole-genome sequencing (WGS) of cancers is becoming an accepted component of oncological care, and NHS England is currently rolling out WGS for all children with cancer. This approach was piloted during the 100,000 genomes (100 K) project. Here we share the experience of the East of England Genomic Medicine Centre (East-GMC), reporting the feasibility and clinical utility of centralised WGS for individual children locally. METHODS Non-consecutive children with solid tumours were recruited into the pilot 100 K project at our Genomic Medicine Centre. Variant catalogues were returned for local scrutiny and appraisal at dedicated genomic tumour advisory boards with an emphasis on a detailed exploration of potential clinical value. RESULTS Thirty-six children, representing one-sixth of the national 100 K cohort, were recruited through our Genomic Medicine Centre. The diagnoses encompassed 23 different solid tumour types and WGS provided clinical utility, beyond standard-of-care assays, by refining (2/36) or changing (4/36) diagnoses, providing prognostic information (8/36), defining pathogenic germline mutations (1/36) or revealing novel therapeutic opportunities (8/36). CONCLUSION Our findings demonstrate the feasibility and clinical value of centralised WGS for children with cancer. WGS offered additional clinical value, especially in diagnostic terms. However, our experience highlights the need for local expertise in scrutinising and clinically interpreting centrally derived variant calls for individual children.
Collapse
Affiliation(s)
- Jamie Trotman
- East-Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Ruth Armstrong
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Helen Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Claire Trayers
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - James Watkins
- East-Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Kieren Allinson
- Department of Neuropathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - Thomas S Jacques
- Developmental Biology and Cancer Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK
| | - James C Nicholson
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | - G A Amos Burke
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK
| | | | - Sam Behjati
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | - Catherine E Hook
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | - Patrick Tarpey
- East-Genomics Laboratory Hub (GLH) Genetics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
247
|
Second Primary Malignancies in Diffuse Large B-cell Lymphoma Survivors with 40 Years of Follow-Up: Influence of Chemotherapy and Radiotherapy. Adv Radiat Oncol 2022; 7:101035. [DOI: 10.1016/j.adro.2022.101035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
|
248
|
Douglas SPM, Lahtinen AK, Koski JR, Leimi L, Keränen MAI, Koskenvuo M, Heckman CA, Jahnukainen K, Pitkänen E, Wartiovaara-Kautto U, Kilpivaara O. Enrichment of cancer-predisposing germline variants in adult and pediatric patients with acute lymphoblastic leukemia. Sci Rep 2022; 12:10670. [PMID: 35739278 PMCID: PMC9225984 DOI: 10.1038/s41598-022-14364-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Despite recent progress in acute lymphoblastic leukemia (ALL) therapies, a significant subset of adult and pediatric ALL patients has a dismal prognosis. Better understanding of leukemogenesis and recognition of germline genetic changes may provide new tools for treating patients. Given that hematopoietic stem cell transplantation, often from a family member, is a major form of treatment in ALL, acknowledging the possibility of hereditary predisposition is of special importance. Reports of comprehensive germline analyses performed in adult ALL patients are scarce. Aiming at fulfilling this gap of knowledge, we investigated variants in 93 genes predisposing to hematologic malignancies and 70 other cancer-predisposing genes from exome data obtained from 61 adult and 87 pediatric ALL patients. Our results show that pathogenic (P) or likely pathogenic (LP) germline variants in genes associated with predisposition to ALL or other cancers are prevalent in ALL patients: 8% of adults and 11% of children. Comparison of P/LP germline variants in patients to population-matched controls (gnomAD Finns) revealed a 2.6-fold enrichment in ALL cases (CI 95% 1.5–4.2, p = 0.00071). Acknowledging inherited factors is crucial, especially when considering hematopoietic stem cell transplantation and planning post-therapy follow-up. Harmful germline variants may also predispose patients to excessive toxicity potentially compromising the outcome. We propose integrating germline genetics into precise ALL patient care and providing families genetic counseling.
Collapse
Affiliation(s)
- Suvi P M Douglas
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Atte K Lahtinen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jessica R Koski
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lilli Leimi
- Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko A I Keränen
- Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland.,Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland
| | - Minna Koskenvuo
- Division of Hematology-Oncology and Stem Cell Transplantation, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caroline A Heckman
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Kirsi Jahnukainen
- Children's Hospital, and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Solna, Sweden
| | - Esa Pitkänen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Ulla Wartiovaara-Kautto
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Hematology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, Helsinki, Finland.
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Medical and Clinical Genetics, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,HUSLAB Laboratory of Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
249
|
Germline predisposition to pediatric Ewing sarcoma is characterized by inherited pathogenic variants in DNA damage repair genes. Am J Hum Genet 2022; 109:1026-1037. [PMID: 35512711 PMCID: PMC9247831 DOI: 10.1016/j.ajhg.2022.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
More knowledge is needed regarding germline predisposition to Ewing sarcoma to inform biological investigation and clinical practice. Here, we evaluated the enrichment of pathogenic germline variants in Ewing sarcoma relative to other pediatric sarcoma subtypes, as well as patterns of inheritance of these variants. We carried out European-focused and pan-ancestry case-control analyses to screen for enrichment of pathogenic germline variants in 141 established cancer predisposition genes in 1,147 individuals with pediatric sarcoma diagnoses (226 Ewing sarcoma, 438 osteosarcoma, 180 rhabdomyosarcoma, and 303 other sarcoma) relative to identically processed cancer-free control individuals. Findings in Ewing sarcoma were validated with an additional cohort of 430 individuals, and a subset of 301 Ewing sarcoma parent-proband trios was analyzed for inheritance patterns of identified pathogenic variants. A distinct pattern of pathogenic germline variants was seen in Ewing sarcoma relative to other sarcoma subtypes. FANCC was the only gene with an enrichment signal for heterozygous pathogenic variants in the European Ewing sarcoma discovery cohort (three individuals, OR 12.6, 95% CI 3.0–43.2, p = 0.003, FDR = 0.40). This enrichment in FANCC heterozygous pathogenic variants was again observed in the European Ewing sarcoma validation cohort (three individuals, OR 7.0, 95% CI 1.7–23.6, p = 0.014), representing a broader importance of genes involved in DNA damage repair, which were also nominally enriched in individuals with Ewing sarcoma. Pathogenic variants in DNA damage repair genes were acquired through autosomal inheritance. Our study provides new insight into germline risk factors contributing to Ewing sarcoma pathogenesis.
Collapse
|
250
|
Morand M, Roth M, Peterson SK, Bednar EM, Ramdaney A, Livingston JA, Yarbrough A, Corredor J. Factors impacting adolescent and young adult cancer patients' decision to pursue genetic counseling and testing. Support Care Cancer 2022; 30:5481-5489. [PMID: 35306607 PMCID: PMC9703615 DOI: 10.1007/s00520-022-06974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Adolescent and young adult (AYA) cancer patients face challenges when navigating cancer treatment and survivorship. Many are at risk for cancer predisposition syndromes; however, factors influencing pursuit of genetic counseling and testing have not been reported. We describe AYA cancer patients' decision-making process, including motivational factors and barriers, as it relates to utilization of genetic services. METHODS Thirty AYAs diagnosed with cancer previously referred for cancer predisposition genetic counseling completed semi-structured interviews via audio-only Zoom calls. Thematic analysis was used to perform qualitative analysis and identify major themes. RESULTS The sample comprised 21 AYAs who had genetic counseling and nine who did not. Motivational factors identified included learning genetic counseling is an available service, concern about the impact of a hereditary syndrome on family members and family planning, learning about the need for cancer screening or prevention, affordability of genetic testing, and easing worry about additional cancer risks. For those who did not pursue genetic counseling, barriers included scheduling or other priorities, worry, and cost. However, the majority expressed they would reconsider genetic counseling in the future. CONCLUSION AYA cancer patients have similar motivational factors to pursue genetic counseling compared to other patients; however, their younger age of diagnosis may alter how these factors affect decision-making. While there are barriers limiting access to genetic services, they did not decrease interest in future genetic counseling for most patients. Genetic counseling and testing should be discussed with patients who previously declined genetic services.
Collapse
Affiliation(s)
- Megan Morand
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Michael Roth
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan K Peterson
- Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erica M Bednar
- Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Cancer Prevention and Moon Shots Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aarti Ramdaney
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, USA
| | - J Andrew Livingston
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Yarbrough
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jessica Corredor
- Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|