201
|
Ali EH, Elgoly AHM. Combined prenatal and postnatal butyl paraben exposure produces autism-like symptoms in offspring: Comparison with valproic acid autistic model. Pharmacol Biochem Behav 2013; 111:102-10. [DOI: 10.1016/j.pbb.2013.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/23/2013] [Accepted: 08/31/2013] [Indexed: 11/15/2022]
|
202
|
Saunders C, Siuta M, Robertson SD, Davis AR, Sauer J, Matthies HJG, Gresch PJ, Airey D, Lindsley CW, Schetz JA, Niswender KD, Veenstra-Vanderweele JM, Galli A. Neuronal ablation of p-Akt at Ser473 leads to altered 5-HT1A/2A receptor function. Neurochem Int 2013; 73:113-121. [PMID: 24090638 DOI: 10.1016/j.neuint.2013.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 02/08/2023]
Abstract
The serotonergic system regulates a wide range of behavior, including mood and impulsivity, and its dysregulation has been associated with mood disorders, autism spectrum disorder, and addiction. Diabetes is a risk factor for these conditions. Insulin resistance in the brain is specifically associated with susceptibility to psychostimulant abuse. Here, we examined whether phosphorylation of Akt, a key regulator of the insulin signaling pathway, controls serotonin (5-HT) signaling. To explore how impairment in Akt function regulates 5-HT homeostasis, we used a brain-specific rictor knockout (KO) mouse model of impaired neuronal phosphorylation of Akt at Ser473. Cortical 5-HT1A and 5-HT2A receptor binding was significantly elevated in rictor KO mice. Concomitant with this elevated receptor expression, the 5-HT1A receptor agonist 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) led to an increased hypothermic response in rictor KO mice. The increased cortical 5-HT1A receptor density was associated with higher 5-HT1A receptor levels on the cortical cell surface. In contrast, rictor KO mice displayed significantly reduced head-twitch response (HTR) to the 5-HT2A/C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI), with evidence of impaired 5-HT2A/C receptor signaling. In vitro, pharmacological inhibition of Akt significantly increased 5-HT1A receptor expression and attenuated DOI-induced 5-HT2A receptor signaling, thereby lending credence to the observed in vivo cross-talk between neuronal Akt signaling and 5-HT receptor regulation. These data reveal that defective central Akt function alters 5-HT signaling as well as 5-HT-associated behaviors, demonstrating a novel role for Akt in maintaining neuronal 5-HT receptor function.
Collapse
Affiliation(s)
- Christine Saunders
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Michael Siuta
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Sabrina D Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Adeola R Davis
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Jennifer Sauer
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | - Heinrich J G Matthies
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Paul J Gresch
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - David Airey
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - John A Schetz
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX
| | - Kevin D Niswender
- Department of Medicine Vanderbilt University Medical Center, Nashville, TN
| | - Jeremy M Veenstra-Vanderweele
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN.,Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | - Aurelio Galli
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN.,Department of Neuroscience Program in Substance Abuse, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
203
|
Levin-Decanini T, Maltman N, Francis SM, Guter S, Anderson GM, Cook E, Jacob S. Parental broader autism subphenotypes in ASD affected families: relationship to gender, child's symptoms, SSRI treatment, and platelet serotonin. Autism Res 2013; 6:621-30. [PMID: 23956104 DOI: 10.1002/aur.1322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 07/04/2013] [Indexed: 02/06/2023]
Abstract
Relationships between parental broader autism phenotype (BAP) scores, gender, selective serotonin reuptake inhibitor (SSRI) treatment, serotonin (5HT) levels, and the child's symptoms were investigated in a family study of autism spectrum disorder (ASD). The Broader Autism Phenotype Questionnaire (BAPQ) was used to measure the BAP of 275 parents. Fathers not taking SSRIs (F-SSRI; n = 115) scored significantly higher on BAP Total and Aloof subscales compared to mothers not receiving treatment (M-SSRI; n = 136.) However, mothers taking SSRIs (M + SSRI; n = 19) scored higher than those not taking medication on BAP Total and Rigid subscales, and they were more likely to be BAPQ Total, Aloof, and Rigid positive. Significant correlations were noted between proband autism symptoms and parental BAPQ scores such that Total, Aloof, and Rigid subscale scores of F-SSRI correlated with proband restricted repetitive behavior (RRB) measures on the ADOS, CRI, and RBS-R. However, only the Aloof subscale score of M + SSRI correlated with proband RRB on the ADOS. The correlation between the BAPQ scores of mothers taking SSRIs and child scores, as well as the increase in BAPQ scores of this group of mothers, requires careful interpretation and further study because correlations would not withstand multiple corrections. As expected by previous research, significant parent-child correlations were observed for 5HT levels. However, 5HT levels were not correlated with behavioral measures. Study results suggest that the expression of the BAP varies not only across parental gender, but also across individuals using psychotropic medication and those who do not.
Collapse
Affiliation(s)
| | - N Maltman
- Department of Psychiatry, University of Illinois at Chicago, IL
| | - S M Francis
- Department of Psychiatry, University of Illinois at Chicago, IL
| | - S Guter
- Department of Psychiatry, University of Illinois at Chicago, IL
| | - G M Anderson
- Departments of Child Psychiatry and Laboratory Medicine at Yale University School of Medicine, New Haven, CT
| | - E Cook
- Department of Psychiatry, University of Illinois at Chicago, IL
| | - S Jacob
- Department of Psychiatry, University of Illinois at Chicago, IL
| |
Collapse
|
204
|
A novel, highly sensitive method for assessing gap junctional coupling. J Neurosci Methods 2013; 220:18-23. [PMID: 23958747 DOI: 10.1016/j.jneumeth.2013.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/20/2022]
Abstract
To assess gap junctional intercellular communication we have developed a tracer-based methodology which is both highly sensitive and potentially adaptable for in vivo measurements. We found that injection of serotonin revealed significantly more intercellular communication than that injection of the most permeant synthetic tracer currently in use, neurobiotin. Furthermore, mechanical tracer loading steps can be replaced by transfection with human serotonin transporter and the inclusion of serotonin in the medium. Tracer and transporter are detected using immunocytochemical techniques and the presence of cells that are tracer-positive but transporter-negative indicates junctional communication. Tracer loading in vivo using transgenesis, electroporation or viral transduction to direct expression of transporter should be more easily accomplished than with mechanical loading methods.
Collapse
|
205
|
Campbell NG, Zhu CB, Lindler KM, Yaspan BL, Kistner-Griffin E. Rare coding variants of the adenosine A3 receptor are increased in autism: on the trail of the serotonin transporter regulome. Mol Autism 2013; 4:28. [PMID: 23953133 PMCID: PMC3882891 DOI: 10.1186/2040-2392-4-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 07/30/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Rare genetic variation is an important class of autism spectrum disorder (ASD) risk factors and can implicate biological networks for investigation. Altered serotonin (5-HT) signaling has been implicated in ASD, and we and others have discovered multiple, rare, ASD-associated variants in the 5-HT transporter (SERT) gene leading to elevated 5-HT re-uptake and perturbed regulation. We hypothesized that loci encoding SERT regulators harbor variants that impact SERT function and/or regulation and therefore could contribute to ASD risk. The adenosine A3 receptor (A3AR) regulates SERT via protein kinase G (PKG) and other signaling pathways leading to enhanced SERT surface expression and catalytic activity. METHODS To test our hypothesis, we asked whether rare variants in the A3AR gene (ADORA3) were increased in ASD cases vs. controls. Discovery sequencing in a case-control sample and subsequent analysis of comparison exome sequence data were conducted. We evaluated the functional impact of two variants from the discovery sample on A3AR signaling and SERT activity. RESULTS Sequencing discovery showed an increase of rare coding variants in cases vs. controls (P=0.013). While comparison exome sequence data did not show a significant enrichment (P=0.071), combined analysis strengthened evidence for association (P=0.0025). Two variants discovered in ASD cases (Leu90Val and Val171Ile) lie in or near the ligand-binding pocket, and Leu90Val was enriched individually in cases (P=0.040). In vitro analysis of cells expressing Val90-A3AR revealed elevated basal cGMP levels compared with the wildtype receptor. Additionally, a specific A3AR agonist increased cGMP levels across the full time course studied in Val90-A3AR cells, compared to wildtype receptor. In Val90-A3AR/SERT co-transfections, agonist stimulation elevated SERT activity over the wildtype receptor with delayed 5-HT uptake activity recovery. In contrast, Ile171-A3AR was unable to support agonist stimulation of SERT. Although both Val90 and Ile171 were present in greater numbers in these ASD cases, segregation analysis in families showed incomplete penetrance, consistent with other rare ASD risk alleles. CONCLUSIONS Our results validate the hypothesis that the SERT regulatory network harbors rare, functional variants that impact SERT activity and regulation in ASD, and encourages further investigation of this network for other variation that may impact ASD risk.
Collapse
Affiliation(s)
- Nicholas G Campbell
- Department of Molecular Physiology & Biophysics and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | - Chong-Bin Zhu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | - Kathryn M Lindler
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | - Brian L Yaspan
- Department of Molecular Physiology & Biophysics and Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232-8548, USA
| | - Emily Kistner-Griffin
- Biostatistics and Epidemiology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
206
|
Moya PR, Wendland JR, Rubenstein LM, Timpano KR, Heiman GA, Tischfield JA, King RA, Andrews AM, Ramamoorthy S, McMahon FJ, Murphy DL. Common and rare alleles of the serotonin transporter gene, SLC6A4, associated with Tourette's disorder. Mov Disord 2013; 28:1263-70. [PMID: 23630162 PMCID: PMC3766488 DOI: 10.1002/mds.25460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/02/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022] Open
Abstract
To evaluate the hypothesis that functionally over-expressing alleles of the serotonin transporter (SERT) gene (solute carrier family 6, member 4, SLC6A4) are present in Tourette's disorder (TD), just as we previously observed in obsessive compulsive disorder (OCD), we evaluated TD probands (N = 151) and controls (N = 858). We genotyped the refined SERT-linked polymorphic region 5-HTTLPR/rs25531 and the associated rs25532 variant in the SLC6A4 promoter plus the rare coding variant SERT isoleucine-to-valine at position 425 (I425V). The higher expressing 5-HTTLPR/rs25531 LA allele was more prevalent in TD probands than in controls (χ(2) = 5.75; P = 0.017; odds ratio [OR], 1.35); and, in a secondary analysis, surprisingly, it was significantly more frequent in probands who had TD alone than in those who had TD plus OCD (Fisher's exact test; P = 0.0006; OR, 2.29). Likewise, the higher expressing LAC haplotype (5-HTTLPR/rs25531/rs25532) was more frequent in TD probands than in controls (P = 0.024; OR, 1.33) and also in the TD alone group versus the TD plus OCD group (P = 0.0013; OR, 2.14). Furthermore, the rare gain-of-function SERT I425V variant was observed in 3 male siblings with TD and/or OCD and in their father. Thus, the cumulative count of SERT I425V becomes 1.57% in OCD/TD spectrum conditions versus 0.15% in controls, with a recalculated, family-adjusted significance of χ(2) = 15.03 (P < 0.0001; OR, 9.0; total worldwide genotyped, 2914). This report provides a unique combination of common and rare variants in one gene in TD, all of which are associated with SERT gain of function. Thus, altered SERT activity represents a potential contributor to serotonergic abnormalities in TD. The present results call for replication in a similarly intensively evaluated sample. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Pablo R Moya
- National Institute of Mental Health-Intramural Research Program, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Trophoblast inclusions are significantly increased in the placentas of children in families at risk for autism. Biol Psychiatry 2013; 74:204-11. [PMID: 23623455 PMCID: PMC3755347 DOI: 10.1016/j.biopsych.2013.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/23/2013] [Accepted: 03/10/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND Gestation is a critical window for neurodevelopmental vulnerability. This study examined whether the presence of trophoblast inclusions (TIs) in the placenta could serve as a predictor for children at elevated risk for autism spectrum disorder (ASD). METHODS Placentas were obtained from 117 births in the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) cohort of families who have one or more previous biological children with ASD, placing their newborn at elevated risk for neurodevelopmental compromise. Control samples were obtained from 100 uncomplicated term pregnancies of multiparous women with one or more typically developing biological children. Frequency of TIs was compared across the two groups. RESULTS Placentas from at-risk pregnancies had an eightfold increased odds of having two or more TIs compared with control samples (odds ratio: 8.0, 95% confidence interval: 3.6-18.0). The presence of≥2 TIs yielded a sensitivity of 41% and a specificity of 92% for predicting ASD risk status, whereas≥4 TIs yielded a sensitivity of 19%, a specificity of 99.9%, and a positive likelihood ratio of 242 and conservatively predicted an infant with a 74% probability of being at risk for ASD. CONCLUSIONS Our findings suggest that the placentas from women whose fetuses are at elevated risk for autism are markedly different from control placentas. These differences are manifested histologically as TIs. Their identification has the possibility of identifying newborns at risk for ASD who might benefit from targeted early interventions aimed at preventing or ameliorating behavioral symptoms and optimizing developmental outcomes.
Collapse
|
208
|
Current progress and challenges in the search for autism biomarkers. DISEASE MARKERS 2013; 35:55-65. [PMID: 24167349 PMCID: PMC3774962 DOI: 10.1155/2013/476276] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/06/2013] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASD) encompass a range of neurodevelopmental conditions that are clinically and etiologically very heterogeneous. ASD is currently diagnosed entirely on behavioral criteria, but intensive research efforts are focused on identifying biological markers for disease risk and early diagnosis. Here, we discuss recent progress toward identifying biological markers for ASD and highlight specific challenges as well as ethical aspects of translating ASD biomarker research into the clinic.
Collapse
|
209
|
Flowers for Algernon: steroid dysgenesis, epigenetics and brain disorders. Pharmacol Rep 2013; 64:1285-90. [PMID: 23406739 DOI: 10.1016/s1734-1140(12)70926-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/27/2012] [Indexed: 01/22/2023]
Abstract
While a recent study has reported that early citalopram exposure alters cortical network function and produces autistic-like behaviors in male rats, when evaluating antidepressant animal models of autism spectrum disorder (ASD) it is important to note that some selective serotonin (5-HT) reuptake inhibitors alter 3α-hydroxysteroid dehydrogenase activity, and thus steroidogenesis. At least one study has examined the effect of repeated citalopram administration on the serum and brain concentration of testosterone (T) and its metabolites and shown that citalopram increases serum T. Several in vitro studies also suggest that sex steroid can alter 5-HT homeostasis. While research efforts have demonstrated that transgenic mice expressing the most common of multiple gain-of-function 5-HT reuptake transporter (SERT) coding variants, SERT Ala56, previously identified in children with ASD, exhibit autistic-like behaviors, elevated p38 MAPK-dependent transporter phosphorylation, enhanced 5-HT clearance rates and hyperserotonemia, a few studies provide some evidence that 5-HT may alter gonadal steroidogenesis. T, 17β-estradiol and synthetic estrogens are known inhibitors of AKR1C21 (BRENDA, E.C. 1.1.1.209), the epitestosterone (epiT) producing enzyme in rodents. EpiT is a naturally occurring steroid in mammals, including man. An analysis of the literature suggests that epiT may be the central mediator in the epigenetic regulation of gene expression. Over thirty years ago, it was shown that rat brain epiT production is higher in females than in males. A similar finding in humans could explain the sex differences in the incidence of autism and other brain disorders. Despite this, the role of epiT in brain development remains a long neglected area of research.
Collapse
|
210
|
Abstract
Converging lines of evidence show that a sizable subset of autism-spectrum disorders (ASDs) is characterized by increased blood levels of serotonin (5-hydroxytryptamine, 5-HT), yet the mechanistic link between these two phenomena remains unclear. The enzymatic degradation of brain 5-HT is mainly mediated by monoamine oxidase (MAO)A and, in the absence of this enzyme, by its cognate isoenzyme MAOB. MAOA and A/B knockout (KO) mice display high 5-HT levels, particularly during early developmental stages. Here we show that both mutant lines exhibit numerous behavioural hallmarks of ASDs, such as social and communication impairments, perseverative and stereotypical responses, behavioural inflexibility, as well as subtle tactile and motor deficits. Furthermore, both MAOA and A/B KO mice displayed neuropathological alterations reminiscent of typical ASD features, including reduced thickness of the corpus callosum, increased dendritic arborization of pyramidal neurons in the prefrontal cortex and disrupted microarchitecture of the cerebellum. The severity of repetitive responses and neuropathological aberrances was generally greater in MAOA/B KO animals. These findings suggest that the neurochemical imbalances induced by MAOA deficiency (either by itself or in conjunction with lack of MAOB) may result in an array of abnormalities similar to those observed in ASDs. Thus, MAOA and A/B KO mice may afford valuable models to help elucidate the neurobiological bases of these disorders and related neurodevelopmental problems.
Collapse
|
211
|
Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. ENTROPY 2013. [DOI: 10.3390/e15041416] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
212
|
The disruption of Celf6, a gene identified by translational profiling of serotonergic neurons, results in autism-related behaviors. J Neurosci 2013; 33:2732-53. [PMID: 23407934 DOI: 10.1523/jneurosci.4762-12.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The immense molecular diversity of neurons challenges our ability to understand the genetic and cellular etiology of neuropsychiatric disorders. Leveraging knowledge from neurobiology may help parse the genetic complexity: identifying genes important for a circuit that mediates a particular symptom of a disease may help identify polymorphisms that contribute to risk for the disease as a whole. The serotonergic system has long been suspected in disorders that have symptoms of repetitive behaviors and resistance to change, including autism. We generated a bacTRAP mouse line to permit translational profiling of serotonergic neurons. From this, we identified several thousand serotonergic-cell expressed transcripts, of which 174 were highly enriched, including all known markers of these cells. Analysis of common variants near the corresponding genes in the AGRE collection implicated the RNA binding protein CELF6 in autism risk. Screening for rare variants in CELF6 identified an inherited premature stop codon in one of the probands. Subsequent disruption of Celf6 in mice resulted in animals exhibiting resistance to change and decreased ultrasonic vocalization as well as abnormal levels of serotonin in the brain. This work provides a reproducible and accurate method to profile serotonergic neurons under a variety of conditions and suggests a novel paradigm for gaining information on the etiology of psychiatric disorders.
Collapse
|
213
|
Poot M. Towards identification of individual etiologies by resolving genomic and biological conundrums in patients with autism spectrum disorders. Mol Syndromol 2013; 4:213-26. [PMID: 23885228 DOI: 10.1159/000350041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 01/11/2023] Open
Abstract
Recent genomic research into autism spectrum disorders (ASD) has revealed a remarkably complex genetic architecture. Large numbers of common variants, copy number variations and single nucleotide variants have been identified, yet each of them individually afforded only a small phenotypic impact. A polygenic model in which multiple genes interact either in an additive or a synergistic way appears the most plausible for the majority of ASD patients. Based on recently identified ASD candidate genes, transgenic mouse models for neuroligins/neurorexins and genes such as Cntnap2, Cntn5, Tsc1, Tsc2, Akt3, Cyfip1, Scn1a, En2, Slc6a4, and Bckdk have been generated and studied with respect to behavioral and neuroanatomical phenotypes and sensitivity to drug treatments. From these models, a few clues for potential pharmacologic intervention emerged. The Fmr1, Shank2 and Cntn5 knockout mice exhibited alterations of glutamate receptors, which may become a target for pharmacologic modulation. Some of the phenotypes of Mecp2 knockout mice can be ameliorated by administering IGF1. In the near future, comprehensive genotyping of individual patients and siblings combined with the novel insights generated from the transgenic animal studies may provide us with personalized treatment options. Eventually, autism may indeed turn out to be a phenotypically heterogeneous group of disorders ('autisms') caused by combinations of changes in multiple possible candidate genes, being different in each patient and requiring for each combination of mutations a distinct, individually tailored treatment.
Collapse
Affiliation(s)
- M Poot
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
214
|
Korade Z, Folkes OM, Harrison FE. Behavioral and serotonergic response changes in the Dhcr7-HET mouse model of Smith-Lemli-Opitz syndrome. Pharmacol Biochem Behav 2013; 106:101-8. [PMID: 23541496 DOI: 10.1016/j.pbb.2013.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/13/2013] [Accepted: 03/16/2013] [Indexed: 01/22/2023]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a developmental disorder resulting from mutations to the Dhcr7 gene, which is required for cholesterol synthesis. Patients with SLOS typically exhibit a number of severe behavioral deficits and many are diagnosed with autistic spectrum disorder. Although the molecular pathophysiology underlying behavioral changes in SLOS and autism spectrum disorders is poorly understood, there is evidence for the involvement of the serotonergic system in SLOS and autism in general. Behavioral testing was undertaken to ascertain the basal behavioral differences between Dhcr7-heterozygous (HET) and wild-type control mice and explore the utility of a Dhcr7-HET mouse line in the development of new treatments for this disorder. Dhcr7-HET mice did not differ from wild-type control mice on basic measures of locomotor activity, anxiety and neuromuscular ability. However, female Dhcr7-HET mice at 6 months of age or older were significantly more likely to win on the social dominance tube test against an unfamiliar mouse. Pharmacological testing, using the 5-HT2A agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), showed increased head-twitch response in Dhcr7-HET mice, which was apparent from 6 months of age. No differences were found between the genotypes in testing for 5-HT1A agonist 8-OH-DPAT-induced hypothermia. These data indicate an underlying dysfunction of the 5-HT2A receptors in Dhcr7-HET mice that warrants further investigation to establish how this may relate to behavioral disturbances in human patients carrying Dhcr7 mutations.
Collapse
Affiliation(s)
- Z Korade
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | | | | |
Collapse
|
215
|
Shah CR, Forsberg CG, Kang JQ, Veenstra-VanderWeele J. Letting a typical mouse judge whether mouse social interactions are atypical. Autism Res 2013; 6:212-20. [PMID: 23436806 DOI: 10.1002/aur.1280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/21/2013] [Indexed: 01/08/2023]
Abstract
Diagnosis of an autism spectrum disorder (ASD) requires a qualitative assessment of social aptitude: one person judging whether another person interacts in a "typical" way. We hypothesized that mice could be used to make a similar judgment if they prefer "typical" over "atypical" social interactions with mouse models relevant to ASD. We used wild-type C57BL/6 (B6) mice as "judges" and evaluated their preference for a chamber containing a "typical" (B6 or 129S6) or an "atypical" mouse. For our atypical mouse stimuli, we chose two inbred strains with well-documented social phenotypes (BTBR and BALB/c), as well a mutant line with abnormal social behavior and seizures (Gabrb3 +/-). Overall, we observed a stimulus by time interaction (P < 0.0001), with B6 mice preferring the typical mouse chamber during the last 10 min of the 30-min test. For two of the individual stimulus pairings, we observed a similar chamber by time interaction (BALB/c vs. 129S6, P = 0.0007; Gabrb3 +/- vs. 129S6, P = 0.033). For the third stimulus pairing, we found a trend for preference of the typical mouse across time (BTBR vs. B6, P = 0.051). We repeated the experiments using 129S6 mice as judges and found a significant overall interaction (P = 0.034), but only one stimulus pairing reached significance on its own (BALB/c vs. 129S6, P = 0.0021). These data suggest that a characteristic pattern of exploration in B6 mice can distinguish some socially atypical animals from controls.
Collapse
Affiliation(s)
- Charisma R Shah
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
216
|
Tyszka JM, Kennedy DP, Paul LK, Adolphs R. Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cereb Cortex 2013; 24:1894-905. [PMID: 23425893 DOI: 10.1093/cercor/bht040] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, yet the majority of studies report effects that are either very weak, inconsistent across studies, or explain results incompletely. Here we apply multiple analytical approaches to resting-state BOLD-fMRI data at the whole-brain level. Neurotypical and high-functioning adults with autism displayed very similar patterns and strengths of resting-state connectivity. We found only limited evidence in autism for abnormal resting-state connectivity at the regional level and no evidence for altered connectivity at the whole-brain level. Regional abnormalities in functional connectivity in autism spectrum disorder were primarily in the frontal and temporal cortices. Within these regions, functional connectivity with other brain regions was almost exclusively lower in the autism group. Further examination showed that even small amounts of head motion during scanning have large effects on functional connectivity measures and must be controlled carefully. Consequently, we suggest caution in the interpretation of apparent positive findings until all possible confounding effects can be ruled out. Additionally, we do not rule out the possibility that abnormal connectivity in autism is evident at the microstructural synaptic level, which may not be reflected sensitively in hemodynamic changes measured with BOLD-fMRI.
Collapse
Affiliation(s)
| | - Daniel P Kennedy
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Lynn K Paul
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA and
| | - Ralph Adolphs
- Division of Biology and Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA and
| |
Collapse
|
217
|
Roullet FI, Lai JKY, Foster JA. In utero exposure to valproic acid and autism--a current review of clinical and animal studies. Neurotoxicol Teratol 2013; 36:47-56. [PMID: 23395807 DOI: 10.1016/j.ntt.2013.01.004] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 01/16/2023]
Abstract
Valproic acid (VPA) is both an anti-convulsant and a mood stabilizer. Clinical studies over the past 40 years have shown that exposure to VPA in utero is associated with birth defects, cognitive deficits, and increased risk of autism. Two recent FDA warnings related to use of VPA in pregnancy emphasize the need to reevaluate its use clinically during child-bearing years. The emerging clinical evidence showing a link between VPA exposure and both cognitive function and risk of autism brings to the forefront the importance of understanding how VPA exposure influences neurodevelopment. In the past 10 years, animal studies have investigated anatomical, behavioral, molecular, and physiological outcomes related to in utero VPA exposure. Behavioral studies show that VPA exposure in both rats and mice leads to autistic-like behaviors in the offspring, including social behavior deficits, increased repetitive behaviors, and deficits in communication. Based on this work VPA maternal challenge in rodents has been proposed as an animal model to study autism. This model has both face and construct validity; however, like all animal models there are limitations to its translation to the clinical setting. Here we provide a review of clinical studies that examined pregnancy outcomes of VPA use as well as the related animal studies.
Collapse
Affiliation(s)
- Florence I Roullet
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada.
| | | | | |
Collapse
|
218
|
Donaldson ZR, Nautiyal KM, Ahmari SE, Hen R. Genetic approaches for understanding the role of serotonin receptors in mood and behavior. Curr Opin Neurobiol 2013; 23:399-406. [PMID: 23385115 DOI: 10.1016/j.conb.2013.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/03/2013] [Accepted: 01/13/2013] [Indexed: 01/06/2023]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is an ancient signaling molecule that has a conserved role in modulating mood and behavior. Integral to its pleiotropic actions is the existence of multiple receptors, expressed in distinct but often overlapping patterns within the brain and the periphery. The existence of ∼14 mammalian receptor subtypes, many of which possess similar pharmacological profiles, has made assigning functional roles for these receptors challenging. This challenge has been further compounded by the revelation that a single receptor can have several different functions depending upon where and when it is expressed and activated, that is, in brain versus periphery, or at different developmental time points. This review highlights the contribution of genetic techniques to dissect the specific function of distinct serotonin receptor populations across the life course, with an emphasis on the contribution of different serotonin 1A receptor populations to mood and behavior. Similar approaches hold the promise to elucidate the functional roles of other receptors, as well as the interaction of serotonin with other neuroendocrine modulators of mood and behavior.
Collapse
Affiliation(s)
- Zoe R Donaldson
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
219
|
Malynn S, Campos-Torres A, Moynagh P, Haase J. The pro-inflammatory cytokine TNF-α regulates the activity and expression of the serotonin transporter (SERT) in astrocytes. Neurochem Res 2013; 38:694-704. [PMID: 23338678 DOI: 10.1007/s11064-012-0967-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 01/28/2023]
Abstract
Pro-inflammatory cytokines have been implicated in the precipitation of depression and related disorders, and the antidepressant sensitive serotonin transporter (SERT) may be a major target for immune regulation in these disorders. Here, we focus on astrocytes, a major class of immune competent cells in the brain, to examine the effects of pro-longed treatment with tumor necrosis factor-alpha (TNF-α) on SERT activity. We first established that high-affinity serotonin uptake into C6 glioma cells occurs through a SERT-dependent mechanism. Functional SERT expression is also confirmed for primary astrocytes. In both cell types, exposure to TNF-α resulted in a dose- and time-dependent increase in SERT-mediated 5-HT uptake, which was sustained for at least 48 h post-stimulation. Further analysis in primary astrocytes revealed that TNF-α enhanced the transport capacity (Vmax) of SERT-specific 5-HT uptake, suggesting enhanced transporter expression, consistent with our observation of an increase in SERT mRNA levels. We confirmed that in both, primary astrocytes and C6 glioma cells, treatment with TNF-α activates the p38 mitogen-activated protein kinase (MAPK) signaling pathway. Pre-treatment with the p38 MAPK inhibitor SB203580 attenuated the TNF-α mediated stimulation of 5-HT transport in both, C6 glioma and primary astrocytes. In summary, we show that SERT gene expression and activity in astrocytes is subject to regulation by TNF-α, an effect that is at least in part dependent on p38 MAPK activation.
Collapse
Affiliation(s)
- Sandra Malynn
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | | | | | | |
Collapse
|
220
|
Baganz NL, Blakely RD. A dialogue between the immune system and brain, spoken in the language of serotonin. ACS Chem Neurosci 2013; 4:48-63. [PMID: 23336044 DOI: 10.1021/cn300186b] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/07/2012] [Indexed: 12/20/2022] Open
Abstract
Neuropsychiatric disorders have long been linked to both immune system activation and alterations in serotonin (5-HT) signaling. In the CNS, the contributions of 5-HT modulate a broad range of targets, most notably, hypothalamic, limbic and cortical circuits linked to the control of mood and mood disorders. In the periphery, many are aware of the production and actions of 5-HT in the gut but are unaware that the molecule and its receptors are also present in the immune system where evidence suggests they contribute to the both innate and adaptive responses. In addition, there is clear evidence that the immune system communicates to the brain via both humoral and neuronal mechanisms, and that CNS 5-HT neurons are a direct or indirect target for these actions. Following a brief primer on the immune system, we describe our current understanding of the synthesis, release, and actions of 5-HT in modulating immune function, including the expression of 5-HT biosynthetic enzymes, receptors, and transporters that are typically studied with respect to the roles in the CNS. We then orient our presentation to recent findings that pro-inflammatory cytokines can modulate CNS 5-HT signaling, leading to a conceptualization that among the many roles of 5-HT in the body is an integrated physiological and behavioral response to inflammatory events and pathogens. From this perspective, altered 5-HT/immune conversations are likely to contribute to risk for neurobehavioral disorders historically linked to compromised 5-HT function or ameliorated by 5-HT targeted medications, including depression and anxiety disorders, obsessive-compulsive disorder (OCD), and autism. Our review raises the question as to whether genetic variation impacting 5-HT signaling genes may contribute to maladaptive behavior as much through perturbed immune system modulation as through altered brain mechanisms. Conversely, targeting the immune system for therapeutic development may provide an important opportunity to treat mental illness.
Collapse
Affiliation(s)
- Nicole L. Baganz
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| | - Randy D. Blakely
- Department of Pharmacology and ‡Department of Psychiatry, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548, United States
| |
Collapse
|
221
|
Murphy DL, Maile MS, Vogt NM. 5HTTLPR: White Knight or Dark Blight? ACS Chem Neurosci 2013; 4:13-5. [PMID: 23336038 DOI: 10.1021/cn3002224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 02/04/2023] Open
Abstract
In over 100 neuroscience genetics reports on SLC6A4 published in the first part of 2012, >40% reported data from genotyping only the serotonin transporter-linked promoter region [5HTTLPR] indel, omitting genotyping of two nearby SNPs that substantially alter 5HTTLPR allele frequencies and functionality. And 25% of these papers did not report ethnicity of the subjects genotyped, another factor that alters allele frequencies. This field thus seems stultified. Improved science for the present and future will be better served by attention to more complete methods for genotyping and subject sample reporting.
Collapse
Affiliation(s)
- Dennis L. Murphy
- Laboratory of Clinical Science, National Institute
of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, United States
| | - Michelle S. Maile
- Laboratory of Clinical Science, National Institute
of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, United States
| | - Nicholas M. Vogt
- Laboratory of Clinical Science, National Institute
of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
222
|
Gadow KD, DeVincent CJ, Siegal VI, Olvet DM, Kibria S, Kirsch SF, Hatchwell E. Allele-specific associations of 5-HTTLPR/rs25531 with ADHD and autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:292-7. [PMID: 23123360 PMCID: PMC3522768 DOI: 10.1016/j.pnpbp.2012.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/15/2012] [Accepted: 10/23/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND The aims of the present study were to examine the association between a common serotonin transporter gene (SLC6A4) polymorphism 5-HTTLPR/rs25531 with severity of attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) symptoms. METHODS Mothers and teachers completed a validated DSM-IV-referenced rating scale for ADHD and ASD symptoms in 118 children with ASD. RESULTS Analyses indicated that children with at least one copy of the S or L(G) allele obtained significantly more severe maternal ratings of hyperactivity (p=0.001; ηp(2)=0.097) and impulsivity (p=0.027; ηp(2)=0.044) but not inattention (p=0.061; ηp(2)=0.032), controlling for ASD severity, than children homozygous for the L(A) allele. Conversely, mothers' ratings indicated that children with L(A)/L(A) genotype had more severe ASD social deficits than S or L(G) allele carriers (p=0.003; ηp(2)=0.081), controlling for ADHD symptom severity. Teachers' ratings though consistent with mothers' ratings of hyperactivity and social deficits were marginally significant (p=0.07/p=0.09). There was some evidence that the magnitude of parent-teacher agreement regarding symptom severity varied as a function of the child's genotype. CONCLUSION The 5-HTTLPR/rs25531 polymorphism or its correlates may modulate severity of ADHD and ASD symptoms in children with ASD, but in different ways. These tentative, hypothesis-generating findings require replication with larger independent samples.
Collapse
Affiliation(s)
- Kenneth D. Gadow
- Department of Psychiatry and Behavioral Sciences, Stony Brook University, Stony Brook, NY 11794-8790, Phone: (631) 632-8858, FAX: (631) 632-8953,
| | - Carla J. DeVincent
- Department of Radiology, Stony Brook Medicine, Stony Brook, NY 11794-8460, Phone: (631) 638-2136,
| | - Victoria I. Siegal
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794-8088,
| | - Doreen M. Olvet
- Molecular Imaging and Neuropathology Division (MIND), New York State Psychiatric Institute, Columbia University, 1051 Riverside Drive, Unit 42, New York, NY 10032, USA, Hillside Hospital
| | - Saniya Kibria
- School of Medicine, Stony Brook University, Stony Brook, NY 11794-8088,
| | - Sarah F. Kirsch
- School of Medicine, Stony Brook University, Stony Brook, NY 11794-8088,
| | - Eli Hatchwell
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794-8088,
| |
Collapse
|
223
|
Maloney SE, Rieger MA, Dougherty JD. Identifying essential cell types and circuits in autism spectrum disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 113:61-96. [PMID: 24290383 DOI: 10.1016/b978-0-12-418700-9.00003-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is highly genetic in its etiology, with potentially hundreds of genes contributing to risk. Despite this heterogeneity, these disparate genetic lesions may result in the disruption of a limited number of key cell types or circuits-information which could be leveraged for the design of therapeutic interventions. While hypotheses for cellular disruptions can be identified by postmortem anatomical analysis and expression studies of ASD risk genes, testing these hypotheses requires the use of animal models. In this review, we explore the existing evidence supporting the contribution of different cell types to ASD, specifically focusing on rodent studies disrupting serotonergic, GABAergic, cerebellar, and striatal cell types, with particular attention to studies of the sufficiency of specific cellular disruptions to generate ASD-related behavioral abnormalities. This evidence suggests multiple cellular routes can create features of the disorder, though it is currently unclear if these cell types converge on a final common circuit. We hope that in the future, systematic studies of cellular sufficiency and genetic interaction will help to classify patients into groups by type of cellular disruptions which suggest tractable therapeutic targets.
Collapse
Affiliation(s)
- Susan E Maloney
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
224
|
Kane MJ, Angoa-Peréz M, Briggs DI, Sykes CE, Francescutti DM, Rosenberg DR, Kuhn DM. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS One 2012; 7:e48975. [PMID: 23139830 PMCID: PMC3490915 DOI: 10.1371/journal.pone.0048975] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/01/2012] [Indexed: 01/10/2023] Open
Abstract
Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/-) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.
Collapse
Affiliation(s)
- Michael J. Kane
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Mariana Angoa-Peréz
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Denise I. Briggs
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Catherine E. Sykes
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dina M. Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - David R. Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Donald M. Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, Michigan, United States of America
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
225
|
Chang JC, Kovtun O, Blakely RD, Rosenthal SJ. Labeling of neuronal receptors and transporters with quantum dots. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:605-19. [PMID: 22887823 PMCID: PMC3753009 DOI: 10.1002/wnan.1186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to efficiently visualize protein targets in cells is a fundamental goal in biological research. Recently, quantum dots (QDots) have emerged as a powerful class of fluorescent probes for labeling membrane proteins in living cells because of breakthrough advances in QDot surface chemistry and biofunctionalization strategies. This review discusses the increasing use of QDots for fluorescence imaging of neuronal receptors and transporters. The readers are briefly introduced to QDot structure, photophysical properties, and common synthetic routes toward the generation of water-soluble QDots. The following section highlights several reports of QDot application that seek to unravel molecular aspects of neuronal receptor and transporter regulation and trafficking. This article is closed with a prospectus of the future of derivatized QDots in neurobiological and pharmacological research.
Collapse
Affiliation(s)
- Jerry C Chang
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
226
|
Single molecule analysis of serotonin transporter regulation using antagonist-conjugated quantum dots reveals restricted, p38 MAPK-dependent mobilization underlying uptake activation. J Neurosci 2012; 32:8919-29. [PMID: 22745492 DOI: 10.1523/jneurosci.0048-12.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The presynaptic serotonin (5-HT) transporter (SERT) is targeted by widely prescribed antidepressant medications. Altered SERT expression or regulation has been implicated in multiple neuropsychiatric disorders, including anxiety, depression and autism. Here, we implement a generalizable strategy that exploits antagonist-conjugated quantum dots (Qdots) to monitor, for the first time, single SERT proteins on the surface of serotonergic cells. We document two pools of SERT proteins defined by lateral mobility, one that exhibits relatively free diffusion, and a second, localized to cholesterol and GM1 ganglioside-enriched microdomains, that displays restricted mobility. Receptor-linked signaling pathways that enhance SERT activity mobilize transporters that, nonetheless, remain confined to membrane microdomains. Mobilization of transporters arises from a p38 MAPK-dependent untethering of the SERT C terminus from the juxtamembrane actin cytoskeleton. Our studies establish the utility of ligand-conjugated Qdots for analysis of the behavior of single membrane proteins and reveal a physical basis for signaling-mediated SERT regulation.
Collapse
|
227
|
Chomiak T, Hu B. Alterations of neocortical development and maturation in autism: insight from valproic acid exposure and animal models of autism. Neurotoxicol Teratol 2012; 36:57-66. [PMID: 22967743 DOI: 10.1016/j.ntt.2012.08.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/05/2012] [Accepted: 08/20/2012] [Indexed: 01/27/2023]
Abstract
Autism spectrum disorder (ASD) is a behaviourally defined brain disorder affecting approximately 1 in 88 children. Many pathological studies have shown that ASD is frequently associated with grey and white matter changes that can be described by their deviations from the normal trajectory of cortical maturation. For example, during the early (i.e. <2 years) postnatal period there is marked and selective tissue overgrowth in the higher-order temporal and frontal networks involved in emotional, social, and communication functions. In this focused review we first summarize some basic principles of neocortical neural organization and how they are disrupted in ASD. We will then highlight some of the potential mechanisms by which the normal developmental trajectory and organization of neocortical networks can be altered based on animal studies of valproic acid, a teratogen widely used in animal models of ASD. We argue that the trajectory of postnatal cerebral neocortex development may be influenced by several cellular and molecular mechanisms that may all converge to produce a neuropathology characterized by premature or accelerated neuronal growth.
Collapse
Affiliation(s)
- Taylor Chomiak
- Division of Experimental Neuroscience, Department of Clinical Neuroscience, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|
228
|
Kyzar EJ, Pham M, Roth A, Cachat J, Green J, Gaikwad S, Kalueff AV. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes. Brain Res Bull 2012; 89:168-76. [PMID: 22951260 DOI: 10.1016/j.brainresbull.2012.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/03/2012] [Accepted: 08/08/2012] [Indexed: 12/31/2022]
Abstract
Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology.
Collapse
Affiliation(s)
- Evan J Kyzar
- Department of Pharmacology and Neuroscience Program, Tulane University Medical School, New Orleans, LA 70112, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Farook MF, DeCuypere M, Hyland K, Takumi T, LeDoux MS, Reiter LT. Altered serotonin, dopamine and norepinepherine levels in 15q duplication and Angelman syndrome mouse models. PLoS One 2012; 7:e43030. [PMID: 22916201 PMCID: PMC3420863 DOI: 10.1371/journal.pone.0043030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/16/2012] [Indexed: 01/18/2023] Open
Abstract
Childhood neurodevelopmental disorders like Angelman syndrome and autism may be the result of underlying defects in neuronal plasticity and ongoing problems with synaptic signaling. Some of these defects may be due to abnormal monoamine levels in different regions of the brain. Ube3a, a gene that causes Angelman syndrome (AS) when maternally deleted and is associated with autism when maternally duplicated has recently been shown to regulate monoamine synthesis in the Drosophila brain. Therefore, we examined monoamine levels in striatum, ventral midbrain, frontal cerebral cortex, cerebellar cortex and hippocampus in Ube3a deficient and Ube3a duplication animals. We found that serotonin (5HT), a monoamine affected in autism, was elevated in the striatum and cortex of AS mice. Dopamine levels were almost uniformly elevated compared to control littermates in the striatum, midbrain and frontal cortex regardless of genotype in Ube3a deficient and Ube3a duplication animals. In the duplication 15q autism mouse model, paternal but not maternal duplication animals showed a decrease in 5HT levels when compared to their wild type littermates, in accordance with previously published data. However, maternal duplication animals show no significant changes in 5HT levels throughout the brain. These abnormal monoamine levels could be responsible for many of the behavioral abnormalities observed in both AS and autism, but further investigation is required to determine if any of these changes are purely dependent on Ube3a levels in the brain.
Collapse
Affiliation(s)
- M. Febin Farook
- Department of Neurology, UTHSC, Memphis, Tennessee, United States of America
| | - Michael DeCuypere
- Department of Neurosurgery, UTHSC, Memphis, Tennessee, United States of America
| | - Keith Hyland
- Medical Neurogenetics, LCC, Atlanta, Georgia, United States of America
| | - Toru Takumi
- Hiroshima University, School of Medicine, Hiroshima, Japan
| | - Mark S. LeDoux
- Department of Neurology, UTHSC, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, UTHSC, Memphis, Tennessee, United States of America
| | - Lawrence T. Reiter
- Department of Neurology, UTHSC, Memphis, Tennessee, United States of America
- Department of Anatomy and Neurobiology, UTHSC, Memphis, Tennessee, United States of America
- Department of Pediatrics, UTHSC, Memphis, Tennessee, United States of America
| |
Collapse
|
230
|
Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 2012; 4:21. [PMID: 22958282 PMCID: PMC3445833 DOI: 10.1186/1866-1955-4-21] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/06/2012] [Indexed: 11/29/2022] Open
Abstract
The autism spectrum disorders (ASDs) arise from a diverse array of genetic and environmental origins that disrupt the typical developmental trajectory of neural connectivity and synaptogenesis. ASDs are marked by dysfunctional social behavior and cognition, among other deficits. Greater understanding of the biological substrates of typical social behavior in animal models will further our understanding of the etiology of ASDs. Despite the precision and tractability of molecular genetics models of ASDs in rodents, these organisms lack the complexity of human social behavior, thus limiting their impact on understanding ASDs to basic mechanisms. Non-human primates (NHPs) provide an attractive, complementary model for ASDs, due in part to the complexity and dynamics of social structures, reliance on vision for social signaling, and deep homology in brain circuitry mediating social behavior and reward. This knowledge is based on a rich literature, compiled over 50 years of observing primate behavior in the wild, which, in the case of rhesus macaques, is complemented by a large body of research characterizing neuronal activity during cognitive behavior. Several recent developments in this field are directly relevant to ASDs, including how the brain represents the perceptual features of social stimuli, how social information influences attention processes in the brain, and how the value of social interaction is computed. Because the symptoms of ASDs may represent extreme manifestations of traits that vary in intensity within the general population, we will additionally discuss ways in which nonhuman primates also show variation in social behavior and reward sensitivity. In cases where variation in species-typical behavior is analogous to similar variations in human behavior, we believe that study of the neural circuitry underlying this variation will provide important insights into the systems-level mechanisms contributing to ASD pathology.
Collapse
|
231
|
Brielmaier J, Matteson PG, Silverman JL, Senerth JM, Kelly S, Genestine M, Millonig JH, DiCicco-Bloom E, Crawley JN. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice. PLoS One 2012; 7:e40914. [PMID: 22829897 PMCID: PMC3400671 DOI: 10.1371/journal.pone.0040914] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022] Open
Abstract
ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders.
Collapse
Affiliation(s)
- Jennifer Brielmaier
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Gomez-Mancilla B. Tweaking the Social Network. Sci Transl Med 2012; 4:131fs9. [DOI: 10.1126/scitranslmed.3004017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A preclinical mouse model of autism spectrum disorder paves the way for clinical trials with a glutamate receptor antagonist.
Collapse
Affiliation(s)
- Baltazar Gomez-Mancilla
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4056 Basel, Switzerland
| |
Collapse
|
233
|
Flood ZC, Engel DLJ, Simon CC, Negherbon KR, Murphy LJ, Tamavimok W, Anderson GM, Janušonis S. Brain growth trajectories in mouse strains with central and peripheral serotonin differences: relevance to autism models. Neuroscience 2012; 210:286-95. [PMID: 22450231 DOI: 10.1016/j.neuroscience.2012.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 03/01/2012] [Accepted: 03/03/2012] [Indexed: 10/28/2022]
Abstract
The genetic heterogeneity of autism spectrum disorders (ASDs) suggests that their underlying neurobiology involves dysfunction at the neural network level. Understanding these neural networks will require a major collaborative effort and will depend on validated and widely accepted animal models. Many mouse models have been proposed in autism research, but the assessment of their validity often has been limited to measuring social interactions. However, two other well-replicated findings have been reported in ASDs: transient brain overgrowth in early postnatal life and elevated 5-HT (serotonin) levels in blood platelets (platelet hyperserotonemia). We examined two inbred mouse strains (C57BL/6 and BALB/c) with respect to these phenomena. The BALB/c strain is less social and exhibits some other autistic-like behaviors. In addition, it has a lower 5-HT synthesis rate in the central nervous system due to a single-nucleotide polymorphism in the tryptophan hydroxylase 2 (Tph2) gene. The postnatal growth of brain mass was analyzed with mixed-effects models that included litter effects. The volume of the hippocampal complex and the thickness of the somatosensory cortex were measured in 3D-brain reconstructions from serial sections. The postnatal whole-blood 5-HT levels were assessed with high-performance liquid chromatography. With respect to the BALB/c strain, the C57BL/6 strain showed transient brain overgrowth and persistent blood hyperserotonemia. The hippocampal volume was permanently enlarged in the C57BL/6 strain, with no change in the adult brain mass. These results indicate that, in mice, autistic-like shifts in the brain and periphery may be associated with less autistic-like behaviors. Importantly, they suggest that consistency among behavioral, anatomical, and physiological measures may expedite the validation of new and previously proposed mouse models of autism, and that the construct validity of models should be demonstrated when these measures are inconsistent.
Collapse
Affiliation(s)
- Z C Flood
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | | | |
Collapse
|