201
|
Festa C, D’Amore C, Renga B, Lauro G, De Marino S, D’Auria MV, Bifulco G, Zampella A, Fiorucci S. Oxygenated polyketides from Plakinastrella mamillaris as a new chemotype of PXR agonists. Mar Drugs 2013; 11:2314-27. [PMID: 23820629 PMCID: PMC3736425 DOI: 10.3390/md11072314] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 11/16/2022] Open
Abstract
Further purification of the apolar extracts of the sponge Plakinastrella mamillaris, afforded a new oxygenated polyketide named gracilioether K, together with the previously isolated gracilioethers E-G and gracilioethers I and J. The structure of the new compound has been elucidated by extensive NMR (1H and 13C, COSY, HSQC, HMBC, and ROESY) and ESI-MS analysis. With the exception of gracilioether F, all compounds are endowed with potent pregnane-X-receptor (PXR) agonistic activity and therefore represent a new chemotype of potential anti-inflammatory leads. Docking calculations suggested theoretical binding modes of the identified compounds, compatible with an agonistic activity on hPXR, and clarified the molecular basis of their biological activities.
Collapse
Affiliation(s)
- Carmen Festa
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Claudio D’Amore
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| | - Barbara Renga
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, via Ponte don Melillo, Fisciano (SA) 84084, Italy; E-Mails: (G.L.); (G.B.)
| | - Simona De Marino
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Maria Valeria D’Auria
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, via Ponte don Melillo, Fisciano (SA) 84084, Italy; E-Mails: (G.L.); (G.B.)
| | - Angela Zampella
- Department of Pharmacy, University of Naples “Federico II”, via D. Montesano 49, Naples 80131, Italy; E-Mails: (C.F.); (S.D.M.); (M.V.D.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-081-678525; Fax: +39-081-678552
| | - Stefano Fiorucci
- Department of Clinical and Experimental Medicine, Faculty of Medicine, University of Perugia, via Gerardo Dottori 1, S. Andrea Delle Fratte, Perugia 06132, Italy; E-Mails: (C.D.); (B.R.); (S.F.)
| |
Collapse
|
202
|
Modulation of xenobiotic receptors by steroids. Molecules 2013; 18:7389-406. [PMID: 23884115 PMCID: PMC3777271 DOI: 10.3390/molecules18077389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate the expression of their target genes. NRs play important roles in many human diseases, including metabolic diseases and cancer, and are therefore a key class of therapeutic targets. Steroids play important roles in regulating nuclear receptors; in addition to being ligands of steroid receptors, steroids (and their metabolites) also regulate other NRs, such as the pregnane X receptor and constitutive androstane receptor (termed xenobiotic receptors), which participate in steroid metabolism. Xenobiotic receptors have promiscuous ligand-binding properties, and their structurally diverse ligands include steroids and their metabolites. Therefore, steroids, their metabolism and metabolites, xenobiotic receptors, steroid receptors, and the respective signaling pathways they regulate have functional interactions. This review discusses these functional interactions and their implications for activities mediated by steroid receptors and xenobiotic receptors, focusing on steroids that modulate pathways involving the pregnane X receptor and constitutive androstane receptor. The emphasis of the review is on structure-function studies of xenobiotic receptors bound to steroid ligands.
Collapse
|
203
|
Kodama S, Negishi M. PXR cross-talks with internal and external signals in physiological and pathophysiological responses. Drug Metab Rev 2013; 45:300-10. [DOI: 10.3109/03602532.2013.795585] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
204
|
Pregnane X receptor dependent up-regulation of CYP2C9 and CYP3A4 in tumor cells by antitumor acridine agents, C-1748 and C-1305, selectively diminished under hypoxia. Biochem Pharmacol 2013; 86:231-41. [PMID: 23688499 DOI: 10.1016/j.bcp.2013.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 01/12/2023]
Abstract
Induction of proteins involved in drug metabolism and in drug delivery has a significant impact on drug-drug interactions and on the final therapeutic effects. Two antitumor acridine derivatives selected for present studies, C-1748 (9-(2'-hydroxyethylamino)-4-methyl-1-nitroacridine) and C-1305 (5-dimethylaminopropylamino-8-hydroxy-triazoloacridinone), expressed high and low susceptibility to metabolic transformations with liver microsomes, respectively. In the current study, we examined the influence of these compounds on cytochrome P450 3A4 (CYP3A4) and 2C9 (CYP2C9) enzymatic activity and gene expression in HepG2 tumor cells. Luminescence and HPLC examination, real-time RT-PCR and western blot analyses along with transfection of pregnane X receptor (PXR) siRNA and CYP3A4 reporter gene assays were applied. We found that both compounds strongly induced CYP3A4 and CYP2C9 activity and expression as well as expression of UGT1A1 and MDR1 in a concentration- and time-dependent manner. C-1748-mediated CYP3A4 and CYP2C9 mRNA induction equal to rifampicin occurred at extremely low concentrations (0.001 and 0.01μM), whereas 10μM C-1305 induced three-times higher CYP3A4 and CYP2C9 mRNA levels than rifampicin did. CYP3A4 and CYP2C9 expressions were shown to be PXR-dependent; however, neither compound influenced PXR expression. Thus, the observed drug-mediated induction of isoenzymes occurs on a PXR-mediated regulatory level. Furthermore, C-1748 and C-1305 were demonstrated to be selective PXR agonists. These effects are hypoxia-inhibited only in the case of C-1748, which is sensitive to P450 metabolism. In summary, PXR was found to be a new target of the studied compounds. Thus, possible combinations of these compounds with other therapeutics might lead to the PXR-dependent enzyme-mediated drug-drug interactions.
Collapse
|
205
|
Iwamoto J, Saito Y, Honda A, Miyazaki T, Ikegami T, Matsuzaki Y. Bile acid malabsorption deactivates pregnane X receptor in patients with Crohn's disease. Inflamm Bowel Dis 2013; 19:1278-84. [PMID: 23574760 DOI: 10.1097/mib.0b013e318281f423] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent studies have suggested that the downregulation of pregnane X receptor (PXR) may contribute to the susceptibility and exacerbation of Crohn's disease (CD). Because bile acid malabsorption is one of the features of CD and bile acids are potential activators of PXR, we explored the relationship between bile acid malabsorption and PXR activities in patients with CD. METHODS Twenty-one patients with CD (4 ileal-resected and 17 nonresected), 10 with ulcerative colitis (UC), and 26 healthy controls were studied. Serum biomarkers for the activity of CYP3A4, a target gene of PXR, and for cholesterol and bile acid metabolism were quantified by liquid chromatography-tandem mass spectrometry or enzyme-linked immunosorbent assay. RESULTS The concentrations of 4β-hydroxycholesterol (4β-HC), a known marker for CYP3A4 activity, and those of 25-hydroxycholesterol (25-HC), another metabolite by CYP3A4, were significantly reduced in all patients with CD, especially in those with the history of ileal resection. The concentration of 7α-hydroxy-4-cholesten-3-one (C4), a marker for hepatic bile acid biosynthesis, was significantly elevated, whereas the levels of fibroblast growth factor 19 (FGF19), a marker for intestinal bile acid flux, were reduced in patients with CD compared with patients with UC and controls. A significant negative correlation was observed between 4β-HC or 25-HC and C4 concentrations in all patients with CD. CONCLUSIONS The degree of bile acid malabsorption was closely associated with the deactivation of PXR in CD. Enterohepatic circulation of bile acids is a key factor for preservation of baseline activity of hepatointestinal PXR.
Collapse
Affiliation(s)
- Junichi Iwamoto
- Department of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
206
|
Abstract
Cholestatic liver diseases encompass a wide spectrum of disorders with different causes, resulting in impaired bile flow and accumulation of bile acids and other potentially hepatotoxic cholephils. The understanding of the molecular mechanisms of bile formation and cholestasis has recently improved significantly through new insights into nuclear receptor (patho)biology. Nuclear receptors are ligand-activated transcription factors, which act as central players in the regulation of genes responsible for elimination and detoxification of biliary constituents accumulating in cholestasis. They also control other pathophysiologic processes such as inflammation, fibrogenesis, and carcinogenesis involved in the pathogenesis and disease progression of cholestasis liver diseases.
Collapse
Affiliation(s)
- Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anna Baghdasaryan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Corresponding author. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Vienna, Austria.
| |
Collapse
|
207
|
Abstract
PURPOSE OF REVIEW TGR5 (Gpbar-1) is an emerging drug target for metabolic, intestinal and liver diseases. In liver, the highest expression of TGR5 is found in biliary epithelial cells. This review focusses on the function of TGR5 in cholangiocytes and the potential role of the receptor in biliary diseases. RECENT FINDINGS TGR5 is localized in the primary cilium and the apical membrane domain of cholangiocytes, where the receptor exerts secretory, proliferative and antiapoptotic effects. Recent human and animal studies using bile acid analogues suggest a therapeutic potential for TGR5 in primary biliary cirrhosis but not in primary sclerosing cholangitis. SUMMARY TGR5 has protective functions in cholangiocytes. Further studies are needed to determine the therapeutic potential of TGR5 agonists and antagonists in biliary diseases.
Collapse
|
208
|
Honda A, Ikegami T, Nakamuta M, Miyazaki T, Iwamoto J, Hirayama T, Saito Y, Takikawa H, Imawari M, Matsuzaki Y. Anticholestatic effects of bezafibrate in patients with primary biliary cirrhosis treated with ursodeoxycholic acid. Hepatology 2013; 57:1931-41. [PMID: 22911624 DOI: 10.1002/hep.26018] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/02/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Bezafibrate is a widely used hypolipidemic agent and is known as a ligand of the peroxisome proliferator-activated receptors (PPARs). Recently this agent has come to be recognized as a potential anticholestatic medicine for the treatment of primary biliary cirrhosis (PBC) that does not respond sufficiently to ursodeoxycholic acid (UDCA) monotherapy. The aim of this study was to explore the anticholestatic mechanisms of bezafibrate by analyzing serum lipid biomarkers in PBC patients and by cell-based enzymatic and gene expression assays. Nineteen patients with early-stage PBC and an incomplete biochemical response to UDCA (600 mg/day) monotherapy were treated with the same dose of UDCA plus bezafibrate (400 mg/day) for 3 months. In addition to the significant improvement of serum biliary enzymes, immunoglobulin M (IgM), cholesterol, and triglyceride concentrations in patients treated with bezafibrate, reduction of 7α-hydroxy-4-cholesten-3-one (C4), a marker of bile acid synthesis, and increase of 4β-hydroxycholesterol, a marker of CYP3A4/5 activity, were observed. In vitro experiments using human hepatoma cell lines demonstrated that bezafibrate controlled the target genes of PPARα, as well as those of the pregnane X receptor (PXR); down-regulating CYP7A1, CYP27A1, and sinusoidal Na(+) /taurocholate cotransporting polypeptide (NTCP), and up-regulating CYP3A4, canalicular multidrug resistance protein 3 (MDR3), MDR1, and multidrug resistance-associated protein 2 (MRP2). CONCLUSION Bezafibrate is a dual PPARs/PXR agonist with potent anticholestatic efficacy in early-stage PBC patients with an incomplete biochemical response to UDCA monotherapy.
Collapse
Affiliation(s)
- Akira Honda
- Department of Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
|
210
|
Smith Z, Ryerson D, Kemper JK. Epigenomic regulation of bile acid metabolism: emerging role of transcriptional cofactors. Mol Cell Endocrinol 2013; 368:59-70. [PMID: 22579755 PMCID: PMC3473118 DOI: 10.1016/j.mce.2012.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023]
Abstract
The traditional role of bile acids is to simply facilitate absorption and digestion of lipid nutrients, but bile acids also act as endocrine signaling molecules that activate nuclear and membrane receptors to control integrative metabolism and energy balance. The mechanisms by which bile acid signals are integrated to regulate target genes are, however, largely unknown. Recently emerging evidence has shown that transcriptional cofactors sense metabolic changes and modulate gene transcription by mediating reversible epigenomic post-translational modifications (PTMs) of histones and chromatin remodeling. Importantly, targeting these epigenomic changes has been a successful approach for treating human diseases, especially cancer. Here, we review emerging roles of transcriptional cofactors in the epigenomic regulation of liver metabolism, especially focusing on bile acid metabolism. Targeting PTMs of histones and chromatin remodelers, together with the bile acid-activated receptors, may provide new therapeutic options for bile acid-related disease, such as cholestasis, obesity, diabetes, and entero-hepatic cancers.
Collapse
Affiliation(s)
- Zachary Smith
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
211
|
Azuma K, Ouchi Y, Inoue S. Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis. Geriatr Gerontol Int 2013; 14:1-7. [PMID: 23530597 DOI: 10.1111/ggi.12060] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/31/2022]
Abstract
Vitamin K is a fat-soluble vitamin, which is involved in blood coagulation mediated by maintaining the activity of coagulation factors in the liver. Vitamin K also has extrahepatic actions and has been shown to prevent bone fractures in clinical studies. In addition, epidemiological studies suggest that a lack of vitamin K is associated with several geriatric diseases, including osteoporosis, osteoarthritis, dementia and arteriosclerosis. It has also been shown that vitamin K contributes to the prevention and treatment of some kinds of malignancies. Recently, we discovered a novel role for vitamin K as a ligand of the nuclear receptor, steroid and xenobiotic receptor (SXR), and its murine ortholog, pregnane X receptor (PXR). In addition to its established roles as a cofactor of γ-glutamyl carboxylase (GGCX) in mediating post-transcriptional modifications, vitamin K has a different mode of action mediated by transcriptional regulation of SXR/PXR target genes. Analysis of bone tissue from PXR-deficient mice showed that the bone protective effects of vitamin K are partially mediated by SXR/PXR-dependent signaling. The discoveries of a novel mode of vitamin K action have opened up new possibilities that vitamin K might be useful for prevention or treatment of a variety of diseases that affect the geriatric population.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, The University of Tokyo, Tokyo, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
212
|
Zhang P, Jia K, Fang C, Zhou X, Ding X, Zhang QY. Dietary regulation of mouse intestinal P450 expression and drug metabolism. Drug Metab Dispos 2013; 41:529-35. [PMID: 23160819 PMCID: PMC3558856 DOI: 10.1124/dmd.112.049403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/16/2012] [Indexed: 12/17/2022] Open
Abstract
The study was originally designed to test the hypothesis that the compensatory increase in intestinal P450 (cytochrome P450) expression in the intestinal epithelium-specific P450 reductase (CPR) knockout (IE-Cpr-null) mice was attributable to decreased metabolism of putative P450 inducers present in the diet. Thus, we determined the impact of a dietary change from regular rodent chow to a synthetic diet devoid of phytochemicals on the expression of P450 enzymes in the small intestine (SI) and liver of wild-type (WT) and IE-Cpr-null mice. The dietary change diminished expression of CYP1A, 2B, 2C, and 3A in SI and CYP2B, 2C, and 3A in liver of both WT and IE-Cpr-null mice. However, the compensatory increase in SI P450 expression still occurred in IE-Cpr-null, compared with WT, mice, on the synthetic diet. The diet change-induced decrease in P450 expression was accompanied by decreases in microsomal midazolam-hydroxylase activity in vitro and first-pass clearance of midazolam in vivo in WT mice. Further studies showed that the dietary change, but not Cpr deletion, caused large decreases in bile acid (BA) levels in plasma, liver, SI, and intestinal content and that treatment of WT mice on the synthetic diet with GW4064, a farnesoid-X-receptor agonist, restored the levels of CYP3A expression in both liver and SI to those seen in mice fed with regular chow. Taken together, these results highlight the vital role of diet in maintaining adequate expression of major drug-metabolizing P450s and their associated drug-metabolizing activities in the digestive tract and suggest potential involvement of BA signaling in the regulatory mechanisms.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Molecular, State University of New York at Albany, NY, USA.
| | | | | | | | | | | |
Collapse
|
213
|
Naik A, Belič A, Zanger UM, Rozman D. Molecular Interactions between NAFLD and Xenobiotic Metabolism. Front Genet 2013; 4:2. [PMID: 23346097 PMCID: PMC3550596 DOI: 10.3389/fgene.2013.00002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, is a complex multifactorial disease characterized by metabolic deregulations that include accumulation of lipids in the liver, lipotoxicity, and insulin resistance. The progression of NAFLD to non-alcoholic steatohepatitis and cirrhosis, and ultimately to carcinomas, is governed by interplay of pro-inflammatory pathways, oxidative stress, as well as fibrogenic and apoptotic cues. As the liver is the major organ of biotransformation, deregulations in hepatic signaling pathways have effects on both, xenobiotic and endobiotic metabolism. Several major nuclear receptors involved in the transcription and regulation of phase I and II drug metabolizing enzymes and transporters also have endobiotic ligands including several lipids. Hence, hepatic lipid accumulation in steatosis and NAFLD, which leads to deregulated activation patterns of nuclear receptors, may result in altered drug metabolism capacity in NAFLD patients. On the other hand, genetic and association studies have indicated that a malfunction in drug metabolism can affect the prevalence and severity of NAFLD. This review focuses on the complex interplay between NAFLD pathogenesis and drug metabolism. A better understanding of these relationships is a prerequisite for developing improved drug dosing algorithms for the pharmacotherapy of patients with different stages of NAFLD.
Collapse
Affiliation(s)
- Adviti Naik
- Faculty of Computer Sciences and Informatics, University of Ljubljana Ljubljana, Slovenia
| | | | | | | |
Collapse
|
214
|
Chai X, Zeng S, Xie W. Nuclear receptors PXR and CAR: implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin Drug Metab Toxicol 2013; 9:253-66. [PMID: 23327618 DOI: 10.1517/17425255.2013.754010] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION 'Orphan' nuclear receptors belong to the nuclear receptor (NR) superfamily of transcriptional factors. Binding of ligands to these receptors results in the recruitment of the co-activators, thereby regulating the expression of cognate target genes. AREAS COVERED This review discusses the transcriptional regulation of P450 genes by two major xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR). Additional PXR and CAR target genes include those encoded for UDP-glucuronosyltransferases, glutathione S-transferases, sulfotransferases and drug transporters. The authors discuss the involvement of PXR and CAR in endobiotic metabolism. They also review the polymorphisms of PXR and CAR. EXPERT OPINION PXR and CAR are both xenobiotic and endobiotic receptors. A remarkably diverse set of chemicals can activate PXR and CAR. There is significant cross-talk among xenobiotic receptors. Future studies are needed to focus on the polymorphisms of the nuclear receptors and the complex regulatory networks among nuclear receptors. Considerations should be given while designing PXR- or CAR-targeting pharmaceutics to avoid adverse drug effects. In the meantime, due to the diverse functions of PXR and CAR, agonists or antagonists for these receptors may have therapeutic potentials in managing certain diseases and enhancing therapeutic indexes.
Collapse
Affiliation(s)
- Xiaojuan Chai
- Zhejiang University, College of Pharmaceutical Sciences, Department of Pharmaceutical Analysis and Drug Metabolism, Hangzhou 310058, China
| | | | | |
Collapse
|
215
|
Nebert DW, Wikvall K, Miller WL. Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120431. [PMID: 23297354 DOI: 10.1098/rstb.2012.0431] [Citation(s) in RCA: 358] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are 18 mammalian cytochrome P450 (CYP) families, which encode 57 genes in the human genome. CYP2, CYP3 and CYP4 families contain far more genes than the other 15 families; these three families are also the ones that are dramatically larger in rodent genomes. Most (if not all) genes in the CYP1, CYP2, CYP3 and CYP4 families encode enzymes involved in eicosanoid metabolism and are inducible by various environmental stimuli (i.e. diet, chemical inducers, drugs, pheromones, etc.), whereas the other 14 gene families often have only a single member, and are rarely if ever inducible or redundant. Although the CYP2 and CYP3 families can be regarded as largely redundant and promiscuous, mutations or other defects in one or more genes of the remaining 16 gene families are primarily the ones responsible for P450-specific diseases-confirming these genes are not superfluous or promiscuous but rather are more directly involved in critical life functions. P450-mediated diseases comprise those caused by: aberrant steroidogenesis; defects in fatty acid, cholesterol and bile acid pathways; vitamin D dysregulation and retinoid (as well as putative eicosanoid) dysregulation during fertilization, implantation, embryogenesis, foetogenesis and neonatal development.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA.
| | | | | |
Collapse
|
216
|
Macchiarulo A, Carotti A, Cellanetti M, Sardella R, Gioiello A. Navigations of chemical space to further the understanding of polypharmacology in human nuclear receptors. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The article analyses properties featuring the binding site of human nuclear receptors and cognate ligands, investigating aspects of polypharmacology.
Collapse
Affiliation(s)
- Antonio Macchiarulo
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Andrea Carotti
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Marco Cellanetti
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Roccaldo Sardella
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| | - Antimo Gioiello
- Dipartimento di Chimica e Tecnologia del Farmaco
- Università di Perugia
- 06123 Perugia
- Italy
| |
Collapse
|
217
|
Tajima M, Ikarashi N, Igeta S, Toda T, Ishii M, Tanaka Y, Machida Y, Ochiai W, Yamada H, Sugiyama K. Different Diets Cause Alterations in the Enteric Environment and Trigger Changes in the Expression of Hepatic Cytochrome P450 3A, a Drug-Metabolizing Enzyme. Biol Pharm Bull 2013; 36:624-34. [DOI: 10.1248/bpb.b12-01005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masataka Tajima
- Department of Clinical Pharmacokinetics, Hoshi University
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | | | - Shintaro Igeta
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Takahiro Toda
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Makoto Ishii
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Yoshikazu Tanaka
- Division of Applied Pharmaceutical Education and Research, Hoshi University
| | - Yoshiaki Machida
- Division of Applied Pharmaceutical Education and Research, Hoshi University
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Harumi Yamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare
| | | |
Collapse
|
218
|
Ishizawa M, Ogura M, Kato S, Makishima M. Impairment of bilirubin clearance and intestinal interleukin-6 expression in bile duct-ligated vitamin D receptor null mice. PLoS One 2012; 7:e51664. [PMID: 23240054 PMCID: PMC3519857 DOI: 10.1371/journal.pone.0051664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/06/2012] [Indexed: 01/06/2023] Open
Abstract
The vitamin D receptor (VDR) mediates the physiological and pharmacological actions of 1α,25-dihydroxyvitamin D3 in bone and calcium metabolism, cellular growth and differentiation, and immunity. VDR also responds to secondary bile acids and belongs to the NR1I subfamily of the nuclear receptor superfamily, which regulates expression of xenobiotic metabolism genes. When compared to knockout mouse investigations of the other NR1I nuclear receptors, pregnane X receptor and constitutive androstane receptor, an understanding of the role of VDR in xenobiotic metabolism remains limited. We examined the effect of VDR deletion in a mouse model of cholestasis. We performed bile duct ligation (BDL) on VDR-null mice and compared blood biochemistry, mRNA expression of genes involved in bile acid and bilirubin metabolism, cytokine production, and expression of inflammatory regulators with those of wild-type mice. VDR-null mice had elevated plasma conjugated bilirubin levels three days after BDL compared with wild-type mice. Urine bilirubin levels and renal mRNA and/or protein expression of multidrug resistance-associated proteins 2 and 4 were decreased in VDR-null mice, suggesting impaired excretion of conjugated bilirubin into urine. While VDR-null kidney showed mRNA expression of interleukin-6 (IL-6) after BDL and VDR-null macrophages had higher IL-6 protein levels after lipopolysaccharide stimulation, the induction of intestinal Il6 mRNA expression and plasma IL-6 protein levels after BDL was impaired in VDR-null mice. Immunoblotting analysis showed that expression of an immune regulator, IκBα, was elevated in the jejunum of VDR-null mice, a possible mechanism for the attenuated induction of Il6 expression in the intestine after BDL. Increased expression of IκBα may be a consequence of compensatory mechanisms for VDR deletion. These results reveal a role of VDR in bilirubin clearance during cholestasis. VDR is also suggested to contribute to tissue-selective immune regulation.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Michitaka Ogura
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Shigeaki Kato
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
219
|
Matsubara T, Tanaka N, Sato M, Kang DW, Krausz KW, Flanders KC, Ikeda K, Luecke H, Wakefield LM, Gonzalez FJ. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury. J Lipid Res 2012; 53:2698-2707. [PMID: 23034213 PMCID: PMC3494264 DOI: 10.1194/jlr.m031773] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/01/2012] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury.
Collapse
Affiliation(s)
- Tsutomu Matsubara
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan; and
| | - Naoki Tanaka
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Misako Sato
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dong Wook Kang
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Kristopher W. Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kathleen C. Flanders
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan; and
| | - Hans Luecke
- Laboratory of Bioorganic Chemistry, National Institute of Diabetics and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lalage M. Wakefield
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
220
|
Abstract
The nuclear receptors pregnane X receptor, constitutive androstane receptor, and peroxisome proliferator-activated receptor alpha have important endogenous functions and are also involved in the induction of drug-metabolizing enzymes and transporters in response to exogenous xenobiotics. Though not belonging to the same protein family, the Per-Sim-ARNT domain receptor aryl hydrocarbon receptor functionally overlaps with the three nuclear receptors in many aspects and is therefore included in this review. Significant species differences in ligand affinity and biological responses as a result of activation of these receptors have been described. Several xenobiotic receptor humanized mice have been created to overcome these species differences and to provide in vivo models that are more predictive for human responses. This review provides an overview of the different xenobiotic receptor humanized mouse models described to date and will summarize how these models can be applied in basic research and improve drug discovery and development. Some of the key applications in the evaluation of drug induction, drug-drug interactions, nongenotoxic carcinogenicity, other toxicity, or efficacy studies are described. We also discuss relevant considerations in the interpretation of such data and potential future directions for the use of xenobiotic receptor humanized mice.
Collapse
Affiliation(s)
- Nico Scheer
- TaconicArtemis GmbH, Neurather Ring 1, Koeln, Germany.
| | | |
Collapse
|
221
|
Wang YG, Zhou JM, Ma ZC, Li H, Liang QD, Tan HL, Xiao CR, Zhang BL, Gao Y. Pregnane X receptor mediated-transcription regulation of CYP3A by glycyrrhizin: A possible mechanism for its hepatoprotective property against lithocholic acid-induced injury. Chem Biol Interact 2012; 200:11-20. [DOI: 10.1016/j.cbi.2012.08.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/17/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
222
|
Doricakova A, Novotna A, Vrzal R, Pavek P, Dvorak Z. The role of residues T248, Y249 and T422 in the function of human pregnane X receptor. Arch Toxicol 2012; 87:291-301. [PMID: 22976785 DOI: 10.1007/s00204-012-0937-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
The pregnane X receptor (PXR) is a key xenobiotic receptor that regulates the expression of numerous drug-metabolizing enzymes. Some posttranslational mechanisms modulate its transcriptional activity. Although several kinases have been shown to directly phosphorylate this receptor, little is known about phosphorylation sites of PXR. In the present work, we examined T248, Y249 and T422 putative phosphorylation sites determined based on in silico consensus kinase site prediction analysis. T248 and T422 residues are critical for the interaction of the PXR ligand-binding domain and the activation function-2 (AF2) domain. Site-directed mutagenesis analysis was performed to generate phospho-deficient and phospho-mimetic mutants. We examined transactivation activity of the PXR mutants in gene reporter assays, formation of PXRmutant/RXRα heterodimer, binding of PXR mutants to the CYP3A4 gene response element DR3 and CYP3A4 expression in HepG2 cells after expression of the mutants. We found that T248D mutant activated CYP3A4 transactivation constitutively regardless of the presence or absence of a ligand. Contrary, T248V mutant exhibited low basal and ligand-inducible transactivation capacity as compared to wild-type PXR. Dose-response analysis revealed reduced ligand-dependent transactivation potency of PXR Y249D mutant. Transactivation of the CYP3A4 promoter was abolished with T422A/D mutants. All PXR mutants formed heterodimer with RXRα at a similar level to that observed with wild-type PXR. The ability to bind to DNA in vitro was substantially decreased in case of T248D, T422D and T248V mutants. Our data thus indicate that phosphorylation of T248, Y249 and T422 residues may be critical for the both basal and ligand-activated function of PXR.
Collapse
Affiliation(s)
- Aneta Doricakova
- Department of Cell Biology and Genetic, Palacky University Olomouc, Slechtitelu 11, 783 71 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
223
|
Kong B, Wang L, Chiang JYL, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 2012; 56:1034-43. [PMID: 22467244 PMCID: PMC3390456 DOI: 10.1002/hep.25740] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Activation of farnesoid X receptor (Fxr, Nr1h4) is a major mechanism in suppressing bile-acid synthesis by reducing the expression levels of genes encoding key bile-acid synthetic enzymes (e.g., cytochrome P450 [CYP]7A1/Cyp7a1 and CYP8B1/Cyp8b1). FXR-mediated induction of hepatic small heterodimer partner (SHP/Shp, Nr0b2) and intestinal fibroblast growth factor 15 (Fgf15; FGF19 in humans) has been shown to be responsible for this suppression. However, the exact contribution of Shp/Fgf15 to this suppression, and the associated cell-signaling pathway, is unclear. By using novel genetically modified mice, the current study showed that the intestinal Fxr/Fgf15 pathway was critical for suppressing both Cyp7a1 and Cyp8b1 gene expression, but the liver Fxr/Shp pathway was important for suppressing Cyp8b1 gene expression and had a minor role in suppressing Cyp7a1 gene expression. Furthermore, in vivo administration of Fgf15 protein to mice led to a strong activation of extracellular signal-related kinase (ERK) and, to a smaller degree, Jun N-terminal kinase (JNK) in the liver. In addition, deficiency of either the ERK or JNK pathway in mouse livers reduced the basal, but not the Fgf15-mediated, suppression of Cyp7a1 and Cyp8b1 gene expression. However, deficiency of both ERK and JNK pathways prevented Fgf15-mediated suppression of Cyp7a1 and Cyp8b1 gene expression. CONCLUSION The current study clearly elucidates the underlying molecular mechanism of hepatic versus intestinal Fxr in regulating the expression of genes critical for bile-acid synthesis and hydrophobicity in the liver.
Collapse
Affiliation(s)
- Bo Kong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Li Wang
- Department of Oncological Sciences, University of Utah
| | - John Y. L. Chiang
- Department of Biochemistry and Molecular Pathology, Northeast Ohio Medical University
| | - Youcai Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Curtis D. Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Grace L. Guo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| |
Collapse
|
224
|
Li T, Yu RT, Atkins AR, Downes M, Tukey RH, Evans RM. Targeting the pregnane X receptor in liver injury. Expert Opin Ther Targets 2012; 16:1075-83. [PMID: 22913318 DOI: 10.1517/14728222.2012.715634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The nuclear receptor pregnane X receptor (PXR) is a well-characterized hepatic xenobiotic sensor whose activation by chemically diverse compounds results in the induction of drug clearance pathways that rid the body of potentially toxic substances, thus conferring protection from foreign chemicals and endobiotics. AREAS COVERED PXR activities are implicated in drug-drug interactions and endocrine disruption. Recent evidence supports a hepatoprotective role for PXR in chronic liver injury, inhibiting liver inflammation through suppression of the NF-κB pathway. However, PXR-mediated induction of CYP3A enhances APAP-induced acute liver injury by generating toxic metabolites. While these observations implicate PXR as a therapeutic target for liver injury, they also caution against PXR activation by pharmaceutical drugs. EXPERT OPINION While evidence of PXR involvement in acute and chronic liver injuries identifies it as a possible therapeutic target, it raises additional concerns for all drug candidates. The in vitro and in vivo tests for human PXR activation should be incorporated into the FDA regulations for therapeutic drug approval to identify potential liver toxicities. In addition, PXR pharmacogenetic studies will facilitate the prediction of patient-specific drug reactivities and associated liver disorders.
Collapse
Affiliation(s)
- Tao Li
- The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
225
|
Bock KW. Human UDP-glucuronosyltransferases: feedback loops between substrates and ligands of their transcription factors. Biochem Pharmacol 2012; 84:1000-6. [PMID: 22820246 DOI: 10.1016/j.bcp.2012.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 11/26/2022]
Abstract
Expression profiles of human adult and fetal hepatic and intestinal UDP-glucuronosyltransferases (UGTs), information about their endo- and xenobiotic substrates, and their transcriptional regulation suggests regulatory circuits between some UGT substrates and ligands of their transcription factors. For examples: (i) bilirubin is solely conjugated by UGT1A1 and activates its transcription factors Ah receptor, PXR and CAR. (ii) Hepatotoxic lithocholic acid (LCA) is oxidized to hyodeoxycholic acid, the latter conjugated by UGT2B4 and UGT2B7. LCA is also an agonist of FXR and PPARα, which are controlling these UGTs. (iii) Similar feedback loops possibly exist between some eicosanoids, PPARα and UGTs. (iv) Regulatory circuits may also have evolved between dietary polyphenols, which are efficient substrates of UGTs and activators of the Ah receptor. Although many newly developed drugs are conjugated by promiscuous UGTs, the discussed regulatory circuits may provide hints to evolutionary important UGT substrates.
Collapse
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany.
| |
Collapse
|
226
|
Xu Z, Huang G, Gong W, Zhao Y, Zhou P, Zeng Y, He F. Activation of farnesoid X receptor increases the expression of cytokine inducible SH2-containing protein in HepG2 cells. J Interferon Cytokine Res 2012; 32:517-23. [PMID: 22817871 DOI: 10.1089/jir.2012.0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytokine inducible SH2-containing protein (CISH), which negatively regulates cytokine signaling by inhibiting JAK2/STAT5 activity, is regarded as a therapeutic target for inflammatory diseases. Farnesoid X receptor (FXR), a ligand-activated transcription factor, has been proposed to play a protective function in the inflammatory responses. However, the role of FXR in modulation of CISH expression is unknown. In the present study, we for the first time identified that in human hepatoma cell line HepG2 the activation of FXR by the natural agonist chenodeoxycholic acid (CDCA) and the synthetic specific agonist GW4064 upregulated CISH at both transcriptional and translational levels, and inhibited interleukin (IL)6-induced STAT5 activation. Moreover, the in vivo experiment demonstrated that gavaging mice with CDCA increased CISH expression and reduced basal STAT5 phosphorylation in liver tissues. Reporter assay showed that FXR agonists enhanced the transcriptional activity of CISH promoter. These data suggest that FXR may serve as a novel molecular target for manipulating CISH expression in hepatocytes. FXR-mediated upregulation of CISH may play an important role in the homeostasis of cytokine signal networks and be beneficial to control cytokine-associated inflammatory diseases.
Collapse
Affiliation(s)
- Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
227
|
Caiozzi G, Wong BS, Ricketts ML. Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochem Funct 2012; 30:531-51. [PMID: 23027406 DOI: 10.1002/cbf.2842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/07/2012] [Accepted: 05/09/2012] [Indexed: 12/17/2022]
Abstract
Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail.
Collapse
Affiliation(s)
- Gianella Caiozzi
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, NV 89557, USA
| | | | | |
Collapse
|
228
|
Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol 2012; 130:147-58. [PMID: 21801835 PMCID: PMC4750880 DOI: 10.1016/j.jsbmb.2011.06.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 05/17/2011] [Accepted: 06/17/2011] [Indexed: 12/17/2022]
Abstract
Cholestatic liver disorders encompass hepatobiliary diseases of diverse etiologies characterized by the accumulation of bile acids, bilirubin and cholesterol as the result of impaired secretion of bile. Members of the nuclear receptor (NR) family of ligand-modulated transcription factors are implicated in the adaptive response to cholestasis. NRs coordinately regulate bile acid and phospholipid transporter genes required for hepatobiliary transport, as well as the phases I and II metabolizing enzymes involved in processing of their substrates. In this review we will focus on FXR and PXR, two members of the NR family whose activities are regulated by bile acids. In addition, we also discuss the potential of pharmacological modulators of these receptors as novel therapies for cholestatic disorders.
Collapse
Affiliation(s)
- Johan W. Jonker
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Corresponding author. Tel.: +31 050 361 1261; fax: +31 050 361 1746
| | - Christopher Liddle
- Storr Liver Unit, Westmead Millennium Institute and University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, 10010 Torrey Pines Road, La Jolla, CA 92037, USA
- Corresponding author. Tel.: +1 858 453 4100; fax: +1 858 455 1349
| |
Collapse
|
229
|
Intestinal synthesis and secretion of bile salts as an adaptation to developmental biliary atresia in the sea lamprey. Proc Natl Acad Sci U S A 2012; 109:11419-24. [PMID: 22733776 DOI: 10.1073/pnas.1203008109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bile salt synthesis is a specialized liver function in vertebrates. Bile salts play diverse roles in digestion and signaling, and their homeostasis is maintained by controlling input (biosynthesis) and intestinal conservation. Patients with biliary atresia (i.e., obliteration of the biliary tree) suffer liver fibrosis and cirrhosis. In contrast, sea lamprey thrives despite developmental biliary atresia. We discovered that the sea lamprey adapts to biliary atresia through a unique mechanism of de novo synthesis and secretion of bile salts in intestine after developmental biliary atresia, in addition to known mechanisms, such as the reduction of bile salt synthesis in liver. During and after developmental biliary atresia, expression of cyp7a1 in intestine increased by more than 100-fold (P < 0.001), whereas in liver it decreased by the same magnitude (P < 0.001). Concurrently, bile salt pools changed in similar patterns and magnitudes in these two organs and the composition shifted from C24 bile alcohol sulfates to taurine-conjugated C24 bile acids. In addition, both in vivo and ex vivo experiments showed that aductular sea lamprey secreted taurocholic acid into its intestinal lumen. Our results indicate that the sea lamprey, a jawless vertebrate, may be in an evolutionarily transitional state where bile salt synthesis occurs in both liver and intestine. Understanding the molecular basis of these mechanisms may shed light on the evolution of bile salt synthesis and possible therapy for infant biliary atresia.
Collapse
|
230
|
Weerachayaphorn J, Mennone A, Soroka CJ, Harry K, Hagey LR, Kensler TW, Boyer JL. Nuclear factor-E2-related factor 2 is a major determinant of bile acid homeostasis in the liver and intestine. Am J Physiol Gastrointest Liver Physiol 2012; 302:G925-36. [PMID: 22345550 PMCID: PMC3362073 DOI: 10.1152/ajpgi.00263.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a key regulator for induction of hepatic detoxification and antioxidant mechanisms, as well as for certain hepatobiliary transporters. To examine the role of Nrf2 in bile acid homeostasis and cholestasis, we assessed the determinants of bile secretion and bile acid synthesis and transport before and after bile duct ligation (BDL) in Nrf2(-/-) mice. Our findings indicate reduced rates of biliary bile acid and GSH excretion, higher levels of intrahepatic bile acids, and decreased expression of regulators of bile acid synthesis, Cyp7a1 and Cyp8b1, in Nrf2(-/-) compared with wild-type control mice. The mRNA expression of the bile acid transporters bile salt export pump (Bsep) and organic solute transporter (Ostα) were increased in the face of impaired expression of the multidrug resistance-associated proteins Mrp3 and Mrp4. Deletion of Nrf2 also decreased ileal apical sodium-dependent bile acid transporter (Asbt) expression, leading to reduced bile acid reabsorption and increased loss of bile acid in feces. Finally, when cholestasis is induced by BDL, liver injury was not different from that in wild-type BDL mice. These Nrf2(-/-) mice also had increased pregnane X receptor (Pxr) and Cyp3a11 mRNA expression in association with enhanced hepatic bile acid hydroxylation. In conclusion, this study finds that Nrf2 plays a major role in the regulation of bile acid homeostasis in the liver and intestine. Deletion of Nrf2 results in a cholestatic phenotype but does not augment liver injury following BDL.
Collapse
Affiliation(s)
- Jittima Weerachayaphorn
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut; ,2Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand;
| | - Albert Mennone
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut;
| | - Carol J. Soroka
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut;
| | - Kathy Harry
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut;
| | - Lee R. Hagey
- 3Division of Gastroenterology, Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, California; and
| | - Thomas W. Kensler
- 4Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - James L. Boyer
- 1Department of Internal Medicine, Liver Center, Yale University, School of Medicine, New Haven, Connecticut;
| |
Collapse
|
231
|
Porez G, Prawitt J, Gross B, Staels B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 2012; 53:1723-37. [PMID: 22550135 DOI: 10.1194/jlr.r024794] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and atherosclerosis. When dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose intolerance, defined as the metabolic syndrome (MS), individuals present an elevated risk to develop type 2 diabetes (T2D) as well as CVD. Because the MS epidemic represents a growing public health problem worldwide, the development of therapies remains a major challenge. Alterations of bile acid pool regulation in T2D have revealed a link between bile acid and metabolic homeostasis. The bile acid receptors farnesoid X receptor (FXR) and TGR5 both regulate lipid, glucose, and energy metabolism, rendering them potential pharmacological targets for MS therapy. This review discusses the mechanisms of metabolic regulation by FXR and TGR5 and the utility relevance of natural and synthetic modulators of FXR and TGR5 activity, including bile acid sequestrants, in the treatment of the MS.
Collapse
|
232
|
Xu Z, Huang G, Gong W, Zhou P, Zhao Y, Zhang Y, Zeng Y, Gao M, Pan Z, He F. FXR ligands protect against hepatocellular inflammation via SOCS3 induction. Cell Signal 2012; 24:1658-64. [PMID: 22560881 DOI: 10.1016/j.cellsig.2012.04.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/18/2012] [Indexed: 01/09/2023]
Abstract
Because of the anti-inflammatory actions of farnesoid X receptor (FXR) agonists, FXR has received much attention as a potential therapeutic target. However, the molecular mechanisms of actions have not yet been elucidated. In the present study, we reported that in the animal model of LPS-induced liver injury, administration of the FXR natural ligand CDCA could attenuate hepatocyte inflammatory damage, reduce transaminase activities, suppress inflammation mediators (IL-6, TNF-α and ICAM-1) expression and inhibit STAT3 phosphorylation. These protective effects of FXR were accompanied by an increased expression of suppressor of cytokine signaling 3 (SOCS3), which is a negative feedback regulator of cytokine-STAT3 signaling. We then demonstrated that the beneficial effects of FXR agonist in STAT3 activation were weakened by small interfering RNA-mediated SOCS3 knockdown in hepacytes. Moreover we observed both natural ligand CDCA and synthetic ligand GW4064 could upregulate SOCS 3 expression by enhancing the promoter activity in hepatocytes. These results suggest modulation of SOCS3 expression may represent a novel mechanism through which FXR activation could selectively affect cytokine bioactivity in inflammation response. FXR ligands may be potentially therapeutic in the treatment of liver inflammatory diseases via SOCS3 induction.
Collapse
Affiliation(s)
- Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Salyers KL, Xu Y. Animal Models for Studying Drug Metabolizing Enzymes and Transporters. ADME‐ENABLING TECHNOLOGIES IN DRUG DESIGN AND DEVELOPMENT 2012:253-276. [DOI: 10.1002/9781118180778.ch16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
234
|
Ishii M, Toda T, Ikarashi N, Ochiai W, Sugiyama K. Effects of Intestinal Flora on the Expression of Cytochrome P450 3A in the Liver. YAKUGAKU ZASSHI 2012; 132:301-10. [DOI: 10.1248/yakushi.132.301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Makoto Ishii
- Department of Clinical Pharmacokinetics, Hoshi University
| | - Takahiro Toda
- Department of Clinical Pharmacokinetics, Hoshi University
| | | | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University
| | | |
Collapse
|
235
|
Azuma K, Urano T, Watabe T, Ouchi Y, Inoue S. PROX1 suppresses vitamin K-induced transcriptional activity of Steroid and Xenobiotic Receptor. Genes Cells 2012; 16:1063-70. [PMID: 22023334 DOI: 10.1111/j.1365-2443.2011.01551.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Steroid and Xenobiotic Receptor (SXR) belongs to nuclear receptor superfamily. It was shown that secondary bile acids such as lithocholic acid and several chemical compounds such as rifampicin could be ligands for this receptor. Recently, we have demonstrated that vitamin K2 also serves as a ligand for SXR and activation of SXR by vitamin K2 suppressed proliferation and motility of hepatocellular carcinoma (HCC) cells. To analyze function of SXR in HCC cells, we overexpressed exogenous SXR double-tagged with FLAG and HA in a HCC cell line, HepG2 cells, and purified SXR-binding molecules by immunoprecipitation from the nuclear extracts of these cells. Several binding molecules were identified by TOF-MS analyses. One of the SXR-binding molecules was a transcription factor PROX1. We confirmed the interaction of PROX1 and SXR in HEK293 cells. Then, we have shown that AF2 domain of SXR is necessary for binding with PROX1. We further demonstrated that PROX1 negatively regulated the transcriptional activity of SXR by promoter analyses of SXR target gene. These results suggest that PROX1 could negatively regulate SXR signals in some tumor cells, such as HCC cells, where both SXR and PROX1 are expressed.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
236
|
Abstract
PURPOSE OF REVIEW Bile acid sequestrants (BAS) have been used for more than 50 years in the treatment of hypercholesterolemia. The last decade, bile acids are emerging as integrated regulators of metabolism via induction of various signal transduction pathways. Consequently, BAS treatment may exert unexpected side-effects. We discuss a selection of recently published studies that evaluated BAS in several metabolic diseases. RECENT FINDINGS Recently, an increasing body of evidence has shown that BAS in addition to ameliorating hypercholesterolemia are also effective in improving glycemic control in patients with type 2 diabetes, although the mechanism is not completely understood. Furthermore, some reports suggested using these compounds to modulate energy expenditure. Many of these effects have been related to the local effects of BAS in the intestine by directly binding bile acids in the intestine or indirectly by interfering with signaling processes. SUMMARY A substantial effort is being made by researchers to fully define the mechanism by which BAS improve glycemic control in type 2 diabetic patients. A new challenge will be to confirm in clinical trials the recent discoveries coming from animal experiments suggesting a role for bile acids in energy metabolism.
Collapse
Affiliation(s)
- Carolien Out
- Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
237
|
Abstract
The secretion of bile normally depends on the function of a number of membrane transport systems in hepatocytes and cholangiocytes. The transport of solutes from the blood to the bile is driven by transport systems in the plasma membrane of the basolateral and canalicular surfaces of the hepatocytes. In cholestatic animal models, the expression of hepatobiliary transporters changes in response to functional impairment of the efflux of bile salts and various organic anions. In recent years, several studies have led to an improved understanding of the function and regulation of hepatobiliary transport systems in patients with primary biliary cirrhosis (PBC). This review focuses on the adaptations in hepatobiliary transporters in PBC patients.
Collapse
Affiliation(s)
- Yasuaki Takeyama
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | | |
Collapse
|
238
|
Cheng J, Ma X, Gonzalez FJ. Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 2011; 163:461-8. [PMID: 21091656 DOI: 10.1111/j.1476-5381.2010.01129.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Pregnane X receptor (PXR) is a pivotal nuclear receptor modulating xenobiotic metabolism primarily through its regulation of CYP3A4, the most important enzyme involved in drug metabolism in humans. Due to the marked species differences in ligand recognition by PXR, PXR-humanized (hPXR) mice, and mice expressing human PXR and CYP3A4 (Tg3A4/hPXR) were established. hPXR and Tg3A4/hPXR mice are valuable models for investigating the role of PXR in xenobiotic metabolism and toxicity, in lipid, bile acid and steroid hormone homeostasis, and in the control of inflammation.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
239
|
van de Winkel A, Menke V, Capello A, Moons LMG, Pot RGJ, van Dekken H, Siersema PD, Kusters JG, van der Laan LJW, Kuipers EJ. Expression, localization and polymorphisms of the nuclear receptor PXR in Barrett's esophagus and esophageal adenocarcinoma. BMC Gastroenterol 2011; 11:108. [PMID: 21977915 PMCID: PMC3204292 DOI: 10.1186/1471-230x-11-108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 10/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The continuous exposure of esophageal epithelium to refluxate may induce ectopic expression of bile-responsive genes and contribute to the development of Barrett's esophagus (BE) and esophageal adenocarcinoma. In normal physiology of the gut and liver, the nuclear receptor Pregnane × Receptor (PXR) is an important factor in the detoxification of xenobiotics and bile acid homeostasis. This study aimed to investigate the expression and genetic variation of PXR in reflux esophagitis (RE), Barrett's esophagus (BE) and esophageal adenocarcinoma. METHODS PXR mRNA levels and protein expression were determined in biopsies from patients with adenocarcinoma, BE, or RE, and healthy controls. Esophageal cell lines were stimulated with lithocholic acid and rifampicin. PXR polymorphisms 25385C/T, 7635A/G, and 8055C/T were genotyped in 249 BE patients, 233 RE patients, and 201 controls matched for age and gender. RESULTS PXR mRNA levels were significantly higher in adenocarcinoma tissue and columnar Barrett's epithelium, compared to squamous epithelium of these BE patients (P<0.001), and RE patients (P=0.003). Immunohistochemical staining of PXR showed predominantly cytoplasmic expression in BE tissue, whereas nuclear expression was found in adenocarcinoma tissue. In cell lines, stimulation with lithocholic acid did not increase PXR mRNA levels, but did induce nuclear translocation of PXR protein. Genotyping of the PXR 7635A/G polymorphism revealed that the G allele was significantly more prevalent in BE than in RE or controls (P=0.037). CONCLUSIONS PXR expresses in BE and adenocarcinoma tissue, and showed nuclear localization in adenocarcinoma tissue. Upon stimulation with lithocholic acid, PXR translocates to the nuclei of OE19 adenocarcinoma cells. Together with the observed association of a PXR polymorphism and BE, this data implies that PXR may have a function in prediction and treatment of esophageal disease.
Collapse
Affiliation(s)
- Anouk van de Winkel
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Meng Z, Liu N, Fu X, Wang X, Wang YD, Chen WD, Zhang L, Forman BM, Huang W. Insufficient bile acid signaling impairs liver repair in CYP27(-/-) mice. J Hepatol 2011; 55:885-895. [PMID: 21334403 DOI: 10.1016/j.jhep.2010.12.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Previous studies indicate that bile acids (BAs) promote normal liver regeneration and repair after injury. However, the impact of insufficient BA signaling, which is observed in patients with BA sequestrant medication or cerebrotendinous xanthomatosis (CTX) disease, on liver injury is still unknown. Our aim is to determine the outcomes of reduced BA levels upon liver injury. METHODS Seventy percent partial hepatectomy (PH) and carbon tetrachloride (CCl(4)) treatment were performed using CYP27(-/-) mice, a genetic animal model with low BA levels. The liver repair of CYP27(-/-) mice after the treatments was characterized by histological staining, chemical analysis, and quantitative real-time PCR. RESULTS CYP27(-/-) mice exhibited enhanced CCl(4)-induce liver injury, and defective liver regeneration and prolonged steatosis after 70% PH. Due to the insufficient BA signaling, farnesoid X receptor (FXR) activities were significantly reduced in CYP27(-/-) livers after 70% PH. Activation of FXR by either 0.2% cholic acid feeding or oral infusion of an FXR agonist greatly promoted liver regeneration in CYP27(-/-) mice. CONCLUSIONS Normal physiological levels of BAs are required for liver repair. Patients with BA sequestrant medications or CTX disease due to CYP27 gene mutations may have an increased risk of liver failure, and treatment with FXR ligands can promote liver regeneration of patients with low BA levels.
Collapse
Affiliation(s)
- Zhipeng Meng
- Division of Gene Regulation and Drug Discovery, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Kim SY, Kwon YW, Jung IL, Sung JH, Park SG. Tauroursodeoxycholate (TUDCA) inhibits neointimal hyperplasia by suppression of ERK via PKCα-mediated MKP-1 induction. Cardiovasc Res 2011; 92:307-16. [PMID: 21840882 DOI: 10.1093/cvr/cvr219] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIMS Hyperplasia of vascular smooth muscle cells (VSMCs) after blood vessel injury is one of the major pathophysiological mechanisms associated with neointima. Tauroursodeoxycholate (TUDCA) is a cytoprotective agent in a variety of cells including hepatocytes as well as an inducer of apoptosis in cancer cells. In this study, we investigated whether TUDCA could prevent neointimal hyperplasia by suppressing the growth and migration of VSMCs. METHODS AND RESULTS Transporters of TUDCA uptake in human VSMCs (hVSMCs) were analysed by RT-PCR and western blot. A knock-down experiment using specific si-RNA revealed that TUDCA was incorporated into hVSMCs via organic anion transporter 2 (OATP2). TUDCA reduced the viability of hVSMCs, which were mediated by inhibition of extracellular signal-regulated kinase (ERK) by induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) via protein kinase Cα (PKCα). The anti-proliferative effect of TUDCA was reversed by treatment with 7-hydroxystaurosporine, an inhibitor of PKC, and by the knock-down of MKP-1. In addition, TUDCA suppressed hVSMC migration, which was mediated by reduced matrix metalloproteinase-9 (MMP-9) expression by ERK inhibition, as well as reduced viability of hVSMCs. Rats with carotid artery balloon injury received oral administration of TUDCA; this reduced the increase in ERK and MMP-9 caused by balloon injury. TUDCA significantly decreased the ratio of intima to media by reducing proliferation and inducing apoptosis of the VSMCs. CONCLUSION TUDCA inhibits neointimal hyperplasia by reducing proliferation and inducing apoptosis of smooth muscle cells by suppression of ERK via PKCα-mediated MKP-1 induction.
Collapse
Affiliation(s)
- Seo Yoon Kim
- Department of Biomedical Science, CHA University, 606-16, Yeoksamdong, Kangnamgu, Seoul 135-081, Republic of Korea
| | | | | | | | | |
Collapse
|
242
|
Ihunnah CA, Jiang M, Xie W. Nuclear receptor PXR, transcriptional circuits and metabolic relevance. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:956-63. [PMID: 21295138 PMCID: PMC3111845 DOI: 10.1016/j.bbadis.2011.01.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR, NR1I2) is a ligand activated transcription factor that belongs to the nuclear hormone receptor (NR) superfamily. PXR is highly expressed in the liver and intestine, but low levels of expression have also been found in many other tissues. PXR plays an integral role in xenobiotic and endobiotic metabolism by regulating the expression of drug-metabolizing enzymes and transporters, as well as genes implicated in the metabolism of endobiotics. PXR exerts its transcriptional regulation by binding to its DNA response elements as a heterodimer with the retinoid X receptor (RXR) and recruitment of a host of coactivators. The biological and physiological implications of PXR activation are broad, ranging from drug metabolism and drug-drug interactions to the homeostasis of numerous endobiotics, such as glucose, lipids, steroids, bile acids, bilirubin, retinoic acid, and bone minerals. The purpose of this article is to provide an overview on the transcriptional circuits and metabolic relevance controlled by PXR. This article is part of a Special Issue entitled: Translating Nuclear Receptors from Health to Disease.
Collapse
Affiliation(s)
- Chibueze A. Ihunnah
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mengxi Jiang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
243
|
Claudel T, Zollner G, Wagner M, Trauner M. Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:867-78. [PMID: 21194565 DOI: 10.1016/j.bbadis.2010.12.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NRs) play a key role in the transcriptional control of critical steps of hepatobiliary transport and phase I/II metabolism of endo- and xenobiotics such as bile acids and drugs. Apart from these metabolic roles, NRs may also play a key role in the control of hepatic inflammation. Hereditary and acquired alterations of NRs contribute to our understanding of the pathogenesis of cholestasis and gallstone disease. Moreover, NRs may represent attractive drug targets for these disorders. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Thierry Claudel
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University Graz, Austria
| | | | | | | |
Collapse
|
244
|
Song P, Zhang Y, Klaassen CD. Dose-response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice. Toxicol Sci 2011; 123:359-67. [PMID: 21747115 DOI: 10.1093/toxsci/kfr177] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Feeding bile acids (BAs) to rodents has been used to study BA signaling and toxicity in vivo. However, little is known about the effect of feeding BAs on the concentrations of BAs in serum and liver as well as the dose of the fed BAs that causes liver toxicity. The present study was designed to investigate the relative hepatotoxicity of individual BAs by feeding mice cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), or ursodeoxycholic acid (UDCA) at concentrations of 0.01, 0.03, 0.1, 0.3, 1.0, or 3% in their diet for 7 days. The data demonstrate that (1) the ability of the fed BAs to produce hepatotoxicity is UDCA<CA<CDCA<DCA<LCA; (2) the lowest concentration of each BA in the feed that causes hepatotoxicity in mice is CA and CDCA at 0.3%, DCA at 0.1%, and LCA at 0.03%; (3) BA feeding results in a dose-dependent increase in the total serum BA concentrations but had little effect on liver total BA concentrations; (4) hepatotoxicity of the fed BAs does not simply depend on the concentration or hydrophobicity of total BAs in the liver; and (5) liver BA-conjugation enzymes are saturated by feeding UDCA at concentrations higher than 0.3%. In conclusion, the findings of the present study provide guidance for choosing the feeding concentrations of BAs in mice and will aid in interpreting BA hepatotoxicity as well as BA-mediated gene regulation.
Collapse
Affiliation(s)
- Peizhen Song
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | |
Collapse
|
245
|
Abstract
Atherosclerosis is the leading cause of illness and death. Therapeutic strategies aimed at reducing cholesterol plasma levels have shown efficacy in either reducing progression of atherosclerotic plaques and atherosclerosis-related mortality. The farnesoid-X-receptor (FXR) is a member of metabolic nuclear receptors (NRs) superfamily activated by bile acids. In entero-hepatic tissues, FXR functions as a bile acid sensor regulating bile acid synthesis, detoxification and excretion. In the liver FXR induces the expression of an atypical NR, the small heterodimer partner, which subsequently inhibits the activity of hepatocyte nuclear factor 4α repressing the transcription of cholesterol 7a-hydroxylase, the critical regulatory gene in bile acid synthesis. In the intestine FXR induces the release of fibroblast growth factor 15 (FGF15) (or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signalling to inhibit bile acid synthesis. In rodents, FXR activation decreases bile acid synthesis and lipogenesis and increases lipoprotein clearance, and regulates glucose homeostasis by reducing liver gluconeogenesis. FXR exerts counter-regulatory effects on macrophages, vascular smooth muscle cells and endothelial cells. FXR deficiency in mice results in a pro-atherogenetic lipoproteins profile and insulin resistance but FXR−/– mice fail to develop any detectable plaques on high-fat diet. Synthetic FXR agonists protect against development of aortic plaques formation in murine models characterized by pro-atherogenetic lipoprotein profile and accelerated atherosclerosis, but reduce HDL levels. Because human and mouse lipoprotein metabolism is modulated by different regulatory pathways the potential drawbacks of FXR ligands on HDL and bile acid synthesis need to addressed in relevant clinical settings.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Dipartimento di Medicina Clinica e Sperimentale, Università Degli Studi di Perugia, Perugia, Italy
| | | |
Collapse
|
246
|
Min G. Estrogen modulates transactivations of SXR-mediated liver X receptor response element and CAR-mediated phenobarbital response element in HepG2 cells. Exp Mol Med 2011; 42:731-8. [PMID: 20871212 DOI: 10.3858/emm.2010.42.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The nuclear receptors, steroid and xenobiotic receptor (SXR) and constitutive androstane receptor (CAR) play important functions in mediating lipid and drug metabolism in the liver. The present study demonstrates modulatory actions of estrogen in transactivations of SXR-mediated liver X receptor response element (LXRE) and CAR-mediated phenobarbital response element (PBRU). When human estrogen receptor (hERα) and SXR were exogenously expressed, treatment with either rifampicin or corticosterone promoted significantly the SXR-mediated transactivation of LXRE reporter gene in HepG2. However, combined treatment with estrogen plus either rifampicin or corticosterone resulted in less than 50% of the mean values of the transactivation by rifampicin or corticosterone alone. Thus, it is suggested that estrogen may repress the SXR-mediated transactivation of LXRE via functional cross-talk between ER and SXR. The CAR-mediated transactivation of PBRU was stimulated by hERa in the absence of estrogen. However, the potentiation by CAR agonist, TCPOBOP, was significantly repressed by moxestrol in the presence of ER. Thus, ER may play both stimulatory and inhibitory roles in modulating CAR-mediated transactivation of PBRU depending on the presence of their ligands. In summary, this study demonstrates that estrogen modulates transcriptional activity of SXR and CAR in mediating transactivation of LXRE and PBRU, respectively, of the nuclear receptor target genes through functional cross-talk between ER and the corresponding nuclear receptors.
Collapse
Affiliation(s)
- Gyesik Min
- Department of Pharmaceutical Engineering, Jinju National University, Jinju 660-758, Korea.
| |
Collapse
|
247
|
Chai J, Luo D, Wu X, Wang H, He Y, Li Q, Zhang Y, Chen L, Peng ZH, Xiao T, Wang R, Chen W. Changes of organic anion transporter MRP4 and related nuclear receptors in human obstructive cholestasis. J Gastrointest Surg 2011; 15:996-1004. [PMID: 21359593 DOI: 10.1007/s11605-011-1473-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 02/10/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Hepatic multidrug resistance-associated protein 4 (Mrp4) levels are low, but increase markedly in rodent cholestatic liver. Nuclear receptors (NRs) are essential for regulating Mrp4 expression in cholestasis models. However, information about MRP4 and related NRs, including constitutive androstane receptor (CAR), pregnane X receptor (PXR), and retinoic X receptor-α (RXRα), is relatively lacking in human obstructive cholestasis. We collected liver samples from patients with obstructive cholestasis or without liver disease and investigated the expression of MRP4 and NRs CAR, PXR, and RXRα by semi-quantitative RT-PCR, Western blot and immunostaining assays. RESULTS MRP4 mRNA/protein levels were markedly increased in obstructive cholestasis. Concentration of serum total bile acids (TBA) was significantly correlated with MRP4 protein in cholestasis samples (P < 0.01). PXR and RXRα mRNA/protein levels were significantly increased in obstructive cholestasis. CAR mRNA levels were unchanged while protein levels were markedly induced in obstructive cholestasis. There was a statistically positive correlation between MRP4 mRNA and CAR protein (P < 0.05), suggesting that CAR may activate transcription of MRP4 genes by its nuclear translocation. CONCLUSION Hepatic MRP4 levels were dramatically induced in human obstructive cholestasis, which may reduce liver injury by increasing efflux of toxic bile acids from hepatocytes into blood.
Collapse
Affiliation(s)
- Jin Chai
- Institute of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5: a valuable metabolic target. Dig Dis 2011; 29:37-44. [PMID: 21691102 PMCID: PMC3128138 DOI: 10.1159/000324126] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bile acids (BAs) are amphipathic molecules that facilitate the uptake of lipids, and their levels fluctuate in the intestines as well as in the circulation depending on food intake. Besides their role in dietary lipid absorption, BAs function as signaling molecules that activate specific BA receptors and trigger downstream signaling cascades. The BA receptors and the signaling pathways they control are not only important in the regulation of BA synthesis and their metabolism, but they also regulate glucose homeostasis, lipid metabolism and energy expenditure - processes relevant in the context of the metabolic syndrome. In addition to the function of the nuclear receptor FXRα in regulating local effects of BAs in the organs of the enterohepatic axis, increasing evidence points to a crucial role of the G-protein-coupled receptor TGR5 in mediating systemic actions of BAs. Here we review the current knowledge on BA receptors, with a strong focus on the cell membrane receptor TGR5, which has emerged as a promising target for intervention in metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Kristina Schoonjans
- *Kristina Schoonjans, PhD, Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Integrative Systems and Physiology (LISP), SV IBI1 UPAUWERX, AI 1149 (Bâtiment AI), Station 15, CH–1015 Lausanne (Switzerland), Tel. +41 216 931 891, E-Mail
| |
Collapse
|
249
|
Pols TWH, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54:1263-72. [PMID: 21145931 PMCID: PMC3650458 DOI: 10.1016/j.jhep.2010.12.004] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/11/2010] [Accepted: 12/02/2010] [Indexed: 02/08/2023]
Abstract
Bile acids (BAs) are amphipathic molecules that facilitate the uptake of lipids, and their levels fluctuate in the intestine as well as in the blood circulation depending on food intake. Besides their role in dietary lipid absorption, bile acids function as signaling molecules capable to activate specific receptors. These BA receptors are not only important in the regulation of bile acid synthesis and their metabolism, but also regulate glucose homeostasis, lipid metabolism, and energy expenditure. These processes are important in diabetes and other facets of the metabolic syndrome, which represents a considerable increasing health burden. In addition to the function of the nuclear receptor FXRα in regulating local effects in the organs of the enterohepatic axis, increasing evidence points to a crucial role of the G-protein coupled receptor (GPCR) TGR5 in mediating systemic actions of BAs. Here we discuss the current knowledge on BA receptors, with a strong focus on the cell membrane receptor TGR5, which emerges as a valuable target for intervention in metabolic diseases.
Collapse
Affiliation(s)
- Thijs W H Pols
- Laboratory of Integrative and Systems Physiology (LISP), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
250
|
van Waterschoot RAB, Schinkel AH. A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacol Rev 2011; 63:390-410. [PMID: 21490128 DOI: 10.1124/pr.110.002584] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CYP3A is one of the most important drug-metabolizing enzymes, determining the first-pass metabolism, oral bioavailability, and elimination of many drugs. It is also an important determinant of variable drug exposure and is involved in many drug-drug interactions. Recent studies with CYP3A knockout and transgenic mice have yielded a number of key insights that are important to consider during drug discovery and development. For instance, studies with tissue-specific CYP3A-transgenic mice have highlighted the importance of intestinal CYP3A-dependent metabolism. They also revealed that intestinal CYP3A plays an important role in the regulation of various drug-handling systems in the liver. Intestinal CYP3A activity can thus have far-reaching pharmacological effects. Besides CYP3A, the active drug efflux transporter P-glycoprotein also has a strong effect on the pharmacokinetics of numerous drugs. CYP3A and P-glycoprotein have an extensive overlap in their substrate spectrum. It has been hypothesized that for many drugs, the combined activity of CYP3A and P-glycoprotein makes for efficient intestinal first-pass metabolism of orally administered drugs as a result of a potentially synergistic collaboration. However, there is only limited in vitro and in vivo evidence for this hypothesis. There has also been some confusion in the field about what synergy actually means in this case. Our recent studies with Cyp3a/P-glycoprotein combination knockout mice have provided further insights into the CYP3A-P-glycoprotein interplay. We here present our view of the status of the synergy hypothesis and an attempt to clarify the existing confusion about synergy. We hope that this will facilitate further critical testing of the hypothesis and improve communication among researchers. Above all, the recent findings and insights into the interplay between CYP3A and P-glycoprotein may have implications for improving oral drug bioavailability and reducing adverse side effects.
Collapse
Affiliation(s)
- Robert A B van Waterschoot
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|