201
|
Mathias RA, Guise AJ, Cristea IM. Post-translational modifications regulate class IIa histone deacetylase (HDAC) function in health and disease. Mol Cell Proteomics 2015; 14:456-70. [PMID: 25616866 DOI: 10.1074/mcp.o114.046565] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Class IIa histone deacetylases (HDACs4, -5, -7, and -9) modulate the physiology of the human cardiovascular, musculoskeletal, nervous, and immune systems. The regulatory capacity of this family of enzymes stems from their ability to shuttle between nuclear and cytoplasmic compartments in response to signal-driven post-translational modification. Here, we review the current knowledge of modifications that control spatial and temporal histone deacetylase functions by regulating subcellular localization, transcriptional functions, and cell cycle-dependent activity, ultimately impacting on human disease. We discuss the contribution of these modifications to cardiac and vascular hypertrophy, myoblast differentiation, neuronal cell survival, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Rommel A Mathias
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544; §Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Amanda J Guise
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544
| | - Ileana M Cristea
- From the ‡Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544;
| |
Collapse
|
202
|
Westenbrink BD, Ling H, Divakaruni AS, Gray CBB, Zambon AC, Dalton ND, Peterson KL, Gu Y, Matkovich SJ, Murphy AN, Miyamoto S, Dorn GW, Heller Brown J. Mitochondrial reprogramming induced by CaMKIIδ mediates hypertrophy decompensation. Circ Res 2015; 116:e28-39. [PMID: 25605649 DOI: 10.1161/circresaha.116.304682] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Sustained activation of Gαq transgenic (Gq) signaling during pressure overload causes cardiac hypertrophy that ultimately progresses to dilated cardiomyopathy. The molecular events that drive hypertrophy decompensation are incompletely understood. Ca(2+)/calmodulin-dependent protein kinase II δ (CaMKIIδ) is activated downstream of Gq, and overexpression of Gq and CaMKIIδ recapitulates hypertrophy decompensation. OBJECTIVE To determine whether CaMKIIδ contributes to hypertrophy decompensation provoked by Gq. METHODS AND RESULTS Compared with Gq mice, compound Gq/CaMKIIδ knockout mice developed a similar degree of cardiac hypertrophy but exhibited significantly improved left ventricular function, less cardiac fibrosis and cardiomyocyte apoptosis, and fewer ventricular arrhythmias. Markers of oxidative stress were elevated in mitochondria from Gq versus wild-type mice and respiratory rates were lower; these changes in mitochondrial function were restored by CaMKIIδ deletion. Gq-mediated increases in mitochondrial oxidative stress, compromised membrane potential, and cell death were recapitulated in neonatal rat ventricular myocytes infected with constitutively active Gq and attenuated by CaMKII inhibition. Deep RNA sequencing revealed altered expression of 41 mitochondrial genes in Gq hearts, with normalization of ≈40% of these genes by CaMKIIδ deletion. Uncoupling protein 3 was markedly downregulated in Gq or by Gq expression in neonatal rat ventricular myocytes and reversed by CaMKIIδ deletion or inhibition, as was peroxisome proliferator-activated receptor α. The protective effects of CaMKIIδ inhibition on reactive oxygen species generation and cell death were abrogated by knock down of uncoupling protein 3. Conversely, restoration of uncoupling protein 3 expression attenuated reactive oxygen species generation and cell death induced by CaMKIIδ. Our in vivo studies further demonstrated that pressure overload induced decreases in peroxisome proliferator-activated receptor α and uncoupling protein 3, increases in mitochondrial protein oxidation, and hypertrophy decompensation, which were attenuated by CaMKIIδ deletion. CONCLUSIONS Mitochondrial gene reprogramming induced by CaMKIIδ emerges as an important mechanism contributing to mitotoxicity in decompensating hypertrophy.
Collapse
Affiliation(s)
- B Daan Westenbrink
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Haiyun Ling
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Ajit S Divakaruni
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Charles B B Gray
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Alexander C Zambon
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Nancy D Dalton
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Kirk L Peterson
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Yusu Gu
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Scot J Matkovich
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Anne N Murphy
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Shigeki Miyamoto
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Gerald W Dorn
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| | - Joan Heller Brown
- From the Department of Pharmacology (B.D.W., H.L., A.S.D., C.B.B.G., A.C.Z., A.N.M., J.H.B.), Department of Medicine (N.D.D., K.L.P., Y.G.), and Biomedical Sciences Graduate Program (C.B.B.G.), University of California San Diego; School of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO (S.J.M., G.W.D.); Department of Cardiology, University Medical Center Groningen, Unversity of Groningen, Groningen, The Netherlands (B.D.W.)
| |
Collapse
|
203
|
Nonaka M, Morimoto S. Experimental models of inherited cardiomyopathy and its therapeutics. World J Cardiol 2014; 6:1245-1251. [PMID: 25548614 PMCID: PMC4278159 DOI: 10.4330/wjc.v6.i12.1245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathy is a disease of myocardium categorized into three major forms, hypertrophic (HCM), dilated (DCM) and restrictive cardiomyopathy (RCM), which has recently been demonstrated to be a monogenic disease due to mutations in various proteins expressed in cardiomyocytes. Mutations in HCM and RCM typically increase the myofilament sensitivity to cytoplasmic Ca2+, leading to systolic hyperfunction and diastolic dysfunction. In contrast, mutations in DCM typically decrease the myofilament sensitivity to cytoplasmic Ca2+ and/or force generation/transmission, leading to systolic dysfunction. Creation of genetically-manipulated transgenic and knock-in animals expressing mutant proteins exogenously and endogenously, respectively, in their hearts provides valuable animal models to discover the molecular and cellular mechanisms for pathogenesis and promising therapeutic strategy in vivo. Recently, cardiomyocytes have been differentiated from patient’s induced pluripotent stem cells as a model of inherited cardiomyopathies in vitro. In this review, we provide overview of experimental models of cardiomyopathies with a focus on revealed molecular and cellular pathogenic mechanisms and potential therapeutics.
Collapse
|
204
|
Awad S, Al-Haffar KMA, Marashly Q, Quijada P, Kunhi M, Al-Yacoub N, Wade FS, Mohammed SF, Al-Dayel F, Sutherland G, Assiri A, Sussman M, Bers D, Al-Habeeb W, Poizat C. Control of histone H3 phosphorylation by CaMKIIδ in response to haemodynamic cardiac stress. J Pathol 2014; 235:606-18. [PMID: 25421395 PMCID: PMC4383650 DOI: 10.1002/path.4489] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/30/2014] [Accepted: 11/21/2014] [Indexed: 01/23/2023]
Abstract
Heart failure is associated with the reactivation of a fetal cardiac gene programme that has become a hallmark of cardiac hypertrophy and maladaptive ventricular remodelling, yet the mechanisms that regulate this transcriptional reprogramming are not fully understood. Using mice with genetic ablation of calcium/calmodulin-dependent protein kinase II δ (CaMKIIδ), which are resistant to pathological cardiac stress, we show that CaMKIIδ regulates the phosphorylation of histone H3 at serine-10 during pressure overload hypertrophy. H3 S10 phosphorylation is strongly increased in the adult mouse heart in the early phase of cardiac hypertrophy and remains detectable during cardiac decompensation. This response correlates with up-regulation of CaMKIIδ and increased expression of transcriptional drivers of pathological cardiac hypertrophy and of fetal cardiac genes. Similar changes are detected in patients with end-stage heart failure, where CaMKIIδ specifically interacts with phospho-H3. Robust H3 phosphorylation is detected in both adult ventricular myocytes and in non-cardiac cells in the stressed myocardium, and these signals are abolished in CaMKIIδ-deficient mice after pressure overload. Mechanistically, fetal cardiac genes are activated by increased recruitment of CaMKIIδ and enhanced H3 phosphorylation at hypertrophic promoter regions, both in mice and in human failing hearts, and this response is blunted in CaMKIIδ-deficient mice under stress. We also document that the chaperone protein 14–3–3 binds phosphorylated H3 in response to stress, allowing proper elongation of fetal cardiac genes by RNA polymerase II (RNAPII), as well as elongation of transcription factors regulating cardiac hypertrophy. These processes are impaired in CaMKIIδ-KO mice after pathological stress. The findings reveal a novel in vivo function of CaMKIIδ in regulating H3 phosphorylation and suggest a novel epigenetic mechanism by which CaMKIIδ controls cardiac hypertrophy. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Salma Awad
- Cardiovascular Research Programme, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Zhang M, Hagenmueller M, Riffel JH, Kreusser MM, Bernhold E, Fan J, Katus HA, Backs J, Hardt SE. Calcium/calmodulin-dependent protein kinase II couples Wnt signaling with histone deacetylase 4 and mediates dishevelled-induced cardiomyopathy. Hypertension 2014; 65:335-44. [PMID: 25489064 DOI: 10.1161/hypertensionaha.114.04467] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of Wnt signaling results in maladaptive cardiac remodeling and cardiomyopathy. Recently, calcium/calmodulin-dependent protein kinase II (CaMKII) was reported to be a pivotal participant in myocardial remodeling. Because CaMKII was suggested as a downstream target of noncanonical Wnt signaling, we aimed to elucidate the role of CaMKII in dishevelled-1-induced cardiomyopathy and the mechanisms underlying its function. Dishevelled-1-induced cardiomyopathy was reversed by deletion of neither CaMKIIδ nor CaMKIIγ. Therefore, dishevelled-1-transgenic mice were crossed with CaMKIIδγ double-knockout mice. These mice displayed a normal cardiac phenotype without cardiac hypertrophy, fibrosis, apoptosis, or left ventricular dysfunction. Further mechanistic analyses unveiled that CaMKIIδγ couples noncanonical Wnt signaling to histone deacetylase 4 and myosin enhancer factor 2. Therefore, our findings indicate that the axis, consisting of dishevelled-1, CaMKII, histone deacetylase 4, and myosin enhancer factor 2, is an attractive therapeutic target for prevention of cardiac remodeling and its progression to left ventricular dysfunction.
Collapse
Affiliation(s)
- Min Zhang
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Marco Hagenmueller
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Johannes H Riffel
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Michael M Kreusser
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Elmar Bernhold
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Jingjing Fan
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Hugo A Katus
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Johannes Backs
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.)
| | - Stefan E Hardt
- From the Department of Cardiology, Angiology, and Pulmology (M.Z., M.H., J.H.R., M.M.K., E.B., J.F., H.A.K., S.E.H.) and Research Unit Cardiac Epigenetics, Department of Cardiology (M.M.K., J.B.), University of Heidelberg, Heidelberg, Germany; Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China (M.Z.); DZHK (German Center for Cardiovascular Research) (M.H., J.H.R., M.M.K., H.A.K., S.E.H., M.M.K., J.B.), Partner Site Heidelberg/Mannheim, Heidelberg, Germany; and Center for Cardiac and Circulatory Diseases, Bruchsal, Germany (S.E.H.).
| |
Collapse
|
206
|
Hund TJ, Mohler PJ. Role of CaMKII in cardiac arrhythmias. Trends Cardiovasc Med 2014; 25:392-7. [PMID: 25577293 DOI: 10.1016/j.tcm.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation is a central mechanism in vertebrates for the regulation of signaling. With regard to the cardiovascular system, phosphorylation of myocyte targets is critical for the regulation of excitation contraction coupling, metabolism, intracellular calcium regulation, mitochondrial activity, transcriptional regulation, and cytoskeletal dynamics. In fact, pathways that tune protein kinase signaling have been a mainstay for cardiovascular therapies for the past 60 years. The calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine kinase with numerous roles in human physiology. Dysfunction in CaMKII-based signaling has been linked with a host of cardiovascular phenotypes including heart failure and arrhythmia, and CaMKII levels are elevated in human and animal disease models of heart disease. While nearly a decade has been invested in targeting CaMKII for the treatment of heart failure and arrhythmia phenotypes, to date, approaches to target the molecule for antiarrhythmic benefit have been unsuccessful for reasons that are still not entirely clear, although (1) lack of compound specificity and (2) the multitude of downstream targets are likely contributing factors. This review will provide an update on current pathways regulated by CaMKII with the goal of illustrating potential upstream regulatory mechanisms and downstream targets that may be modulated for the prevention of cardiac electrical defects. While the review will cover multiple aspects of CaMKII dysfunction in cardiovascular disease, we have given special attention to the potential of CaMKII-associated late Na(+) current as a novel therapeutic target for cardiac arrhythmia.
Collapse
Affiliation(s)
- Thomas J Hund
- The Dorothy M. Davis Heart & Lung Research Institute, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, OH
| | - Peter J Mohler
- The Dorothy M. Davis Heart & Lung Research Institute, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH; Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH.
| |
Collapse
|
207
|
Weeks KL, Avkiran M. Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms. J Physiol 2014; 593:1785-97. [PMID: 25362149 PMCID: PMC4405742 DOI: 10.1113/jphysiol.2014.282442] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/17/2014] [Indexed: 12/25/2022] Open
Abstract
Cardiomyocyte hypertrophy is an integral component of pathological cardiac remodelling in response to mechanical and chemical stresses in settings such as chronic hypertension or myocardial infarction. For hypertrophy to ensue, the pertinent mechanical and chemical signals need to be transmitted from membrane sensors (such as receptors for neurohormonal mediators) to the cardiomyocyte nucleus, leading to altered transcription of the genes that regulate cell growth. In recent years, nuclear histone deacetylases (HDACs) have attracted considerable attention as signal-responsive, distal regulators of the transcriptional reprogramming that in turn precipitates cardiomyocyte hypertrophy, with particular focus on the role of members of the class IIa family, such as HDAC4 and HDAC5. These histone deacetylase isoforms appear to repress cardiomyocyte hypertrophy through mechanisms that involve protein interactions in the cardiomyocyte nucleus, particularly with pro-hypertrophic transcription factors, rather than via histone deacetylation. In contrast, evidence indicates that class I HDACs promote cardiomyocyte hypertrophy through mechanisms that are dependent on their enzymatic activity and thus sensitive to pharmacological HDAC inhibitors. Although considerable progress has been made in understanding the roles of post-translational modifications (PTMs) such as phosphorylation, oxidation and proteolytic cleavage in regulating class IIa HDAC localisation and function, more work is required to explore the contributions of other PTMs, such as ubiquitination and sumoylation, as well as potential cross-regulatory interactions between distinct PTMs and between class IIa and class I HDAC isoforms.
Collapse
Affiliation(s)
| | - Metin Avkiran
- Corresponding author M. Avkiran: Cardiovascular Division, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK.
| |
Collapse
|
208
|
Sharma A, Nguyen H, Geng C, Hinman MN, Luo G, Lou H. Calcium-mediated histone modifications regulate alternative splicing in cardiomyocytes. Proc Natl Acad Sci U S A 2014; 111:E4920-8. [PMID: 25368158 PMCID: PMC4246288 DOI: 10.1073/pnas.1408964111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In cardiomyocytes, calcium is known to control gene expression at the level of transcription, whereas its role in regulating alternative splicing has not been explored. Here we report that, in mouse primary or embryonic stem cell-derived cardiomyocytes, increased calcium levels induce robust and reversible skipping of several alternative exons from endogenously expressed genes. Interestingly, we demonstrate a calcium-mediated splicing regulatory mechanism that depends on changes of histone modifications. Specifically, the regulation occurs through changes in calcium-responsive kinase activities that lead to alterations in histone modifications and subsequent changes in the transcriptional elongation rate and exon skipping. We demonstrate that increased intracellular calcium levels lead to histone hyperacetylation along the body of the genes containing calcium-responsive alternative exons by disrupting the histone deacetylase-to-histone acetyltransferase balance in the nucleus. Consequently, the RNA polymerase II elongation rate increases significantly on those genes, resulting in skipping of the alternative exons. These studies reveal a mechanism by which calcium-level changes in cardiomyocytes impact on the output of gene expression through altering alternative pre-mRNA splicing patterns.
Collapse
Affiliation(s)
| | | | - Cuiyu Geng
- Department of Genetics and Genome Sciences
| | | | - Guangbin Luo
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, and
| | - Hua Lou
- Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center, and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
209
|
Wang Z, Qin G, Zhao TC. HDAC4: mechanism of regulation and biological functions. Epigenomics 2014; 6:139-50. [PMID: 24579951 DOI: 10.2217/epi.13.73] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The acetylation and deacetylation of histones plays an important role in the regulation of gene transcriptions. Histone acetylation is mediated by histone acetyltransferase; the resulting modification in the structure of chromatin leads to nucleosomal relaxation and altered transcriptional activation. The reverse reaction is mediated by histone deacetylase (HDAC), which induces deacetylation, chromatin condensation and transcriptional repression. HDACs are divided into three distinct classes: I, II, and III, on the basis of size and sequence homology, as well as formation of distinct complexes. Among class II HDACs, HDAC4 is implicated in controlling gene expression important for diverse cellular functions. Basic and clinical experimental evidence has established that HDAC4 performs a wide variety of functions. Understanding the biological significance of HDAC4 will not only provide new insight into the mechanisms of HDAC4 involved in mediating biological response, but also form a platform to develop a therapeutic strategy to achieve clinical implications.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Medicine, Roger Williams Medical Center, Boston University Medical School, Providence, RI 02908, USA
| | | | | |
Collapse
|
210
|
Essential role of sympathetic endothelin A receptors for adverse cardiac remodeling. Proc Natl Acad Sci U S A 2014; 111:13499-504. [PMID: 25197047 DOI: 10.1073/pnas.1409026111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In preclinical studies, endothelin receptor A (ETA) antagonists (ETAi) attenuated the progression of heart failure (HF). However, clinical HF trials failed to demonstrate beneficial effects of ETAi. These conflicting data may be explained by the possibility that established HF drugs such as adrenergic receptor blockers interfered with the mechanism of ETAi action in clinical trials. Here we report that mice lacking ETA only in sympathetic neurons (SN-KO) showed less adverse structural remodeling and cardiac dysfunction in response to pathological pressure overload induced by transverse aortic constriction (TAC). In contrast, mice lacking ETA only in cardiomyocytes (CM-KO) were not protected. TAC led to a disturbed sympathetic nerve function as measured by cardiac norepinephrine (NE) tissue levels and [(124)I]-metaiodobenzylguanidine-PET, which was prevented in SN-KO. In a rat model of HF, ETAi improved cardiac and sympathetic nerve function. In cocultures of cardiomyocytes (CMs) and sympathetic neurons (SNs), endothelin-1 (ET1) led to a massive NE release and exaggerated CM hypertrophy compared with CM monocultures. ETA-deficient CMs gained a hypertrophic response through wild-type SNs, but ETA-deficient SNs failed to mediate exaggerated CM hypertrophy. Furthermore, ET1 mediated its effects indirectly via NE in CM-SN cocultures through adrenergic receptors and histone deacetylases, resulting in activation of the prohypertrophic transcription factor myocyte enhancer factor 2. In conclusion, sympathetic ETA amplifies ET1 effects on CMs through adrenergic signaling pathways. Thus, antiadrenergic therapies may blunt potentially beneficial effects of ETAi. Taken together, this may indicate that patients with β blocker intolerance or disturbed sympathetic nerve function could be evaluated for a potential benefit from ETAi.
Collapse
|
211
|
Wang P, Mao B, Luo W, Wei B, Jiang W, Liu D, Song L, Ji G, Yang Z, Lai YQ, Yuan Z. The alteration of Hippo/YAP signaling in the development of hypertrophic cardiomyopathy. Basic Res Cardiol 2014; 109:435. [DOI: 10.1007/s00395-014-0435-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 08/05/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
|
212
|
Kreusser MM, Lehmann LH, Keranov S, Hoting MO, Oehl U, Kohlhaas M, Reil JC, Neumann K, Schneider MD, Hill JA, Dobrev D, Maack C, Maier LS, Gröne HJ, Katus HA, Olson EN, Backs J. Cardiac CaM Kinase II genes δ and γ contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy. Circulation 2014; 130:1262-73. [PMID: 25124496 DOI: 10.1161/circulationaha.114.006185] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ca(2+)-dependent signaling through CaM Kinase II (CaMKII) and calcineurin was suggested to contribute to adverse cardiac remodeling. However, the relative importance of CaMKII versus calcineurin for adverse cardiac remodeling remained unclear. METHODS AND RESULTS We generated double-knockout mice (DKO) lacking the 2 cardiac CaMKII genes δ and γ specifically in cardiomyocytes. We show that both CaMKII isoforms contribute redundantly to phosphorylation not only of phospholamban, ryanodine receptor 2, and histone deacetylase 4, but also calcineurin. Under baseline conditions, DKO mice are viable and display neither abnormal Ca(2+) handling nor functional and structural changes. On pathological pressure overload and β-adrenergic stimulation, DKO mice are protected against cardiac dysfunction and interstitial fibrosis. But surprisingly and paradoxically, DKO mice develop cardiac hypertrophy driven by excessive activation of endogenous calcineurin, which is associated with a lack of phosphorylation at the auto-inhibitory calcineurin A site Ser411. Likewise, calcineurin inhibition prevents cardiac hypertrophy in DKO. On exercise performance, DKO mice show an exaggeration of cardiac hypertrophy with increased expression of the calcineurin target gene RCAN1-4 but no signs of adverse cardiac remodeling. CONCLUSIONS We established a mouse model in which CaMKII's activity is specifically and completely abolished. By the use of this model we show that CaMKII induces maladaptive cardiac remodeling while it inhibits calcineurin-dependent hypertrophy. These data suggest inhibition of CaMKII but not calcineurin as a promising approach to attenuate the progression of heart failure.
Collapse
Affiliation(s)
- Michael M Kreusser
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Lorenz H Lehmann
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Stanislav Keranov
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Marc-Oscar Hoting
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Ulrike Oehl
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Michael Kohlhaas
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Jan-Christian Reil
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Kay Neumann
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Michael D Schneider
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Joseph A Hill
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Dobromir Dobrev
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Christoph Maack
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Lars S Maier
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Hermann-Josef Gröne
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Hugo A Katus
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Eric N Olson
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.)
| | - Johannes Backs
- From the Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (M.M.K., L.H.L., S.K., M.-O.H., U.O., J.B.); Department of Cardiology, Saarland University, Homburg, Germany (M.K., J.-C.R., C.M.); Department of Internal Medicine II, University of Regensburg, Germany (K.N., L.S.M.); British Heart Foundation Centre of Research Excellence, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom (M.D.S.); Department of Internal Medicine, University of Southwestern Texas Medical Center, Dallas (J.A.H.); Institute of Pharmacology, University of Duisburg-Essen, Germany (D.D.); Department of Molecular Pathology, German Cancer Research Center, Heidelberg, Germany (H.-J.G.); Department of Cardiology, University of Heidelberg, and DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Germany (H.A.K.); and the Department of Molecular Biology, University of Southwestern Texas Medical Center, Dallas (E.N.O.).
| |
Collapse
|
213
|
Chakraborty A, Pasek DA, Huang TQ, Gomez AC, Yamaguchi N, Anderson ME, Meissner G. Inhibition of CaMKII does not attenuate cardiac hypertrophy in mice with dysfunctional ryanodine receptor. PLoS One 2014; 9:e104338. [PMID: 25093823 PMCID: PMC4122402 DOI: 10.1371/journal.pone.0104338] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/12/2014] [Indexed: 02/07/2023] Open
Abstract
In cardiac muscle, the release of calcium ions from the sarcoplasmic reticulum through ryanodine receptor ion channels (RyR2s) leads to muscle contraction. RyR2 is negatively regulated by calmodulin (CaM) and by phosphorylation of Ca2+/CaM-dependent protein kinase II (CaMKII). Substitution of three amino acid residues in the CaM binding domain of RyR2 (RyR2-W3587A/L3591D/F3603A, RyR2ADA) impairs inhibition of RyR2 by CaM and results in cardiac hypertrophy and early death of mice carrying the RyR2ADA mutation. To test the cellular function of CaMKII in cardiac hypertrophy, mutant mice were crossed with mice expressing the CaMKII inhibitory AC3-I peptide or the control AC3-C peptide in the myocardium. Inhibition of CaMKII by AC3-I modestly reduced CaMKII-dependent phosphorylation of RyR2 at Ser-2815 and markedly reduced CaMKII-dependent phosphorylation of SERCA2a regulatory subunit phospholamban at Thr-17. However the average life span and heart-to-body weight ratio of Ryr2ADA/ADA mice expressing the inhibitory peptide were not altered compared to control mice. In Ryr2ADA/ADA homozygous mice, AC3-I did not alter cardiac morphology, enhance cardiac function, improve sarcoplasmic reticulum Ca2+ handling, or suppress the expression of genes implicated in cardiac remodeling. The results suggest that CaMKII was not required for the rapid development of cardiac hypertrophy in Ryr2ADA/ADA mice.
Collapse
Affiliation(s)
- Asima Chakraborty
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States of America
| | - Daniel A. Pasek
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States of America
| | - Tai-Qin Huang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States of America
| | - Angela C. Gomez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Naohiro Yamaguchi
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Mark E. Anderson
- Division of Cardiovascular Medicine, Departments of Internal Medicine, and Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States of America
| | - Gerhard Meissner
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
214
|
Wagner S, Dantz C, Flebbe H, Azizian A, Sag CM, Engels S, Möllencamp J, Dybkova N, Islam T, Shah AM, Maier LS. NADPH oxidase 2 mediates angiotensin II-dependent cellular arrhythmias via PKA and CaMKII. J Mol Cell Cardiol 2014; 75:206-15. [PMID: 25073061 DOI: 10.1016/j.yjmcc.2014.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/01/2014] [Accepted: 07/18/2014] [Indexed: 12/20/2022]
Abstract
RATIONALE Angiotensin II (Ang II) signaling has been implicated in cardiac arrhythmogenesis, which involves induction of reactive oxygen species (ROS). It was shown that Ang II can activate Ca/Calmodulin kinase II (CaMKII) by oxidation via a NADPH oxidase 2 (NOX2)-dependent pathway leading to increased arrhythmic afterdepolarizations. Interestingly, cAMP-dependent protein kinase A (PKA) which regulates similar targets as CaMKII has recently been shown to be redox-sensitive as well. OBJECTIVE This study aims to investigate the distinct molecular mechanisms underlying Ang II-related cardiac arrhythmias with an emphasis on the individual contribution of PKA vs. CaMKII. METHODS AND RESULTS Isolated ventricular cardiac myocytes from rats and mice were used. Ang II exposure resulted in increased NOX2-dependent ROS generation assessed by expression of redox-sensitive GFP and in myocytes loaded with ROS indicator MitoSOX. Whole cell patch clamp measurements showed that Ang II significantly increased peak Ca and Na current (ICa and INa) possibly by enhancing steady-state activation of ICa and INa. These effects were absent in myocytes lacking functional NOX2 (gp91phox(-/-)). In parallel experiments using PKA inhibitor H89, the Ang II effects on peak INa and ICa were also absent. In contrast, genetic knockout of CaMKIIδ (CaMKIIδ(-/-)) did not influence the Ang II-dependent increase in peak ICa and INa. On the other hand, Ang II enhanced INa inactivation, increased late INa and induced diastolic SR (sarcoplasmic reticulum) Ca leak (confocal Ca spark measurements) in a CaMKIIδ-, but not PKA-dependent manner. Surprisingly, only the increase in diastolic SR Ca leak was absent in gp91phox(-/-)myocytes suggesting that Ang II regulates INa inactivation in a manner dependent on CaMKII- but not on NOX2. Finally, we show that Ang II increased the propensity for cellular arrhythmias, for which PKA and CaMKII contribute, both dependent on NOX2. CONCLUSION Ang II activates PKA and CaMKII via NOX2, which results in disturbed Na and Ca currents (via PKA) and enhanced diastolic SR Ca leakage (via CaMKII). Oxidative activation of PKA and CaMKII via NOX2 may represent important pro-arrhythmogenic pathways in the setting of increased Ang II stimulation, which may be relevant for the treatment of arrhythmias in cardiac disease.
Collapse
Affiliation(s)
- Stefan Wagner
- Dept. Internal Medicine II, University Hospital Regensburg, Regensburg, Germany; Clinic for Cardiology & Pneumology, Georg-August-University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Christian Dantz
- Clinic for Cardiology & Pneumology, Georg-August-University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Hannah Flebbe
- Clinic for Cardiology & Pneumology, Georg-August-University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Azadeh Azizian
- Clinic for Cardiology & Pneumology, Georg-August-University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Can Martin Sag
- Dept. Internal Medicine II, University Hospital Regensburg, Regensburg, Germany; Cardiovascular Division, King's College London British Heart Foundation Centre, UK
| | - Susanne Engels
- Clinic for Cardiology & Pneumology, Georg-August-University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Johanna Möllencamp
- Clinic for Cardiology & Pneumology, Georg-August-University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Nataliya Dybkova
- Clinic for Cardiology & Pneumology, Georg-August-University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Towhidul Islam
- Clinic for Cardiology & Pneumology, Georg-August-University Göttingen, and DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Ajay M Shah
- Cardiovascular Division, King's College London British Heart Foundation Centre, UK
| | - Lars S Maier
- Dept. Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
215
|
Santalla M, Valverde CA, Harnichar E, Lacunza E, Aguilar-Fuentes J, Mattiazzi A, Ferrero P. Aging and CaMKII alter intracellular Ca2+ transients and heart rhythm in Drosophila melanogaster. PLoS One 2014; 9:e101871. [PMID: 25003749 PMCID: PMC4087024 DOI: 10.1371/journal.pone.0101871] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/12/2014] [Indexed: 11/18/2022] Open
Abstract
Aging is associated to disrupted contractility and rhythmicity, among other cardiovascular alterations. Drosophila melanogaster shows a pattern of aging similar to human beings and recapitulates the arrhythmogenic conditions found in the human heart. Moreover, the kinase CaMKII has been characterized as an important regulator of heart function and an arrhythmogenic molecule that participate in Ca2+ handling. Using a genetically engineered expressed Ca2+ indicator, we report changes in cardiac Ca2+ handling at two different ages. Aging prolonged relaxation, reduced spontaneous heart rate (HR) and increased the occurrence of arrhythmias, ectopic beats and asystoles. Alignment between Drosophila melanogaster and human CaMKII showed a high degree of conservation and indicates that relevant phosphorylation sites in humans are also present in the fruit fly. Inhibition of CaMKII by KN-93 (CaMKII-specific inhibitor), reduced HR without significant changes in other parameters. By contrast, overexpression of CaMKII increased HR and reduced arrhythmias. Moreover, it increased fluorescence amplitude, maximal rate of rise of fluorescence and reduced time to peak fluorescence. These results suggest that CaMKII in Drosophila melanogaster acts directly on heart function and that increasing CaMKII expression levels could be beneficial to improve contractility.
Collapse
Affiliation(s)
- Manuela Santalla
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Buenos Aires, Argentina
| | - Carlos A. Valverde
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Ezequiel Harnichar
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata La Plata, Buenos Aires, Argentina
| | - Javier Aguilar-Fuentes
- Universidad Autónoma de Chiapas, Centro Mesoamericano de Estudios en Salud Pública y Desastres, Nodo Tapachula, Laboratorio de Epigenética del Neurodesarrollo y Neurobiología Molecular, Tapachula, Chiapas, México
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Paola Ferrero
- Centro de Investigaciones Cardiovasculares, CONICET-La Plata, Facultad de Medicina, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
216
|
Gump BB, Yun S, Kannan K. Polybrominated diphenyl ether (PBDE) exposure in children: possible associations with cardiovascular and psychological functions. ENVIRONMENTAL RESEARCH 2014; 132:244-50. [PMID: 24834818 PMCID: PMC4104497 DOI: 10.1016/j.envres.2014.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDE) have been used widely in consumer products and are currently found at detectable levels in the blood of humans and animals across the globe. In stark contrast to this widespread exposure to PBDEs, there is relatively little research on potential adverse health effects of exposure of children to these chemicals. OBJECTIVES We performed this cross-sectional study to determine if blood PBDE levels (for 4 congeners) are associated with cardiovascular stress responses and psychological states in children. METHODS Levels of 4 PBDE congeners (BDE-28, -47, -99, and -100) in whole blood were measured in children (N=43). These levels were analyzed in relation to cardiovascular disease risk factors, including cardiovascular responses to acute stress and relevant psychological variables, namely, hostility and depression. RESULTS Higher levels of blood PBDEs were associated with significantly greater sympathetic activation during acute psychological stress and greater anger, as evidenced by significant associations with 3 different measures of this psychological variable. CONCLUSIONS This study suggests an association between PBDE exposure and children's cardiovascular responses to stress as well as parental and self-reported anger in the child. These variables are particularly important as they may be of potential relevance to the future development of cardiovascular disease (CVD). Although intriguing, there is a need for further investigation and replication with a larger sample of children.
Collapse
Affiliation(s)
- Brooks B Gump
- Department of Public Health, Food Studies, and Nutrition, Syracuse University, Syracuse NY 13244, USA.
| | - Sehun Yun
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York, Albany, N Y 12201-0509, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York, Albany, N Y 12201-0509, USA; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
217
|
Epigenetics in cardiac development, function, and disease. Cell Tissue Res 2014; 356:585-600. [DOI: 10.1007/s00441-014-1887-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/02/2014] [Indexed: 12/13/2022]
|
218
|
Dybkova N, Wagner S, Backs J, Hund TJ, Mohler PJ, Sowa T, Nikolaev VO, Maier LS. Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa. Cardiovasc Res 2014; 103:168-77. [PMID: 24812278 DOI: 10.1093/cvr/cvu120] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS The anticancer drug paclitaxel (TXL) that polymerizes microtubules is associated with arrhythmias and sinus node dysfunction. TXL can alter membrane expression of Na channels (NaV1.5) and Na current (INa), but the mechanisms are unknown. Calcium/calmodulin-dependent protein kinase II (CaMKII) can be activated by β-adrenergic stimulation and regulates INa gating. We tested whether TXL interferes with isoproterenol (ISO)-induced activation of CaMKII and consequent INa regulation. METHODS AND RESULTS In wild-type mouse myocytes, the addition of ISO (1 µmol/L) resulted in increased CaMKII auto-phosphorylation (western blotting). This increase was completely abolished after pre-treatment with TXL (100 µmol/L, 1.5 h). The mechanism was further investigated in human embryonic kidney cells. TXL inhibited the ISO-induced β-arrestin translocation. Interestingly, both knockdown of β-arrestin2 expression using small interfering RNA and inhibition of exchange protein directly activated by cAMP (Epac) blocked the ISO-induced CaMKII auto-phosphorylation similar to TXL. The generation of cAMP, however, was unaltered (Epac1-camps). CaMKII-dependent Na channel function was measured using patch-clamp technique in isolated cardiomyoctes. ISO stimulation failed to induce CaMKII-dependent enhancement of late INa and Na channel inactivation (negative voltage shift in steady-state activation and enhanced intermediate inactivation) after pre-incubation with TXL. Consistent with this, TXL also inhibited ISO-induced CaMKII-specific Na channel phosphorylation (at serine 571 of NaV1.5). CONCLUSION Pre-incubation with TXL disrupts the ISO-dependent CaMKII activation and consequent Na channel regulation. This may be important for patients receiving TXL treatments, but also relevant for conditions of increased CaMKII expression and enhanced β-adrenergic stimulation like in heart failure.
Collapse
Affiliation(s)
- Nataliya Dybkova
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Stefan Wagner
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Johannes Backs
- Department of Cardiology, Angiology and Pneumology, Ruprecht Karls University Heidelberg, Heidelberg, Germany DZHK, Partner Site Heidelberg, Heidelberg, Germany
| | - Thomas J Hund
- Davis Heart and Lung Research Institute, Department of Internal Medicine and Physiology and Cell Biology, Ohio State University Medical Center, Columbus, OH, USA
| | - Peter J Mohler
- Davis Heart and Lung Research Institute, Department of Internal Medicine and Physiology and Cell Biology, Ohio State University Medical Center, Columbus, OH, USA
| | - Thomas Sowa
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Viacheslav O Nikolaev
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| |
Collapse
|
219
|
Fratev F, Mihaylova E, Pajeva I. Combination of Genetic Screening and Molecular Dynamics as a Useful Tool for Identification of Disease-Related Mutations: ZASP PDZ Domain G54S Mutation Case. J Chem Inf Model 2014; 54:1524-36. [DOI: 10.1021/ci5001136] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Filip Fratev
- Institute
of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Block 105, 1113 Sofia, Bulgaria
- Micar21 Ltd., Persenk Str. 34B, 1407 Sofia, Bulgaria
| | | | - Ilza Pajeva
- Institute
of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Block 105, 1113 Sofia, Bulgaria
| |
Collapse
|
220
|
Four-and-a-half LIM domains proteins are novel regulators of the protein kinase D pathway in cardiac myocytes. Biochem J 2014; 457:451-61. [PMID: 24219103 PMCID: PMC3927927 DOI: 10.1042/bj20131026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PKD (protein kinase D) is a serine/threonine kinase implicated in multiple cardiac roles, including the phosphorylation of the class II HDAC5 (histone deacetylase isoform 5) and thereby de-repression of MEF2 (myocyte enhancer factor 2) transcription factor activity. In the present study we identify FHL1 (four-and-a-half LIM domains protein 1) and FHL2 as novel binding partners for PKD in cardiac myocytes. This was confirmed by pull-down assays using recombinant GST-fused proteins and heterologously or endogenously expressed PKD in adult rat ventricular myocytes or NRVMs (neonatal rat ventricular myocytes) respectively, and by co-immunoprecipitation of FHL1 and FHL2 with GFP–PKD1 fusion protein expressed in NRVMs. In vitro kinase assays showed that neither FHL1 nor FHL2 is a PKD1 substrate. Selective knockdown of FHL1 expression in NRVMs significantly inhibited PKD activation and HDAC5 phosphorylation in response to endothelin 1, but not to the α1-adrenoceptor agonist phenylephrine. In contrast, selective knockdown of FHL2 expression caused a significant reduction in PKD activation and HDAC5 phosphorylation in response to both stimuli. Interestingly, neither intervention affected MEF2 activation by endothelin 1 or phenylephrine. We conclude that FHL1 and FHL2 are novel cardiac PKD partners, which differentially facilitate PKD activation and HDAC5 phosphorylation by distinct neurohormonal stimuli, but are unlikely to regulate MEF2-driven transcriptional reprogramming. Protein kinase D has multiple roles in cardiac myocytes, where its regulatory mechanisms remain incompletely defined. In the present study we identify four-and-a-half LIM domains proteins 1 and 2 as novel binding partners and regulators of protein kinase D in this cell type.
Collapse
|
221
|
Yang T, Shen JB, Yang R, Redden J, Dodge-Kafka K, Grady J, Jacobson KA, Liang BT. Novel protective role of endogenous cardiac myocyte P2X4 receptors in heart failure. Circ Heart Fail 2014; 7:510-8. [PMID: 24622244 DOI: 10.1161/circheartfailure.113.001023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Heart failure (HF), despite continuing progress, remains a leading cause of mortality and morbidity. P2X4 receptors (P2X4R) have emerged as potentially important molecules in regulating cardiac function and as potential targets for HF therapy. Transgenic P2X4R overexpression can protect against HF, but this does not explain the role of native cardiac P2X4R. Our goal is to define the physiological role of endogenous cardiac myocyte P2X4R under basal conditions and during HF induced by myocardial infarction or pressure overload. METHODS AND RESULTS Mice established with conditional cardiac-specific P2X4R knockout were subjected to left anterior descending coronary artery ligation-induced postinfarct or transverse aorta constriction-induced pressure overload HF. Knockout cardiac myocytes did not show P2X4R by immunoblotting or by any response to the P2X4R-specific allosteric enhancer ivermectin. Knockout hearts showed normal basal cardiac function but depressed contractile performance in postinfarct and pressure overload models of HF by in vivo echocardiography and ex vivo isolated working heart parameters. P2X4R coimmunoprecipitated and colocalized with nitric oxide synthase 3 (eNOS) in wild-type cardiac myocytes. Mice with cardiac-specific P2X4R overexpression had increased S-nitrosylation, cyclic GMP, NO formation, and were protected from postinfarct and pressure overload HF. Inhibitor of eNOS, L-N(5)-(1-iminoethyl)ornithine hydrochloride, blocked the salutary effect of cardiac P2X4R overexpression in postinfarct and pressure overload HF as did eNOS knockout. CONCLUSIONS This study establishes a new protective role for endogenous cardiac myocyte P2X4R in HF and is the first to demonstrate a physical interaction between the myocyte receptor and eNOS, a mediator of HF protection.
Collapse
Affiliation(s)
- Tiehong Yang
- From Pat and Jim Calhoun Cardiology Center, University of Connecticut Medical Center, Farmington, CT (T.Y., J.S., R.Y., J.R., K.D.-K., J.G., B.T.L.); and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD (K.A.J.)
| | - Jian-bing Shen
- From Pat and Jim Calhoun Cardiology Center, University of Connecticut Medical Center, Farmington, CT (T.Y., J.S., R.Y., J.R., K.D.-K., J.G., B.T.L.); and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD (K.A.J.)
| | - Ronghua Yang
- From Pat and Jim Calhoun Cardiology Center, University of Connecticut Medical Center, Farmington, CT (T.Y., J.S., R.Y., J.R., K.D.-K., J.G., B.T.L.); and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD (K.A.J.)
| | - John Redden
- From Pat and Jim Calhoun Cardiology Center, University of Connecticut Medical Center, Farmington, CT (T.Y., J.S., R.Y., J.R., K.D.-K., J.G., B.T.L.); and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD (K.A.J.)
| | - Kimberly Dodge-Kafka
- From Pat and Jim Calhoun Cardiology Center, University of Connecticut Medical Center, Farmington, CT (T.Y., J.S., R.Y., J.R., K.D.-K., J.G., B.T.L.); and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD (K.A.J.)
| | - James Grady
- From Pat and Jim Calhoun Cardiology Center, University of Connecticut Medical Center, Farmington, CT (T.Y., J.S., R.Y., J.R., K.D.-K., J.G., B.T.L.); and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD (K.A.J.)
| | - Kenneth A Jacobson
- From Pat and Jim Calhoun Cardiology Center, University of Connecticut Medical Center, Farmington, CT (T.Y., J.S., R.Y., J.R., K.D.-K., J.G., B.T.L.); and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD (K.A.J.)
| | - Bruce T Liang
- From Pat and Jim Calhoun Cardiology Center, University of Connecticut Medical Center, Farmington, CT (T.Y., J.S., R.Y., J.R., K.D.-K., J.G., B.T.L.); and Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD (K.A.J.).
| |
Collapse
|
222
|
Kreusser MM, Backs J. Integrated mechanisms of CaMKII-dependent ventricular remodeling. Front Pharmacol 2014; 5:36. [PMID: 24659967 PMCID: PMC3950490 DOI: 10.3389/fphar.2014.00036] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 12/20/2022] Open
Abstract
CaMKII has been shown to be activated during different cardiac pathological processes, and CaMKII-dependent mechanisms contribute to pathological cardiac remodeling, cardiac arrhythmias, and contractile dysfunction during heart failure. Activation of CaMKII during cardiac stress results in a broad number of biological effects such as, on the one hand, acute effects due to phosphorylation of distinct cellular proteins as ion channels and calcium handling proteins and, on the other hand, integrative mechanisms by changing gene expression. This review focuses on transcriptional and epigenetic effects of CaMKII activation during chronic cardiac remodeling. Multiple mechanisms have been described how CaMKII mediates changes in cardiac gene expression. CaMKII has been shown to directly phosphorylate components of the cardiac gene regulation machinery. CaMKII phosphorylates several transcription factors such as CREB that induces the activation of specific gene programs. CaMKII activates transcriptional regulators also indirectly by phosphorylating histone deacetylases, especially HDAC4, which in turn inhibits transcription factors that drive cardiac hypertrophy, fibrosis, and dysfunction. Recent studies demonstrate that CaMKII also phosphorylate directly histones, which may contribute to changes in gene expression. These findings of CaMKII-dependent gene regulation during cardiac remodeling processes suggest novel strategies for CaMKII-dependent “transcriptional or epigenetic therapies” to control cardiac gene expression and function. Manipulation of CaMKII-dependent signaling pathways in the settings of pathological cardiac growth, remodeling, and heart failure represents an auspicious therapeutic approach.
Collapse
Affiliation(s)
- Michael M Kreusser
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg Heidelberg, Germany ; German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg Heidelberg, Germany ; German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Germany
| |
Collapse
|
223
|
Mustroph J, Maier LS, Wagner S. CaMKII regulation of cardiac K channels. Front Pharmacol 2014; 5:20. [PMID: 24600393 PMCID: PMC3930912 DOI: 10.3389/fphar.2014.00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/31/2014] [Indexed: 11/23/2022] Open
Abstract
Cardiac K channels are critical determinants of cardiac excitability. In hypertrophied and failing myocardium, alterations in the expression and activity of voltage-gated K channels are frequently observed and contribute to the increased propensity for life-threatening arrhythmias. Thus, understanding the mechanisms of disturbed K channel regulation in heart failure (HF) is of critical importance. Amongst others, Ca/calmodulin-dependent protein kinase II (CaMKII) has been identified as an important regulator of K channel activity. In human HF but also various animal models, increased CaMKII expression and activity has been linked to deteriorated contractile function and arrhythmias. This review will discuss the current knowledge about CaMKII regulation of several K channels, its influence on action potential properties, dispersion of repolarization, and arrhythmias with special focus on HF.
Collapse
Affiliation(s)
- Julian Mustroph
- Department of Cardiology, University Medical Center Göttingen Göttingen, Germany
| | - Lars S Maier
- Department of Cardiology, University Medical Center Göttingen Göttingen, Germany
| | - Stefan Wagner
- Department of Cardiology, University Medical Center Göttingen Göttingen, Germany
| |
Collapse
|
224
|
Pellicena P, Schulman H. CaMKII inhibitors: from research tools to therapeutic agents. Front Pharmacol 2014; 5:21. [PMID: 24600394 PMCID: PMC3929941 DOI: 10.3389/fphar.2014.00021] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/03/2014] [Indexed: 11/23/2022] Open
Abstract
The cardiac field has benefited from the availability of several CaMKII inhibitors serving as research tools to test putative CaMKII pathways associated with cardiovascular physiology and pathophysiology. Successful demonstrations of its critical pathophysiological roles have elevated CaMKII as a key target in heart failure, arrhythmia, and other forms of heart disease. This has caught the attention of the pharmaceutical industry, which is now racing to develop CaMKII inhibitors as safe and effective therapeutic agents. While the first generation of CaMKII inhibitor development is focused on blocking its activity based on ATP binding to its catalytic site, future inhibitors can also target sites affecting its regulation by Ca2+/CaM or translocation to some of its protein substrates. The recent availability of crystal structures of the kinase in the autoinhibited and activated state, and of the dodecameric holoenzyme, provides insights into the mechanism of action of existing inhibitors. It is also accelerating the design and development of better pharmacological inhibitors. This review examines the structure of the kinase and suggests possible sites for its inhibition. It also analyzes the uses and limitations of current research tools. Development of new inhibitors will enable preclinical proof of concept tests and clinical development of successful lead compounds, as well as improved research tools to more accurately examine and extend knowledge of the role of CaMKII in cardiac health and disease.
Collapse
|
225
|
Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F. Heart failure-specific changes in protein kinase signalling. Pflugers Arch 2014; 466:1151-62. [DOI: 10.1007/s00424-014-1462-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/14/2023]
|
226
|
Wang Z, Qin G, Zhao TC. HDAC4: mechanism of regulation and biological functions. Epigenomics 2014. [PMID: 24579951 DOI: 10.2217/epi.13.73.histone] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The acetylation and deacetylation of histones plays an important role in the regulation of gene transcriptions. Histone acetylation is mediated by histone acetyltransferase; the resulting modification in the structure of chromatin leads to nucleosomal relaxation and altered transcriptional activation. The reverse reaction is mediated by histone deacetylase (HDAC), which induces deacetylation, chromatin condensation and transcriptional repression. HDACs are divided into three distinct classes: I, II, and III, on the basis of size and sequence homology, as well as formation of distinct complexes. Among class II HDACs, HDAC4 is implicated in controlling gene expression important for diverse cellular functions. Basic and clinical experimental evidence has established that HDAC4 performs a wide variety of functions. Understanding the biological significance of HDAC4 will not only provide new insight into the mechanisms of HDAC4 involved in mediating biological response, but also form a platform to develop a therapeutic strategy to achieve clinical implications.
Collapse
Affiliation(s)
- Zhengke Wang
- Department of Medicine, Roger Williams Medical Center, Boston University Medical School, Providence, RI 02908, USA
| | | | | |
Collapse
|
227
|
Stratton M, Lee IH, Bhattacharyya M, Christensen SM, Chao LH, Schulman H, Groves JT, Kuriyan J. Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. eLife 2014; 3:e01610. [PMID: 24473075 PMCID: PMC3901001 DOI: 10.7554/elife.01610] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The activation of the dodecameric Ca(2+)/calmodulin dependent kinase II (CaMKII) holoenzyme is critical for memory formation. We now report that CaMKII has a remarkable property, which is that activation of the holoenzyme triggers the exchange of subunits between holoenzymes, including unactivated ones, enabling the calcium-independent phosphorylation of new subunits. We show, using a single-molecule TIRF microscopy technique, that the exchange process is triggered by the activation of CaMKII, and that exchange is modulated by phosphorylation of two residues in the calmodulin-binding segment, Thr 305 and Thr 306. Based on these results, and on the analysis of molecular dynamics simulations, we suggest that the phosphorylated regulatory segment of CaMKII interacts with the central hub of the holoenzyme and weakens its integrity, thereby promoting exchange. Our results have implications for an earlier idea that subunit exchange in CaMKII may have relevance for information storage resulting from brief coincident stimuli during neuronal signaling. DOI: http://dx.doi.org/10.7554/eLife.01610.001.
Collapse
Affiliation(s)
- Margaret Stratton
- Department of Molecular and Cell Biology, Berkeley, Berkeley, United States
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Hohl M, Ardehali H, Azuaje FJ, Breckenridge RA, Doehner W, Eaton P, Ehret GB, Fujita T, Gaetani R, Giacca M, Hasenfuß G, Heymans S, Leite-Moreira AF, Linke WA, Linz D, Lyon A, Mamas MA, Orešič M, Papp Z, Pedrazzini T, Piepoli M, Prosser B, Rizzuto R, Tarone G, Tian R, van Craenenbroeck E, van Rooij E, Wai T, Weiss G, Maack C. Meeting highlights from the 2013 European Society of Cardiology Heart Failure Association Winter Meeting on Translational Heart Failure Research. Eur J Heart Fail 2014; 16:6-14. [PMID: 24453095 DOI: 10.1002/ejhf.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mathias Hohl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, D-66421, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Abstract
Late I Na is an integral part of the sodium current, which persists long after the fast-inactivating component. The magnitude of the late I Na is relatively small in all species and in all types of cardiomyocytes as compared with the amplitude of the fast sodium current, but it contributes significantly to the shape and duration of the action potential. This late component had been shown to increase in several acquired or congenital conditions, including hypoxia, oxidative stress, and heart failure, or due to mutations in SCN5A, which encodes the α-subunit of the sodium channel, as well as in channel-interacting proteins, including multiple β subunits and anchoring proteins. Patients with enhanced late I Na exhibit the type-3 long QT syndrome (LQT3) characterized by high propensity for the life-threatening ventricular arrhythmias, such as Torsade de Pointes (TdP), as well as for atrial fibrillation. There are several distinct mechanisms of arrhythmogenesis due to abnormal late I Na, including abnormal automaticity, early and delayed after depolarization-induced triggered activity, and dramatic increase of ventricular dispersion of repolarization. Many local anesthetic and antiarrhythmic agents have a higher potency to block late I Na as compared with fast I Na. Several novel compounds, including ranolazine, GS-458967, and F15845, appear to be the most selective inhibitors of cardiac late I Na reported to date. Selective inhibition of late I Na is expected to be an effective strategy for correcting these acquired and congenital channelopathies.
Collapse
|
230
|
Lehmann LH, Worst BC, Stanmore DA, Backs J. Histone deacetylase signaling in cardioprotection. Cell Mol Life Sci 2013; 71:1673-90. [PMID: 24310814 PMCID: PMC3983897 DOI: 10.1007/s00018-013-1516-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/23/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) represents a major challenge for health care systems, both in terms of the high mortality associated with it and the huge economic burden of its treatment. Although CVD represents a diverse range of disorders, they share common compensatory changes in the heart at the structural, cellular, and molecular level that, in the long term, can become maladaptive and lead to heart failure. Treatment of adverse cardiac remodeling is therefore an important step in preventing this fatal progression. Although previous efforts have been primarily focused on inhibition of deleterious signaling cascades, the stimulation of endogenous cardioprotective mechanisms offers a potent therapeutic tool. In this review, we discuss class I and class II histone deacetylases, a subset of chromatin-modifying enzymes known to have critical roles in the regulation of cardiac remodeling. In particular, we discuss their molecular modes of action and go on to consider how their inhibition or the stimulation of their intrinsic cardioprotective properties may provide a potential therapeutic route for the clinical treatment of CVD.
Collapse
Affiliation(s)
- Lorenz H. Lehmann
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Barbara C. Worst
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - David A. Stanmore
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Internal Medicine III, Heidelberg University and DZHK (German Center for Cardiovascular Research), partner site Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
231
|
Sedej S, Schmidt A, Denegri M, Walther S, Matovina M, Arnstein G, Gutschi EM, Windhager I, Ljubojević S, Negri S, Heinzel FR, Bisping E, Vos MA, Napolitano C, Priori SG, Kockskämper J, Pieske B. Subclinical abnormalities in sarcoplasmic reticulum Ca(2+) release promote eccentric myocardial remodeling and pump failure death in response to pressure overload. J Am Coll Cardiol 2013; 63:1569-79. [PMID: 24315909 DOI: 10.1016/j.jacc.2013.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study sought to explore whether subclinical alterations of sarcoplasmic reticulum (SR) Ca(2+) release through cardiac ryanodine receptors (RyR2) aggravate cardiac remodeling in mice carrying a human RyR2(R4496C+/-) gain-of-function mutation in response to pressure overload. BACKGROUND RyR2 dysfunction causes increased diastolic SR Ca(2+) release associated with arrhythmias and contractile dysfunction in inherited and acquired cardiac diseases, such as catecholaminergic polymorphic ventricular tachycardia and heart failure (HF). METHODS Functional and structural properties of wild-type and catecholaminergic polymorphic ventricular tachycardia-associated RyR2(R4496C+/-) hearts were characterized under conditions of pressure overload induced by transverse aortic constriction (TAC). RESULTS Wild-type and RyR2(R4496C+/-) hearts had comparable structural and functional properties at baseline. After TAC, RyR2(R4496C+/-) hearts responded with eccentric hypertrophy, substantial fibrosis, ventricular dilation, and reduced fractional shortening, ultimately resulting in overt HF. RyR2(R4496C+/-)-TAC cardiomyocytes showed increased incidence of spontaneous SR Ca(2+) release events, reduced Ca(2+) transient peak amplitude, and SR Ca(2+) content as well as reduced SR Ca(2+)-ATPase 2a and increased Na(+)/Ca(2+)-exchanger protein expression. HF phenotype in RyR2(R4496C+/-)-TAC mice was associated with increased mortality due to pump failure but not tachyarrhythmic events. RyR2-stabilizer K201 markedly reduced Ca(2+) spark frequency in RyR2(R4496C+/-)-TAC cardiomyocytes. Mini-osmotic pump infusion of K201 prevented deleterious remodeling and improved survival in RyR2(R4496C+/-)-TAC mice. CONCLUSIONS The combination of subclinical congenital alteration of SR Ca(2+) release and pressure overload promoted eccentric remodeling and HF death in RyR2(R4496C+/-) mice, and pharmacological RyR2 stabilization prevented this deleterious interaction. These findings suggest potential clinical relevance for patients with acquired or inherited gain-of-function of RyR2-mediated SR Ca(2+) release.
Collapse
Affiliation(s)
- Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria.
| | - Albrecht Schmidt
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Marco Denegri
- IRCCS Salvatore Maugeri Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefanie Walther
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Marinko Matovina
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Georg Arnstein
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Eva-Maria Gutschi
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | | | - Senka Ljubojević
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | - Sara Negri
- IRCCS Salvatore Maugeri Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Frank R Heinzel
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | - Egbert Bisping
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | - Marc A Vos
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carlo Napolitano
- IRCCS Salvatore Maugeri Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy; Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Silvia G Priori
- IRCCS Salvatore Maugeri Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy; Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Jens Kockskämper
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University of Marburg, Marburg, Germany
| | - Burkert Pieske
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria.
| |
Collapse
|
232
|
Mahmoud SA, Poizat C. Epigenetics and chromatin remodeling in adult cardiomyopathy. J Pathol 2013; 231:147-57. [PMID: 23813473 PMCID: PMC4285861 DOI: 10.1002/path.4234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 06/22/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022]
Abstract
The manipulation of chromatin structure regulates gene expression and the flow of genetic information. Histone modifications and ATP-dependent chromatin remodeling together with DNA methylation are dynamic processes that modify chromatin architecture and profoundly modulate gene expression. Their coordinated control is key to ensuring proper cell commitment and organ development, as well as adaption to environmental cues. Recent studies indicate that abnormal epigenetic status of the genome, in concert with alteration of transcriptional networks, contribute to the development of adult cardiomyopathy such as pathological cardiac hypertrophy. Here we consider the emerging role of different classes of chromatin regulators and how their dysregulation in the adult heart alters specific gene programs with subsequent development of major cardiomyopathies. Understanding the functional significance of the different epigenetic marks as points of genetic control may represent a promising future therapeutic tool.
Collapse
Affiliation(s)
- Salma Awad Mahmoud
- Cardiovascular Research Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | | |
Collapse
|
233
|
Abstract
Ca²⁺ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca²⁺ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca²⁺ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca²⁺ homeostatic and structural proteins, ion channels, and enzymes. This review focuses on the molecular mechanisms of defective Ca²⁺ cycling in heart failure and considers how fundamental understanding of these pathways may translate into novel and innovative therapies.
Collapse
Affiliation(s)
- Min Luo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
234
|
Uosaki H, Magadum A, Seo K, Fukushima H, Takeuchi A, Nakagawa Y, Moyes KW, Narazaki G, Kuwahara K, Laflamme M, Matsuoka S, Nakatsuji N, Nakao K, Kwon C, Kass DA, Engel FB, Yamashita JK. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells. ACTA ACUST UNITED AC 2013; 6:624-33. [PMID: 24141057 DOI: 10.1161/circgenetics.113.000330] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provides therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells. The combination of stem cell and chemical biology can provide novel approaches to investigate the molecular mechanisms and manipulation of cardiomyocyte proliferation. METHODS AND RESULTS To identify chemicals that regulate cardiomyocyte proliferation, we performed a screening of a defined chemical library based on proliferation of mouse pluripotent stem cell-derived cardiomyocytes and identified 4 chemical compound groups: inhibitors of glycogen synthase kinase-3, p38 mitogen-activated protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II, and activators of extracellular signal-regulated kinase. Several appropriate combinations of chemicals synergistically enhanced proliferation of cardiomyocytes derived from both mouse and human pluripotent stem cells, notably up to a 14-fold increase in mouse cardiomyocytes. We also examined the effects of identified chemicals on cardiomyocytes in various developmental stages and species. Whereas extracellular signal-regulated kinase activators and Ca(2+)/calmodulin-dependent protein kinase II inhibitors showed proliferative effects only on cardiomyocytes in early developmental stages, glycogen synthase kinase-3 and p38 mitogen-activated protein kinase inhibitors substantially and synergistically induced re-entry and progression of cell cycle in neonatal but also as well as adult cardiomyocytes. CONCLUSIONS Our approach successfully uncovered novel molecular targets and mechanisms controlling cardiomyocyte proliferation in distinct developmental stages and offered pluripotent stem cell-derived cardiomyocytes as a potent tool to explore chemical-based cardiac regenerative strategies.
Collapse
Affiliation(s)
- Hideki Uosaki
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Purohit A, Rokita AG, Guan X, Chen B, Koval OM, Voigt N, Neef S, Sowa T, Gao Z, Luczak ED, Stefansdottir H, Behunin AC, Li N, El-Accaoui RN, Yang B, Swaminathan PD, Weiss RM, Wehrens XHT, Song LS, Dobrev D, Maier LS, Anderson ME. Oxidized Ca(2+)/calmodulin-dependent protein kinase II triggers atrial fibrillation. Circulation 2013; 128:1748-57. [PMID: 24030498 DOI: 10.1161/circulationaha.113.003313] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is a growing public health problem without adequate therapies. Angiotensin II and reactive oxygen species are validated risk factors for AF in patients, but the molecular pathways connecting reactive oxygen species and AF are unknown. The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a reactive oxygen species-activated proarrhythmic signal, so we hypothesized that oxidized CaMKIIδ could contribute to AF. METHODS AND RESULTS We found that oxidized CaMKII was increased in atria from AF patients compared with patients in sinus rhythm and from mice infused with angiotensin II compared with mice infused with saline. Angiotensin II-treated mice had increased susceptibility to AF compared with saline-treated wild-type mice, establishing angiotensin II as a risk factor for AF in mice. Knock-in mice lacking critical oxidation sites in CaMKIIδ (MM-VV) and mice with myocardium-restricted transgenic overexpression of methionine sulfoxide reductase A, an enzyme that reduces oxidized CaMKII, were resistant to AF induction after angiotensin II infusion. CONCLUSIONS Our studies suggest that CaMKII is a molecular signal that couples increased reactive oxygen species with AF and that therapeutic strategies to decrease oxidized CaMKII may prevent or reduce AF.
Collapse
Affiliation(s)
- Anil Purohit
- Department of Internal Medicine, Division of Cardiovascular Medicine and Cardiovascular Research Center, Carver College of Medicine (A.P., A.G.R., X.G., B.C., O.M.K., Z.G., E.D.L., H.S., A.C.B., R.N.E.-A., P.D.S., R.M.W., L.-S.S., M.E.A.), Department of Obstetrics and Gynecology (B.Y.), and Department of Molecular Physiology and Biophysics (M.E.A.), University of Iowa, Iowa City; Institute of Pharmacology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany, and Division of Experimental Cardiology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany (N.V., D.D.); Cardiology and Pneumology, German Heart Center, University Hospital Goettingen, Goettingen, Germany (S.N., T.S., L.S.M.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (N.L., X.H.T.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Awad S, Kunhi M, Little GH, Bai Y, An W, Bers D, Kedes L, Poizat C. Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res 2013; 41:7656-72. [PMID: 23804765 PMCID: PMC3763528 DOI: 10.1093/nar/gkt500] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in pathological cardiac hypertrophy, but the mechanisms by which it modulates gene activity in the nucleus to mediate hypertrophic signaling remain unclear. Here, we report that nuclear CaMKII activates cardiac transcription by directly binding to chromatin and regulating the phosphorylation of histone H3 at serine-10. These specific activities are demonstrated both in vitro and in primary neonatal rat cardiomyocytes. Activation of CaMKII signaling by hypertrophic agonists increases H3 phosphorylation in primary cardiac cells and is accompanied by concomitant cellular hypertrophy. Conversely, specific silencing of nuclear CaMKII using RNA interference reduces both H3 phosphorylation and cellular hypertrophy. The hyper-phosphorylation of H3 associated with increased chromatin binding of CaMKII occurs at specific gene loci reactivated during cardiac hypertrophy. Importantly, H3 Ser-10 phosphorylation and CaMKII recruitment are associated with increased chromatin accessibility and are required for chromatin-mediated transcription of the Mef2 transcription factor. Unlike phosphorylation of H3 by other kinases, which regulates cellular proliferation and immediate early gene activation, CaMKII-mediated signaling to H3 is associated with hypertrophic growth. These observations reveal a previously unrecognized function of CaMKII as a kinase signaling to histone H3 and remodeling chromatin. They suggest a new epigenetic mechanism controlling cardiac hypertrophy.
Collapse
Affiliation(s)
- Salma Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia, Institute for Genetic Medicine, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90033, USA, Department of Biochemistry and Molecular Biology, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90089, USA, Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Muhammad Kunhi
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia, Institute for Genetic Medicine, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90033, USA, Department of Biochemistry and Molecular Biology, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90089, USA, Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Gillian H. Little
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia, Institute for Genetic Medicine, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90033, USA, Department of Biochemistry and Molecular Biology, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90089, USA, Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Yan Bai
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia, Institute for Genetic Medicine, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90033, USA, Department of Biochemistry and Molecular Biology, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90089, USA, Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Woojin An
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia, Institute for Genetic Medicine, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90033, USA, Department of Biochemistry and Molecular Biology, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90089, USA, Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Donald Bers
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia, Institute for Genetic Medicine, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90033, USA, Department of Biochemistry and Molecular Biology, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90089, USA, Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Larry Kedes
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia, Institute for Genetic Medicine, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90033, USA, Department of Biochemistry and Molecular Biology, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90089, USA, Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Centre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia, Institute for Genetic Medicine, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90033, USA, Department of Biochemistry and Molecular Biology, University of Southern California 2250 Alcazar Street, Los Angeles, CA 90089, USA, Department of Pharmacology, University of California at Davis, Davis, CA 95616, USA and Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA,*To whom correspondence should be addressed. Tel: +966 1 464 7272 (ext. 32984); Fax: +966 1 464 7858; or
| |
Collapse
|
237
|
Kao YH, Liou JP, Chung CC, Lien GS, Kuo CC, Chen SA, Chen YJ. Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J Cardiol 2013; 168:4178-83. [PMID: 23931972 DOI: 10.1016/j.ijcard.2013.07.111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/03/2013] [Accepted: 07/13/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Histone deacetylases (HDACs), important epigenetic regulatory enzymes, can reduce cardiac hypertrophy and cardiac fibrosis. However, the mechanisms underlying the antifibrotic activity of HDAC inhibitors remain unclear. The purposes of this study were to evaluate the effects of an HDAC inhibitor on systolic heart failure (HF) and investigate the potential mechanisms. METHODS Echocardiographic, histologic, atrial natriuretic peptide (ANP), and Western blot measurements were performed in HF rats (isoproterenol 100 mg/kg, subcutaneous injection) with and without orally administered (100 mg/kg for 7 consecutive days) MPT0E014 (a novel HDAC inhibitor). Western blot, migration and proliferation assays were carried out on primary isolated cardiac fibroblasts with and without MPT0E014 (0.1 and 1 μM) for 24 h. RESULTS MPT0E014-treated HF rats (n = 6) had better fraction shortening (48 ± 2 vs. 33 ± 4%, p = 0.006) and smaller left ventricular end diastolic diameter (4.6 ± 0.2 vs. 5.6 ± 0.3 mm, p = 0.031) and systolic diameter (2.4 ± 0.2 vs. 3.9 ± 0.3 mm, p = 0.006) than HF (n = 7) rats. MPT0E014-treated HF rats had lower ANP, cardiac fibrosis, and angiotensin II type I receptor (AT1R), transforming growth factor (TGF)-β, and CaMKIIδ protein levels compared to HF rats. MPT0E014 (at 1 μM, but not 0.1 μM) decreased the migration and proliferation of cardiac fibroblasts. MPT0E014 (0.1 and 1 μM) decreased expression of the AT1R and TGF-β. CONCLUSIONS MPT0E014 improved cardiac contractility and attenuated structural remodeling in isoproterenol-induced dilated cardiomyopathy. The direct antifibrotic activity may have contributed to these beneficial effects.
Collapse
Affiliation(s)
- Yu-Hsun Kao
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
238
|
Scholten A, Preisinger C, Corradini E, Bourgonje VJ, Hennrich ML, van Veen TAB, Swaminathan PD, Joiner ML, Vos MA, Anderson ME, Heck AJR. Phosphoproteomics study based on in vivo inhibition reveals sites of calmodulin-dependent protein kinase II regulation in the heart. J Am Heart Assoc 2013; 2:e000318. [PMID: 23926118 PMCID: PMC3828808 DOI: 10.1161/jaha.113.000318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The multifunctional Ca(2+)- and calmodulin-dependent protein kinase II (CaMKII) is a crucial mediator of cardiac physiology and pathology. Increased expression and activation of CaMKII has been linked to elevated risk for arrhythmic events and is a hallmark of human heart failure. A useful approach to determining CaMKII's role therein is large-scale analysis of phosphorylation events by mass spectrometry. However, current large-scale phosphoproteomics approaches have proved inadequate for high-fidelity identification of kinase-specific roles. The purpose of this study was to develop a phosphoproteomics approach to specifically identify CaMKII's downstream effects in cardiac tissue. METHODS AND RESULTS To identify putative downstream CaMKII targets in cardiac tissue, animals with myocardial-delimited expression of the specific peptide inhibitor of CaMKII (AC3-I) or an inactive control (AC3-C) were compared using quantitative phosphoproteomics. The hearts were isolated after isoproterenol injection to induce CaMKII activation downstream of β-adrenergic receptor agonist stimulation. Enriched phosphopeptides from AC3-I and AC3-C mice were differentially quantified using stable isotope dimethyl labeling, strong cation exchange chromatography and high-resolution LC-MS/MS. Phosphorylation levels of several hundred sites could be profiled, including 39 phosphoproteins noticeably affected by AC3-I-mediated CaMKII inhibition. CONCLUSIONS Our data set included known CaMKII substrates, as well as several new candidate proteins involved in functions not previously implicated in CaMKII signaling.
Collapse
Affiliation(s)
- Arjen Scholten
- Biomolecular Mass Spectrometry & Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Olsen NT, Dimaano VL, Fritz-Hansen T, Sogaard P, Chakir K, Eskesen K, Steenbergen C, Kass DA, Abraham TP. Hypertrophy signaling pathways in experimental chronic aortic regurgitation. J Cardiovasc Transl Res 2013; 6:852-60. [PMID: 23888404 DOI: 10.1007/s12265-013-9503-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 07/11/2013] [Indexed: 12/13/2022]
Abstract
The development of left ventricular hypertrophy and dysfunction in aortic regurgitation (AR) has only been sparsely studied experimentally. In a new model of chronic AR in rats, we examined activation of molecular pathways involved in myocardial hypertrophy. Chronic AR was produced by damaging one or two valve cusps, resulting in eccentric remodeling and left ventricular dysfunction, with no increase in overall fibrosis. Western blotting showed increased activation of Akt and p38 at 12 weeks and of c-Jun amino-terminal kinase at 2 weeks, decreased activation of extracellular regulated kinase 5 at both 2 and 12 weeks, while activation of calcium/calmodulin-dependent protein kinase II and extracellular regulated kinase 1/2 was unchanged. Expression of calcineurin and ANF was also unchanged. Eccentric hypertrophy and early cardiac dysfunction in experimental AR are associated with a pattern of activation of intracellular pathways different from that seen with pathological hypertrophy in pressure overload, and more similar to that associated with benign physiological hypertrophy.
Collapse
MESH Headings
- Animals
- Aortic Valve Insufficiency/complications
- Aortic Valve Insufficiency/diagnostic imaging
- Aortic Valve Insufficiency/metabolism
- Aortic Valve Insufficiency/physiopathology
- Atrial Natriuretic Factor/metabolism
- Calcineurin/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Chronic Disease
- Disease Models, Animal
- Echocardiography, Doppler, Color
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- JNK Mitogen-Activated Protein Kinases/metabolism
- Male
- Myocardium/metabolism
- Myocardium/pathology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Time Factors
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Niels Thue Olsen
- Division of Cardiology, Johns Hopkins Medical Institutions, 600 N Wolfe St., Carnegie 568, Baltimore, MD, 21287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Martin TP, Lawan A, Robinson E, Grieve DJ, Plevin R, Paul A, Currie S. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts. Pflugers Arch 2013; 466:319-30. [DOI: 10.1007/s00424-013-1326-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/17/2013] [Accepted: 07/02/2013] [Indexed: 01/10/2023]
|
241
|
Yamamoto K. The main target for inhibiting mineralocorticoid receptor-mediated signaling in cardiovascular diseases. Hypertens Res 2013; 36:580-2. [DOI: 10.1038/hr.2013.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
242
|
Westenbrink BD, Edwards AG, McCulloch AD, Brown JH. The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opin Ther Targets 2013; 17:889-903. [PMID: 23789646 DOI: 10.1517/14728222.2013.809064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Calcium-calmodulin-dependent protein kinase II (CaMKII) has emerged as a central mediator of cardiac stress responses which may serve several critical roles in the regulation of cardiac rhythm, cardiac contractility and growth. Sustained and excessive activation of CaMKII during cardiac disease has, however, been linked to arrhythmias, and maladaptive cardiac remodeling, eventually leading to heart failure (HF) and sudden cardiac death. AREAS COVERED In the current review, the authors describe the unique structural and biochemical properties of CaMKII and focus on its physiological effects in cardiomyocytes. Furthermore, they provide evidence for a role of CaMKII in cardiac pathologies, including arrhythmogenesis, myocardial ischemia and HF development. The authors conclude by discussing the potential for CaMKII as a target for inhibition in heart disease. EXPERT OPINION CaMKII provides a promising nodal point for intervention that may allow simultaneous prevention of HF progression and development of arrhythmias. For future studies and drug development there is a strong rationale for the development of more specific CaMKII inhibitors. In addition, an improved understanding of the differential roles of CaMKII subtypes is required.
Collapse
Affiliation(s)
- B Daan Westenbrink
- University of California, Department of Pharmacology, San Diego, La Jolla, CA, USA
| | | | | | | |
Collapse
|
243
|
Affiliation(s)
- Robert N Correll
- From the Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | | |
Collapse
|
244
|
Ather S, Respress JL, Li N, Wehrens XHT. Alterations in ryanodine receptors and related proteins in heart failure. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2425-31. [PMID: 23770282 DOI: 10.1016/j.bbadis.2013.06.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/23/2013] [Accepted: 06/05/2013] [Indexed: 01/07/2023]
Abstract
Sarcoplasmic reticulum (SR) Ca(2+) release plays an essential role in mediating cardiac myocyte contraction. Depolarization of the plasma membrane results in influx of Ca(2+) through l-type Ca(2+) channels (LTCCs) that in turn triggers efflux of Ca(2+) from the SR through ryanodine receptor type-2 channels (RyR2). This process known as Ca(2+)-induced Ca(2+)release (CICR) occurs within the dyadic region, where the adjacent transverse (T)-tubules and SR membranes allow RyR2 clusters to release SR Ca(2+) following Ca(2+) influx through adjacent LTCCs. SR Ca(2+) released during systole binds to troponin-C and initiates actin-myosin cross-bridging, leading to muscle contraction. During diastole, the cytosolic Ca(2+) concentration is restored by the resequestration of Ca(2+) into the SR by SR/ER Ca(2+)-ATPase (SERCA2a) and by the extrusion of Ca(2+) via the Na(+)/Ca(2+)-exchanger (NCX1). This whole process, entitled excitation-contraction (EC) coupling, is highly coordinated and determines the force of contraction, providing a link between the electrical and mechanical activities of cardiac muscle. In response to heart failure (HF), the heart undergoes maladaptive changes that result in depressed intracellular Ca(2+) cycling and decreased SR Ca(2+) concentrations. As a result, the amplitude of CICR is reduced resulting in less force production during EC coupling. In this review, we discuss the specific proteins that alter the regulation of Ca(2+) during HF. In particular, we will focus on defects in RyR2-mediated SR Ca(2+) release. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Sameer Ather
- Dept of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; Dept of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
245
|
Neef S, Maier LS. Novel aspects of excitation-contraction coupling in heart failure. Basic Res Cardiol 2013; 108:360. [PMID: 23740218 DOI: 10.1007/s00395-013-0360-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 12/19/2022]
Abstract
Excitation-contraction coupling is the process by which electrical activation is translated into contraction of a cardiac myocyte and thus the heart. In heart failure, expression, phosphorylation, and function of several intracellular proteins that are involved in excitation-contraction coupling are altered. The present review article summarizes central principles and highlights novel aspects of alterations in heart failure, focusing especially on recent findings regarding altered sarcoplasmic reticulum Ca2+ -leak and late Na+ -current without being able to cover all changes in full detail. These two pathomechanisms seem to play interesting roles with respect to systolic and diastolic dysfunction and may also be important for cardiac arrhythmias. Furthermore, the article outlines the translation of these novel findings into potential therapeutic approaches.
Collapse
Affiliation(s)
- Stefan Neef
- Abt. Kardiologie und Pneumologie/Herzzentrum, Georg-August-Universität Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | |
Collapse
|
246
|
Lu CC, Xu YQ, Wu JC, Hang PZ, Wang Y, Wang C, Wu JW, Qi JC, Zhang Y, Du ZM. Vitexin protects against cardiac hypertrophy via inhibiting calcineurin and CaMKII signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 386:747-55. [DOI: 10.1007/s00210-013-0873-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
|
247
|
Stratton MM, Chao LH, Schulman H, Kuriyan J. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Curr Opin Struct Biol 2013; 23:292-301. [PMID: 23632248 DOI: 10.1016/j.sbi.2013.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/24/2013] [Accepted: 04/02/2013] [Indexed: 11/15/2022]
Abstract
Ca(2+)/calmodulin dependent protein kinase II (CaMKII) is a broadly distributed metazoan Ser/Thr protein kinase that is important in neuronal and cardiac signaling. CaMKII forms oligomeric assemblies, typically dodecameric, in which the calcium-responsive kinase domains are organized around a central hub. We review the results of crystallographic analyses of CaMKII, including the recently determined structure of a full-length and autoinhibited form of the holoenzyme. These structures, when combined with other data, allow informed speculation about how CaMKII escapes calcium-dependence when calcium spikes exceed threshold frequencies.
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
248
|
Mitogen-activated protein kinase-activated protein kinases 2 and 3 regulate SERCA2a expression and fiber type composition to modulate skeletal muscle and cardiomyocyte function. Mol Cell Biol 2013; 33:2586-602. [PMID: 23608535 DOI: 10.1128/mcb.01692-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-activated protein kinases 2 and 3 (MK2/3) represent protein kinases downstream of the p38 MAPK. Using MK2/3 double-knockout (MK2/3(-/-)) mice, we analyzed the role of MK2/3 in cross-striated muscle by transcriptome and proteome analyses and by histology. We demonstrated enhanced expression of the slow oxidative skeletal muscle myofiber gene program, including the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α). Using reporter gene and electrophoretic gel mobility shift assays, we demonstrated that MK2 catalytic activity directly regulated the promoters of the fast fiber-specific myosin heavy-chain IId/x and the slow fiber-specific sarco/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) gene. Elevated SERCA2a gene expression caused by a decreased ratio of transcription factor Egr-1 to Sp1 was associated with accelerated relaxation and enhanced contractility in MK2/3(-/-) cardiomyocytes, concomitant with improved force parameters in MK2/3(-/-) soleus muscle. These results link MK2/3 to the regulation of calcium dynamics and identify enzymatic activity of MK2/3 as a critical factor for modulating cross-striated muscle function by generating a unique muscle phenotype exhibiting both reduced fatigability and enhanced force in MK2/3(-/-) mice. Hence, the p38-MK2/3 axis may represent a novel target for the design of therapeutic strategies for diseases related to fiber type changes or impaired SERCA2 function.
Collapse
|
249
|
While systolic cardiomyocyte function is preserved, diastolic myocyte function and recovery from acidosis are impaired in CaMKIIδ-KO mice. J Mol Cell Cardiol 2013; 59:107-16. [PMID: 23473775 DOI: 10.1016/j.yjmcc.2013.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/18/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE CaMKII contributes to impaired contractility in heart failure by inducing SR Ca(2+)-leak. CaMKII-inhibition in the heart was suggested to be a novel therapeutic principle. Different CaMKII isoforms exist. Specifically targeting CaMKIIδ, the dominant isoform in the heart, could be of therapeutic potential without impairing other CaMKII isoforms. RATIONALE We investigated whether cardiomyocyte function is affected by isoform-specific knockout (KO) of CaMKIIδ under basal conditions and upon stress, i.e. upon ß-adrenergic stimulation and during acidosis. RESULTS Systolic cardiac function was largely preserved in the KO in vivo (echocardiography) corresponding to unchanged Ca(2+)-transient amplitudes and isolated myocyte contractility in vitro. CaMKII activity was dramatically reduced while phosphatase-1 inhibitor-1 was significantly increased. Surprisingly, while diastolic Ca(2+)-elimination was slower in KO most likely due to decreased phospholamban Thr-17 phosphorylation, frequency-dependent acceleration of relaxation was still present. Despite decreased SR Ca(2+)-reuptake at lower frequencies, SR Ca(2+)-content was not diminished, which might be due to reduced diastolic SR Ca(2+)-loss in the KO as a consequence of lower RyR Ser-2815 phosphorylation. Challenging KO myocytes with isoproterenol showed intact inotropic and lusitropic responses. During acidosis, SR Ca(2+)-reuptake and SR Ca(2+)-loading were significantly impaired in KO, resulting in an inability to maintain systolic Ca(2+)-transients during acidosis and impaired recovery. CONCLUSIONS Inhibition of CaMKIIδ appears to be safe under basal physiologic conditions. Specific conditions exist (e.g. during acidosis) under which CaMKII-inhibition might not be helpful or even detrimental. These conditions will have to be more clearly defined before CaMKII inhibition is used therapeutically.
Collapse
|
250
|
Hohl M, Wagner M, Reil JC, Müller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Böhm M, Backs J, Maack C. HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 2013; 123:1359-70. [PMID: 23434587 DOI: 10.1172/jci61084] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/03/2013] [Indexed: 12/28/2022] Open
Abstract
In patients with heart failure, reactivation of a fetal gene program, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), is a hallmark for maladaptive remodeling of the LV. The mechanisms that regulate this reactivation are incompletely understood. Histone acetylation and methylation affect the conformation of chromatin, which in turn governs the accessibility of DNA for transcription factors. Using human LV myocardium, we found that, despite nuclear export of histone deacetylase 4 (HDAC4), upregulation of ANP and BNP in failing hearts did not require increased histone acetylation in the promoter regions of these genes. In contrast, di- and trimethylation of lysine 9 of histone 3 (H3K9) and binding of heterochromatin protein 1 (HP1) in the promoter regions of these genes were substantially reduced. In isolated working murine hearts, an acute increase of cardiac preload induced HDAC4 nuclear export, H3K9 demethylation, HP1 dissociation from the promoter region, and activation of the ANP gene. These processes were reversed in hearts with myocyte-specific deletion of Hdac4. We conclude that HDAC4 plays a central role for rapid modifications of histone methylation in response to variations in cardiac load and may represent a target for pharmacological interventions to prevent maladaptive remodeling in patients with heart failure.
Collapse
Affiliation(s)
- Mathias Hohl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|